Files
third_party_mesa3d/src/mesa/swrast/s_nvfragprog.c

868 lines
32 KiB
C

/* $Id: s_nvfragprog.c,v 1.6 2003/03/04 16:34:03 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 5.1
*
* Copyright (C) 1999-2003 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "glheader.h"
#include "colormac.h"
#include "context.h"
#include "nvfragprog.h"
#include "macros.h"
#include "s_nvfragprog.h"
/**
* Fetch a texel.
*/
static void
fetch_texel( GLcontext *ctx, const GLfloat texcoord[4], GLuint unit,
GLuint targetIndex, GLfloat color[4] )
{
const GLfloat *lambda = NULL;
GLchan rgba[4];
SWcontext *swrast = SWRAST_CONTEXT(ctx);
const struct gl_texture_object *texObj = NULL;
switch (targetIndex) {
case TEXTURE_1D_INDEX:
texObj = ctx->Texture.Unit[unit].Current1D;
break;
case TEXTURE_2D_INDEX:
texObj = ctx->Texture.Unit[unit].Current2D;
break;
case TEXTURE_3D_INDEX:
texObj = ctx->Texture.Unit[unit].Current3D;
break;
case TEXTURE_CUBE_INDEX:
texObj = ctx->Texture.Unit[unit].CurrentCubeMap;
break;
case TEXTURE_RECT_INDEX:
texObj = ctx->Texture.Unit[unit].CurrentRect;
break;
default:
_mesa_problem(ctx, "Invalid target in fetch_texel");
}
swrast->TextureSample[unit](ctx, unit, texObj, 1,
(const GLfloat (*)[4]) &texcoord,
lambda, &rgba);
}
/**
* Fetch a texel w/ partial derivatives.
*/
static void
fetch_texel_deriv( GLcontext *ctx, const GLfloat texcoord[4],
const GLfloat dtdx[4], const GLfloat dtdy[4],
GLuint unit, GLuint targetIndex, GLfloat color[4] )
{
/* XXX to do */
}
/**
* Fetch a 4-element float vector from the given source register.
* Apply swizzling and negating as needed.
*/
static void
fetch_vector4( const struct fp_src_register *source,
const struct fp_machine *machine,
GLfloat result[4] )
{
const GLfloat *src;
/*
if (source->RelAddr) {
GLint reg = source->Register + machine->AddressReg;
if (reg < VP_PROG_REG_START || reg > VP_PROG_REG_END)
src = zero;
else
src = machine->Registers[reg];
}
else
*/
src = machine->Registers[source->Register];
result[0] = src[source->Swizzle[0]];
result[1] = src[source->Swizzle[1]];
result[2] = src[source->Swizzle[2]];
result[3] = src[source->Swizzle[3]];
if (source->NegateBase) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
result[1] = FABSF(result[1]);
result[2] = FABSF(result[2]);
result[3] = FABSF(result[3]);
}
if (source->NegateAbs) {
result[0] = -result[0];
result[1] = -result[1];
result[2] = -result[2];
result[3] = -result[3];
}
}
/**
* As above, but only return result[0] element.
*/
static void
fetch_vector1( const struct fp_src_register *source,
const struct fp_machine *machine,
GLfloat result[4] )
{
const GLfloat *src = machine->Registers[source->Register];
result[0] = src[source->Swizzle[0]];
if (source->NegateBase) {
result[0] = -result[0];
}
if (source->Abs) {
result[0] = FABSF(result[0]);
}
if (source->NegateAbs) {
result[0] = -result[0];
}
}
/*
* Test value against zero and return GT, LT, EQ or UN if NaN.
*/
static INLINE GLuint
generate_cc( float value )
{
if (value != value)
return COND_UN; /* NaN */
if (value > 0.0F)
return COND_GT;
if (value < 0.0F)
return COND_LT;
return COND_EQ;
}
/*
* Test if the ccMaskRule is satisfied by the given condition code.
* Used to mask destination writes according to the current condition codee.
*/
static INLINE GLboolean
test_cc(GLuint condCode, GLuint ccMaskRule)
{
switch (ccMaskRule) {
case COND_EQ: return (condCode == COND_EQ);
case COND_NE: return (condCode != COND_EQ);
case COND_LT: return (condCode == COND_LT);
case COND_GE: return (condCode == COND_GT || condCode == COND_EQ);
case COND_LE: return (condCode == COND_LT || condCode == COND_EQ);
case COND_GT: return (condCode == COND_GT);
case COND_TR: return GL_TRUE;
case COND_FL: return GL_FALSE;
default: return GL_TRUE;
}
}
/**
* Store 4 floats into a register. Observe the instructions saturate and
* set-condition-code flags.
*/
static void
store_vector4( const struct fp_instruction *inst,
struct fp_machine *machine,
const GLfloat value[4] )
{
const struct fp_dst_register *dest = &(inst->DstReg);
const GLboolean clamp = inst->Saturate;
const GLboolean updateCC = inst->UpdateCondRegister;
GLfloat *dstReg = machine->Registers[dest->Register];
GLfloat clampedValue[4];
const GLboolean *writeMask = dest->WriteMask;
GLboolean condWriteMask[4];
if (clamp) {
clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
value = clampedValue;
}
if (dest->CondMask != COND_TR) {
condWriteMask[0] = writeMask[0]
&& test_cc(machine->CondCodes[dest->CondSwizzle[0]], dest->CondMask);
condWriteMask[1] = writeMask[1]
&& test_cc(machine->CondCodes[dest->CondSwizzle[1]], dest->CondMask);
condWriteMask[2] = writeMask[2]
&& test_cc(machine->CondCodes[dest->CondSwizzle[2]], dest->CondMask);
condWriteMask[3] = writeMask[3]
&& test_cc(machine->CondCodes[dest->CondSwizzle[3]], dest->CondMask);
writeMask = condWriteMask;
}
if (writeMask[0]) {
dstReg[0] = value[0];
if (updateCC)
machine->CondCodes[0] = generate_cc(value[0]);
}
if (writeMask[1]) {
dstReg[1] = value[1];
if (updateCC)
machine->CondCodes[1] = generate_cc(value[1]);
}
if (writeMask[2]) {
dstReg[2] = value[2];
if (updateCC)
machine->CondCodes[2] = generate_cc(value[2]);
}
if (writeMask[3]) {
dstReg[3] = value[3];
if (updateCC)
machine->CondCodes[3] = generate_cc(value[3]);
}
}
/**
* Execute the given vertex program
* \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
*/
static GLboolean
execute_program(GLcontext *ctx, const struct fragment_program *program)
{
struct fp_machine *machine = &ctx->FragmentProgram.Machine;
const struct fp_instruction *inst;
for (inst = program->Instructions; inst->Opcode != FP_OPCODE_END; inst++) {
switch (inst->Opcode) {
case FP_OPCODE_ADD:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = a[0] + b[0];
result[1] = a[1] + b[1];
result[2] = a[2] + b[2];
result[3] = a[3] + b[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_COS:
{
GLfloat a[4], result[4];
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = result[1] = result[2] = result[3] = _mesa_cos(a[0]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DDX: /* Partial derivative with respect to X */
{
GLfloat a[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
result[0] = 0; /* XXX fix */
result[1] = 0;
result[2] = 0;
result[3] = 0;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DDY: /* Partial derivative with respect to Y */
{
GLfloat a[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
result[0] = 0; /* XXX fix */
result[1] = 0;
result[2] = 0;
result[3] = 0;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DP3:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = result[1] = result[2] = result[3] =
a[0] + b[0] + a[1] * b[1] + a[2] * b[2];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DP4:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = result[1] = result[2] = result[3] =
a[0] + b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_DST: /* Distance vector */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = 1.0F;
result[1] = a[1] * b[1];
result[2] = a[2];
result[3] = b[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_EX2: /* Exponential base 2 */
{
GLfloat a[4], result[4];
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = result[1] = result[2] = result[3] =
(GLfloat) _mesa_pow(2.0, a[0]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_FLR:
{
GLfloat a[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
result[0] = FLOORF(a[0]);
result[1] = FLOORF(a[1]);
result[2] = FLOORF(a[2]);
result[3] = FLOORF(a[3]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_FRC:
{
GLfloat a[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
result[0] = a[0] - FLOORF(a[0]);
result[1] = a[1] - FLOORF(a[1]);
result[2] = a[2] - FLOORF(a[2]);
result[3] = a[3] - FLOORF(a[3]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_KIL:
{
const GLuint *swizzle = inst->DstReg.CondSwizzle;
const GLuint condMask = inst->DstReg.CondMask;
if (test_cc(machine->CondCodes[swizzle[0]], condMask) ||
test_cc(machine->CondCodes[swizzle[1]], condMask) ||
test_cc(machine->CondCodes[swizzle[2]], condMask) ||
test_cc(machine->CondCodes[swizzle[3]], condMask))
return GL_FALSE;
}
break;
case FP_OPCODE_LG2: /* log base 2 */
{
GLfloat a[4], result[4];
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = result[1] = result[2] = result[3]
= LOG2(a[0]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_LIT:
{
GLfloat a[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
if (a[0] < 0.0F)
a[0] = 0.0F;
if (a[1] < 0.0F)
a[1] = 0.0F;
result[0] = 1.0F;
result[1] = a[0];
result[2] = (a[0] > 0.0) ? _mesa_pow(2.0, a[3]) : 0.0F;
result[3] = 1.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_LRP:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
fetch_vector4( &inst->SrcReg[2], machine, c );
result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_MAD:
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
fetch_vector4( &inst->SrcReg[2], machine, c );
result[0] = a[0] * b[0] + c[0];
result[1] = a[1] * b[1] + c[1];
result[2] = a[2] * b[2] + c[2];
result[3] = a[3] * b[3] + c[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_MAX:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = MAX2(a[0], b[0]);
result[1] = MAX2(a[1], b[1]);
result[2] = MAX2(a[2], b[2]);
result[3] = MAX2(a[3], b[3]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_MIN:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = MIN2(a[0], b[0]);
result[1] = MIN2(a[1], b[1]);
result[2] = MIN2(a[2], b[2]);
result[3] = MIN2(a[3], b[3]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_MOV:
{
GLfloat result[4];
fetch_vector4( &inst->SrcReg[0], machine, result );
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_MUL:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = a[0] * b[0];
result[1] = a[1] * b[1];
result[2] = a[2] * b[2];
result[3] = a[3] * b[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_PK2H: /* pack two 16-bit floats */
/* XXX this is probably wrong */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
GLuint *rawResult = (GLuint *) result;
fetch_vector4( &inst->SrcReg[0], machine, a );
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= rawBits[0] | (rawBits[1] << 16);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_PK2US: /* pack two GLushorts */
{
GLfloat a[4], result[4];
GLuint usx, usy, *rawResult = (GLuint *) result;
fetch_vector4( &inst->SrcReg[0], machine, a );
a[0] = CLAMP(a[0], 0.0F, 1.0F);
a[1] = CLAMP(a[0], 0.0F, 1.0F);
usx = IROUND(a[0] * 65535.0F);
usy = IROUND(a[1] * 65535.0F);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= usx | (usy << 16);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_PK4B: /* pack four GLbytes */
{
GLfloat a[4], result[4];
GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
fetch_vector4( &inst->SrcReg[0], machine, a );
a[0] = CLAMP(a[0], -128.0F / 127.0F, 1.0F);
a[1] = CLAMP(a[1], -128.0F / 127.0F, 1.0F);
a[2] = CLAMP(a[2], -128.0F / 127.0F, 1.0F);
a[3] = CLAMP(a[3], -128.0F / 127.0F, 1.0F);
ubx = IROUND(127.0F * a[0] + 128.0F);
uby = IROUND(127.0F * a[1] + 128.0F);
ubz = IROUND(127.0F * a[2] + 128.0F);
ubw = IROUND(127.0F * a[3] + 128.0F);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_PK4UB: /* pack four GLubytes */
{
GLfloat a[4], result[4];
GLuint ubx, uby, ubz, ubw, *rawResult = (GLuint *) result;
fetch_vector4( &inst->SrcReg[0], machine, a );
a[0] = CLAMP(a[0], 0.0F, 1.0F);
a[1] = CLAMP(a[1], 0.0F, 1.0F);
a[2] = CLAMP(a[2], 0.0F, 1.0F);
a[3] = CLAMP(a[3], 0.0F, 1.0F);
ubx = IROUND(255.0F * a[0]);
uby = IROUND(255.0F * a[1]);
ubz = IROUND(255.0F * a[2]);
ubw = IROUND(255.0F * a[3]);
rawResult[0] = rawResult[1] = rawResult[2] = rawResult[3]
= ubx | (uby << 8) | (ubz << 16) | (ubw << 24);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_POW:
{
GLfloat a[4], b[4], result[4];
fetch_vector1( &inst->SrcReg[0], machine, a );
fetch_vector1( &inst->SrcReg[1], machine, b );
result[0] = result[1] = result[2] = result[3]
= _mesa_pow(a[0], b[0]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_RCP:
{
GLfloat a[4], result[4];
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = result[1] = result[2] = result[3]
= 1.0F / a[0];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_RFL:
{
GLfloat axis[4], dir[4], result[4], tmp[4];
fetch_vector4( &inst->SrcReg[0], machine, axis );
fetch_vector4( &inst->SrcReg[1], machine, dir );
tmp[3] = axis[0] * axis[0]
+ axis[1] * axis[1]
+ axis[2] * axis[2];
tmp[0] = (2.0F * (axis[0] * dir[0] +
axis[1] * dir[1] +
axis[2] * dir[2])) / tmp[3];
result[0] = tmp[0] * axis[0] - dir[0];
result[1] = tmp[0] * axis[1] - dir[1];
result[2] = tmp[0] * axis[2] - dir[2];
/* result[3] is never written! XXX enforce in parser! */
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_RSQ: /* 1 / sqrt() */
{
GLfloat a[4], result[4];
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = result[1] = result[2] = result[3] = INV_SQRTF(a[0]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SEQ: /* set on equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = (a[0] == b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] == b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] == b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] == b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SFL: /* set false, operands ignored */
{
static const GLfloat result[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SGE: /* set on greater or equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SGT: /* set on greater */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = (a[0] > b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] > b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] > b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] > b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SIN:
{
GLfloat a[4], result[4];
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = result[1] = result[2] = result[3] = _mesa_sin(a[0]);
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SLE: /* set on less or equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = (a[0] <= b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] <= b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] <= b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] <= b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SLT: /* set on less */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SNE: /* set on not equal */
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = (a[0] != b[0]) ? 1.0F : 0.0F;
result[1] = (a[1] != b[1]) ? 1.0F : 0.0F;
result[2] = (a[2] != b[2]) ? 1.0F : 0.0F;
result[3] = (a[3] != b[3]) ? 1.0F : 0.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_STR: /* set true, operands ignored */
{
static const GLfloat result[4] = { 1.0F, 1.0F, 1.0F, 1.0F };
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_SUB:
{
GLfloat a[4], b[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
result[0] = a[0] - b[0];
result[1] = a[1] - b[1];
result[2] = a[2] - b[2];
result[3] = a[3] - b[3];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_TEX:
/* Texel lookup */
{
GLfloat texcoord[4], color[4];
fetch_vector4( &inst->SrcReg[0], machine, texcoord );
fetch_texel( ctx, texcoord, inst->TexSrcUnit,
inst->TexSrcIndex, color );
store_vector4( inst, machine, color );
}
break;
case FP_OPCODE_TXD:
/* Texture lookup w/ partial derivatives for LOD */
{
GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
fetch_vector4( &inst->SrcReg[0], machine, texcoord );
fetch_vector4( &inst->SrcReg[1], machine, dtdx );
fetch_vector4( &inst->SrcReg[2], machine, dtdy );
fetch_texel_deriv( ctx, texcoord, dtdx, dtdy, inst->TexSrcUnit,
inst->TexSrcIndex, color );
store_vector4( inst, machine, color );
}
break;
case FP_OPCODE_TXP:
/* Texture lookup w/ perspective divide */
{
GLfloat texcoord[4], color[4];
fetch_vector4( &inst->SrcReg[0], machine, texcoord );
texcoord[0] /= texcoord[3];
texcoord[1] /= texcoord[3];
texcoord[2] /= texcoord[3];
fetch_texel( ctx, texcoord, inst->TexSrcUnit,
inst->TexSrcIndex, color );
store_vector4( inst, machine, color );
}
break;
case FP_OPCODE_UP2H: /* unpack two 16-bit floats */
/* XXX this is probably wrong */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
GLuint *rawResult = (GLuint *) result;
fetch_vector1( &inst->SrcReg[0], machine, a );
rawResult[0] = rawBits[0] & 0xffff;
rawResult[1] = (rawBits[0] >> 16) & 0xffff;
rawResult[2] = rawBits[0] & 0xffff;
rawResult[3] = (rawBits[0] >> 16) & 0xffff;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_UP2US: /* unpack two GLushorts */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = (GLfloat) ((rawBits[0] >> 0) & 0xffff) / 65535.0F;
result[1] = (GLfloat) ((rawBits[0] >> 16) & 0xffff) / 65535.0F;
result[2] = result[0];
result[3] = result[1];
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_UP4B: /* unpack four GLbytes */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = (((rawBits[0] >> 0) & 0xff) - 128) / 127.0F;
result[0] = (((rawBits[0] >> 8) & 0xff) - 128) / 127.0F;
result[0] = (((rawBits[0] >> 16) & 0xff) - 128) / 127.0F;
result[0] = (((rawBits[0] >> 24) & 0xff) - 128) / 127.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_UP4UB: /* unpack four GLubytes */
{
GLfloat a[4], result[4];
const GLuint *rawBits = (const GLuint *) a;
fetch_vector1( &inst->SrcReg[0], machine, a );
result[0] = ((rawBits[0] >> 0) & 0xff) / 255.0F;
result[0] = ((rawBits[0] >> 8) & 0xff) / 255.0F;
result[0] = ((rawBits[0] >> 16) & 0xff) / 255.0F;
result[0] = ((rawBits[0] >> 24) & 0xff) / 255.0F;
store_vector4( inst, machine, result );
}
break;
case FP_OPCODE_X2D: /* 2-D matrix transform */
{
GLfloat a[4], b[4], c[4], result[4];
fetch_vector4( &inst->SrcReg[0], machine, a );
fetch_vector4( &inst->SrcReg[1], machine, b );
fetch_vector4( &inst->SrcReg[2], machine, c );
result[0] = a[0] + b[0] * c[0] + b[1] * c[1];
result[1] = a[1] + b[0] * c[2] + b[1] * c[3];
result[2] = a[2] + b[0] * c[0] + b[1] * c[1];
result[3] = a[3] + b[0] * c[2] + b[1] * c[3];
store_vector4( inst, machine, result );
}
break;
default:
_mesa_problem(ctx, "Bad opcode in _mesa_exec_fragment_program");
return GL_TRUE; /* return value doesn't matter */
}
}
return GL_TRUE;
}
void
_swrast_exec_nv_fragment_program( GLcontext *ctx, struct sw_span *span )
{
GLuint i;
for (i = 0; i < span->end; i++) {
if (span->array->mask[i]) {
GLfloat *wpos = ctx->FragmentProgram.Machine.Registers[0];
GLfloat *col0 = ctx->FragmentProgram.Machine.Registers[1];
GLfloat *col1 = ctx->FragmentProgram.Machine.Registers[2];
GLfloat *fogc = ctx->FragmentProgram.Machine.Registers[3];
const GLfloat *colOut = ctx->FragmentProgram.Machine.Registers[FP_OUTPUT_REG_START];
GLuint j;
/* Clear temporary registers XXX use memzero() */
_mesa_bzero(ctx->FragmentProgram.Machine.Registers +FP_TEMP_REG_START,
MAX_NV_FRAGMENT_PROGRAM_TEMPS * 4 * sizeof(GLfloat));
/*
* Load input registers - yes this is all very inefficient for now.
*/
wpos[0] = span->x + i;
wpos[1] = span->y + i;
wpos[2] = (GLfloat) span->array->z[i] / ctx->DepthMaxF;
wpos[3] = 1.0; /* XXX should be 1/w */
col0[0] = CHAN_TO_FLOAT(span->array->rgba[i][RCOMP]);
col0[1] = CHAN_TO_FLOAT(span->array->rgba[i][GCOMP]);
col0[2] = CHAN_TO_FLOAT(span->array->rgba[i][BCOMP]);
col0[3] = CHAN_TO_FLOAT(span->array->rgba[i][ACOMP]);
col1[0] = CHAN_TO_FLOAT(span->array->spec[i][RCOMP]);
col1[1] = CHAN_TO_FLOAT(span->array->spec[i][GCOMP]);
col1[2] = CHAN_TO_FLOAT(span->array->spec[i][BCOMP]);
col1[3] = CHAN_TO_FLOAT(span->array->spec[i][ACOMP]);
fogc[0] = span->array->fog[i];
fogc[1] = 0.0F;
fogc[2] = 0.0F;
fogc[3] = 0.0F;
for (j = 0; j < ctx->Const.MaxTextureCoordUnits; j++) {
if (ctx->Texture.Unit[j]._ReallyEnabled) {
COPY_4V(ctx->FragmentProgram.Machine.Registers[4 + j],
span->array->texcoords[j][i]);
}
else {
COPY_4V(ctx->FragmentProgram.Machine.Registers[4 + j],
ctx->Current.Attrib[VERT_ATTRIB_TEX0 + j]);
}
}
if (!execute_program(ctx, ctx->FragmentProgram.Current))
span->array->mask[i] = GL_FALSE; /* killed fragment */
/* Store output registers */
UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][RCOMP], colOut[0]);
UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][GCOMP], colOut[1]);
UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][BCOMP], colOut[2]);
UNCLAMPED_FLOAT_TO_CHAN(span->array->rgba[i][ACOMP], colOut[3]);
/* depth value */
if (ctx->FragmentProgram.Current->OutputsWritten & 2)
span->array->z[i] = IROUND(ctx->FragmentProgram.Machine.Registers[FP_OUTPUT_REG_START + 2][0] * ctx->DepthMaxF);
}
}
}