
We also rework the code to have the FB descriptor shared by the tiler and fragment jobs, instead of allocating a separate FB descriptor for tiler jobs. The new implementation seems to fix a few dEQP failures on T720. Signed-off-by: Boris Brezillon <boris.brezillon@collabora.com> Reviewed-by: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/10033>
2368 lines
99 KiB
C
2368 lines
99 KiB
C
/*
|
|
* Copyright (C) 2018 Alyssa Rosenzweig
|
|
* Copyright (C) 2020 Collabora Ltd.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "util/macros.h"
|
|
#include "util/u_prim.h"
|
|
#include "util/u_vbuf.h"
|
|
#include "util/u_helpers.h"
|
|
|
|
#include "panfrost-quirks.h"
|
|
|
|
#include "pan_pool.h"
|
|
#include "pan_bo.h"
|
|
#include "pan_cmdstream.h"
|
|
#include "pan_context.h"
|
|
#include "pan_job.h"
|
|
#include "pan_shader.h"
|
|
#include "pan_texture.h"
|
|
|
|
/* If a BO is accessed for a particular shader stage, will it be in the primary
|
|
* batch (vertex/tiler) or the secondary batch (fragment)? Anything but
|
|
* fragment will be primary, e.g. compute jobs will be considered
|
|
* "vertex/tiler" by analogy */
|
|
|
|
static inline uint32_t
|
|
panfrost_bo_access_for_stage(enum pipe_shader_type stage)
|
|
{
|
|
assert(stage == PIPE_SHADER_FRAGMENT ||
|
|
stage == PIPE_SHADER_VERTEX ||
|
|
stage == PIPE_SHADER_COMPUTE);
|
|
|
|
return stage == PIPE_SHADER_FRAGMENT ?
|
|
PAN_BO_ACCESS_FRAGMENT :
|
|
PAN_BO_ACCESS_VERTEX_TILER;
|
|
}
|
|
|
|
/* Gets a GPU address for the associated index buffer. Only gauranteed to be
|
|
* good for the duration of the draw (transient), could last longer. Also get
|
|
* the bounds on the index buffer for the range accessed by the draw. We do
|
|
* these operations together because there are natural optimizations which
|
|
* require them to be together. */
|
|
|
|
mali_ptr
|
|
panfrost_get_index_buffer_bounded(struct panfrost_context *ctx,
|
|
const struct pipe_draw_info *info,
|
|
const struct pipe_draw_start_count *draw,
|
|
unsigned *min_index, unsigned *max_index)
|
|
{
|
|
struct panfrost_resource *rsrc = pan_resource(info->index.resource);
|
|
struct panfrost_batch *batch = panfrost_get_batch_for_fbo(ctx);
|
|
off_t offset = draw->start * info->index_size;
|
|
bool needs_indices = true;
|
|
mali_ptr out = 0;
|
|
|
|
if (info->index_bounds_valid) {
|
|
*min_index = info->min_index;
|
|
*max_index = info->max_index;
|
|
needs_indices = false;
|
|
}
|
|
|
|
if (!info->has_user_indices) {
|
|
/* Only resources can be directly mapped */
|
|
panfrost_batch_add_bo(batch, rsrc->image.data.bo,
|
|
PAN_BO_ACCESS_SHARED |
|
|
PAN_BO_ACCESS_READ |
|
|
PAN_BO_ACCESS_VERTEX_TILER);
|
|
out = rsrc->image.data.bo->ptr.gpu + offset;
|
|
|
|
/* Check the cache */
|
|
needs_indices = !panfrost_minmax_cache_get(rsrc->index_cache,
|
|
draw->start,
|
|
draw->count,
|
|
min_index,
|
|
max_index);
|
|
} else {
|
|
/* Otherwise, we need to upload to transient memory */
|
|
const uint8_t *ibuf8 = (const uint8_t *) info->index.user;
|
|
struct panfrost_ptr T =
|
|
panfrost_pool_alloc_aligned(&batch->pool,
|
|
draw->count * info->index_size,
|
|
info->index_size);
|
|
|
|
memcpy(T.cpu, ibuf8 + offset, draw->count * info->index_size);
|
|
out = T.gpu;
|
|
}
|
|
|
|
if (needs_indices) {
|
|
/* Fallback */
|
|
u_vbuf_get_minmax_index(&ctx->base, info, draw, min_index, max_index);
|
|
|
|
if (!info->has_user_indices)
|
|
panfrost_minmax_cache_add(rsrc->index_cache,
|
|
draw->start, draw->count,
|
|
*min_index, *max_index);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
static unsigned
|
|
translate_tex_wrap(enum pipe_tex_wrap w, bool supports_clamp, bool using_nearest)
|
|
{
|
|
/* Bifrost doesn't support the GL_CLAMP wrap mode, so instead use
|
|
* CLAMP_TO_EDGE and CLAMP_TO_BORDER. On Midgard, CLAMP is broken for
|
|
* nearest filtering, so use CLAMP_TO_EDGE in that case. */
|
|
|
|
switch (w) {
|
|
case PIPE_TEX_WRAP_REPEAT: return MALI_WRAP_MODE_REPEAT;
|
|
case PIPE_TEX_WRAP_CLAMP:
|
|
return using_nearest ? MALI_WRAP_MODE_CLAMP_TO_EDGE :
|
|
(supports_clamp ? MALI_WRAP_MODE_CLAMP :
|
|
MALI_WRAP_MODE_CLAMP_TO_BORDER);
|
|
case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return MALI_WRAP_MODE_CLAMP_TO_EDGE;
|
|
case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return MALI_WRAP_MODE_CLAMP_TO_BORDER;
|
|
case PIPE_TEX_WRAP_MIRROR_REPEAT: return MALI_WRAP_MODE_MIRRORED_REPEAT;
|
|
case PIPE_TEX_WRAP_MIRROR_CLAMP:
|
|
return using_nearest ? MALI_WRAP_MODE_MIRRORED_CLAMP_TO_EDGE :
|
|
(supports_clamp ? MALI_WRAP_MODE_MIRRORED_CLAMP :
|
|
MALI_WRAP_MODE_MIRRORED_CLAMP_TO_BORDER);
|
|
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return MALI_WRAP_MODE_MIRRORED_CLAMP_TO_EDGE;
|
|
case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return MALI_WRAP_MODE_MIRRORED_CLAMP_TO_BORDER;
|
|
default: unreachable("Invalid wrap");
|
|
}
|
|
}
|
|
|
|
/* The hardware compares in the wrong order order, so we have to flip before
|
|
* encoding. Yes, really. */
|
|
|
|
static enum mali_func
|
|
panfrost_sampler_compare_func(const struct pipe_sampler_state *cso)
|
|
{
|
|
if (!cso->compare_mode)
|
|
return MALI_FUNC_NEVER;
|
|
|
|
enum mali_func f = panfrost_translate_compare_func(cso->compare_func);
|
|
return panfrost_flip_compare_func(f);
|
|
}
|
|
|
|
static enum mali_mipmap_mode
|
|
pan_pipe_to_mipmode(enum pipe_tex_mipfilter f)
|
|
{
|
|
switch (f) {
|
|
case PIPE_TEX_MIPFILTER_NEAREST: return MALI_MIPMAP_MODE_NEAREST;
|
|
case PIPE_TEX_MIPFILTER_LINEAR: return MALI_MIPMAP_MODE_TRILINEAR;
|
|
case PIPE_TEX_MIPFILTER_NONE: return MALI_MIPMAP_MODE_NONE;
|
|
default: unreachable("Invalid");
|
|
}
|
|
}
|
|
|
|
void panfrost_sampler_desc_init(const struct pipe_sampler_state *cso,
|
|
struct mali_midgard_sampler_packed *hw)
|
|
{
|
|
bool using_nearest = cso->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST;
|
|
|
|
pan_pack(hw, MIDGARD_SAMPLER, cfg) {
|
|
cfg.magnify_nearest = cso->mag_img_filter == PIPE_TEX_FILTER_NEAREST;
|
|
cfg.minify_nearest = cso->min_img_filter == PIPE_TEX_FILTER_NEAREST;
|
|
cfg.mipmap_mode = (cso->min_mip_filter == PIPE_TEX_MIPFILTER_LINEAR) ?
|
|
MALI_MIPMAP_MODE_TRILINEAR : MALI_MIPMAP_MODE_NEAREST;
|
|
cfg.normalized_coordinates = cso->normalized_coords;
|
|
|
|
cfg.lod_bias = FIXED_16(cso->lod_bias, true);
|
|
|
|
cfg.minimum_lod = FIXED_16(cso->min_lod, false);
|
|
|
|
/* If necessary, we disable mipmapping in the sampler descriptor by
|
|
* clamping the LOD as tight as possible (from 0 to epsilon,
|
|
* essentially -- remember these are fixed point numbers, so
|
|
* epsilon=1/256) */
|
|
|
|
cfg.maximum_lod = (cso->min_mip_filter == PIPE_TEX_MIPFILTER_NONE) ?
|
|
cfg.minimum_lod + 1 :
|
|
FIXED_16(cso->max_lod, false);
|
|
|
|
cfg.wrap_mode_s = translate_tex_wrap(cso->wrap_s, true, using_nearest);
|
|
cfg.wrap_mode_t = translate_tex_wrap(cso->wrap_t, true, using_nearest);
|
|
cfg.wrap_mode_r = translate_tex_wrap(cso->wrap_r, true, using_nearest);
|
|
|
|
cfg.compare_function = panfrost_sampler_compare_func(cso);
|
|
cfg.seamless_cube_map = cso->seamless_cube_map;
|
|
|
|
cfg.border_color_r = cso->border_color.ui[0];
|
|
cfg.border_color_g = cso->border_color.ui[1];
|
|
cfg.border_color_b = cso->border_color.ui[2];
|
|
cfg.border_color_a = cso->border_color.ui[3];
|
|
}
|
|
}
|
|
|
|
void panfrost_sampler_desc_init_bifrost(const struct pipe_sampler_state *cso,
|
|
struct mali_bifrost_sampler_packed *hw)
|
|
{
|
|
bool using_nearest = cso->min_img_filter == PIPE_TEX_MIPFILTER_NEAREST;
|
|
|
|
pan_pack(hw, BIFROST_SAMPLER, cfg) {
|
|
cfg.point_sample_magnify = cso->mag_img_filter == PIPE_TEX_FILTER_NEAREST;
|
|
cfg.point_sample_minify = cso->min_img_filter == PIPE_TEX_FILTER_NEAREST;
|
|
cfg.mipmap_mode = pan_pipe_to_mipmode(cso->min_mip_filter);
|
|
cfg.normalized_coordinates = cso->normalized_coords;
|
|
|
|
cfg.lod_bias = FIXED_16(cso->lod_bias, true);
|
|
cfg.minimum_lod = FIXED_16(cso->min_lod, false);
|
|
cfg.maximum_lod = FIXED_16(cso->max_lod, false);
|
|
|
|
if (cso->max_anisotropy > 1) {
|
|
cfg.maximum_anisotropy = cso->max_anisotropy;
|
|
cfg.lod_algorithm = MALI_LOD_ALGORITHM_ANISOTROPIC;
|
|
}
|
|
|
|
cfg.wrap_mode_s = translate_tex_wrap(cso->wrap_s, false, using_nearest);
|
|
cfg.wrap_mode_t = translate_tex_wrap(cso->wrap_t, false, using_nearest);
|
|
cfg.wrap_mode_r = translate_tex_wrap(cso->wrap_r, false, using_nearest);
|
|
|
|
cfg.compare_function = panfrost_sampler_compare_func(cso);
|
|
cfg.seamless_cube_map = cso->seamless_cube_map;
|
|
|
|
cfg.border_color_r = cso->border_color.ui[0];
|
|
cfg.border_color_g = cso->border_color.ui[1];
|
|
cfg.border_color_b = cso->border_color.ui[2];
|
|
cfg.border_color_a = cso->border_color.ui[3];
|
|
}
|
|
}
|
|
|
|
static bool
|
|
panfrost_fs_required(
|
|
struct panfrost_shader_state *fs,
|
|
struct panfrost_blend_final *blend,
|
|
struct pipe_framebuffer_state *state)
|
|
{
|
|
/* If we generally have side effects */
|
|
if (fs->info.fs.sidefx)
|
|
return true;
|
|
|
|
/* If colour is written we need to execute */
|
|
for (unsigned i = 0; i < state->nr_cbufs; ++i) {
|
|
if (!blend[i].no_colour && state->cbufs[i])
|
|
return true;
|
|
}
|
|
|
|
/* If depth is written and not implied we need to execute.
|
|
* TODO: Predicate on Z/S writes being enabled */
|
|
return (fs->info.fs.writes_depth || fs->info.fs.writes_stencil);
|
|
}
|
|
|
|
static enum mali_bifrost_register_file_format
|
|
bifrost_blend_type_from_nir(nir_alu_type nir_type)
|
|
{
|
|
switch(nir_type) {
|
|
case 0: /* Render target not in use */
|
|
return 0;
|
|
case nir_type_float16:
|
|
return MALI_BIFROST_REGISTER_FILE_FORMAT_F16;
|
|
case nir_type_float32:
|
|
return MALI_BIFROST_REGISTER_FILE_FORMAT_F32;
|
|
case nir_type_int32:
|
|
return MALI_BIFROST_REGISTER_FILE_FORMAT_I32;
|
|
case nir_type_uint32:
|
|
return MALI_BIFROST_REGISTER_FILE_FORMAT_U32;
|
|
case nir_type_int16:
|
|
return MALI_BIFROST_REGISTER_FILE_FORMAT_I16;
|
|
case nir_type_uint16:
|
|
return MALI_BIFROST_REGISTER_FILE_FORMAT_U16;
|
|
default:
|
|
unreachable("Unsupported blend shader type for NIR alu type");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
panfrost_emit_bifrost_blend(struct panfrost_batch *batch,
|
|
struct panfrost_blend_final *blend,
|
|
void *rts)
|
|
{
|
|
unsigned rt_count = batch->key.nr_cbufs;
|
|
const struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
|
|
struct panfrost_shader_state *fs = panfrost_get_shader_state(batch->ctx, PIPE_SHADER_FRAGMENT);
|
|
|
|
/* Always have at least one render target for depth-only passes */
|
|
for (unsigned i = 0; i < MAX2(rt_count, 1); ++i) {
|
|
/* Disable blending for unbacked render targets */
|
|
if (rt_count == 0 || !batch->key.cbufs[i]) {
|
|
pan_pack(rts, BLEND, cfg) {
|
|
cfg.enable = false;
|
|
cfg.bifrost.internal.mode = MALI_BIFROST_BLEND_MODE_OFF;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
pan_pack(rts + i * MALI_BLEND_LENGTH, BLEND, cfg) {
|
|
if (blend[i].no_colour) {
|
|
cfg.enable = false;
|
|
} else {
|
|
cfg.srgb = util_format_is_srgb(batch->key.cbufs[i]->format);
|
|
cfg.load_destination = blend[i].load_dest;
|
|
cfg.round_to_fb_precision = !batch->ctx->blend->base.dither;
|
|
}
|
|
|
|
if (blend[i].is_shader) {
|
|
/* The blend shader's address needs to be at
|
|
* the same top 32 bit as the fragment shader.
|
|
* TODO: Ensure that's always the case.
|
|
*/
|
|
assert(!fs->bo ||
|
|
(blend[i].shader.gpu & (0xffffffffull << 32)) ==
|
|
(fs->bo->ptr.gpu & (0xffffffffull << 32)));
|
|
cfg.bifrost.internal.shader.pc = (u32)blend[i].shader.gpu;
|
|
unsigned ret_offset = fs->info.bifrost.blend[i].return_offset;
|
|
if (ret_offset) {
|
|
assert(!(ret_offset & 0x7));
|
|
cfg.bifrost.internal.shader.return_value =
|
|
fs->bo->ptr.gpu + ret_offset;
|
|
}
|
|
cfg.bifrost.internal.mode = MALI_BIFROST_BLEND_MODE_SHADER;
|
|
} else {
|
|
enum pipe_format format = batch->key.cbufs[i]->format;
|
|
const struct util_format_description *format_desc;
|
|
unsigned chan_size = 0;
|
|
|
|
format_desc = util_format_description(format);
|
|
|
|
for (unsigned i = 0; i < format_desc->nr_channels; i++)
|
|
chan_size = MAX2(format_desc->channel[0].size, chan_size);
|
|
|
|
cfg.bifrost.equation = blend[i].equation.equation;
|
|
|
|
/* Fixed point constant */
|
|
u16 constant = blend[i].equation.constant * ((1 << chan_size) - 1);
|
|
constant <<= 16 - chan_size;
|
|
cfg.bifrost.constant = constant;
|
|
|
|
if (blend[i].opaque)
|
|
cfg.bifrost.internal.mode = MALI_BIFROST_BLEND_MODE_OPAQUE;
|
|
else
|
|
cfg.bifrost.internal.mode = MALI_BIFROST_BLEND_MODE_FIXED_FUNCTION;
|
|
|
|
/* If we want the conversion to work properly,
|
|
* num_comps must be set to 4
|
|
*/
|
|
cfg.bifrost.internal.fixed_function.num_comps = 4;
|
|
cfg.bifrost.internal.fixed_function.conversion.memory_format =
|
|
panfrost_format_to_bifrost_blend(dev, format_desc, true);
|
|
cfg.bifrost.internal.fixed_function.conversion.register_format =
|
|
bifrost_blend_type_from_nir(fs->info.bifrost.blend[i].type);
|
|
cfg.bifrost.internal.fixed_function.rt = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
panfrost_emit_midgard_blend(struct panfrost_batch *batch,
|
|
struct panfrost_blend_final *blend,
|
|
void *rts)
|
|
{
|
|
unsigned rt_count = batch->key.nr_cbufs;
|
|
|
|
/* Always have at least one render target for depth-only passes */
|
|
for (unsigned i = 0; i < MAX2(rt_count, 1); ++i) {
|
|
/* Disable blending for unbacked render targets */
|
|
if (rt_count == 0 || !batch->key.cbufs[i]) {
|
|
pan_pack(rts, BLEND, cfg) {
|
|
cfg.midgard.equation.color_mask = 0xf;
|
|
cfg.midgard.equation.rgb.a = MALI_BLEND_OPERAND_A_SRC;
|
|
cfg.midgard.equation.rgb.b = MALI_BLEND_OPERAND_B_SRC;
|
|
cfg.midgard.equation.rgb.c = MALI_BLEND_OPERAND_C_ZERO;
|
|
cfg.midgard.equation.alpha.a = MALI_BLEND_OPERAND_A_SRC;
|
|
cfg.midgard.equation.alpha.b = MALI_BLEND_OPERAND_B_SRC;
|
|
cfg.midgard.equation.alpha.c = MALI_BLEND_OPERAND_C_ZERO;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
pan_pack(rts + i * MALI_BLEND_LENGTH, BLEND, cfg) {
|
|
if (blend[i].no_colour) {
|
|
cfg.enable = false;
|
|
continue;
|
|
}
|
|
|
|
cfg.srgb = util_format_is_srgb(batch->key.cbufs[i]->format);
|
|
cfg.load_destination = blend[i].load_dest;
|
|
cfg.round_to_fb_precision = !batch->ctx->blend->base.dither;
|
|
cfg.midgard.blend_shader = blend[i].is_shader;
|
|
if (blend[i].is_shader) {
|
|
cfg.midgard.shader_pc = blend[i].shader.gpu | blend[i].shader.first_tag;
|
|
} else {
|
|
cfg.midgard.equation = blend[i].equation.equation;
|
|
cfg.midgard.constant = blend[i].equation.constant;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
panfrost_emit_blend(struct panfrost_batch *batch, void *rts,
|
|
struct panfrost_blend_final *blend)
|
|
{
|
|
const struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
|
|
|
|
if (pan_is_bifrost(dev))
|
|
panfrost_emit_bifrost_blend(batch, blend, rts);
|
|
else
|
|
panfrost_emit_midgard_blend(batch, blend, rts);
|
|
|
|
for (unsigned i = 0; i < batch->key.nr_cbufs; ++i) {
|
|
if (!blend[i].no_colour && batch->key.cbufs[i])
|
|
batch->draws |= (PIPE_CLEAR_COLOR0 << i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
panfrost_prepare_bifrost_fs_state(struct panfrost_context *ctx,
|
|
struct panfrost_blend_final *blend,
|
|
struct MALI_RENDERER_STATE *state)
|
|
{
|
|
const struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
struct panfrost_shader_state *fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
|
|
bool alpha_to_coverage = ctx->blend->base.alpha_to_coverage;
|
|
|
|
if (!panfrost_fs_required(fs, blend, &ctx->pipe_framebuffer)) {
|
|
state->properties.uniform_buffer_count = 32;
|
|
state->properties.bifrost.shader_modifies_coverage = true;
|
|
state->properties.bifrost.allow_forward_pixel_to_kill = true;
|
|
state->properties.bifrost.allow_forward_pixel_to_be_killed = true;
|
|
state->properties.bifrost.zs_update_operation = MALI_PIXEL_KILL_STRONG_EARLY;
|
|
} else {
|
|
pan_shader_prepare_rsd(dev, &fs->info,
|
|
fs->bo ? fs->bo->ptr.gpu : 0,
|
|
state);
|
|
|
|
bool no_blend = true;
|
|
|
|
for (unsigned i = 0; i < ctx->pipe_framebuffer.nr_cbufs; ++i) {
|
|
no_blend &= (!blend[i].load_dest || blend[i].no_colour)
|
|
|| (!ctx->pipe_framebuffer.cbufs[i]);
|
|
}
|
|
|
|
state->properties.bifrost.allow_forward_pixel_to_kill =
|
|
!fs->info.fs.writes_depth &&
|
|
!fs->info.fs.writes_stencil &&
|
|
!fs->info.fs.writes_coverage &&
|
|
!fs->info.fs.can_discard &&
|
|
!fs->info.fs.outputs_read &&
|
|
!alpha_to_coverage &&
|
|
no_blend;
|
|
}
|
|
}
|
|
|
|
static void
|
|
panfrost_prepare_midgard_fs_state(struct panfrost_context *ctx,
|
|
struct panfrost_blend_final *blend,
|
|
struct MALI_RENDERER_STATE *state)
|
|
{
|
|
const struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
struct panfrost_shader_state *fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
|
|
const struct panfrost_zsa_state *zsa = ctx->depth_stencil;
|
|
unsigned rt_count = ctx->pipe_framebuffer.nr_cbufs;
|
|
bool alpha_to_coverage = ctx->blend->base.alpha_to_coverage;
|
|
|
|
if (!panfrost_fs_required(fs, blend, &ctx->pipe_framebuffer)) {
|
|
state->shader.shader = 0x1;
|
|
state->properties.midgard.work_register_count = 1;
|
|
state->properties.depth_source = MALI_DEPTH_SOURCE_FIXED_FUNCTION;
|
|
state->properties.midgard.force_early_z = true;
|
|
} else {
|
|
pan_shader_prepare_rsd(dev, &fs->info,
|
|
fs->bo ? fs->bo->ptr.gpu : 0,
|
|
state);
|
|
|
|
/* Reasons to disable early-Z from a shader perspective */
|
|
bool late_z = fs->info.fs.can_discard || fs->info.writes_global ||
|
|
fs->info.fs.writes_depth || fs->info.fs.writes_stencil ||
|
|
(zsa->alpha_func != MALI_FUNC_ALWAYS);
|
|
|
|
/* If either depth or stencil is enabled, discard matters */
|
|
bool zs_enabled =
|
|
(zsa->base.depth_enabled && zsa->base.depth_func != PIPE_FUNC_ALWAYS) ||
|
|
zsa->base.stencil[0].enabled;
|
|
|
|
bool has_blend_shader = false;
|
|
|
|
for (unsigned c = 0; c < rt_count; ++c)
|
|
has_blend_shader |= blend[c].is_shader;
|
|
|
|
/* TODO: Reduce this limit? */
|
|
if (has_blend_shader)
|
|
state->properties.midgard.work_register_count = MAX2(fs->info.work_reg_count, 8);
|
|
else
|
|
state->properties.midgard.work_register_count = fs->info.work_reg_count;
|
|
|
|
state->properties.midgard.force_early_z = !(late_z || alpha_to_coverage);
|
|
|
|
/* Workaround a hardware errata where early-z cannot be enabled
|
|
* when discarding even when the depth buffer is read-only, by
|
|
* lying to the hardware about the discard and setting the
|
|
* reads tilebuffer? flag to compensate */
|
|
state->properties.midgard.shader_reads_tilebuffer =
|
|
fs->info.fs.outputs_read ||
|
|
(!zs_enabled && fs->info.fs.can_discard);
|
|
state->properties.midgard.shader_contains_discard =
|
|
zs_enabled && fs->info.fs.can_discard;
|
|
}
|
|
|
|
if (dev->quirks & MIDGARD_SFBD && ctx->pipe_framebuffer.nr_cbufs > 0) {
|
|
state->multisample_misc.sfbd_load_destination = blend[0].load_dest;
|
|
state->multisample_misc.sfbd_blend_shader = blend[0].is_shader;
|
|
state->stencil_mask_misc.sfbd_write_enable = !blend[0].no_colour;
|
|
state->stencil_mask_misc.sfbd_srgb = util_format_is_srgb(ctx->pipe_framebuffer.cbufs[0]->format);
|
|
state->stencil_mask_misc.sfbd_dither_disable = !ctx->blend->base.dither;
|
|
|
|
if (blend[0].is_shader) {
|
|
state->sfbd_blend_shader = blend[0].shader.gpu |
|
|
blend[0].shader.first_tag;
|
|
} else {
|
|
state->sfbd_blend_equation = blend[0].equation.equation;
|
|
state->sfbd_blend_constant = blend[0].equation.constant;
|
|
}
|
|
} else if (dev->quirks & MIDGARD_SFBD) {
|
|
/* If there is no colour buffer, leaving fields default is
|
|
* fine, except for blending which is nonnullable */
|
|
state->sfbd_blend_equation.color_mask = 0xf;
|
|
state->sfbd_blend_equation.rgb.a = MALI_BLEND_OPERAND_A_SRC;
|
|
state->sfbd_blend_equation.rgb.b = MALI_BLEND_OPERAND_B_SRC;
|
|
state->sfbd_blend_equation.rgb.c = MALI_BLEND_OPERAND_C_ZERO;
|
|
state->sfbd_blend_equation.alpha.a = MALI_BLEND_OPERAND_A_SRC;
|
|
state->sfbd_blend_equation.alpha.b = MALI_BLEND_OPERAND_B_SRC;
|
|
state->sfbd_blend_equation.alpha.c = MALI_BLEND_OPERAND_C_ZERO;
|
|
} else {
|
|
/* Bug where MRT-capable hw apparently reads the last blend
|
|
* shader from here instead of the usual location? */
|
|
|
|
for (signed rt = ((signed) rt_count - 1); rt >= 0; --rt) {
|
|
if (!blend[rt].is_shader)
|
|
continue;
|
|
|
|
state->sfbd_blend_shader = blend[rt].shader.gpu |
|
|
blend[rt].shader.first_tag;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
panfrost_prepare_fs_state(struct panfrost_context *ctx,
|
|
struct panfrost_blend_final *blend,
|
|
struct MALI_RENDERER_STATE *state)
|
|
{
|
|
const struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
struct panfrost_shader_state *fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
|
|
struct pipe_rasterizer_state *rast = &ctx->rasterizer->base;
|
|
const struct panfrost_zsa_state *zsa = ctx->depth_stencil;
|
|
bool alpha_to_coverage = ctx->blend->base.alpha_to_coverage;
|
|
|
|
if (pan_is_bifrost(dev))
|
|
panfrost_prepare_bifrost_fs_state(ctx, blend, state);
|
|
else
|
|
panfrost_prepare_midgard_fs_state(ctx, blend, state);
|
|
|
|
bool msaa = rast->multisample;
|
|
state->multisample_misc.multisample_enable = msaa;
|
|
state->multisample_misc.sample_mask = (msaa ? ctx->sample_mask : ~0) & 0xFFFF;
|
|
|
|
state->multisample_misc.evaluate_per_sample =
|
|
msaa && (ctx->min_samples > 1 || fs->info.fs.sample_shading);
|
|
|
|
state->multisample_misc.depth_function = zsa->base.depth_enabled ?
|
|
panfrost_translate_compare_func(zsa->base.depth_func) :
|
|
MALI_FUNC_ALWAYS;
|
|
|
|
state->multisample_misc.depth_write_mask = zsa->base.depth_writemask;
|
|
state->multisample_misc.fixed_function_near_discard = rast->depth_clip_near;
|
|
state->multisample_misc.fixed_function_far_discard = rast->depth_clip_far;
|
|
state->multisample_misc.shader_depth_range_fixed = true;
|
|
|
|
state->stencil_mask_misc.stencil_mask_front = zsa->stencil_mask_front;
|
|
state->stencil_mask_misc.stencil_mask_back = zsa->stencil_mask_back;
|
|
state->stencil_mask_misc.stencil_enable = zsa->base.stencil[0].enabled;
|
|
state->stencil_mask_misc.alpha_to_coverage = alpha_to_coverage;
|
|
state->stencil_mask_misc.alpha_test_compare_function = zsa->alpha_func;
|
|
state->stencil_mask_misc.depth_range_1 = rast->offset_tri;
|
|
state->stencil_mask_misc.depth_range_2 = rast->offset_tri;
|
|
state->stencil_mask_misc.single_sampled_lines = !rast->multisample;
|
|
state->depth_units = rast->offset_units * 2.0f;
|
|
state->depth_factor = rast->offset_scale;
|
|
|
|
bool back_enab = zsa->base.stencil[1].enabled;
|
|
state->stencil_front = zsa->stencil_front;
|
|
state->stencil_back = zsa->stencil_back;
|
|
state->stencil_front.reference_value = ctx->stencil_ref.ref_value[0];
|
|
state->stencil_back.reference_value = ctx->stencil_ref.ref_value[back_enab ? 1 : 0];
|
|
|
|
/* v6+ fits register preload here, no alpha testing */
|
|
if (dev->arch <= 5)
|
|
state->alpha_reference = zsa->base.alpha_ref_value;
|
|
}
|
|
|
|
|
|
static void
|
|
panfrost_emit_frag_shader(struct panfrost_context *ctx,
|
|
struct mali_renderer_state_packed *fragmeta,
|
|
struct panfrost_blend_final *blend)
|
|
{
|
|
pan_pack(fragmeta, RENDERER_STATE, cfg) {
|
|
panfrost_prepare_fs_state(ctx, blend, &cfg);
|
|
}
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_compute_shader_meta(struct panfrost_batch *batch, enum pipe_shader_type stage)
|
|
{
|
|
struct panfrost_shader_state *ss = panfrost_get_shader_state(batch->ctx, stage);
|
|
struct panfrost_resource *rsrc = pan_resource(ss->upload.rsrc);
|
|
|
|
panfrost_batch_add_bo(batch, ss->bo,
|
|
PAN_BO_ACCESS_PRIVATE |
|
|
PAN_BO_ACCESS_READ |
|
|
PAN_BO_ACCESS_VERTEX_TILER);
|
|
|
|
panfrost_batch_add_bo(batch, rsrc->image.data.bo,
|
|
PAN_BO_ACCESS_PRIVATE |
|
|
PAN_BO_ACCESS_READ |
|
|
PAN_BO_ACCESS_VERTEX_TILER);
|
|
|
|
return rsrc->image.data.bo->ptr.gpu + ss->upload.offset;
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_frag_shader_meta(struct panfrost_batch *batch)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_shader_state *ss = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
|
|
|
|
/* Add the shader BO to the batch. */
|
|
panfrost_batch_add_bo(batch, ss->bo,
|
|
PAN_BO_ACCESS_PRIVATE |
|
|
PAN_BO_ACCESS_READ |
|
|
PAN_BO_ACCESS_FRAGMENT);
|
|
|
|
struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
unsigned rt_count = MAX2(ctx->pipe_framebuffer.nr_cbufs, 1);
|
|
struct panfrost_ptr xfer;
|
|
|
|
if (dev->quirks & MIDGARD_SFBD) {
|
|
xfer = panfrost_pool_alloc_desc(&batch->pool, RENDERER_STATE);
|
|
} else {
|
|
xfer = panfrost_pool_alloc_desc_aggregate(&batch->pool,
|
|
PAN_DESC(RENDERER_STATE),
|
|
PAN_DESC_ARRAY(rt_count, BLEND));
|
|
}
|
|
|
|
struct panfrost_blend_final blend[PIPE_MAX_COLOR_BUFS];
|
|
unsigned shader_offset = 0;
|
|
struct panfrost_bo *shader_bo = NULL;
|
|
|
|
for (unsigned c = 0; c < ctx->pipe_framebuffer.nr_cbufs; ++c) {
|
|
if (ctx->pipe_framebuffer.cbufs[c]) {
|
|
blend[c] = panfrost_get_blend_for_context(ctx, c,
|
|
&shader_bo, &shader_offset);
|
|
}
|
|
}
|
|
|
|
panfrost_emit_frag_shader(ctx, (struct mali_renderer_state_packed *) xfer.cpu, blend);
|
|
|
|
if (!(dev->quirks & MIDGARD_SFBD))
|
|
panfrost_emit_blend(batch, xfer.cpu + MALI_RENDERER_STATE_LENGTH, blend);
|
|
else
|
|
batch->draws |= PIPE_CLEAR_COLOR0;
|
|
|
|
if (ctx->depth_stencil->base.depth_enabled)
|
|
batch->read |= PIPE_CLEAR_DEPTH;
|
|
|
|
if (ctx->depth_stencil->base.stencil[0].enabled)
|
|
batch->read |= PIPE_CLEAR_STENCIL;
|
|
|
|
return xfer.gpu;
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_viewport(struct panfrost_batch *batch)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
const struct pipe_viewport_state *vp = &ctx->pipe_viewport;
|
|
const struct pipe_scissor_state *ss = &ctx->scissor;
|
|
const struct pipe_rasterizer_state *rast = &ctx->rasterizer->base;
|
|
const struct pipe_framebuffer_state *fb = &ctx->pipe_framebuffer;
|
|
|
|
/* Derive min/max from translate/scale. Note since |x| >= 0 by
|
|
* definition, we have that -|x| <= |x| hence translate - |scale| <=
|
|
* translate + |scale|, so the ordering is correct here. */
|
|
float vp_minx = vp->translate[0] - fabsf(vp->scale[0]);
|
|
float vp_maxx = vp->translate[0] + fabsf(vp->scale[0]);
|
|
float vp_miny = vp->translate[1] - fabsf(vp->scale[1]);
|
|
float vp_maxy = vp->translate[1] + fabsf(vp->scale[1]);
|
|
float minz = (vp->translate[2] - fabsf(vp->scale[2]));
|
|
float maxz = (vp->translate[2] + fabsf(vp->scale[2]));
|
|
|
|
/* Scissor to the intersection of viewport and to the scissor, clamped
|
|
* to the framebuffer */
|
|
|
|
unsigned minx = MIN2(fb->width, MAX2((int) vp_minx, 0));
|
|
unsigned maxx = MIN2(fb->width, MAX2((int) vp_maxx, 0));
|
|
unsigned miny = MIN2(fb->height, MAX2((int) vp_miny, 0));
|
|
unsigned maxy = MIN2(fb->height, MAX2((int) vp_maxy, 0));
|
|
|
|
if (ss && rast->scissor) {
|
|
minx = MAX2(ss->minx, minx);
|
|
miny = MAX2(ss->miny, miny);
|
|
maxx = MIN2(ss->maxx, maxx);
|
|
maxy = MIN2(ss->maxy, maxy);
|
|
}
|
|
|
|
/* Set the range to [1, 1) so max values don't wrap round */
|
|
if (maxx == 0 || maxy == 0)
|
|
maxx = maxy = minx = miny = 1;
|
|
|
|
struct panfrost_ptr T = panfrost_pool_alloc_desc(&batch->pool, VIEWPORT);
|
|
|
|
pan_pack(T.cpu, VIEWPORT, cfg) {
|
|
/* [minx, maxx) and [miny, maxy) are exclusive ranges, but
|
|
* these are inclusive */
|
|
cfg.scissor_minimum_x = minx;
|
|
cfg.scissor_minimum_y = miny;
|
|
cfg.scissor_maximum_x = maxx - 1;
|
|
cfg.scissor_maximum_y = maxy - 1;
|
|
|
|
cfg.minimum_z = rast->depth_clip_near ? minz : -INFINITY;
|
|
cfg.maximum_z = rast->depth_clip_far ? maxz : INFINITY;
|
|
}
|
|
|
|
panfrost_batch_union_scissor(batch, minx, miny, maxx, maxy);
|
|
return T.gpu;
|
|
}
|
|
|
|
static mali_ptr
|
|
panfrost_map_constant_buffer_gpu(struct panfrost_batch *batch,
|
|
enum pipe_shader_type st,
|
|
struct panfrost_constant_buffer *buf,
|
|
unsigned index)
|
|
{
|
|
struct pipe_constant_buffer *cb = &buf->cb[index];
|
|
struct panfrost_resource *rsrc = pan_resource(cb->buffer);
|
|
|
|
if (rsrc) {
|
|
panfrost_batch_add_bo(batch, rsrc->image.data.bo,
|
|
PAN_BO_ACCESS_SHARED |
|
|
PAN_BO_ACCESS_READ |
|
|
panfrost_bo_access_for_stage(st));
|
|
|
|
/* Alignment gauranteed by
|
|
* PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT */
|
|
return rsrc->image.data.bo->ptr.gpu + cb->buffer_offset;
|
|
} else if (cb->user_buffer) {
|
|
return panfrost_pool_upload_aligned(&batch->pool,
|
|
cb->user_buffer +
|
|
cb->buffer_offset,
|
|
cb->buffer_size, 16);
|
|
} else {
|
|
unreachable("No constant buffer");
|
|
}
|
|
}
|
|
|
|
struct sysval_uniform {
|
|
union {
|
|
float f[4];
|
|
int32_t i[4];
|
|
uint32_t u[4];
|
|
uint64_t du[2];
|
|
};
|
|
};
|
|
|
|
static void
|
|
panfrost_upload_viewport_scale_sysval(struct panfrost_batch *batch,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
const struct pipe_viewport_state *vp = &ctx->pipe_viewport;
|
|
|
|
uniform->f[0] = vp->scale[0];
|
|
uniform->f[1] = vp->scale[1];
|
|
uniform->f[2] = vp->scale[2];
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_viewport_offset_sysval(struct panfrost_batch *batch,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
const struct pipe_viewport_state *vp = &ctx->pipe_viewport;
|
|
|
|
uniform->f[0] = vp->translate[0];
|
|
uniform->f[1] = vp->translate[1];
|
|
uniform->f[2] = vp->translate[2];
|
|
}
|
|
|
|
static void panfrost_upload_txs_sysval(struct panfrost_batch *batch,
|
|
enum pipe_shader_type st,
|
|
unsigned int sysvalid,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
unsigned texidx = PAN_SYSVAL_ID_TO_TXS_TEX_IDX(sysvalid);
|
|
unsigned dim = PAN_SYSVAL_ID_TO_TXS_DIM(sysvalid);
|
|
bool is_array = PAN_SYSVAL_ID_TO_TXS_IS_ARRAY(sysvalid);
|
|
struct pipe_sampler_view *tex = &ctx->sampler_views[st][texidx]->base;
|
|
|
|
assert(dim);
|
|
|
|
if (tex->target == PIPE_BUFFER) {
|
|
assert(dim == 1);
|
|
uniform->i[0] =
|
|
tex->u.buf.size / util_format_get_blocksize(tex->format);
|
|
return;
|
|
}
|
|
|
|
uniform->i[0] = u_minify(tex->texture->width0, tex->u.tex.first_level);
|
|
|
|
if (dim > 1)
|
|
uniform->i[1] = u_minify(tex->texture->height0,
|
|
tex->u.tex.first_level);
|
|
|
|
if (dim > 2)
|
|
uniform->i[2] = u_minify(tex->texture->depth0,
|
|
tex->u.tex.first_level);
|
|
|
|
if (is_array)
|
|
uniform->i[dim] = tex->texture->array_size;
|
|
}
|
|
|
|
static void panfrost_upload_image_size_sysval(struct panfrost_batch *batch,
|
|
enum pipe_shader_type st,
|
|
unsigned int sysvalid,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
unsigned idx = PAN_SYSVAL_ID_TO_TXS_TEX_IDX(sysvalid);
|
|
unsigned dim = PAN_SYSVAL_ID_TO_TXS_DIM(sysvalid);
|
|
unsigned is_array = PAN_SYSVAL_ID_TO_TXS_IS_ARRAY(sysvalid);
|
|
|
|
assert(dim && dim < 4);
|
|
|
|
struct pipe_image_view *image = &ctx->images[st][idx];
|
|
|
|
if (image->resource->target == PIPE_BUFFER) {
|
|
unsigned blocksize = util_format_get_blocksize(image->format);
|
|
uniform->i[0] = image->resource->width0 / blocksize;
|
|
return;
|
|
}
|
|
|
|
uniform->i[0] = u_minify(image->resource->width0,
|
|
image->u.tex.level);
|
|
|
|
if (dim > 1)
|
|
uniform->i[1] = u_minify(image->resource->height0,
|
|
image->u.tex.level);
|
|
|
|
if (dim > 2)
|
|
uniform->i[2] = u_minify(image->resource->depth0,
|
|
image->u.tex.level);
|
|
|
|
if (is_array)
|
|
uniform->i[dim] = image->resource->array_size;
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_ssbo_sysval(struct panfrost_batch *batch,
|
|
enum pipe_shader_type st,
|
|
unsigned ssbo_id,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
|
|
assert(ctx->ssbo_mask[st] & (1 << ssbo_id));
|
|
struct pipe_shader_buffer sb = ctx->ssbo[st][ssbo_id];
|
|
|
|
/* Compute address */
|
|
struct panfrost_bo *bo = pan_resource(sb.buffer)->image.data.bo;
|
|
|
|
panfrost_batch_add_bo(batch, bo,
|
|
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_RW |
|
|
panfrost_bo_access_for_stage(st));
|
|
|
|
/* Upload address and size as sysval */
|
|
uniform->du[0] = bo->ptr.gpu + sb.buffer_offset;
|
|
uniform->u[2] = sb.buffer_size;
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_sampler_sysval(struct panfrost_batch *batch,
|
|
enum pipe_shader_type st,
|
|
unsigned samp_idx,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct pipe_sampler_state *sampl = &ctx->samplers[st][samp_idx]->base;
|
|
|
|
uniform->f[0] = sampl->min_lod;
|
|
uniform->f[1] = sampl->max_lod;
|
|
uniform->f[2] = sampl->lod_bias;
|
|
|
|
/* Even without any errata, Midgard represents "no mipmapping" as
|
|
* fixing the LOD with the clamps; keep behaviour consistent. c.f.
|
|
* panfrost_create_sampler_state which also explains our choice of
|
|
* epsilon value (again to keep behaviour consistent) */
|
|
|
|
if (sampl->min_mip_filter == PIPE_TEX_MIPFILTER_NONE)
|
|
uniform->f[1] = uniform->f[0] + (1.0/256.0);
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_num_work_groups_sysval(struct panfrost_batch *batch,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
|
|
uniform->u[0] = ctx->compute_grid->grid[0];
|
|
uniform->u[1] = ctx->compute_grid->grid[1];
|
|
uniform->u[2] = ctx->compute_grid->grid[2];
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_local_group_size_sysval(struct panfrost_batch *batch,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
|
|
uniform->u[0] = ctx->compute_grid->block[0];
|
|
uniform->u[1] = ctx->compute_grid->block[1];
|
|
uniform->u[2] = ctx->compute_grid->block[2];
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_work_dim_sysval(struct panfrost_batch *batch,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
|
|
uniform->u[0] = ctx->compute_grid->work_dim;
|
|
}
|
|
|
|
/* Sample positions are pushed in a Bifrost specific format on Bifrost. On
|
|
* Midgard, we emulate the Bifrost path with some extra arithmetic in the
|
|
* shader, to keep the code as unified as possible. */
|
|
|
|
static void
|
|
panfrost_upload_sample_positions_sysval(struct panfrost_batch *batch,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
|
|
unsigned samples = util_framebuffer_get_num_samples(&batch->key);
|
|
uniform->du[0] = panfrost_sample_positions(dev, panfrost_sample_pattern(samples));
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_multisampled_sysval(struct panfrost_batch *batch,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
unsigned samples = util_framebuffer_get_num_samples(&batch->key);
|
|
uniform->u[0] = samples > 1;
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_rt_conversion_sysval(struct panfrost_batch *batch, unsigned rt,
|
|
struct sysval_uniform *uniform)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
|
|
if (rt < batch->key.nr_cbufs && batch->key.cbufs[rt]) {
|
|
enum pipe_format format = batch->key.cbufs[rt]->format;
|
|
uniform->u[0] =
|
|
pan_blend_get_bifrost_desc(dev, format, rt, 32) >> 32;
|
|
} else {
|
|
pan_pack(&uniform->u[0], BIFROST_INTERNAL_CONVERSION, cfg)
|
|
cfg.memory_format = dev->formats[PIPE_FORMAT_NONE].hw;
|
|
}
|
|
}
|
|
|
|
static void
|
|
panfrost_upload_sysvals(struct panfrost_batch *batch, void *buf,
|
|
struct panfrost_shader_state *ss,
|
|
enum pipe_shader_type st)
|
|
{
|
|
struct sysval_uniform *uniforms = (void *)buf;
|
|
|
|
for (unsigned i = 0; i < ss->info.sysvals.sysval_count; ++i) {
|
|
int sysval = ss->info.sysvals.sysvals[i];
|
|
|
|
switch (PAN_SYSVAL_TYPE(sysval)) {
|
|
case PAN_SYSVAL_VIEWPORT_SCALE:
|
|
panfrost_upload_viewport_scale_sysval(batch,
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_VIEWPORT_OFFSET:
|
|
panfrost_upload_viewport_offset_sysval(batch,
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_TEXTURE_SIZE:
|
|
panfrost_upload_txs_sysval(batch, st,
|
|
PAN_SYSVAL_ID(sysval),
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_SSBO:
|
|
panfrost_upload_ssbo_sysval(batch, st,
|
|
PAN_SYSVAL_ID(sysval),
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_NUM_WORK_GROUPS:
|
|
panfrost_upload_num_work_groups_sysval(batch,
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_LOCAL_GROUP_SIZE:
|
|
panfrost_upload_local_group_size_sysval(batch,
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_WORK_DIM:
|
|
panfrost_upload_work_dim_sysval(batch,
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_SAMPLER:
|
|
panfrost_upload_sampler_sysval(batch, st,
|
|
PAN_SYSVAL_ID(sysval),
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_IMAGE_SIZE:
|
|
panfrost_upload_image_size_sysval(batch, st,
|
|
PAN_SYSVAL_ID(sysval),
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_SAMPLE_POSITIONS:
|
|
panfrost_upload_sample_positions_sysval(batch,
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_MULTISAMPLED:
|
|
panfrost_upload_multisampled_sysval(batch,
|
|
&uniforms[i]);
|
|
break;
|
|
case PAN_SYSVAL_RT_CONVERSION:
|
|
panfrost_upload_rt_conversion_sysval(batch,
|
|
PAN_SYSVAL_ID(sysval), &uniforms[i]);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const void *
|
|
panfrost_map_constant_buffer_cpu(struct panfrost_context *ctx,
|
|
struct panfrost_constant_buffer *buf,
|
|
unsigned index)
|
|
{
|
|
struct pipe_constant_buffer *cb = &buf->cb[index];
|
|
struct panfrost_resource *rsrc = pan_resource(cb->buffer);
|
|
|
|
if (rsrc) {
|
|
panfrost_bo_mmap(rsrc->image.data.bo);
|
|
panfrost_flush_batches_accessing_bo(ctx, rsrc->image.data.bo, false);
|
|
panfrost_bo_wait(rsrc->image.data.bo, INT64_MAX, false);
|
|
|
|
return rsrc->image.data.bo->ptr.cpu + cb->buffer_offset;
|
|
} else if (cb->user_buffer) {
|
|
return cb->user_buffer + cb->buffer_offset;
|
|
} else
|
|
unreachable("No constant buffer");
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_const_buf(struct panfrost_batch *batch,
|
|
enum pipe_shader_type stage,
|
|
mali_ptr *push_constants)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_shader_variants *all = ctx->shader[stage];
|
|
|
|
if (!all)
|
|
return 0;
|
|
|
|
struct panfrost_constant_buffer *buf = &ctx->constant_buffer[stage];
|
|
struct panfrost_shader_state *ss = &all->variants[all->active_variant];
|
|
|
|
/* Allocate room for the sysval and the uniforms */
|
|
size_t sys_size = sizeof(float) * 4 * ss->info.sysvals.sysval_count;
|
|
struct panfrost_ptr transfer =
|
|
panfrost_pool_alloc_aligned(&batch->pool, sys_size, 16);
|
|
|
|
/* Upload sysvals requested by the shader */
|
|
panfrost_upload_sysvals(batch, transfer.cpu, ss, stage);
|
|
|
|
/* Next up, attach UBOs. UBO count includes gaps but no sysval UBO */
|
|
struct panfrost_shader_state *shader = panfrost_get_shader_state(ctx, stage);
|
|
unsigned ubo_count = shader->info.ubo_count - (sys_size ? 1 : 0);
|
|
unsigned sysval_ubo = sys_size ? ubo_count : ~0;
|
|
|
|
struct panfrost_ptr ubos =
|
|
panfrost_pool_alloc_desc_array(&batch->pool, ubo_count + 1,
|
|
UNIFORM_BUFFER);
|
|
|
|
uint64_t *ubo_ptr = (uint64_t *) ubos.cpu;
|
|
|
|
/* Upload sysval as a final UBO */
|
|
|
|
if (sys_size) {
|
|
pan_pack(ubo_ptr + ubo_count, UNIFORM_BUFFER, cfg) {
|
|
cfg.entries = DIV_ROUND_UP(sys_size, 16);
|
|
cfg.pointer = transfer.gpu;
|
|
}
|
|
}
|
|
|
|
/* The rest are honest-to-goodness UBOs */
|
|
|
|
for (unsigned ubo = 0; ubo < ubo_count; ++ubo) {
|
|
size_t usz = buf->cb[ubo].buffer_size;
|
|
bool enabled = buf->enabled_mask & (1 << ubo);
|
|
bool empty = usz == 0;
|
|
|
|
if (!enabled || empty) {
|
|
ubo_ptr[ubo] = 0;
|
|
continue;
|
|
}
|
|
|
|
/* Issue (57) for the ARB_uniform_buffer_object spec says that
|
|
* the buffer can be larger than the uniform data inside it,
|
|
* so clamp ubo size to what hardware supports. */
|
|
|
|
pan_pack(ubo_ptr + ubo, UNIFORM_BUFFER, cfg) {
|
|
cfg.entries = MIN2(DIV_ROUND_UP(usz, 16), 1 << 12);
|
|
cfg.pointer = panfrost_map_constant_buffer_gpu(batch,
|
|
stage, buf, ubo);
|
|
}
|
|
}
|
|
|
|
/* Copy push constants required by the shader */
|
|
struct panfrost_ptr push_transfer =
|
|
panfrost_pool_alloc_aligned(&batch->pool,
|
|
ss->info.push.count * 4, 16);
|
|
|
|
uint32_t *push_cpu = (uint32_t *) push_transfer.cpu;
|
|
*push_constants = push_transfer.gpu;
|
|
|
|
for (unsigned i = 0; i < ss->info.push.count; ++i) {
|
|
struct panfrost_ubo_word src = ss->info.push.words[i];
|
|
|
|
/* Map the UBO, this should be cheap. However this is reading
|
|
* from write-combine memory which is _very_ slow. It might pay
|
|
* off to upload sysvals to a staging buffer on the CPU on the
|
|
* assumption sysvals will get pushed (TODO) */
|
|
|
|
const void *mapped_ubo = (src.ubo == sysval_ubo) ? transfer.cpu :
|
|
panfrost_map_constant_buffer_cpu(ctx, buf, src.ubo);
|
|
|
|
/* TODO: Is there any benefit to combining ranges */
|
|
memcpy(push_cpu + i, (uint8_t *) mapped_ubo + src.offset, 4);
|
|
}
|
|
|
|
buf->dirty_mask = 0;
|
|
return ubos.gpu;
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_shared_memory(struct panfrost_batch *batch,
|
|
const struct pipe_grid_info *info)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
struct panfrost_shader_variants *all = ctx->shader[PIPE_SHADER_COMPUTE];
|
|
struct panfrost_shader_state *ss = &all->variants[all->active_variant];
|
|
unsigned single_size = util_next_power_of_two(MAX2(ss->info.wls_size,
|
|
128));
|
|
|
|
unsigned instances =
|
|
util_next_power_of_two(info->grid[0]) *
|
|
util_next_power_of_two(info->grid[1]) *
|
|
util_next_power_of_two(info->grid[2]);
|
|
|
|
unsigned shared_size = single_size * instances * dev->core_count;
|
|
struct panfrost_bo *bo = panfrost_batch_get_shared_memory(batch,
|
|
shared_size,
|
|
1);
|
|
struct panfrost_ptr t =
|
|
panfrost_pool_alloc_desc(&batch->pool, LOCAL_STORAGE);
|
|
|
|
pan_pack(t.cpu, LOCAL_STORAGE, ls) {
|
|
ls.wls_base_pointer = bo->ptr.gpu;
|
|
ls.wls_instances = instances;
|
|
ls.wls_size_scale = util_logbase2(single_size) + 1;
|
|
|
|
if (ss->info.tls_size) {
|
|
unsigned shift =
|
|
panfrost_get_stack_shift(ss->info.tls_size);
|
|
struct panfrost_bo *bo =
|
|
panfrost_batch_get_scratchpad(batch,
|
|
ss->info.tls_size,
|
|
dev->thread_tls_alloc,
|
|
dev->core_count);
|
|
|
|
ls.tls_size = shift;
|
|
ls.tls_base_pointer = bo->ptr.gpu;
|
|
}
|
|
};
|
|
|
|
return t.gpu;
|
|
}
|
|
|
|
static mali_ptr
|
|
panfrost_get_tex_desc(struct panfrost_batch *batch,
|
|
enum pipe_shader_type st,
|
|
struct panfrost_sampler_view *view)
|
|
{
|
|
if (!view)
|
|
return (mali_ptr) 0;
|
|
|
|
struct pipe_sampler_view *pview = &view->base;
|
|
struct panfrost_resource *rsrc = pan_resource(pview->texture);
|
|
|
|
/* Add the BO to the job so it's retained until the job is done. */
|
|
|
|
panfrost_batch_add_bo(batch, rsrc->image.data.bo,
|
|
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ |
|
|
panfrost_bo_access_for_stage(st));
|
|
|
|
panfrost_batch_add_bo(batch, view->bo,
|
|
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ |
|
|
panfrost_bo_access_for_stage(st));
|
|
|
|
return view->bo->ptr.gpu;
|
|
}
|
|
|
|
static void
|
|
panfrost_update_sampler_view(struct panfrost_sampler_view *view,
|
|
struct pipe_context *pctx)
|
|
{
|
|
struct panfrost_resource *rsrc = pan_resource(view->base.texture);
|
|
if (view->texture_bo != rsrc->image.data.bo->ptr.gpu ||
|
|
view->modifier != rsrc->image.layout.modifier) {
|
|
panfrost_bo_unreference(view->bo);
|
|
panfrost_create_sampler_view_bo(view, pctx, &rsrc->base);
|
|
}
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_texture_descriptors(struct panfrost_batch *batch,
|
|
enum pipe_shader_type stage)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_device *device = pan_device(ctx->base.screen);
|
|
|
|
if (!ctx->sampler_view_count[stage])
|
|
return 0;
|
|
|
|
if (pan_is_bifrost(device)) {
|
|
struct panfrost_ptr T =
|
|
panfrost_pool_alloc_desc_array(&batch->pool,
|
|
ctx->sampler_view_count[stage],
|
|
BIFROST_TEXTURE);
|
|
struct mali_bifrost_texture_packed *out =
|
|
(struct mali_bifrost_texture_packed *) T.cpu;
|
|
|
|
for (int i = 0; i < ctx->sampler_view_count[stage]; ++i) {
|
|
struct panfrost_sampler_view *view = ctx->sampler_views[stage][i];
|
|
struct pipe_sampler_view *pview = &view->base;
|
|
struct panfrost_resource *rsrc = pan_resource(pview->texture);
|
|
|
|
panfrost_update_sampler_view(view, &ctx->base);
|
|
out[i] = view->bifrost_descriptor;
|
|
|
|
/* Add the BOs to the job so they are retained until the job is done. */
|
|
|
|
panfrost_batch_add_bo(batch, rsrc->image.data.bo,
|
|
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ |
|
|
panfrost_bo_access_for_stage(stage));
|
|
|
|
panfrost_batch_add_bo(batch, view->bo,
|
|
PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_READ |
|
|
panfrost_bo_access_for_stage(stage));
|
|
}
|
|
|
|
return T.gpu;
|
|
} else {
|
|
uint64_t trampolines[PIPE_MAX_SHADER_SAMPLER_VIEWS];
|
|
|
|
for (int i = 0; i < ctx->sampler_view_count[stage]; ++i) {
|
|
struct panfrost_sampler_view *view = ctx->sampler_views[stage][i];
|
|
|
|
panfrost_update_sampler_view(view, &ctx->base);
|
|
|
|
trampolines[i] = panfrost_get_tex_desc(batch, stage, view);
|
|
}
|
|
|
|
return panfrost_pool_upload_aligned(&batch->pool, trampolines,
|
|
sizeof(uint64_t) *
|
|
ctx->sampler_view_count[stage],
|
|
sizeof(uint64_t));
|
|
}
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_sampler_descriptors(struct panfrost_batch *batch,
|
|
enum pipe_shader_type stage)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
|
|
if (!ctx->sampler_count[stage])
|
|
return 0;
|
|
|
|
assert(MALI_BIFROST_SAMPLER_LENGTH == MALI_MIDGARD_SAMPLER_LENGTH);
|
|
assert(MALI_BIFROST_SAMPLER_ALIGN == MALI_MIDGARD_SAMPLER_ALIGN);
|
|
|
|
struct panfrost_ptr T =
|
|
panfrost_pool_alloc_desc_array(&batch->pool, ctx->sampler_count[stage],
|
|
MIDGARD_SAMPLER);
|
|
struct mali_midgard_sampler_packed *out = (struct mali_midgard_sampler_packed *) T.cpu;
|
|
|
|
for (unsigned i = 0; i < ctx->sampler_count[stage]; ++i)
|
|
out[i] = ctx->samplers[stage][i]->hw;
|
|
|
|
return T.gpu;
|
|
}
|
|
|
|
/* Packs all image attribute descs and attribute buffer descs.
|
|
* `first_image_buf_index` must be the index of the first image attribute buffer descriptor.
|
|
*/
|
|
static void
|
|
emit_image_attribs(struct panfrost_batch *batch, enum pipe_shader_type shader,
|
|
struct mali_attribute_packed *attribs,
|
|
struct mali_attribute_buffer_packed *bufs,
|
|
unsigned first_image_buf_index)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
|
|
unsigned k = 0;
|
|
unsigned last_bit = util_last_bit(ctx->image_mask[shader]);
|
|
for (unsigned i = 0; i < last_bit; ++i) {
|
|
struct pipe_image_view *image = &ctx->images[shader][i];
|
|
|
|
/* TODO: understand how v3d/freedreno does it */
|
|
if (!(ctx->image_mask[shader] & (1 << i)) ||
|
|
!(image->shader_access & PIPE_IMAGE_ACCESS_READ_WRITE)) {
|
|
/* Unused image bindings */
|
|
pan_pack(bufs + (k * 2), ATTRIBUTE_BUFFER, cfg);
|
|
pan_pack(bufs + (k * 2) + 1, ATTRIBUTE_BUFFER, cfg);
|
|
pan_pack(attribs + k, ATTRIBUTE, cfg);
|
|
k++;
|
|
continue;
|
|
}
|
|
|
|
struct panfrost_resource *rsrc = pan_resource(image->resource);
|
|
|
|
/* TODO: MSAA */
|
|
assert(image->resource->nr_samples <= 1 && "MSAA'd images not supported");
|
|
|
|
bool is_3d = rsrc->base.target == PIPE_TEXTURE_3D;
|
|
bool is_linear = rsrc->image.layout.modifier == DRM_FORMAT_MOD_LINEAR;
|
|
bool is_buffer = rsrc->base.target == PIPE_BUFFER;
|
|
|
|
unsigned offset = is_buffer ? image->u.buf.offset :
|
|
panfrost_texture_offset(&rsrc->image.layout,
|
|
image->u.tex.level,
|
|
is_3d ? 0 : image->u.tex.first_layer,
|
|
is_3d ? image->u.tex.first_layer : 0);
|
|
|
|
/* AFBC should've been converted to tiled on panfrost_set_shader_image */
|
|
assert(!drm_is_afbc(rsrc->image.layout.modifier));
|
|
|
|
/* Add a dependency of the batch on the shader image buffer */
|
|
uint32_t flags = PAN_BO_ACCESS_SHARED | PAN_BO_ACCESS_VERTEX_TILER;
|
|
if (image->shader_access & PIPE_IMAGE_ACCESS_READ)
|
|
flags |= PAN_BO_ACCESS_READ;
|
|
if (image->shader_access & PIPE_IMAGE_ACCESS_WRITE) {
|
|
flags |= PAN_BO_ACCESS_WRITE;
|
|
unsigned level = is_buffer ? 0 : image->u.tex.level;
|
|
rsrc->state.slices[level].data_valid = true;
|
|
}
|
|
panfrost_batch_add_bo(batch, rsrc->image.data.bo, flags);
|
|
|
|
pan_pack(bufs + (k * 2), ATTRIBUTE_BUFFER, cfg) {
|
|
cfg.type = is_linear ?
|
|
MALI_ATTRIBUTE_TYPE_3D_LINEAR :
|
|
MALI_ATTRIBUTE_TYPE_3D_INTERLEAVED;
|
|
|
|
cfg.pointer = rsrc->image.data.bo->ptr.gpu + offset;
|
|
cfg.stride = util_format_get_blocksize(image->format);
|
|
cfg.size = rsrc->image.data.bo->size;
|
|
}
|
|
|
|
pan_pack(bufs + (k * 2) + 1, ATTRIBUTE_BUFFER_CONTINUATION_3D, cfg) {
|
|
cfg.s_dimension = rsrc->base.width0;
|
|
cfg.t_dimension = rsrc->base.height0;
|
|
cfg.r_dimension = is_3d ? rsrc->base.depth0 :
|
|
image->u.tex.last_layer - image->u.tex.first_layer + 1;
|
|
|
|
cfg.row_stride =
|
|
is_buffer ? 0 : rsrc->image.layout.slices[image->u.tex.level].row_stride;
|
|
|
|
if (rsrc->base.target != PIPE_TEXTURE_2D && !is_buffer) {
|
|
cfg.slice_stride =
|
|
panfrost_get_layer_stride(&rsrc->image.layout,
|
|
image->u.tex.level);
|
|
}
|
|
}
|
|
|
|
/* We map compute shader attributes 1:2 with attribute buffers, because
|
|
* every image attribute buffer needs an ATTRIBUTE_BUFFER_CONTINUATION_3D */
|
|
pan_pack(attribs + k, ATTRIBUTE, cfg) {
|
|
cfg.buffer_index = first_image_buf_index + (k * 2);
|
|
cfg.offset_enable = !pan_is_bifrost(dev);
|
|
cfg.format =
|
|
dev->formats[image->format].hw;
|
|
}
|
|
|
|
k++;
|
|
}
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_image_attribs(struct panfrost_batch *batch,
|
|
mali_ptr *buffers,
|
|
enum pipe_shader_type type)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_shader_state *shader = panfrost_get_shader_state(ctx, type);
|
|
|
|
if (!shader->info.attribute_count) {
|
|
*buffers = 0;
|
|
return 0;
|
|
}
|
|
|
|
struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
|
|
/* Images always need a MALI_ATTRIBUTE_BUFFER_CONTINUATION_3D */
|
|
unsigned attr_count = shader->info.attribute_count;
|
|
unsigned buf_count = (attr_count * 2) + (pan_is_bifrost(dev) ? 1 : 0);
|
|
|
|
struct panfrost_ptr bufs =
|
|
panfrost_pool_alloc_desc_array(&batch->pool, buf_count, ATTRIBUTE_BUFFER);
|
|
|
|
struct panfrost_ptr attribs =
|
|
panfrost_pool_alloc_desc_array(&batch->pool, attr_count, ATTRIBUTE);
|
|
|
|
emit_image_attribs(batch, type, attribs.cpu, bufs.cpu, 0);
|
|
|
|
/* We need an empty attrib buf to stop the prefetching on Bifrost */
|
|
if (pan_is_bifrost(dev)) {
|
|
pan_pack(bufs.cpu +
|
|
((buf_count - 1) * MALI_ATTRIBUTE_BUFFER_LENGTH),
|
|
ATTRIBUTE_BUFFER, cfg);
|
|
}
|
|
|
|
*buffers = bufs.gpu;
|
|
return attribs.gpu;
|
|
}
|
|
|
|
mali_ptr
|
|
panfrost_emit_vertex_data(struct panfrost_batch *batch,
|
|
mali_ptr *buffers)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
struct panfrost_vertex_state *so = ctx->vertex;
|
|
struct panfrost_shader_state *vs = panfrost_get_shader_state(ctx, PIPE_SHADER_VERTEX);
|
|
bool instanced = ctx->indirect_draw || ctx->instance_count > 1;
|
|
uint32_t image_mask = ctx->image_mask[PIPE_SHADER_VERTEX];
|
|
unsigned nr_images = util_bitcount(image_mask);
|
|
|
|
/* Worst case: everything is NPOT, which is only possible if instancing
|
|
* is enabled. Otherwise single record is gauranteed.
|
|
* Also, we allocate more memory than what's needed here if either instancing
|
|
* is enabled or images are present, this can be improved. */
|
|
unsigned bufs_per_attrib = (instanced || nr_images > 0) ? 2 : 1;
|
|
unsigned nr_bufs = (vs->info.attribute_count * bufs_per_attrib) +
|
|
(pan_is_bifrost(dev) ? 1 : 0);
|
|
|
|
if (!nr_bufs) {
|
|
*buffers = 0;
|
|
return 0;
|
|
}
|
|
|
|
struct panfrost_ptr S =
|
|
panfrost_pool_alloc_desc_array(&batch->pool, nr_bufs,
|
|
ATTRIBUTE_BUFFER);
|
|
struct panfrost_ptr T =
|
|
panfrost_pool_alloc_desc_array(&batch->pool,
|
|
vs->info.attribute_count,
|
|
ATTRIBUTE);
|
|
|
|
struct mali_attribute_buffer_packed *bufs =
|
|
(struct mali_attribute_buffer_packed *) S.cpu;
|
|
|
|
struct mali_attribute_packed *out =
|
|
(struct mali_attribute_packed *) T.cpu;
|
|
|
|
unsigned attrib_to_buffer[PIPE_MAX_ATTRIBS] = { 0 };
|
|
unsigned k = 0;
|
|
|
|
for (unsigned i = 0; i < so->num_elements; ++i) {
|
|
/* We map buffers 1:1 with the attributes, which
|
|
* means duplicating some vertex buffers (who cares? aside from
|
|
* maybe some caching implications but I somehow doubt that
|
|
* matters) */
|
|
|
|
struct pipe_vertex_element *elem = &so->pipe[i];
|
|
unsigned vbi = elem->vertex_buffer_index;
|
|
attrib_to_buffer[i] = k;
|
|
|
|
if (!(ctx->vb_mask & (1 << vbi)))
|
|
continue;
|
|
|
|
struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi];
|
|
struct panfrost_resource *rsrc;
|
|
|
|
rsrc = pan_resource(buf->buffer.resource);
|
|
if (!rsrc)
|
|
continue;
|
|
|
|
/* Add a dependency of the batch on the vertex buffer */
|
|
panfrost_batch_add_bo(batch, rsrc->image.data.bo,
|
|
PAN_BO_ACCESS_SHARED |
|
|
PAN_BO_ACCESS_READ |
|
|
PAN_BO_ACCESS_VERTEX_TILER);
|
|
|
|
/* Mask off lower bits, see offset fixup below */
|
|
mali_ptr raw_addr = rsrc->image.data.bo->ptr.gpu + buf->buffer_offset;
|
|
mali_ptr addr = raw_addr & ~63;
|
|
|
|
/* Since we advanced the base pointer, we shrink the buffer
|
|
* size, but add the offset we subtracted */
|
|
unsigned size = rsrc->base.width0 + (raw_addr - addr)
|
|
- buf->buffer_offset;
|
|
|
|
/* When there is a divisor, the hardware-level divisor is
|
|
* the product of the instance divisor and the padded count */
|
|
unsigned divisor = elem->instance_divisor;
|
|
unsigned stride = buf->stride;
|
|
|
|
if (ctx->indirect_draw) {
|
|
/* With indirect draws we can't guess the vertex_count.
|
|
* Pre-set the address, stride and size fields, the
|
|
* compute shader do the rest.
|
|
*/
|
|
pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) {
|
|
cfg.pointer = addr;
|
|
cfg.stride = stride;
|
|
cfg.size = size;
|
|
}
|
|
|
|
/* We store the unmodified divisor in the continuation
|
|
* slot so the compute shader can retrieve it.
|
|
*/
|
|
pan_pack(bufs + k + 1, ATTRIBUTE_BUFFER_CONTINUATION_NPOT, cfg) {
|
|
cfg.divisor = divisor;
|
|
}
|
|
|
|
k += 2;
|
|
continue;
|
|
}
|
|
|
|
unsigned hw_divisor = ctx->padded_count * divisor;
|
|
|
|
/* If there's a divisor(=1) but no instancing, we want every
|
|
* attribute to be the same */
|
|
|
|
if (divisor && ctx->instance_count == 1)
|
|
stride = 0;
|
|
|
|
if (!divisor || ctx->instance_count <= 1) {
|
|
pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) {
|
|
if (ctx->instance_count > 1) {
|
|
cfg.type = MALI_ATTRIBUTE_TYPE_1D_MODULUS;
|
|
cfg.divisor = ctx->padded_count;
|
|
}
|
|
|
|
cfg.pointer = addr;
|
|
cfg.stride = stride;
|
|
cfg.size = size;
|
|
}
|
|
} else if (util_is_power_of_two_or_zero(hw_divisor)) {
|
|
pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) {
|
|
cfg.type = MALI_ATTRIBUTE_TYPE_1D_POT_DIVISOR;
|
|
cfg.pointer = addr;
|
|
cfg.stride = stride;
|
|
cfg.size = size;
|
|
cfg.divisor_r = __builtin_ctz(hw_divisor);
|
|
}
|
|
|
|
} else {
|
|
unsigned shift = 0, extra_flags = 0;
|
|
|
|
unsigned magic_divisor =
|
|
panfrost_compute_magic_divisor(hw_divisor, &shift, &extra_flags);
|
|
|
|
pan_pack(bufs + k, ATTRIBUTE_BUFFER, cfg) {
|
|
cfg.type = MALI_ATTRIBUTE_TYPE_1D_NPOT_DIVISOR;
|
|
cfg.pointer = addr;
|
|
cfg.stride = stride;
|
|
cfg.size = size;
|
|
|
|
cfg.divisor_r = shift;
|
|
cfg.divisor_e = extra_flags;
|
|
}
|
|
|
|
pan_pack(bufs + k + 1, ATTRIBUTE_BUFFER_CONTINUATION_NPOT, cfg) {
|
|
cfg.divisor_numerator = magic_divisor;
|
|
cfg.divisor = divisor;
|
|
}
|
|
|
|
++k;
|
|
}
|
|
|
|
++k;
|
|
}
|
|
|
|
/* Add special gl_VertexID/gl_InstanceID buffers */
|
|
|
|
if (unlikely(vs->info.attribute_count >= PAN_VERTEX_ID)) {
|
|
panfrost_vertex_id(ctx->padded_count, &bufs[k], ctx->instance_count > 1);
|
|
|
|
pan_pack(out + PAN_VERTEX_ID, ATTRIBUTE, cfg) {
|
|
cfg.buffer_index = k++;
|
|
cfg.format = so->formats[PAN_VERTEX_ID];
|
|
}
|
|
|
|
panfrost_instance_id(ctx->padded_count, &bufs[k], ctx->instance_count > 1);
|
|
|
|
pan_pack(out + PAN_INSTANCE_ID, ATTRIBUTE, cfg) {
|
|
cfg.buffer_index = k++;
|
|
cfg.format = so->formats[PAN_INSTANCE_ID];
|
|
}
|
|
}
|
|
|
|
k = ALIGN_POT(k, 2);
|
|
emit_image_attribs(batch, PIPE_SHADER_VERTEX, out + so->num_elements, bufs + k, k);
|
|
k += util_bitcount(ctx->image_mask[PIPE_SHADER_VERTEX]);
|
|
|
|
/* We need an empty attrib buf to stop the prefetching on Bifrost */
|
|
if (pan_is_bifrost(dev))
|
|
pan_pack(&bufs[k], ATTRIBUTE_BUFFER, cfg);
|
|
|
|
/* Attribute addresses require 64-byte alignment, so let:
|
|
*
|
|
* base' = base & ~63 = base - (base & 63)
|
|
* offset' = offset + (base & 63)
|
|
*
|
|
* Since base' + offset' = base + offset, these are equivalent
|
|
* addressing modes and now base is 64 aligned.
|
|
*/
|
|
|
|
for (unsigned i = 0; i < so->num_elements; ++i) {
|
|
unsigned vbi = so->pipe[i].vertex_buffer_index;
|
|
struct pipe_vertex_buffer *buf = &ctx->vertex_buffers[vbi];
|
|
|
|
/* Adjust by the masked off bits of the offset. Make sure we
|
|
* read src_offset from so->hw (which is not GPU visible)
|
|
* rather than target (which is) due to caching effects */
|
|
|
|
unsigned src_offset = so->pipe[i].src_offset;
|
|
|
|
/* BOs aligned to 4k so guaranteed aligned to 64 */
|
|
src_offset += (buf->buffer_offset & 63);
|
|
|
|
/* Also, somewhat obscurely per-instance data needs to be
|
|
* offset in response to a delayed start in an indexed draw */
|
|
|
|
if (so->pipe[i].instance_divisor && ctx->instance_count > 1)
|
|
src_offset -= buf->stride * ctx->offset_start;
|
|
|
|
pan_pack(out + i, ATTRIBUTE, cfg) {
|
|
cfg.buffer_index = attrib_to_buffer[i];
|
|
cfg.format = so->formats[i];
|
|
cfg.offset = src_offset;
|
|
}
|
|
}
|
|
|
|
*buffers = S.gpu;
|
|
return T.gpu;
|
|
}
|
|
|
|
static mali_ptr
|
|
panfrost_emit_varyings(struct panfrost_batch *batch,
|
|
struct mali_attribute_buffer_packed *slot,
|
|
unsigned stride, unsigned count)
|
|
{
|
|
unsigned size = stride * count;
|
|
mali_ptr ptr =
|
|
batch->ctx->indirect_draw ? 0 :
|
|
panfrost_pool_alloc_aligned(&batch->invisible_pool, size, 64).gpu;
|
|
|
|
pan_pack(slot, ATTRIBUTE_BUFFER, cfg) {
|
|
cfg.stride = stride;
|
|
cfg.size = size;
|
|
cfg.pointer = ptr;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static unsigned
|
|
panfrost_streamout_offset(unsigned stride,
|
|
struct pipe_stream_output_target *target)
|
|
{
|
|
return (target->buffer_offset + (pan_so_target(target)->offset * stride * 4)) & 63;
|
|
}
|
|
|
|
static void
|
|
panfrost_emit_streamout(struct panfrost_batch *batch,
|
|
struct mali_attribute_buffer_packed *slot,
|
|
unsigned stride_words, unsigned count,
|
|
struct pipe_stream_output_target *target)
|
|
{
|
|
unsigned stride = stride_words * 4;
|
|
unsigned max_size = target->buffer_size;
|
|
unsigned expected_size = stride * count;
|
|
|
|
/* Grab the BO and bind it to the batch */
|
|
struct panfrost_bo *bo = pan_resource(target->buffer)->image.data.bo;
|
|
|
|
/* Varyings are WRITE from the perspective of the VERTEX but READ from
|
|
* the perspective of the TILER and FRAGMENT.
|
|
*/
|
|
panfrost_batch_add_bo(batch, bo,
|
|
PAN_BO_ACCESS_SHARED |
|
|
PAN_BO_ACCESS_RW |
|
|
PAN_BO_ACCESS_VERTEX_TILER |
|
|
PAN_BO_ACCESS_FRAGMENT);
|
|
|
|
/* We will have an offset applied to get alignment */
|
|
mali_ptr addr = bo->ptr.gpu + target->buffer_offset +
|
|
(pan_so_target(target)->offset * stride);
|
|
|
|
pan_pack(slot, ATTRIBUTE_BUFFER, cfg) {
|
|
cfg.pointer = (addr & ~63);
|
|
cfg.stride = stride;
|
|
cfg.size = MIN2(max_size, expected_size) + (addr & 63);
|
|
}
|
|
}
|
|
|
|
/* Helpers for manipulating stream out information so we can pack varyings
|
|
* accordingly. Compute the src_offset for a given captured varying */
|
|
|
|
static struct pipe_stream_output *
|
|
pan_get_so(struct pipe_stream_output_info *info, gl_varying_slot loc)
|
|
{
|
|
for (unsigned i = 0; i < info->num_outputs; ++i) {
|
|
if (info->output[i].register_index == loc)
|
|
return &info->output[i];
|
|
}
|
|
|
|
unreachable("Varying not captured");
|
|
}
|
|
|
|
static unsigned
|
|
pan_varying_size(enum mali_format fmt)
|
|
{
|
|
unsigned type = MALI_EXTRACT_TYPE(fmt);
|
|
unsigned chan = MALI_EXTRACT_CHANNELS(fmt);
|
|
unsigned bits = MALI_EXTRACT_BITS(fmt);
|
|
unsigned bpc = 0;
|
|
|
|
if (bits == MALI_CHANNEL_FLOAT) {
|
|
/* No doubles */
|
|
bool fp16 = (type == MALI_FORMAT_SINT);
|
|
assert(fp16 || (type == MALI_FORMAT_UNORM));
|
|
|
|
bpc = fp16 ? 2 : 4;
|
|
} else {
|
|
assert(type >= MALI_FORMAT_SNORM && type <= MALI_FORMAT_SINT);
|
|
|
|
/* See the enums */
|
|
bits = 1 << bits;
|
|
assert(bits >= 8);
|
|
bpc = bits / 8;
|
|
}
|
|
|
|
return bpc * chan;
|
|
}
|
|
|
|
/* Given a varying, figure out which index it corresponds to */
|
|
|
|
static inline unsigned
|
|
pan_varying_index(unsigned present, enum pan_special_varying v)
|
|
{
|
|
unsigned mask = (1 << v) - 1;
|
|
return util_bitcount(present & mask);
|
|
}
|
|
|
|
/* Get the base offset for XFB buffers, which by convention come after
|
|
* everything else. Wrapper function for semantic reasons; by construction this
|
|
* is just popcount. */
|
|
|
|
static inline unsigned
|
|
pan_xfb_base(unsigned present)
|
|
{
|
|
return util_bitcount(present);
|
|
}
|
|
|
|
/* Computes the present mask for varyings so we can start emitting varying records */
|
|
|
|
static inline unsigned
|
|
pan_varying_present(const struct panfrost_device *dev,
|
|
struct panfrost_shader_state *vs,
|
|
struct panfrost_shader_state *fs,
|
|
uint16_t point_coord_mask)
|
|
{
|
|
/* At the moment we always emit general and position buffers. Not
|
|
* strictly necessary but usually harmless */
|
|
|
|
unsigned present = (1 << PAN_VARY_GENERAL) | (1 << PAN_VARY_POSITION);
|
|
|
|
/* Enable special buffers by the shader info */
|
|
|
|
if (vs->info.vs.writes_point_size)
|
|
present |= (1 << PAN_VARY_PSIZ);
|
|
|
|
if (fs->info.fs.reads_point_coord)
|
|
present |= (1 << PAN_VARY_PNTCOORD);
|
|
|
|
if (fs->info.fs.reads_face)
|
|
present |= (1 << PAN_VARY_FACE);
|
|
|
|
if (fs->info.fs.reads_frag_coord && !pan_is_bifrost(dev))
|
|
present |= (1 << PAN_VARY_FRAGCOORD);
|
|
|
|
/* Also, if we have a point sprite, we need a point coord buffer */
|
|
|
|
for (unsigned i = 0; i < fs->info.varyings.input_count; i++) {
|
|
gl_varying_slot loc = fs->info.varyings.input[i].location;
|
|
|
|
if (util_varying_is_point_coord(loc, point_coord_mask))
|
|
present |= (1 << PAN_VARY_PNTCOORD);
|
|
}
|
|
|
|
return present;
|
|
}
|
|
|
|
/* Emitters for varying records */
|
|
|
|
static void
|
|
pan_emit_vary(const struct panfrost_device *dev,
|
|
struct mali_attribute_packed *out,
|
|
unsigned present, enum pan_special_varying buf,
|
|
enum mali_format format, unsigned offset)
|
|
{
|
|
unsigned nr_channels = MALI_EXTRACT_CHANNELS(format);
|
|
unsigned swizzle = dev->quirks & HAS_SWIZZLES ?
|
|
panfrost_get_default_swizzle(nr_channels) :
|
|
panfrost_bifrost_swizzle(nr_channels);
|
|
|
|
pan_pack(out, ATTRIBUTE, cfg) {
|
|
cfg.buffer_index = pan_varying_index(present, buf);
|
|
cfg.offset_enable = !pan_is_bifrost(dev);
|
|
cfg.format = (format << 12) | swizzle;
|
|
cfg.offset = offset;
|
|
}
|
|
}
|
|
|
|
/* General varying that is unused */
|
|
|
|
static void
|
|
pan_emit_vary_only(const struct panfrost_device *dev,
|
|
struct mali_attribute_packed *out,
|
|
unsigned present)
|
|
{
|
|
pan_emit_vary(dev, out, present, 0, MALI_CONSTANT, 0);
|
|
}
|
|
|
|
/* Special records */
|
|
|
|
static const enum mali_format pan_varying_formats[PAN_VARY_MAX] = {
|
|
[PAN_VARY_POSITION] = MALI_SNAP_4,
|
|
[PAN_VARY_PSIZ] = MALI_R16F,
|
|
[PAN_VARY_PNTCOORD] = MALI_R16F,
|
|
[PAN_VARY_FACE] = MALI_R32I,
|
|
[PAN_VARY_FRAGCOORD] = MALI_RGBA32F
|
|
};
|
|
|
|
static void
|
|
pan_emit_vary_special(const struct panfrost_device *dev,
|
|
struct mali_attribute_packed *out,
|
|
unsigned present, enum pan_special_varying buf)
|
|
{
|
|
assert(buf < PAN_VARY_MAX);
|
|
pan_emit_vary(dev, out, present, buf, pan_varying_formats[buf], 0);
|
|
}
|
|
|
|
static enum mali_format
|
|
pan_xfb_format(enum mali_format format, unsigned nr)
|
|
{
|
|
if (MALI_EXTRACT_BITS(format) == MALI_CHANNEL_FLOAT)
|
|
return MALI_R32F | MALI_NR_CHANNELS(nr);
|
|
else
|
|
return MALI_EXTRACT_TYPE(format) | MALI_NR_CHANNELS(nr) | MALI_CHANNEL_32;
|
|
}
|
|
|
|
/* Transform feedback records. Note struct pipe_stream_output is (if packed as
|
|
* a bitfield) 32-bit, smaller than a 64-bit pointer, so may as well pass by
|
|
* value. */
|
|
|
|
static void
|
|
pan_emit_vary_xfb(const struct panfrost_device *dev,
|
|
struct mali_attribute_packed *out,
|
|
unsigned present,
|
|
unsigned max_xfb,
|
|
unsigned *streamout_offsets,
|
|
enum mali_format format,
|
|
struct pipe_stream_output o)
|
|
{
|
|
unsigned swizzle = dev->quirks & HAS_SWIZZLES ?
|
|
panfrost_get_default_swizzle(o.num_components) :
|
|
panfrost_bifrost_swizzle(o.num_components);
|
|
|
|
pan_pack(out, ATTRIBUTE, cfg) {
|
|
/* XFB buffers come after everything else */
|
|
cfg.buffer_index = pan_xfb_base(present) + o.output_buffer;
|
|
cfg.offset_enable = !pan_is_bifrost(dev);
|
|
|
|
/* Override number of channels and precision to highp */
|
|
cfg.format = (pan_xfb_format(format, o.num_components) << 12) | swizzle;
|
|
|
|
/* Apply given offsets together */
|
|
cfg.offset = (o.dst_offset * 4) /* dwords */
|
|
+ streamout_offsets[o.output_buffer];
|
|
}
|
|
}
|
|
|
|
/* Determine if we should capture a varying for XFB. This requires actually
|
|
* having a buffer for it. If we don't capture it, we'll fallback to a general
|
|
* varying path (linked or unlinked, possibly discarding the write) */
|
|
|
|
static bool
|
|
panfrost_xfb_captured(struct panfrost_shader_state *xfb,
|
|
unsigned loc, unsigned max_xfb)
|
|
{
|
|
if (!(xfb->so_mask & (1ll << loc)))
|
|
return false;
|
|
|
|
struct pipe_stream_output *o = pan_get_so(&xfb->stream_output, loc);
|
|
return o->output_buffer < max_xfb;
|
|
}
|
|
|
|
static void
|
|
pan_emit_general_varying(const struct panfrost_device *dev,
|
|
struct mali_attribute_packed *out,
|
|
struct panfrost_shader_state *other,
|
|
struct panfrost_shader_state *xfb,
|
|
gl_varying_slot loc,
|
|
enum mali_format format,
|
|
unsigned present,
|
|
unsigned *gen_offsets,
|
|
enum mali_format *gen_formats,
|
|
unsigned *gen_stride,
|
|
unsigned idx,
|
|
bool should_alloc)
|
|
{
|
|
/* Check if we're linked */
|
|
unsigned other_varying_count =
|
|
other->info.stage == MESA_SHADER_FRAGMENT ?
|
|
other->info.varyings.input_count :
|
|
other->info.varyings.output_count;
|
|
const struct pan_shader_varying *other_varyings =
|
|
other->info.stage == MESA_SHADER_FRAGMENT ?
|
|
other->info.varyings.input :
|
|
other->info.varyings.output;
|
|
signed other_idx = -1;
|
|
|
|
for (unsigned j = 0; j < other_varying_count; ++j) {
|
|
if (other_varyings[j].location == loc) {
|
|
other_idx = j;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (other_idx < 0) {
|
|
pan_emit_vary_only(dev, out, present);
|
|
return;
|
|
}
|
|
|
|
unsigned offset = gen_offsets[other_idx];
|
|
|
|
if (should_alloc) {
|
|
/* We're linked, so allocate a space via a watermark allocation */
|
|
enum mali_format alt =
|
|
dev->formats[other_varyings[other_idx].format].hw >> 12;
|
|
|
|
/* Do interpolation at minimum precision */
|
|
unsigned size_main = pan_varying_size(format);
|
|
unsigned size_alt = pan_varying_size(alt);
|
|
unsigned size = MIN2(size_main, size_alt);
|
|
|
|
/* If a varying is marked for XFB but not actually captured, we
|
|
* should match the format to the format that would otherwise
|
|
* be used for XFB, since dEQP checks for invariance here. It's
|
|
* unclear if this is required by the spec. */
|
|
|
|
if (xfb->so_mask & (1ull << loc)) {
|
|
struct pipe_stream_output *o = pan_get_so(&xfb->stream_output, loc);
|
|
format = pan_xfb_format(format, o->num_components);
|
|
size = pan_varying_size(format);
|
|
} else if (size == size_alt) {
|
|
format = alt;
|
|
}
|
|
|
|
gen_offsets[idx] = *gen_stride;
|
|
gen_formats[other_idx] = format;
|
|
offset = *gen_stride;
|
|
*gen_stride += size;
|
|
}
|
|
|
|
pan_emit_vary(dev, out, present, PAN_VARY_GENERAL, format, offset);
|
|
}
|
|
|
|
/* Higher-level wrapper around all of the above, classifying a varying into one
|
|
* of the above types */
|
|
|
|
static void
|
|
panfrost_emit_varying(const struct panfrost_device *dev,
|
|
struct mali_attribute_packed *out,
|
|
struct panfrost_shader_state *stage,
|
|
struct panfrost_shader_state *other,
|
|
struct panfrost_shader_state *xfb,
|
|
unsigned present,
|
|
uint16_t point_sprite_mask,
|
|
unsigned max_xfb,
|
|
unsigned *streamout_offsets,
|
|
unsigned *gen_offsets,
|
|
enum mali_format *gen_formats,
|
|
unsigned *gen_stride,
|
|
unsigned idx,
|
|
bool should_alloc,
|
|
bool is_fragment)
|
|
{
|
|
gl_varying_slot loc =
|
|
stage->info.stage == MESA_SHADER_FRAGMENT ?
|
|
stage->info.varyings.input[idx].location :
|
|
stage->info.varyings.output[idx].location;
|
|
enum mali_format format =
|
|
stage->info.stage == MESA_SHADER_FRAGMENT ?
|
|
dev->formats[stage->info.varyings.input[idx].format].hw >> 12 :
|
|
dev->formats[stage->info.varyings.output[idx].format].hw >> 12;
|
|
|
|
/* Override format to match linkage */
|
|
if (!should_alloc && gen_formats[idx])
|
|
format = gen_formats[idx];
|
|
|
|
if (util_varying_is_point_coord(loc, point_sprite_mask)) {
|
|
pan_emit_vary_special(dev, out, present, PAN_VARY_PNTCOORD);
|
|
} else if (panfrost_xfb_captured(xfb, loc, max_xfb)) {
|
|
struct pipe_stream_output *o = pan_get_so(&xfb->stream_output, loc);
|
|
pan_emit_vary_xfb(dev, out, present, max_xfb, streamout_offsets, format, *o);
|
|
} else if (loc == VARYING_SLOT_POS) {
|
|
if (is_fragment)
|
|
pan_emit_vary_special(dev, out, present, PAN_VARY_FRAGCOORD);
|
|
else
|
|
pan_emit_vary_special(dev, out, present, PAN_VARY_POSITION);
|
|
} else if (loc == VARYING_SLOT_PSIZ) {
|
|
pan_emit_vary_special(dev, out, present, PAN_VARY_PSIZ);
|
|
} else if (loc == VARYING_SLOT_PNTC) {
|
|
pan_emit_vary_special(dev, out, present, PAN_VARY_PNTCOORD);
|
|
} else if (loc == VARYING_SLOT_FACE) {
|
|
pan_emit_vary_special(dev, out, present, PAN_VARY_FACE);
|
|
} else {
|
|
pan_emit_general_varying(dev, out, other, xfb, loc, format, present,
|
|
gen_offsets, gen_formats, gen_stride,
|
|
idx, should_alloc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
pan_emit_special_input(struct mali_attribute_buffer_packed *out,
|
|
unsigned present,
|
|
enum pan_special_varying v,
|
|
unsigned special)
|
|
{
|
|
if (present & (1 << v)) {
|
|
unsigned idx = pan_varying_index(present, v);
|
|
|
|
pan_pack(out + idx, ATTRIBUTE_BUFFER, cfg) {
|
|
cfg.special = special;
|
|
cfg.type = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
panfrost_emit_varying_descriptor(struct panfrost_batch *batch,
|
|
unsigned vertex_count,
|
|
mali_ptr *vs_attribs,
|
|
mali_ptr *fs_attribs,
|
|
mali_ptr *buffers,
|
|
unsigned *buffer_count,
|
|
mali_ptr *position,
|
|
mali_ptr *psiz,
|
|
bool point_coord_replace)
|
|
{
|
|
/* Load the shaders */
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
struct panfrost_device *dev = pan_device(ctx->base.screen);
|
|
struct panfrost_shader_state *vs, *fs;
|
|
size_t vs_size;
|
|
|
|
/* Allocate the varying descriptor */
|
|
|
|
vs = panfrost_get_shader_state(ctx, PIPE_SHADER_VERTEX);
|
|
fs = panfrost_get_shader_state(ctx, PIPE_SHADER_FRAGMENT);
|
|
vs_size = MALI_ATTRIBUTE_LENGTH * vs->info.varyings.output_count;
|
|
|
|
struct panfrost_ptr trans =
|
|
panfrost_pool_alloc_desc_array(&batch->pool,
|
|
vs->info.varyings.output_count +
|
|
fs->info.varyings.input_count,
|
|
ATTRIBUTE);
|
|
|
|
struct pipe_stream_output_info *so = &vs->stream_output;
|
|
uint16_t point_coord_mask = ctx->rasterizer->base.sprite_coord_enable;
|
|
|
|
/* TODO: point sprites need lowering on Bifrost */
|
|
if (!point_coord_replace || pan_is_bifrost(dev))
|
|
point_coord_mask = 0;
|
|
|
|
unsigned present = pan_varying_present(dev, vs, fs, point_coord_mask);
|
|
|
|
/* Check if this varying is linked by us. This is the case for
|
|
* general-purpose, non-captured varyings. If it is, link it. If it's
|
|
* not, use the provided stream out information to determine the
|
|
* offset, since it was already linked for us. */
|
|
|
|
unsigned gen_offsets[32];
|
|
enum mali_format gen_formats[32];
|
|
memset(gen_offsets, 0, sizeof(gen_offsets));
|
|
memset(gen_formats, 0, sizeof(gen_formats));
|
|
|
|
unsigned gen_stride = 0;
|
|
assert(vs->info.varyings.output_count < ARRAY_SIZE(gen_offsets));
|
|
assert(fs->info.varyings.input_count < ARRAY_SIZE(gen_offsets));
|
|
|
|
unsigned streamout_offsets[32];
|
|
|
|
for (unsigned i = 0; i < ctx->streamout.num_targets; ++i) {
|
|
streamout_offsets[i] = panfrost_streamout_offset(
|
|
so->stride[i],
|
|
ctx->streamout.targets[i]);
|
|
}
|
|
|
|
struct mali_attribute_packed *ovs = (struct mali_attribute_packed *)trans.cpu;
|
|
struct mali_attribute_packed *ofs = ovs + vs->info.varyings.output_count;
|
|
|
|
for (unsigned i = 0; i < vs->info.varyings.output_count; i++) {
|
|
panfrost_emit_varying(dev, ovs + i, vs, fs, vs, present, 0,
|
|
ctx->streamout.num_targets, streamout_offsets,
|
|
gen_offsets, gen_formats, &gen_stride, i,
|
|
true, false);
|
|
}
|
|
|
|
for (unsigned i = 0; i < fs->info.varyings.input_count; i++) {
|
|
panfrost_emit_varying(dev, ofs + i, fs, vs, vs, present, point_coord_mask,
|
|
ctx->streamout.num_targets, streamout_offsets,
|
|
gen_offsets, gen_formats, &gen_stride, i,
|
|
false, true);
|
|
}
|
|
|
|
unsigned xfb_base = pan_xfb_base(present);
|
|
struct panfrost_ptr T =
|
|
panfrost_pool_alloc_desc_array(&batch->pool,
|
|
xfb_base +
|
|
ctx->streamout.num_targets + 1,
|
|
ATTRIBUTE_BUFFER);
|
|
struct mali_attribute_buffer_packed *varyings =
|
|
(struct mali_attribute_buffer_packed *) T.cpu;
|
|
|
|
if (buffer_count)
|
|
*buffer_count = xfb_base + ctx->streamout.num_targets;
|
|
|
|
/* Suppress prefetch on Bifrost */
|
|
memset(varyings + (xfb_base * ctx->streamout.num_targets), 0, sizeof(*varyings));
|
|
|
|
/* Emit the stream out buffers */
|
|
|
|
unsigned out_count = u_stream_outputs_for_vertices(ctx->active_prim,
|
|
ctx->vertex_count);
|
|
|
|
for (unsigned i = 0; i < ctx->streamout.num_targets; ++i) {
|
|
panfrost_emit_streamout(batch, &varyings[xfb_base + i],
|
|
so->stride[i],
|
|
out_count,
|
|
ctx->streamout.targets[i]);
|
|
}
|
|
|
|
panfrost_emit_varyings(batch,
|
|
&varyings[pan_varying_index(present, PAN_VARY_GENERAL)],
|
|
gen_stride, vertex_count);
|
|
|
|
/* fp32 vec4 gl_Position */
|
|
*position = panfrost_emit_varyings(batch,
|
|
&varyings[pan_varying_index(present, PAN_VARY_POSITION)],
|
|
sizeof(float) * 4, vertex_count);
|
|
|
|
if (present & (1 << PAN_VARY_PSIZ)) {
|
|
*psiz = panfrost_emit_varyings(batch,
|
|
&varyings[pan_varying_index(present, PAN_VARY_PSIZ)],
|
|
2, vertex_count);
|
|
}
|
|
|
|
pan_emit_special_input(varyings, present, PAN_VARY_PNTCOORD, MALI_ATTRIBUTE_SPECIAL_POINT_COORD);
|
|
pan_emit_special_input(varyings, present, PAN_VARY_FACE, MALI_ATTRIBUTE_SPECIAL_FRONT_FACING);
|
|
pan_emit_special_input(varyings, present, PAN_VARY_FRAGCOORD, MALI_ATTRIBUTE_SPECIAL_FRAG_COORD);
|
|
|
|
*buffers = T.gpu;
|
|
*vs_attribs = vs->info.varyings.output_count ? trans.gpu : 0;
|
|
*fs_attribs = fs->info.varyings.input_count ? trans.gpu + vs_size : 0;
|
|
}
|
|
|
|
void
|
|
panfrost_emit_vertex_tiler_jobs(struct panfrost_batch *batch,
|
|
const struct panfrost_ptr *vertex_job,
|
|
const struct panfrost_ptr *tiler_job)
|
|
{
|
|
struct panfrost_context *ctx = batch->ctx;
|
|
|
|
/* If rasterizer discard is enable, only submit the vertex */
|
|
|
|
unsigned vertex = panfrost_add_job(&batch->pool, &batch->scoreboard,
|
|
MALI_JOB_TYPE_VERTEX, false, false,
|
|
ctx->indirect_draw ?
|
|
batch->indirect_draw_job_id : 0,
|
|
0, vertex_job, false);
|
|
|
|
if (ctx->rasterizer->base.rasterizer_discard)
|
|
return;
|
|
|
|
panfrost_add_job(&batch->pool, &batch->scoreboard,
|
|
MALI_JOB_TYPE_TILER, false, false,
|
|
vertex, 0, tiler_job, false);
|
|
}
|
|
|
|
void
|
|
panfrost_emit_tls(struct panfrost_batch *batch)
|
|
{
|
|
struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
|
|
|
|
/* Emitted with the FB descriptor on Midgard. */
|
|
if (!pan_is_bifrost(dev))
|
|
return;
|
|
|
|
struct panfrost_bo *tls_bo =
|
|
batch->stack_size ?
|
|
panfrost_batch_get_scratchpad(batch,
|
|
batch->stack_size,
|
|
dev->thread_tls_alloc,
|
|
dev->core_count):
|
|
NULL;
|
|
struct pan_tls_info tls = {
|
|
.tls = {
|
|
.ptr = tls_bo ? tls_bo->ptr.gpu : 0,
|
|
.size = batch->stack_size,
|
|
},
|
|
};
|
|
|
|
assert(batch->tls.cpu);
|
|
pan_emit_tls(dev, &tls, batch->tls.cpu);
|
|
}
|
|
|
|
void
|
|
panfrost_emit_fbd(struct panfrost_batch *batch,
|
|
const struct pan_fb_info *fb)
|
|
{
|
|
struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
|
|
struct panfrost_bo *tls_bo =
|
|
batch->stack_size ?
|
|
panfrost_batch_get_scratchpad(batch,
|
|
batch->stack_size,
|
|
dev->thread_tls_alloc,
|
|
dev->core_count):
|
|
NULL;
|
|
struct pan_tls_info tls = {
|
|
.tls = {
|
|
.ptr = tls_bo ? tls_bo->ptr.gpu : 0,
|
|
.size = batch->stack_size,
|
|
},
|
|
};
|
|
|
|
batch->framebuffer.gpu |=
|
|
pan_emit_fbd(dev, fb, &tls, &batch->tiler_ctx,
|
|
batch->framebuffer.cpu);
|
|
}
|
|
|
|
/* Mark a surface as written */
|
|
|
|
static void
|
|
panfrost_initialize_surface(struct panfrost_batch *batch,
|
|
struct pipe_surface *surf)
|
|
{
|
|
if (!surf)
|
|
return;
|
|
|
|
unsigned level = surf->u.tex.level;
|
|
struct panfrost_resource *rsrc = pan_resource(surf->texture);
|
|
|
|
rsrc->state.slices[level].data_valid = true;
|
|
}
|
|
|
|
/* Generate a fragment job. This should be called once per frame. (According to
|
|
* presentations, this is supposed to correspond to eglSwapBuffers) */
|
|
|
|
mali_ptr
|
|
panfrost_emit_fragment_job(struct panfrost_batch *batch,
|
|
const struct pan_fb_info *pfb)
|
|
{
|
|
struct panfrost_device *dev = pan_device(batch->ctx->base.screen);
|
|
|
|
/* Mark the affected buffers as initialized, since we're writing to it.
|
|
* Also, add the surfaces we're writing to to the batch */
|
|
|
|
struct pipe_framebuffer_state *fb = &batch->key;
|
|
|
|
for (unsigned i = 0; i < fb->nr_cbufs; ++i)
|
|
panfrost_initialize_surface(batch, fb->cbufs[i]);
|
|
|
|
panfrost_initialize_surface(batch, fb->zsbuf);
|
|
|
|
/* The passed tile coords can be out of range in some cases, so we need
|
|
* to clamp them to the framebuffer size to avoid a TILE_RANGE_FAULT.
|
|
* Theoretically we also need to clamp the coordinates positive, but we
|
|
* avoid that edge case as all four values are unsigned. Also,
|
|
* theoretically we could clamp the minima, but if that has to happen
|
|
* the asserts would fail anyway (since the maxima would get clamped
|
|
* and then be smaller than the minima). An edge case of sorts occurs
|
|
* when no scissors are added to draw, so by default min=~0 and max=0.
|
|
* But that can't happen if any actual drawing occurs (beyond a
|
|
* wallpaper reload), so this is again irrelevant in practice. */
|
|
|
|
batch->maxx = MIN2(batch->maxx, fb->width);
|
|
batch->maxy = MIN2(batch->maxy, fb->height);
|
|
|
|
/* Rendering region must be at least 1x1; otherwise, there is nothing
|
|
* to do and the whole job chain should have been discarded. */
|
|
|
|
assert(batch->maxx > batch->minx);
|
|
assert(batch->maxy > batch->miny);
|
|
|
|
struct panfrost_ptr transfer =
|
|
panfrost_pool_alloc_desc(&batch->pool, FRAGMENT_JOB);
|
|
|
|
pan_emit_fragment_job(dev, pfb, batch->framebuffer.gpu,
|
|
transfer.cpu);
|
|
|
|
return transfer.gpu;
|
|
}
|