
This requires tracking a couple extra fields in ir_variable: * A flag to indicate that a variable had an initializer. * For non-const variables, a field to track the constant value of the variable's initializer. For variables non-constant initalizers, ir_variable::has_initializer will be true, but ir_variable::constant_initializer will be NULL. The linker can use the values of these fields to check adherence to the GLSL 4.20 rules for shared global variables: "If a shared global has multiple initializers, the initializers must all be constant expressions, and they must all have the same value. Otherwise, a link error will result. (A shared global having only one initializer does not require that initializer to be a constant expression.)" Previous to 4.20 the GLSL spec simply said that initializers must have the same value. In this case of non-constant initializers, this was impossible to determine. As a result, no vendor actually implemented that behavior. The 4.20 behavior matches the behavior of NVIDIA's shipping implementations. NOTE: This is candidate for the 7.11 branch. This patch also needs the preceding patch "glsl: Refactor generate_ARB_draw_buffers_variables to use add_builtin_constant" Signed-off-by: Ian Romanick <ian.d.romanick@intel.com> Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=34687 Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Acked-by: Paul Berry <stereotype441@gmail.com>
3681 lines
122 KiB
C++
3681 lines
122 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* \file ast_to_hir.c
|
|
* Convert abstract syntax to to high-level intermediate reprensentation (HIR).
|
|
*
|
|
* During the conversion to HIR, the majority of the symantic checking is
|
|
* preformed on the program. This includes:
|
|
*
|
|
* * Symbol table management
|
|
* * Type checking
|
|
* * Function binding
|
|
*
|
|
* The majority of this work could be done during parsing, and the parser could
|
|
* probably generate HIR directly. However, this results in frequent changes
|
|
* to the parser code. Since we do not assume that every system this complier
|
|
* is built on will have Flex and Bison installed, we have to store the code
|
|
* generated by these tools in our version control system. In other parts of
|
|
* the system we've seen problems where a parser was changed but the generated
|
|
* code was not committed, merge conflicts where created because two developers
|
|
* had slightly different versions of Bison installed, etc.
|
|
*
|
|
* I have also noticed that running Bison generated parsers in GDB is very
|
|
* irritating. When you get a segfault on '$$ = $1->foo', you can't very
|
|
* well 'print $1' in GDB.
|
|
*
|
|
* As a result, my preference is to put as little C code as possible in the
|
|
* parser (and lexer) sources.
|
|
*/
|
|
|
|
#include "main/core.h" /* for struct gl_extensions */
|
|
#include "glsl_symbol_table.h"
|
|
#include "glsl_parser_extras.h"
|
|
#include "ast.h"
|
|
#include "glsl_types.h"
|
|
#include "ir.h"
|
|
|
|
void
|
|
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
|
|
{
|
|
_mesa_glsl_initialize_variables(instructions, state);
|
|
|
|
state->symbols->language_version = state->language_version;
|
|
|
|
state->current_function = NULL;
|
|
|
|
state->toplevel_ir = instructions;
|
|
|
|
/* Section 4.2 of the GLSL 1.20 specification states:
|
|
* "The built-in functions are scoped in a scope outside the global scope
|
|
* users declare global variables in. That is, a shader's global scope,
|
|
* available for user-defined functions and global variables, is nested
|
|
* inside the scope containing the built-in functions."
|
|
*
|
|
* Since built-in functions like ftransform() access built-in variables,
|
|
* it follows that those must be in the outer scope as well.
|
|
*
|
|
* We push scope here to create this nesting effect...but don't pop.
|
|
* This way, a shader's globals are still in the symbol table for use
|
|
* by the linker.
|
|
*/
|
|
state->symbols->push_scope();
|
|
|
|
foreach_list_typed (ast_node, ast, link, & state->translation_unit)
|
|
ast->hir(instructions, state);
|
|
|
|
detect_recursion_unlinked(state, instructions);
|
|
|
|
state->toplevel_ir = NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* If a conversion is available, convert one operand to a different type
|
|
*
|
|
* The \c from \c ir_rvalue is converted "in place".
|
|
*
|
|
* \param to Type that the operand it to be converted to
|
|
* \param from Operand that is being converted
|
|
* \param state GLSL compiler state
|
|
*
|
|
* \return
|
|
* If a conversion is possible (or unnecessary), \c true is returned.
|
|
* Otherwise \c false is returned.
|
|
*/
|
|
bool
|
|
apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
if (to->base_type == from->type->base_type)
|
|
return true;
|
|
|
|
/* This conversion was added in GLSL 1.20. If the compilation mode is
|
|
* GLSL 1.10, the conversion is skipped.
|
|
*/
|
|
if (state->language_version < 120)
|
|
return false;
|
|
|
|
/* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "There are no implicit array or structure conversions. For
|
|
* example, an array of int cannot be implicitly converted to an
|
|
* array of float. There are no implicit conversions between
|
|
* signed and unsigned integers."
|
|
*/
|
|
/* FINISHME: The above comment is partially a lie. There is int/uint
|
|
* FINISHME: conversion for immediate constants.
|
|
*/
|
|
if (!to->is_float() || !from->type->is_numeric())
|
|
return false;
|
|
|
|
/* Convert to a floating point type with the same number of components
|
|
* as the original type - i.e. int to float, not int to vec4.
|
|
*/
|
|
to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
|
|
from->type->matrix_columns);
|
|
|
|
switch (from->type->base_type) {
|
|
case GLSL_TYPE_INT:
|
|
from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
|
|
break;
|
|
case GLSL_TYPE_UINT:
|
|
from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
|
|
break;
|
|
case GLSL_TYPE_BOOL:
|
|
from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static const struct glsl_type *
|
|
arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
|
|
bool multiply,
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
|
{
|
|
const glsl_type *type_a = value_a->type;
|
|
const glsl_type *type_b = value_b->type;
|
|
|
|
/* From GLSL 1.50 spec, page 56:
|
|
*
|
|
* "The arithmetic binary operators add (+), subtract (-),
|
|
* multiply (*), and divide (/) operate on integer and
|
|
* floating-point scalars, vectors, and matrices."
|
|
*/
|
|
if (!type_a->is_numeric() || !type_b->is_numeric()) {
|
|
_mesa_glsl_error(loc, state,
|
|
"Operands to arithmetic operators must be numeric");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
|
|
/* "If one operand is floating-point based and the other is
|
|
* not, then the conversions from Section 4.1.10 "Implicit
|
|
* Conversions" are applied to the non-floating-point-based operand."
|
|
*/
|
|
if (!apply_implicit_conversion(type_a, value_b, state)
|
|
&& !apply_implicit_conversion(type_b, value_a, state)) {
|
|
_mesa_glsl_error(loc, state,
|
|
"Could not implicitly convert operands to "
|
|
"arithmetic operator");
|
|
return glsl_type::error_type;
|
|
}
|
|
type_a = value_a->type;
|
|
type_b = value_b->type;
|
|
|
|
/* "If the operands are integer types, they must both be signed or
|
|
* both be unsigned."
|
|
*
|
|
* From this rule and the preceeding conversion it can be inferred that
|
|
* both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
|
|
* The is_numeric check above already filtered out the case where either
|
|
* type is not one of these, so now the base types need only be tested for
|
|
* equality.
|
|
*/
|
|
if (type_a->base_type != type_b->base_type) {
|
|
_mesa_glsl_error(loc, state,
|
|
"base type mismatch for arithmetic operator");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "All arithmetic binary operators result in the same fundamental type
|
|
* (signed integer, unsigned integer, or floating-point) as the
|
|
* operands they operate on, after operand type conversion. After
|
|
* conversion, the following cases are valid
|
|
*
|
|
* * The two operands are scalars. In this case the operation is
|
|
* applied, resulting in a scalar."
|
|
*/
|
|
if (type_a->is_scalar() && type_b->is_scalar())
|
|
return type_a;
|
|
|
|
/* "* One operand is a scalar, and the other is a vector or matrix.
|
|
* In this case, the scalar operation is applied independently to each
|
|
* component of the vector or matrix, resulting in the same size
|
|
* vector or matrix."
|
|
*/
|
|
if (type_a->is_scalar()) {
|
|
if (!type_b->is_scalar())
|
|
return type_b;
|
|
} else if (type_b->is_scalar()) {
|
|
return type_a;
|
|
}
|
|
|
|
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
|
|
* <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
|
|
* handled.
|
|
*/
|
|
assert(!type_a->is_scalar());
|
|
assert(!type_b->is_scalar());
|
|
|
|
/* "* The two operands are vectors of the same size. In this case, the
|
|
* operation is done component-wise resulting in the same size
|
|
* vector."
|
|
*/
|
|
if (type_a->is_vector() && type_b->is_vector()) {
|
|
if (type_a == type_b) {
|
|
return type_a;
|
|
} else {
|
|
_mesa_glsl_error(loc, state,
|
|
"vector size mismatch for arithmetic operator");
|
|
return glsl_type::error_type;
|
|
}
|
|
}
|
|
|
|
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
|
|
* <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
|
|
* <vector, vector> have been handled. At least one of the operands must
|
|
* be matrix. Further, since there are no integer matrix types, the base
|
|
* type of both operands must be float.
|
|
*/
|
|
assert(type_a->is_matrix() || type_b->is_matrix());
|
|
assert(type_a->base_type == GLSL_TYPE_FLOAT);
|
|
assert(type_b->base_type == GLSL_TYPE_FLOAT);
|
|
|
|
/* "* The operator is add (+), subtract (-), or divide (/), and the
|
|
* operands are matrices with the same number of rows and the same
|
|
* number of columns. In this case, the operation is done component-
|
|
* wise resulting in the same size matrix."
|
|
* * The operator is multiply (*), where both operands are matrices or
|
|
* one operand is a vector and the other a matrix. A right vector
|
|
* operand is treated as a column vector and a left vector operand as a
|
|
* row vector. In all these cases, it is required that the number of
|
|
* columns of the left operand is equal to the number of rows of the
|
|
* right operand. Then, the multiply (*) operation does a linear
|
|
* algebraic multiply, yielding an object that has the same number of
|
|
* rows as the left operand and the same number of columns as the right
|
|
* operand. Section 5.10 "Vector and Matrix Operations" explains in
|
|
* more detail how vectors and matrices are operated on."
|
|
*/
|
|
if (! multiply) {
|
|
if (type_a == type_b)
|
|
return type_a;
|
|
} else {
|
|
if (type_a->is_matrix() && type_b->is_matrix()) {
|
|
/* Matrix multiply. The columns of A must match the rows of B. Given
|
|
* the other previously tested constraints, this means the vector type
|
|
* of a row from A must be the same as the vector type of a column from
|
|
* B.
|
|
*/
|
|
if (type_a->row_type() == type_b->column_type()) {
|
|
/* The resulting matrix has the number of columns of matrix B and
|
|
* the number of rows of matrix A. We get the row count of A by
|
|
* looking at the size of a vector that makes up a column. The
|
|
* transpose (size of a row) is done for B.
|
|
*/
|
|
const glsl_type *const type =
|
|
glsl_type::get_instance(type_a->base_type,
|
|
type_a->column_type()->vector_elements,
|
|
type_b->row_type()->vector_elements);
|
|
assert(type != glsl_type::error_type);
|
|
|
|
return type;
|
|
}
|
|
} else if (type_a->is_matrix()) {
|
|
/* A is a matrix and B is a column vector. Columns of A must match
|
|
* rows of B. Given the other previously tested constraints, this
|
|
* means the vector type of a row from A must be the same as the
|
|
* vector the type of B.
|
|
*/
|
|
if (type_a->row_type() == type_b) {
|
|
/* The resulting vector has a number of elements equal to
|
|
* the number of rows of matrix A. */
|
|
const glsl_type *const type =
|
|
glsl_type::get_instance(type_a->base_type,
|
|
type_a->column_type()->vector_elements,
|
|
1);
|
|
assert(type != glsl_type::error_type);
|
|
|
|
return type;
|
|
}
|
|
} else {
|
|
assert(type_b->is_matrix());
|
|
|
|
/* A is a row vector and B is a matrix. Columns of A must match rows
|
|
* of B. Given the other previously tested constraints, this means
|
|
* the type of A must be the same as the vector type of a column from
|
|
* B.
|
|
*/
|
|
if (type_a == type_b->column_type()) {
|
|
/* The resulting vector has a number of elements equal to
|
|
* the number of columns of matrix B. */
|
|
const glsl_type *const type =
|
|
glsl_type::get_instance(type_a->base_type,
|
|
type_b->row_type()->vector_elements,
|
|
1);
|
|
assert(type != glsl_type::error_type);
|
|
|
|
return type;
|
|
}
|
|
}
|
|
|
|
_mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
|
|
/* "All other cases are illegal."
|
|
*/
|
|
_mesa_glsl_error(loc, state, "type mismatch");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
|
|
static const struct glsl_type *
|
|
unary_arithmetic_result_type(const struct glsl_type *type,
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
|
{
|
|
/* From GLSL 1.50 spec, page 57:
|
|
*
|
|
* "The arithmetic unary operators negate (-), post- and pre-increment
|
|
* and decrement (-- and ++) operate on integer or floating-point
|
|
* values (including vectors and matrices). All unary operators work
|
|
* component-wise on their operands. These result with the same type
|
|
* they operated on."
|
|
*/
|
|
if (!type->is_numeric()) {
|
|
_mesa_glsl_error(loc, state,
|
|
"Operands to arithmetic operators must be numeric");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
/**
|
|
* \brief Return the result type of a bit-logic operation.
|
|
*
|
|
* If the given types to the bit-logic operator are invalid, return
|
|
* glsl_type::error_type.
|
|
*
|
|
* \param type_a Type of LHS of bit-logic op
|
|
* \param type_b Type of RHS of bit-logic op
|
|
*/
|
|
static const struct glsl_type *
|
|
bit_logic_result_type(const struct glsl_type *type_a,
|
|
const struct glsl_type *type_b,
|
|
ast_operators op,
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
|
{
|
|
if (state->language_version < 130) {
|
|
_mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
|
|
*
|
|
* "The bitwise operators and (&), exclusive-or (^), and inclusive-or
|
|
* (|). The operands must be of type signed or unsigned integers or
|
|
* integer vectors."
|
|
*/
|
|
if (!type_a->is_integer()) {
|
|
_mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
|
|
ast_expression::operator_string(op));
|
|
return glsl_type::error_type;
|
|
}
|
|
if (!type_b->is_integer()) {
|
|
_mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
|
|
ast_expression::operator_string(op));
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "The fundamental types of the operands (signed or unsigned) must
|
|
* match,"
|
|
*/
|
|
if (type_a->base_type != type_b->base_type) {
|
|
_mesa_glsl_error(loc, state, "operands of `%s' must have the same "
|
|
"base type", ast_expression::operator_string(op));
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "The operands cannot be vectors of differing size." */
|
|
if (type_a->is_vector() &&
|
|
type_b->is_vector() &&
|
|
type_a->vector_elements != type_b->vector_elements) {
|
|
_mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
|
|
"different sizes", ast_expression::operator_string(op));
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "If one operand is a scalar and the other a vector, the scalar is
|
|
* applied component-wise to the vector, resulting in the same type as
|
|
* the vector. The fundamental types of the operands [...] will be the
|
|
* resulting fundamental type."
|
|
*/
|
|
if (type_a->is_scalar())
|
|
return type_b;
|
|
else
|
|
return type_a;
|
|
}
|
|
|
|
static const struct glsl_type *
|
|
modulus_result_type(const struct glsl_type *type_a,
|
|
const struct glsl_type *type_b,
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
|
{
|
|
if (state->language_version < 130) {
|
|
_mesa_glsl_error(loc, state,
|
|
"operator '%%' is reserved in %s",
|
|
state->version_string);
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* From GLSL 1.50 spec, page 56:
|
|
* "The operator modulus (%) operates on signed or unsigned integers or
|
|
* integer vectors. The operand types must both be signed or both be
|
|
* unsigned."
|
|
*/
|
|
if (!type_a->is_integer()) {
|
|
_mesa_glsl_error(loc, state, "LHS of operator %% must be an integer.");
|
|
return glsl_type::error_type;
|
|
}
|
|
if (!type_b->is_integer()) {
|
|
_mesa_glsl_error(loc, state, "RHS of operator %% must be an integer.");
|
|
return glsl_type::error_type;
|
|
}
|
|
if (type_a->base_type != type_b->base_type) {
|
|
_mesa_glsl_error(loc, state,
|
|
"operands of %% must have the same base type");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "The operands cannot be vectors of differing size. If one operand is
|
|
* a scalar and the other vector, then the scalar is applied component-
|
|
* wise to the vector, resulting in the same type as the vector. If both
|
|
* are vectors of the same size, the result is computed component-wise."
|
|
*/
|
|
if (type_a->is_vector()) {
|
|
if (!type_b->is_vector()
|
|
|| (type_a->vector_elements == type_b->vector_elements))
|
|
return type_a;
|
|
} else
|
|
return type_b;
|
|
|
|
/* "The operator modulus (%) is not defined for any other data types
|
|
* (non-integer types)."
|
|
*/
|
|
_mesa_glsl_error(loc, state, "type mismatch");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
|
|
static const struct glsl_type *
|
|
relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
|
{
|
|
const glsl_type *type_a = value_a->type;
|
|
const glsl_type *type_b = value_b->type;
|
|
|
|
/* From GLSL 1.50 spec, page 56:
|
|
* "The relational operators greater than (>), less than (<), greater
|
|
* than or equal (>=), and less than or equal (<=) operate only on
|
|
* scalar integer and scalar floating-point expressions."
|
|
*/
|
|
if (!type_a->is_numeric()
|
|
|| !type_b->is_numeric()
|
|
|| !type_a->is_scalar()
|
|
|| !type_b->is_scalar()) {
|
|
_mesa_glsl_error(loc, state,
|
|
"Operands to relational operators must be scalar and "
|
|
"numeric");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "Either the operands' types must match, or the conversions from
|
|
* Section 4.1.10 "Implicit Conversions" will be applied to the integer
|
|
* operand, after which the types must match."
|
|
*/
|
|
if (!apply_implicit_conversion(type_a, value_b, state)
|
|
&& !apply_implicit_conversion(type_b, value_a, state)) {
|
|
_mesa_glsl_error(loc, state,
|
|
"Could not implicitly convert operands to "
|
|
"relational operator");
|
|
return glsl_type::error_type;
|
|
}
|
|
type_a = value_a->type;
|
|
type_b = value_b->type;
|
|
|
|
if (type_a->base_type != type_b->base_type) {
|
|
_mesa_glsl_error(loc, state, "base type mismatch");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "The result is scalar Boolean."
|
|
*/
|
|
return glsl_type::bool_type;
|
|
}
|
|
|
|
/**
|
|
* \brief Return the result type of a bit-shift operation.
|
|
*
|
|
* If the given types to the bit-shift operator are invalid, return
|
|
* glsl_type::error_type.
|
|
*
|
|
* \param type_a Type of LHS of bit-shift op
|
|
* \param type_b Type of RHS of bit-shift op
|
|
*/
|
|
static const struct glsl_type *
|
|
shift_result_type(const struct glsl_type *type_a,
|
|
const struct glsl_type *type_b,
|
|
ast_operators op,
|
|
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
|
|
{
|
|
if (state->language_version < 130) {
|
|
_mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
|
|
*
|
|
* "The shift operators (<<) and (>>). For both operators, the operands
|
|
* must be signed or unsigned integers or integer vectors. One operand
|
|
* can be signed while the other is unsigned."
|
|
*/
|
|
if (!type_a->is_integer()) {
|
|
_mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
|
|
"integer vector", ast_expression::operator_string(op));
|
|
return glsl_type::error_type;
|
|
|
|
}
|
|
if (!type_b->is_integer()) {
|
|
_mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
|
|
"integer vector", ast_expression::operator_string(op));
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "If the first operand is a scalar, the second operand has to be
|
|
* a scalar as well."
|
|
*/
|
|
if (type_a->is_scalar() && !type_b->is_scalar()) {
|
|
_mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
|
|
"second must be scalar as well",
|
|
ast_expression::operator_string(op));
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* If both operands are vectors, check that they have same number of
|
|
* elements.
|
|
*/
|
|
if (type_a->is_vector() &&
|
|
type_b->is_vector() &&
|
|
type_a->vector_elements != type_b->vector_elements) {
|
|
_mesa_glsl_error(loc, state, "Vector operands to operator %s must "
|
|
"have same number of elements",
|
|
ast_expression::operator_string(op));
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
/* "In all cases, the resulting type will be the same type as the left
|
|
* operand."
|
|
*/
|
|
return type_a;
|
|
}
|
|
|
|
/**
|
|
* Validates that a value can be assigned to a location with a specified type
|
|
*
|
|
* Validates that \c rhs can be assigned to some location. If the types are
|
|
* not an exact match but an automatic conversion is possible, \c rhs will be
|
|
* converted.
|
|
*
|
|
* \return
|
|
* \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
|
|
* Otherwise the actual RHS to be assigned will be returned. This may be
|
|
* \c rhs, or it may be \c rhs after some type conversion.
|
|
*
|
|
* \note
|
|
* In addition to being used for assignments, this function is used to
|
|
* type-check return values.
|
|
*/
|
|
ir_rvalue *
|
|
validate_assignment(struct _mesa_glsl_parse_state *state,
|
|
const glsl_type *lhs_type, ir_rvalue *rhs,
|
|
bool is_initializer)
|
|
{
|
|
/* If there is already some error in the RHS, just return it. Anything
|
|
* else will lead to an avalanche of error message back to the user.
|
|
*/
|
|
if (rhs->type->is_error())
|
|
return rhs;
|
|
|
|
/* If the types are identical, the assignment can trivially proceed.
|
|
*/
|
|
if (rhs->type == lhs_type)
|
|
return rhs;
|
|
|
|
/* If the array element types are the same and the size of the LHS is zero,
|
|
* the assignment is okay for initializers embedded in variable
|
|
* declarations.
|
|
*
|
|
* Note: Whole-array assignments are not permitted in GLSL 1.10, but this
|
|
* is handled by ir_dereference::is_lvalue.
|
|
*/
|
|
if (is_initializer && lhs_type->is_array() && rhs->type->is_array()
|
|
&& (lhs_type->element_type() == rhs->type->element_type())
|
|
&& (lhs_type->array_size() == 0)) {
|
|
return rhs;
|
|
}
|
|
|
|
/* Check for implicit conversion in GLSL 1.20 */
|
|
if (apply_implicit_conversion(lhs_type, rhs, state)) {
|
|
if (rhs->type == lhs_type)
|
|
return rhs;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
mark_whole_array_access(ir_rvalue *access)
|
|
{
|
|
ir_dereference_variable *deref = access->as_dereference_variable();
|
|
|
|
if (deref && deref->var) {
|
|
deref->var->max_array_access = deref->type->length - 1;
|
|
}
|
|
}
|
|
|
|
ir_rvalue *
|
|
do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
|
|
ir_rvalue *lhs, ir_rvalue *rhs, bool is_initializer,
|
|
YYLTYPE lhs_loc)
|
|
{
|
|
void *ctx = state;
|
|
bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
|
|
|
|
if (!error_emitted) {
|
|
if (lhs->variable_referenced() != NULL
|
|
&& lhs->variable_referenced()->read_only) {
|
|
_mesa_glsl_error(&lhs_loc, state,
|
|
"assignment to read-only variable '%s'",
|
|
lhs->variable_referenced()->name);
|
|
error_emitted = true;
|
|
|
|
} else if (state->language_version <= 110 && lhs->type->is_array()) {
|
|
/* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "Other binary or unary expressions, non-dereferenced
|
|
* arrays, function names, swizzles with repeated fields,
|
|
* and constants cannot be l-values."
|
|
*/
|
|
_mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
|
|
"allowed in GLSL 1.10 or GLSL ES 1.00.");
|
|
error_emitted = true;
|
|
} else if (!lhs->is_lvalue()) {
|
|
_mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
|
|
error_emitted = true;
|
|
}
|
|
}
|
|
|
|
ir_rvalue *new_rhs =
|
|
validate_assignment(state, lhs->type, rhs, is_initializer);
|
|
if (new_rhs == NULL) {
|
|
_mesa_glsl_error(& lhs_loc, state, "type mismatch");
|
|
} else {
|
|
rhs = new_rhs;
|
|
|
|
/* If the LHS array was not declared with a size, it takes it size from
|
|
* the RHS. If the LHS is an l-value and a whole array, it must be a
|
|
* dereference of a variable. Any other case would require that the LHS
|
|
* is either not an l-value or not a whole array.
|
|
*/
|
|
if (lhs->type->array_size() == 0) {
|
|
ir_dereference *const d = lhs->as_dereference();
|
|
|
|
assert(d != NULL);
|
|
|
|
ir_variable *const var = d->variable_referenced();
|
|
|
|
assert(var != NULL);
|
|
|
|
if (var->max_array_access >= unsigned(rhs->type->array_size())) {
|
|
/* FINISHME: This should actually log the location of the RHS. */
|
|
_mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
|
|
"previous access",
|
|
var->max_array_access);
|
|
}
|
|
|
|
var->type = glsl_type::get_array_instance(lhs->type->element_type(),
|
|
rhs->type->array_size());
|
|
d->type = var->type;
|
|
}
|
|
mark_whole_array_access(rhs);
|
|
mark_whole_array_access(lhs);
|
|
}
|
|
|
|
/* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
|
|
* but not post_inc) need the converted assigned value as an rvalue
|
|
* to handle things like:
|
|
*
|
|
* i = j += 1;
|
|
*
|
|
* So we always just store the computed value being assigned to a
|
|
* temporary and return a deref of that temporary. If the rvalue
|
|
* ends up not being used, the temp will get copy-propagated out.
|
|
*/
|
|
ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
|
|
ir_var_temporary);
|
|
ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
|
|
instructions->push_tail(var);
|
|
instructions->push_tail(new(ctx) ir_assignment(deref_var,
|
|
rhs,
|
|
NULL));
|
|
deref_var = new(ctx) ir_dereference_variable(var);
|
|
|
|
if (!error_emitted)
|
|
instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
|
|
|
|
return new(ctx) ir_dereference_variable(var);
|
|
}
|
|
|
|
static ir_rvalue *
|
|
get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
|
|
{
|
|
void *ctx = ralloc_parent(lvalue);
|
|
ir_variable *var;
|
|
|
|
var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
|
|
ir_var_temporary);
|
|
instructions->push_tail(var);
|
|
var->mode = ir_var_auto;
|
|
|
|
instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
|
|
lvalue, NULL));
|
|
|
|
/* Once we've created this temporary, mark it read only so it's no
|
|
* longer considered an lvalue.
|
|
*/
|
|
var->read_only = true;
|
|
|
|
return new(ctx) ir_dereference_variable(var);
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_node::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
(void) instructions;
|
|
(void) state;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static ir_rvalue *
|
|
do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
|
|
{
|
|
int join_op;
|
|
ir_rvalue *cmp = NULL;
|
|
|
|
if (operation == ir_binop_all_equal)
|
|
join_op = ir_binop_logic_and;
|
|
else
|
|
join_op = ir_binop_logic_or;
|
|
|
|
switch (op0->type->base_type) {
|
|
case GLSL_TYPE_FLOAT:
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
case GLSL_TYPE_BOOL:
|
|
return new(mem_ctx) ir_expression(operation, op0, op1);
|
|
|
|
case GLSL_TYPE_ARRAY: {
|
|
for (unsigned int i = 0; i < op0->type->length; i++) {
|
|
ir_rvalue *e0, *e1, *result;
|
|
|
|
e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
|
|
new(mem_ctx) ir_constant(i));
|
|
e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
|
|
new(mem_ctx) ir_constant(i));
|
|
result = do_comparison(mem_ctx, operation, e0, e1);
|
|
|
|
if (cmp) {
|
|
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
|
|
} else {
|
|
cmp = result;
|
|
}
|
|
}
|
|
|
|
mark_whole_array_access(op0);
|
|
mark_whole_array_access(op1);
|
|
break;
|
|
}
|
|
|
|
case GLSL_TYPE_STRUCT: {
|
|
for (unsigned int i = 0; i < op0->type->length; i++) {
|
|
ir_rvalue *e0, *e1, *result;
|
|
const char *field_name = op0->type->fields.structure[i].name;
|
|
|
|
e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
|
|
field_name);
|
|
e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
|
|
field_name);
|
|
result = do_comparison(mem_ctx, operation, e0, e1);
|
|
|
|
if (cmp) {
|
|
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
|
|
} else {
|
|
cmp = result;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case GLSL_TYPE_ERROR:
|
|
case GLSL_TYPE_VOID:
|
|
case GLSL_TYPE_SAMPLER:
|
|
/* I assume a comparison of a struct containing a sampler just
|
|
* ignores the sampler present in the type.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
assert(!"Should not get here.");
|
|
break;
|
|
}
|
|
|
|
if (cmp == NULL)
|
|
cmp = new(mem_ctx) ir_constant(true);
|
|
|
|
return cmp;
|
|
}
|
|
|
|
/* For logical operations, we want to ensure that the operands are
|
|
* scalar booleans. If it isn't, emit an error and return a constant
|
|
* boolean to avoid triggering cascading error messages.
|
|
*/
|
|
ir_rvalue *
|
|
get_scalar_boolean_operand(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state,
|
|
ast_expression *parent_expr,
|
|
int operand,
|
|
const char *operand_name,
|
|
bool *error_emitted)
|
|
{
|
|
ast_expression *expr = parent_expr->subexpressions[operand];
|
|
void *ctx = state;
|
|
ir_rvalue *val = expr->hir(instructions, state);
|
|
|
|
if (val->type->is_boolean() && val->type->is_scalar())
|
|
return val;
|
|
|
|
if (!*error_emitted) {
|
|
YYLTYPE loc = expr->get_location();
|
|
_mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
|
|
operand_name,
|
|
parent_expr->operator_string(parent_expr->oper));
|
|
*error_emitted = true;
|
|
}
|
|
|
|
return new(ctx) ir_constant(true);
|
|
}
|
|
|
|
/**
|
|
* If name refers to a builtin array whose maximum allowed size is less than
|
|
* size, report an error and return true. Otherwise return false.
|
|
*/
|
|
static bool
|
|
check_builtin_array_max_size(const char *name, unsigned size,
|
|
YYLTYPE loc, struct _mesa_glsl_parse_state *state)
|
|
{
|
|
if ((strcmp("gl_TexCoord", name) == 0)
|
|
&& (size > state->Const.MaxTextureCoords)) {
|
|
/* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* "The size [of gl_TexCoord] can be at most
|
|
* gl_MaxTextureCoords."
|
|
*/
|
|
_mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
|
|
"be larger than gl_MaxTextureCoords (%u)\n",
|
|
state->Const.MaxTextureCoords);
|
|
return true;
|
|
} else if (strcmp("gl_ClipDistance", name) == 0
|
|
&& size > state->Const.MaxClipPlanes) {
|
|
/* From section 7.1 (Vertex Shader Special Variables) of the
|
|
* GLSL 1.30 spec:
|
|
*
|
|
* "The gl_ClipDistance array is predeclared as unsized and
|
|
* must be sized by the shader either redeclaring it with a
|
|
* size or indexing it only with integral constant
|
|
* expressions. ... The size can be at most
|
|
* gl_MaxClipDistances."
|
|
*/
|
|
_mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
|
|
"be larger than gl_MaxClipDistances (%u)\n",
|
|
state->Const.MaxClipPlanes);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Create the constant 1, of a which is appropriate for incrementing and
|
|
* decrementing values of the given GLSL type. For example, if type is vec4,
|
|
* this creates a constant value of 1.0 having type float.
|
|
*
|
|
* If the given type is invalid for increment and decrement operators, return
|
|
* a floating point 1--the error will be detected later.
|
|
*/
|
|
static ir_rvalue *
|
|
constant_one_for_inc_dec(void *ctx, const glsl_type *type)
|
|
{
|
|
switch (type->base_type) {
|
|
case GLSL_TYPE_UINT:
|
|
return new(ctx) ir_constant((unsigned) 1);
|
|
case GLSL_TYPE_INT:
|
|
return new(ctx) ir_constant(1);
|
|
default:
|
|
case GLSL_TYPE_FLOAT:
|
|
return new(ctx) ir_constant(1.0f);
|
|
}
|
|
}
|
|
|
|
ir_rvalue *
|
|
ast_expression::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
static const int operations[AST_NUM_OPERATORS] = {
|
|
-1, /* ast_assign doesn't convert to ir_expression. */
|
|
-1, /* ast_plus doesn't convert to ir_expression. */
|
|
ir_unop_neg,
|
|
ir_binop_add,
|
|
ir_binop_sub,
|
|
ir_binop_mul,
|
|
ir_binop_div,
|
|
ir_binop_mod,
|
|
ir_binop_lshift,
|
|
ir_binop_rshift,
|
|
ir_binop_less,
|
|
ir_binop_greater,
|
|
ir_binop_lequal,
|
|
ir_binop_gequal,
|
|
ir_binop_all_equal,
|
|
ir_binop_any_nequal,
|
|
ir_binop_bit_and,
|
|
ir_binop_bit_xor,
|
|
ir_binop_bit_or,
|
|
ir_unop_bit_not,
|
|
ir_binop_logic_and,
|
|
ir_binop_logic_xor,
|
|
ir_binop_logic_or,
|
|
ir_unop_logic_not,
|
|
|
|
/* Note: The following block of expression types actually convert
|
|
* to multiple IR instructions.
|
|
*/
|
|
ir_binop_mul, /* ast_mul_assign */
|
|
ir_binop_div, /* ast_div_assign */
|
|
ir_binop_mod, /* ast_mod_assign */
|
|
ir_binop_add, /* ast_add_assign */
|
|
ir_binop_sub, /* ast_sub_assign */
|
|
ir_binop_lshift, /* ast_ls_assign */
|
|
ir_binop_rshift, /* ast_rs_assign */
|
|
ir_binop_bit_and, /* ast_and_assign */
|
|
ir_binop_bit_xor, /* ast_xor_assign */
|
|
ir_binop_bit_or, /* ast_or_assign */
|
|
|
|
-1, /* ast_conditional doesn't convert to ir_expression. */
|
|
ir_binop_add, /* ast_pre_inc. */
|
|
ir_binop_sub, /* ast_pre_dec. */
|
|
ir_binop_add, /* ast_post_inc. */
|
|
ir_binop_sub, /* ast_post_dec. */
|
|
-1, /* ast_field_selection doesn't conv to ir_expression. */
|
|
-1, /* ast_array_index doesn't convert to ir_expression. */
|
|
-1, /* ast_function_call doesn't conv to ir_expression. */
|
|
-1, /* ast_identifier doesn't convert to ir_expression. */
|
|
-1, /* ast_int_constant doesn't convert to ir_expression. */
|
|
-1, /* ast_uint_constant doesn't conv to ir_expression. */
|
|
-1, /* ast_float_constant doesn't conv to ir_expression. */
|
|
-1, /* ast_bool_constant doesn't conv to ir_expression. */
|
|
-1, /* ast_sequence doesn't convert to ir_expression. */
|
|
};
|
|
ir_rvalue *result = NULL;
|
|
ir_rvalue *op[3];
|
|
const struct glsl_type *type; /* a temporary variable for switch cases */
|
|
bool error_emitted = false;
|
|
YYLTYPE loc;
|
|
|
|
loc = this->get_location();
|
|
|
|
switch (this->oper) {
|
|
case ast_assign: {
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
result = do_assignment(instructions, state, op[0], op[1], false,
|
|
this->subexpressions[0]->get_location());
|
|
error_emitted = result->type->is_error();
|
|
break;
|
|
}
|
|
|
|
case ast_plus:
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
|
|
|
|
error_emitted = type->is_error();
|
|
|
|
result = op[0];
|
|
break;
|
|
|
|
case ast_neg:
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
|
|
|
|
error_emitted = type->is_error();
|
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], NULL);
|
|
break;
|
|
|
|
case ast_add:
|
|
case ast_sub:
|
|
case ast_mul:
|
|
case ast_div:
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
type = arithmetic_result_type(op[0], op[1],
|
|
(this->oper == ast_mul),
|
|
state, & loc);
|
|
error_emitted = type->is_error();
|
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
break;
|
|
|
|
case ast_mod:
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
|
|
|
|
assert(operations[this->oper] == ir_binop_mod);
|
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
error_emitted = type->is_error();
|
|
break;
|
|
|
|
case ast_lshift:
|
|
case ast_rshift:
|
|
if (state->language_version < 130) {
|
|
_mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
|
|
operator_string(this->oper));
|
|
error_emitted = true;
|
|
}
|
|
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
|
|
&loc);
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
break;
|
|
|
|
case ast_less:
|
|
case ast_greater:
|
|
case ast_lequal:
|
|
case ast_gequal:
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
type = relational_result_type(op[0], op[1], state, & loc);
|
|
|
|
/* The relational operators must either generate an error or result
|
|
* in a scalar boolean. See page 57 of the GLSL 1.50 spec.
|
|
*/
|
|
assert(type->is_error()
|
|
|| ((type->base_type == GLSL_TYPE_BOOL)
|
|
&& type->is_scalar()));
|
|
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
error_emitted = type->is_error();
|
|
break;
|
|
|
|
case ast_nequal:
|
|
case ast_equal:
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
/* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "The equality operators equal (==), and not equal (!=)
|
|
* operate on all types. They result in a scalar Boolean. If
|
|
* the operand types do not match, then there must be a
|
|
* conversion from Section 4.1.10 "Implicit Conversions"
|
|
* applied to one operand that can make them match, in which
|
|
* case this conversion is done."
|
|
*/
|
|
if ((!apply_implicit_conversion(op[0]->type, op[1], state)
|
|
&& !apply_implicit_conversion(op[1]->type, op[0], state))
|
|
|| (op[0]->type != op[1]->type)) {
|
|
_mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
|
|
"type", (this->oper == ast_equal) ? "==" : "!=");
|
|
error_emitted = true;
|
|
} else if ((state->language_version <= 110)
|
|
&& (op[0]->type->is_array() || op[1]->type->is_array())) {
|
|
_mesa_glsl_error(& loc, state, "array comparisons forbidden in "
|
|
"GLSL 1.10");
|
|
error_emitted = true;
|
|
}
|
|
|
|
if (error_emitted) {
|
|
result = new(ctx) ir_constant(false);
|
|
} else {
|
|
result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
|
|
assert(result->type == glsl_type::bool_type);
|
|
}
|
|
break;
|
|
|
|
case ast_bit_and:
|
|
case ast_bit_xor:
|
|
case ast_bit_or:
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
|
|
state, &loc);
|
|
result = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
break;
|
|
|
|
case ast_bit_not:
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
|
|
if (state->language_version < 130) {
|
|
_mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
|
|
error_emitted = true;
|
|
}
|
|
|
|
if (!op[0]->type->is_integer()) {
|
|
_mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
|
|
error_emitted = true;
|
|
}
|
|
|
|
type = op[0]->type;
|
|
result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
|
|
break;
|
|
|
|
case ast_logic_and: {
|
|
exec_list rhs_instructions;
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
|
|
"LHS", &error_emitted);
|
|
op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
|
|
"RHS", &error_emitted);
|
|
|
|
ir_constant *op0_const = op[0]->constant_expression_value();
|
|
if (op0_const) {
|
|
if (op0_const->value.b[0]) {
|
|
instructions->append_list(&rhs_instructions);
|
|
result = op[1];
|
|
} else {
|
|
result = op0_const;
|
|
}
|
|
type = glsl_type::bool_type;
|
|
} else {
|
|
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
|
|
"and_tmp",
|
|
ir_var_temporary);
|
|
instructions->push_tail(tmp);
|
|
|
|
ir_if *const stmt = new(ctx) ir_if(op[0]);
|
|
instructions->push_tail(stmt);
|
|
|
|
stmt->then_instructions.append_list(&rhs_instructions);
|
|
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
|
|
ir_assignment *const then_assign =
|
|
new(ctx) ir_assignment(then_deref, op[1], NULL);
|
|
stmt->then_instructions.push_tail(then_assign);
|
|
|
|
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
|
|
ir_assignment *const else_assign =
|
|
new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
|
|
stmt->else_instructions.push_tail(else_assign);
|
|
|
|
result = new(ctx) ir_dereference_variable(tmp);
|
|
type = tmp->type;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ast_logic_or: {
|
|
exec_list rhs_instructions;
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
|
|
"LHS", &error_emitted);
|
|
op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
|
|
"RHS", &error_emitted);
|
|
|
|
ir_constant *op0_const = op[0]->constant_expression_value();
|
|
if (op0_const) {
|
|
if (op0_const->value.b[0]) {
|
|
result = op0_const;
|
|
} else {
|
|
result = op[1];
|
|
}
|
|
type = glsl_type::bool_type;
|
|
} else {
|
|
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
|
|
"or_tmp",
|
|
ir_var_temporary);
|
|
instructions->push_tail(tmp);
|
|
|
|
ir_if *const stmt = new(ctx) ir_if(op[0]);
|
|
instructions->push_tail(stmt);
|
|
|
|
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
|
|
ir_assignment *const then_assign =
|
|
new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
|
|
stmt->then_instructions.push_tail(then_assign);
|
|
|
|
stmt->else_instructions.append_list(&rhs_instructions);
|
|
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
|
|
ir_assignment *const else_assign =
|
|
new(ctx) ir_assignment(else_deref, op[1], NULL);
|
|
stmt->else_instructions.push_tail(else_assign);
|
|
|
|
result = new(ctx) ir_dereference_variable(tmp);
|
|
type = tmp->type;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ast_logic_xor:
|
|
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "The logical binary operators and (&&), or ( | | ), and
|
|
* exclusive or (^^). They operate only on two Boolean
|
|
* expressions and result in a Boolean expression."
|
|
*/
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
|
|
&error_emitted);
|
|
op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
|
|
&error_emitted);
|
|
|
|
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
|
|
op[0], op[1]);
|
|
break;
|
|
|
|
case ast_logic_not:
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
|
|
"operand", &error_emitted);
|
|
|
|
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
|
|
op[0], NULL);
|
|
break;
|
|
|
|
case ast_mul_assign:
|
|
case ast_div_assign:
|
|
case ast_add_assign:
|
|
case ast_sub_assign: {
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
type = arithmetic_result_type(op[0], op[1],
|
|
(this->oper == ast_mul_assign),
|
|
state, & loc);
|
|
|
|
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
|
|
result = do_assignment(instructions, state,
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
|
this->subexpressions[0]->get_location());
|
|
error_emitted = (op[0]->type->is_error());
|
|
|
|
/* GLSL 1.10 does not allow array assignment. However, we don't have to
|
|
* explicitly test for this because none of the binary expression
|
|
* operators allow array operands either.
|
|
*/
|
|
|
|
break;
|
|
}
|
|
|
|
case ast_mod_assign: {
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
|
|
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
|
|
|
|
assert(operations[this->oper] == ir_binop_mod);
|
|
|
|
ir_rvalue *temp_rhs;
|
|
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
|
|
result = do_assignment(instructions, state,
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
|
this->subexpressions[0]->get_location());
|
|
error_emitted = type->is_error();
|
|
break;
|
|
}
|
|
|
|
case ast_ls_assign:
|
|
case ast_rs_assign: {
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
|
|
&loc);
|
|
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
|
|
type, op[0], op[1]);
|
|
result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
|
|
temp_rhs, false,
|
|
this->subexpressions[0]->get_location());
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
break;
|
|
}
|
|
|
|
case ast_and_assign:
|
|
case ast_xor_assign:
|
|
case ast_or_assign: {
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = this->subexpressions[1]->hir(instructions, state);
|
|
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
|
|
state, &loc);
|
|
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
|
|
type, op[0], op[1]);
|
|
result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
|
|
temp_rhs, false,
|
|
this->subexpressions[0]->get_location());
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
break;
|
|
}
|
|
|
|
case ast_conditional: {
|
|
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "The ternary selection operator (?:). It operates on three
|
|
* expressions (exp1 ? exp2 : exp3). This operator evaluates the
|
|
* first expression, which must result in a scalar Boolean."
|
|
*/
|
|
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
|
|
"condition", &error_emitted);
|
|
|
|
/* The :? operator is implemented by generating an anonymous temporary
|
|
* followed by an if-statement. The last instruction in each branch of
|
|
* the if-statement assigns a value to the anonymous temporary. This
|
|
* temporary is the r-value of the expression.
|
|
*/
|
|
exec_list then_instructions;
|
|
exec_list else_instructions;
|
|
|
|
op[1] = this->subexpressions[1]->hir(&then_instructions, state);
|
|
op[2] = this->subexpressions[2]->hir(&else_instructions, state);
|
|
|
|
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "The second and third expressions can be any type, as
|
|
* long their types match, or there is a conversion in
|
|
* Section 4.1.10 "Implicit Conversions" that can be applied
|
|
* to one of the expressions to make their types match. This
|
|
* resulting matching type is the type of the entire
|
|
* expression."
|
|
*/
|
|
if ((!apply_implicit_conversion(op[1]->type, op[2], state)
|
|
&& !apply_implicit_conversion(op[2]->type, op[1], state))
|
|
|| (op[1]->type != op[2]->type)) {
|
|
YYLTYPE loc = this->subexpressions[1]->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state, "Second and third operands of ?: "
|
|
"operator must have matching types.");
|
|
error_emitted = true;
|
|
type = glsl_type::error_type;
|
|
} else {
|
|
type = op[1]->type;
|
|
}
|
|
|
|
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "The second and third expressions must be the same type, but can
|
|
* be of any type other than an array."
|
|
*/
|
|
if ((state->language_version <= 110) && type->is_array()) {
|
|
_mesa_glsl_error(& loc, state, "Second and third operands of ?: "
|
|
"operator must not be arrays.");
|
|
error_emitted = true;
|
|
}
|
|
|
|
ir_constant *cond_val = op[0]->constant_expression_value();
|
|
ir_constant *then_val = op[1]->constant_expression_value();
|
|
ir_constant *else_val = op[2]->constant_expression_value();
|
|
|
|
if (then_instructions.is_empty()
|
|
&& else_instructions.is_empty()
|
|
&& (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
|
|
result = (cond_val->value.b[0]) ? then_val : else_val;
|
|
} else {
|
|
ir_variable *const tmp =
|
|
new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
|
|
instructions->push_tail(tmp);
|
|
|
|
ir_if *const stmt = new(ctx) ir_if(op[0]);
|
|
instructions->push_tail(stmt);
|
|
|
|
then_instructions.move_nodes_to(& stmt->then_instructions);
|
|
ir_dereference *const then_deref =
|
|
new(ctx) ir_dereference_variable(tmp);
|
|
ir_assignment *const then_assign =
|
|
new(ctx) ir_assignment(then_deref, op[1], NULL);
|
|
stmt->then_instructions.push_tail(then_assign);
|
|
|
|
else_instructions.move_nodes_to(& stmt->else_instructions);
|
|
ir_dereference *const else_deref =
|
|
new(ctx) ir_dereference_variable(tmp);
|
|
ir_assignment *const else_assign =
|
|
new(ctx) ir_assignment(else_deref, op[2], NULL);
|
|
stmt->else_instructions.push_tail(else_assign);
|
|
|
|
result = new(ctx) ir_dereference_variable(tmp);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ast_pre_inc:
|
|
case ast_pre_dec: {
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
|
|
|
|
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
|
|
|
|
ir_rvalue *temp_rhs;
|
|
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
|
|
result = do_assignment(instructions, state,
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
|
this->subexpressions[0]->get_location());
|
|
error_emitted = op[0]->type->is_error();
|
|
break;
|
|
}
|
|
|
|
case ast_post_inc:
|
|
case ast_post_dec: {
|
|
op[0] = this->subexpressions[0]->hir(instructions, state);
|
|
op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
|
|
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
|
|
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
|
|
|
|
ir_rvalue *temp_rhs;
|
|
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
|
|
op[0], op[1]);
|
|
|
|
/* Get a temporary of a copy of the lvalue before it's modified.
|
|
* This may get thrown away later.
|
|
*/
|
|
result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
|
|
|
|
(void)do_assignment(instructions, state,
|
|
op[0]->clone(ctx, NULL), temp_rhs, false,
|
|
this->subexpressions[0]->get_location());
|
|
|
|
error_emitted = op[0]->type->is_error();
|
|
break;
|
|
}
|
|
|
|
case ast_field_selection:
|
|
result = _mesa_ast_field_selection_to_hir(this, instructions, state);
|
|
break;
|
|
|
|
case ast_array_index: {
|
|
YYLTYPE index_loc = subexpressions[1]->get_location();
|
|
|
|
op[0] = subexpressions[0]->hir(instructions, state);
|
|
op[1] = subexpressions[1]->hir(instructions, state);
|
|
|
|
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
|
|
|
|
ir_rvalue *const array = op[0];
|
|
|
|
result = new(ctx) ir_dereference_array(op[0], op[1]);
|
|
|
|
/* Do not use op[0] after this point. Use array.
|
|
*/
|
|
op[0] = NULL;
|
|
|
|
|
|
if (error_emitted)
|
|
break;
|
|
|
|
if (!array->type->is_array()
|
|
&& !array->type->is_matrix()
|
|
&& !array->type->is_vector()) {
|
|
_mesa_glsl_error(& index_loc, state,
|
|
"cannot dereference non-array / non-matrix / "
|
|
"non-vector");
|
|
error_emitted = true;
|
|
}
|
|
|
|
if (!op[1]->type->is_integer()) {
|
|
_mesa_glsl_error(& index_loc, state,
|
|
"array index must be integer type");
|
|
error_emitted = true;
|
|
} else if (!op[1]->type->is_scalar()) {
|
|
_mesa_glsl_error(& index_loc, state,
|
|
"array index must be scalar");
|
|
error_emitted = true;
|
|
}
|
|
|
|
/* If the array index is a constant expression and the array has a
|
|
* declared size, ensure that the access is in-bounds. If the array
|
|
* index is not a constant expression, ensure that the array has a
|
|
* declared size.
|
|
*/
|
|
ir_constant *const const_index = op[1]->constant_expression_value();
|
|
if (const_index != NULL) {
|
|
const int idx = const_index->value.i[0];
|
|
const char *type_name;
|
|
unsigned bound = 0;
|
|
|
|
if (array->type->is_matrix()) {
|
|
type_name = "matrix";
|
|
} else if (array->type->is_vector()) {
|
|
type_name = "vector";
|
|
} else {
|
|
type_name = "array";
|
|
}
|
|
|
|
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "It is illegal to declare an array with a size, and then
|
|
* later (in the same shader) index the same array with an
|
|
* integral constant expression greater than or equal to the
|
|
* declared size. It is also illegal to index an array with a
|
|
* negative constant expression."
|
|
*/
|
|
if (array->type->is_matrix()) {
|
|
if (array->type->row_type()->vector_elements <= idx) {
|
|
bound = array->type->row_type()->vector_elements;
|
|
}
|
|
} else if (array->type->is_vector()) {
|
|
if (array->type->vector_elements <= idx) {
|
|
bound = array->type->vector_elements;
|
|
}
|
|
} else {
|
|
if ((array->type->array_size() > 0)
|
|
&& (array->type->array_size() <= idx)) {
|
|
bound = array->type->array_size();
|
|
}
|
|
}
|
|
|
|
if (bound > 0) {
|
|
_mesa_glsl_error(& loc, state, "%s index must be < %u",
|
|
type_name, bound);
|
|
error_emitted = true;
|
|
} else if (idx < 0) {
|
|
_mesa_glsl_error(& loc, state, "%s index must be >= 0",
|
|
type_name);
|
|
error_emitted = true;
|
|
}
|
|
|
|
if (array->type->is_array()) {
|
|
/* If the array is a variable dereference, it dereferences the
|
|
* whole array, by definition. Use this to get the variable.
|
|
*
|
|
* FINISHME: Should some methods for getting / setting / testing
|
|
* FINISHME: array access limits be added to ir_dereference?
|
|
*/
|
|
ir_variable *const v = array->whole_variable_referenced();
|
|
if ((v != NULL) && (unsigned(idx) > v->max_array_access)) {
|
|
v->max_array_access = idx;
|
|
|
|
/* Check whether this access will, as a side effect, implicitly
|
|
* cause the size of a built-in array to be too large.
|
|
*/
|
|
if (check_builtin_array_max_size(v->name, idx+1, loc, state))
|
|
error_emitted = true;
|
|
}
|
|
}
|
|
} else if (array->type->array_size() == 0) {
|
|
_mesa_glsl_error(&loc, state, "unsized array index must be constant");
|
|
} else {
|
|
if (array->type->is_array()) {
|
|
/* whole_variable_referenced can return NULL if the array is a
|
|
* member of a structure. In this case it is safe to not update
|
|
* the max_array_access field because it is never used for fields
|
|
* of structures.
|
|
*/
|
|
ir_variable *v = array->whole_variable_referenced();
|
|
if (v != NULL)
|
|
v->max_array_access = array->type->array_size() - 1;
|
|
}
|
|
}
|
|
|
|
/* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
|
|
*
|
|
* "Samplers aggregated into arrays within a shader (using square
|
|
* brackets [ ]) can only be indexed with integral constant
|
|
* expressions [...]."
|
|
*
|
|
* This restriction was added in GLSL 1.30. Shaders using earlier version
|
|
* of the language should not be rejected by the compiler front-end for
|
|
* using this construct. This allows useful things such as using a loop
|
|
* counter as the index to an array of samplers. If the loop in unrolled,
|
|
* the code should compile correctly. Instead, emit a warning.
|
|
*/
|
|
if (array->type->is_array() &&
|
|
array->type->element_type()->is_sampler() &&
|
|
const_index == NULL) {
|
|
|
|
if (state->language_version == 100) {
|
|
_mesa_glsl_warning(&loc, state,
|
|
"sampler arrays indexed with non-constant "
|
|
"expressions is optional in GLSL ES 1.00");
|
|
} else if (state->language_version < 130) {
|
|
_mesa_glsl_warning(&loc, state,
|
|
"sampler arrays indexed with non-constant "
|
|
"expressions is forbidden in GLSL 1.30 and "
|
|
"later");
|
|
} else {
|
|
_mesa_glsl_error(&loc, state,
|
|
"sampler arrays indexed with non-constant "
|
|
"expressions is forbidden in GLSL 1.30 and "
|
|
"later");
|
|
error_emitted = true;
|
|
}
|
|
}
|
|
|
|
if (error_emitted)
|
|
result->type = glsl_type::error_type;
|
|
|
|
break;
|
|
}
|
|
|
|
case ast_function_call:
|
|
/* Should *NEVER* get here. ast_function_call should always be handled
|
|
* by ast_function_expression::hir.
|
|
*/
|
|
assert(0);
|
|
break;
|
|
|
|
case ast_identifier: {
|
|
/* ast_identifier can appear several places in a full abstract syntax
|
|
* tree. This particular use must be at location specified in the grammar
|
|
* as 'variable_identifier'.
|
|
*/
|
|
ir_variable *var =
|
|
state->symbols->get_variable(this->primary_expression.identifier);
|
|
|
|
result = new(ctx) ir_dereference_variable(var);
|
|
|
|
if (var != NULL) {
|
|
var->used = true;
|
|
} else {
|
|
_mesa_glsl_error(& loc, state, "`%s' undeclared",
|
|
this->primary_expression.identifier);
|
|
|
|
error_emitted = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ast_int_constant:
|
|
result = new(ctx) ir_constant(this->primary_expression.int_constant);
|
|
break;
|
|
|
|
case ast_uint_constant:
|
|
result = new(ctx) ir_constant(this->primary_expression.uint_constant);
|
|
break;
|
|
|
|
case ast_float_constant:
|
|
result = new(ctx) ir_constant(this->primary_expression.float_constant);
|
|
break;
|
|
|
|
case ast_bool_constant:
|
|
result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
|
|
break;
|
|
|
|
case ast_sequence: {
|
|
/* It should not be possible to generate a sequence in the AST without
|
|
* any expressions in it.
|
|
*/
|
|
assert(!this->expressions.is_empty());
|
|
|
|
/* The r-value of a sequence is the last expression in the sequence. If
|
|
* the other expressions in the sequence do not have side-effects (and
|
|
* therefore add instructions to the instruction list), they get dropped
|
|
* on the floor.
|
|
*/
|
|
exec_node *previous_tail_pred = NULL;
|
|
YYLTYPE previous_operand_loc = loc;
|
|
|
|
foreach_list_typed (ast_node, ast, link, &this->expressions) {
|
|
/* If one of the operands of comma operator does not generate any
|
|
* code, we want to emit a warning. At each pass through the loop
|
|
* previous_tail_pred will point to the last instruction in the
|
|
* stream *before* processing the previous operand. Naturally,
|
|
* instructions->tail_pred will point to the last instruction in the
|
|
* stream *after* processing the previous operand. If the two
|
|
* pointers match, then the previous operand had no effect.
|
|
*
|
|
* The warning behavior here differs slightly from GCC. GCC will
|
|
* only emit a warning if none of the left-hand operands have an
|
|
* effect. However, it will emit a warning for each. I believe that
|
|
* there are some cases in C (especially with GCC extensions) where
|
|
* it is useful to have an intermediate step in a sequence have no
|
|
* effect, but I don't think these cases exist in GLSL. Either way,
|
|
* it would be a giant hassle to replicate that behavior.
|
|
*/
|
|
if (previous_tail_pred == instructions->tail_pred) {
|
|
_mesa_glsl_warning(&previous_operand_loc, state,
|
|
"left-hand operand of comma expression has "
|
|
"no effect");
|
|
}
|
|
|
|
/* tail_pred is directly accessed instead of using the get_tail()
|
|
* method for performance reasons. get_tail() has extra code to
|
|
* return NULL when the list is empty. We don't care about that
|
|
* here, so using tail_pred directly is fine.
|
|
*/
|
|
previous_tail_pred = instructions->tail_pred;
|
|
previous_operand_loc = ast->get_location();
|
|
|
|
result = ast->hir(instructions, state);
|
|
}
|
|
|
|
/* Any errors should have already been emitted in the loop above.
|
|
*/
|
|
error_emitted = true;
|
|
break;
|
|
}
|
|
}
|
|
type = NULL; /* use result->type, not type. */
|
|
assert(result != NULL);
|
|
|
|
if (result->type->is_error() && !error_emitted)
|
|
_mesa_glsl_error(& loc, state, "type mismatch");
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_expression_statement::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
/* It is possible to have expression statements that don't have an
|
|
* expression. This is the solitary semicolon:
|
|
*
|
|
* for (i = 0; i < 5; i++)
|
|
* ;
|
|
*
|
|
* In this case the expression will be NULL. Test for NULL and don't do
|
|
* anything in that case.
|
|
*/
|
|
if (expression != NULL)
|
|
expression->hir(instructions, state);
|
|
|
|
/* Statements do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_compound_statement::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
if (new_scope)
|
|
state->symbols->push_scope();
|
|
|
|
foreach_list_typed (ast_node, ast, link, &this->statements)
|
|
ast->hir(instructions, state);
|
|
|
|
if (new_scope)
|
|
state->symbols->pop_scope();
|
|
|
|
/* Compound statements do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static const glsl_type *
|
|
process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
unsigned length = 0;
|
|
|
|
/* From page 19 (page 25) of the GLSL 1.20 spec:
|
|
*
|
|
* "Only one-dimensional arrays may be declared."
|
|
*/
|
|
if (base->is_array()) {
|
|
_mesa_glsl_error(loc, state,
|
|
"invalid array of `%s' (only one-dimensional arrays "
|
|
"may be declared)",
|
|
base->name);
|
|
return glsl_type::error_type;
|
|
}
|
|
|
|
if (array_size != NULL) {
|
|
exec_list dummy_instructions;
|
|
ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
|
|
YYLTYPE loc = array_size->get_location();
|
|
|
|
if (ir != NULL) {
|
|
if (!ir->type->is_integer()) {
|
|
_mesa_glsl_error(& loc, state, "array size must be integer type");
|
|
} else if (!ir->type->is_scalar()) {
|
|
_mesa_glsl_error(& loc, state, "array size must be scalar type");
|
|
} else {
|
|
ir_constant *const size = ir->constant_expression_value();
|
|
|
|
if (size == NULL) {
|
|
_mesa_glsl_error(& loc, state, "array size must be a "
|
|
"constant valued expression");
|
|
} else if (size->value.i[0] <= 0) {
|
|
_mesa_glsl_error(& loc, state, "array size must be > 0");
|
|
} else {
|
|
assert(size->type == ir->type);
|
|
length = size->value.u[0];
|
|
|
|
/* If the array size is const (and we've verified that
|
|
* it is) then no instructions should have been emitted
|
|
* when we converted it to HIR. If they were emitted,
|
|
* then either the array size isn't const after all, or
|
|
* we are emitting unnecessary instructions.
|
|
*/
|
|
assert(dummy_instructions.is_empty());
|
|
}
|
|
}
|
|
}
|
|
} else if (state->es_shader) {
|
|
/* Section 10.17 of the GLSL ES 1.00 specification states that unsized
|
|
* array declarations have been removed from the language.
|
|
*/
|
|
_mesa_glsl_error(loc, state, "unsized array declarations are not "
|
|
"allowed in GLSL ES 1.00.");
|
|
}
|
|
|
|
return glsl_type::get_array_instance(base, length);
|
|
}
|
|
|
|
|
|
const glsl_type *
|
|
ast_type_specifier::glsl_type(const char **name,
|
|
struct _mesa_glsl_parse_state *state) const
|
|
{
|
|
const struct glsl_type *type;
|
|
|
|
type = state->symbols->get_type(this->type_name);
|
|
*name = this->type_name;
|
|
|
|
if (this->is_array) {
|
|
YYLTYPE loc = this->get_location();
|
|
type = process_array_type(&loc, type, this->array_size, state);
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
|
|
static void
|
|
apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
|
|
ir_variable *var,
|
|
struct _mesa_glsl_parse_state *state,
|
|
YYLTYPE *loc)
|
|
{
|
|
if (qual->flags.q.invariant) {
|
|
if (var->used) {
|
|
_mesa_glsl_error(loc, state,
|
|
"variable `%s' may not be redeclared "
|
|
"`invariant' after being used",
|
|
var->name);
|
|
} else {
|
|
var->invariant = 1;
|
|
}
|
|
}
|
|
|
|
if (qual->flags.q.constant || qual->flags.q.attribute
|
|
|| qual->flags.q.uniform
|
|
|| (qual->flags.q.varying && (state->target == fragment_shader)))
|
|
var->read_only = 1;
|
|
|
|
if (qual->flags.q.centroid)
|
|
var->centroid = 1;
|
|
|
|
if (qual->flags.q.attribute && state->target != vertex_shader) {
|
|
var->type = glsl_type::error_type;
|
|
_mesa_glsl_error(loc, state,
|
|
"`attribute' variables may not be declared in the "
|
|
"%s shader",
|
|
_mesa_glsl_shader_target_name(state->target));
|
|
}
|
|
|
|
/* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "The varying qualifier can be used only with the data types
|
|
* float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
|
|
* these."
|
|
*/
|
|
if (qual->flags.q.varying) {
|
|
const glsl_type *non_array_type;
|
|
|
|
if (var->type && var->type->is_array())
|
|
non_array_type = var->type->fields.array;
|
|
else
|
|
non_array_type = var->type;
|
|
|
|
if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
|
|
var->type = glsl_type::error_type;
|
|
_mesa_glsl_error(loc, state,
|
|
"varying variables must be of base type float");
|
|
}
|
|
}
|
|
|
|
/* If there is no qualifier that changes the mode of the variable, leave
|
|
* the setting alone.
|
|
*/
|
|
if (qual->flags.q.in && qual->flags.q.out)
|
|
var->mode = ir_var_inout;
|
|
else if (qual->flags.q.attribute || qual->flags.q.in
|
|
|| (qual->flags.q.varying && (state->target == fragment_shader)))
|
|
var->mode = ir_var_in;
|
|
else if (qual->flags.q.out
|
|
|| (qual->flags.q.varying && (state->target == vertex_shader)))
|
|
var->mode = ir_var_out;
|
|
else if (qual->flags.q.uniform)
|
|
var->mode = ir_var_uniform;
|
|
|
|
if (state->all_invariant && (state->current_function == NULL)) {
|
|
switch (state->target) {
|
|
case vertex_shader:
|
|
if (var->mode == ir_var_out)
|
|
var->invariant = true;
|
|
break;
|
|
case geometry_shader:
|
|
if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
|
|
var->invariant = true;
|
|
break;
|
|
case fragment_shader:
|
|
if (var->mode == ir_var_in)
|
|
var->invariant = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (qual->flags.q.flat)
|
|
var->interpolation = INTERP_QUALIFIER_FLAT;
|
|
else if (qual->flags.q.noperspective)
|
|
var->interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
|
|
else if (qual->flags.q.smooth)
|
|
var->interpolation = INTERP_QUALIFIER_SMOOTH;
|
|
else
|
|
var->interpolation = INTERP_QUALIFIER_NONE;
|
|
|
|
var->pixel_center_integer = qual->flags.q.pixel_center_integer;
|
|
var->origin_upper_left = qual->flags.q.origin_upper_left;
|
|
if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
|
|
&& (strcmp(var->name, "gl_FragCoord") != 0)) {
|
|
const char *const qual_string = (qual->flags.q.origin_upper_left)
|
|
? "origin_upper_left" : "pixel_center_integer";
|
|
|
|
_mesa_glsl_error(loc, state,
|
|
"layout qualifier `%s' can only be applied to "
|
|
"fragment shader input `gl_FragCoord'",
|
|
qual_string);
|
|
}
|
|
|
|
if (qual->flags.q.explicit_location) {
|
|
const bool global_scope = (state->current_function == NULL);
|
|
bool fail = false;
|
|
const char *string = "";
|
|
|
|
/* In the vertex shader only shader inputs can be given explicit
|
|
* locations.
|
|
*
|
|
* In the fragment shader only shader outputs can be given explicit
|
|
* locations.
|
|
*/
|
|
switch (state->target) {
|
|
case vertex_shader:
|
|
if (!global_scope || (var->mode != ir_var_in)) {
|
|
fail = true;
|
|
string = "input";
|
|
}
|
|
break;
|
|
|
|
case geometry_shader:
|
|
_mesa_glsl_error(loc, state,
|
|
"geometry shader variables cannot be given "
|
|
"explicit locations\n");
|
|
break;
|
|
|
|
case fragment_shader:
|
|
if (!global_scope || (var->mode != ir_var_out)) {
|
|
fail = true;
|
|
string = "output";
|
|
}
|
|
break;
|
|
};
|
|
|
|
if (fail) {
|
|
_mesa_glsl_error(loc, state,
|
|
"only %s shader %s variables can be given an "
|
|
"explicit location\n",
|
|
_mesa_glsl_shader_target_name(state->target),
|
|
string);
|
|
} else {
|
|
var->explicit_location = true;
|
|
|
|
/* This bit of silliness is needed because invalid explicit locations
|
|
* are supposed to be flagged during linking. Small negative values
|
|
* biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
|
|
* built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
|
|
* The linker needs to be able to differentiate these cases. This
|
|
* ensures that negative values stay negative.
|
|
*/
|
|
if (qual->location >= 0) {
|
|
var->location = (state->target == vertex_shader)
|
|
? (qual->location + VERT_ATTRIB_GENERIC0)
|
|
: (qual->location + FRAG_RESULT_DATA0);
|
|
} else {
|
|
var->location = qual->location;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Does the declaration use the 'layout' keyword?
|
|
*/
|
|
const bool uses_layout = qual->flags.q.pixel_center_integer
|
|
|| qual->flags.q.origin_upper_left
|
|
|| qual->flags.q.explicit_location;
|
|
|
|
/* Does the declaration use the deprecated 'attribute' or 'varying'
|
|
* keywords?
|
|
*/
|
|
const bool uses_deprecated_qualifier = qual->flags.q.attribute
|
|
|| qual->flags.q.varying;
|
|
|
|
/* Is the 'layout' keyword used with parameters that allow relaxed checking.
|
|
* Many implementations of GL_ARB_fragment_coord_conventions_enable and some
|
|
* implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
|
|
* allowed the layout qualifier to be used with 'varying' and 'attribute'.
|
|
* These extensions and all following extensions that add the 'layout'
|
|
* keyword have been modified to require the use of 'in' or 'out'.
|
|
*
|
|
* The following extension do not allow the deprecated keywords:
|
|
*
|
|
* GL_AMD_conservative_depth
|
|
* GL_ARB_gpu_shader5
|
|
* GL_ARB_separate_shader_objects
|
|
* GL_ARB_tesselation_shader
|
|
* GL_ARB_transform_feedback3
|
|
* GL_ARB_uniform_buffer_object
|
|
*
|
|
* It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
|
|
* allow layout with the deprecated keywords.
|
|
*/
|
|
const bool relaxed_layout_qualifier_checking =
|
|
state->ARB_fragment_coord_conventions_enable;
|
|
|
|
if (uses_layout && uses_deprecated_qualifier) {
|
|
if (relaxed_layout_qualifier_checking) {
|
|
_mesa_glsl_warning(loc, state,
|
|
"`layout' qualifier may not be used with "
|
|
"`attribute' or `varying'");
|
|
} else {
|
|
_mesa_glsl_error(loc, state,
|
|
"`layout' qualifier may not be used with "
|
|
"`attribute' or `varying'");
|
|
}
|
|
}
|
|
|
|
/* Layout qualifiers for gl_FragDepth, which are enabled by extension
|
|
* AMD_conservative_depth.
|
|
*/
|
|
int depth_layout_count = qual->flags.q.depth_any
|
|
+ qual->flags.q.depth_greater
|
|
+ qual->flags.q.depth_less
|
|
+ qual->flags.q.depth_unchanged;
|
|
if (depth_layout_count > 0
|
|
&& !state->AMD_conservative_depth_enable) {
|
|
_mesa_glsl_error(loc, state,
|
|
"extension GL_AMD_conservative_depth must be enabled "
|
|
"to use depth layout qualifiers");
|
|
} else if (depth_layout_count > 0
|
|
&& strcmp(var->name, "gl_FragDepth") != 0) {
|
|
_mesa_glsl_error(loc, state,
|
|
"depth layout qualifiers can be applied only to "
|
|
"gl_FragDepth");
|
|
} else if (depth_layout_count > 1
|
|
&& strcmp(var->name, "gl_FragDepth") == 0) {
|
|
_mesa_glsl_error(loc, state,
|
|
"at most one depth layout qualifier can be applied to "
|
|
"gl_FragDepth");
|
|
}
|
|
if (qual->flags.q.depth_any)
|
|
var->depth_layout = ir_depth_layout_any;
|
|
else if (qual->flags.q.depth_greater)
|
|
var->depth_layout = ir_depth_layout_greater;
|
|
else if (qual->flags.q.depth_less)
|
|
var->depth_layout = ir_depth_layout_less;
|
|
else if (qual->flags.q.depth_unchanged)
|
|
var->depth_layout = ir_depth_layout_unchanged;
|
|
else
|
|
var->depth_layout = ir_depth_layout_none;
|
|
}
|
|
|
|
/**
|
|
* Get the variable that is being redeclared by this declaration
|
|
*
|
|
* Semantic checks to verify the validity of the redeclaration are also
|
|
* performed. If semantic checks fail, compilation error will be emitted via
|
|
* \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
|
|
*
|
|
* \returns
|
|
* A pointer to an existing variable in the current scope if the declaration
|
|
* is a redeclaration, \c NULL otherwise.
|
|
*/
|
|
ir_variable *
|
|
get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
/* Check if this declaration is actually a re-declaration, either to
|
|
* resize an array or add qualifiers to an existing variable.
|
|
*
|
|
* This is allowed for variables in the current scope, or when at
|
|
* global scope (for built-ins in the implicit outer scope).
|
|
*/
|
|
ir_variable *earlier = state->symbols->get_variable(decl->identifier);
|
|
if (earlier == NULL ||
|
|
(state->current_function != NULL &&
|
|
!state->symbols->name_declared_this_scope(decl->identifier))) {
|
|
return NULL;
|
|
}
|
|
|
|
|
|
YYLTYPE loc = decl->get_location();
|
|
|
|
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
|
|
*
|
|
* "It is legal to declare an array without a size and then
|
|
* later re-declare the same name as an array of the same
|
|
* type and specify a size."
|
|
*/
|
|
if ((earlier->type->array_size() == 0)
|
|
&& var->type->is_array()
|
|
&& (var->type->element_type() == earlier->type->element_type())) {
|
|
/* FINISHME: This doesn't match the qualifiers on the two
|
|
* FINISHME: declarations. It's not 100% clear whether this is
|
|
* FINISHME: required or not.
|
|
*/
|
|
|
|
const unsigned size = unsigned(var->type->array_size());
|
|
check_builtin_array_max_size(var->name, size, loc, state);
|
|
if ((size > 0) && (size <= earlier->max_array_access)) {
|
|
_mesa_glsl_error(& loc, state, "array size must be > %u due to "
|
|
"previous access",
|
|
earlier->max_array_access);
|
|
}
|
|
|
|
earlier->type = var->type;
|
|
delete var;
|
|
var = NULL;
|
|
} else if (state->ARB_fragment_coord_conventions_enable
|
|
&& strcmp(var->name, "gl_FragCoord") == 0
|
|
&& earlier->type == var->type
|
|
&& earlier->mode == var->mode) {
|
|
/* Allow redeclaration of gl_FragCoord for ARB_fcc layout
|
|
* qualifiers.
|
|
*/
|
|
earlier->origin_upper_left = var->origin_upper_left;
|
|
earlier->pixel_center_integer = var->pixel_center_integer;
|
|
|
|
/* According to section 4.3.7 of the GLSL 1.30 spec,
|
|
* the following built-in varaibles can be redeclared with an
|
|
* interpolation qualifier:
|
|
* * gl_FrontColor
|
|
* * gl_BackColor
|
|
* * gl_FrontSecondaryColor
|
|
* * gl_BackSecondaryColor
|
|
* * gl_Color
|
|
* * gl_SecondaryColor
|
|
*/
|
|
} else if (state->language_version >= 130
|
|
&& (strcmp(var->name, "gl_FrontColor") == 0
|
|
|| strcmp(var->name, "gl_BackColor") == 0
|
|
|| strcmp(var->name, "gl_FrontSecondaryColor") == 0
|
|
|| strcmp(var->name, "gl_BackSecondaryColor") == 0
|
|
|| strcmp(var->name, "gl_Color") == 0
|
|
|| strcmp(var->name, "gl_SecondaryColor") == 0)
|
|
&& earlier->type == var->type
|
|
&& earlier->mode == var->mode) {
|
|
earlier->interpolation = var->interpolation;
|
|
|
|
/* Layout qualifiers for gl_FragDepth. */
|
|
} else if (state->AMD_conservative_depth_enable
|
|
&& strcmp(var->name, "gl_FragDepth") == 0
|
|
&& earlier->type == var->type
|
|
&& earlier->mode == var->mode) {
|
|
|
|
/** From the AMD_conservative_depth spec:
|
|
* Within any shader, the first redeclarations of gl_FragDepth
|
|
* must appear before any use of gl_FragDepth.
|
|
*/
|
|
if (earlier->used) {
|
|
_mesa_glsl_error(&loc, state,
|
|
"the first redeclaration of gl_FragDepth "
|
|
"must appear before any use of gl_FragDepth");
|
|
}
|
|
|
|
/* Prevent inconsistent redeclaration of depth layout qualifier. */
|
|
if (earlier->depth_layout != ir_depth_layout_none
|
|
&& earlier->depth_layout != var->depth_layout) {
|
|
_mesa_glsl_error(&loc, state,
|
|
"gl_FragDepth: depth layout is declared here "
|
|
"as '%s, but it was previously declared as "
|
|
"'%s'",
|
|
depth_layout_string(var->depth_layout),
|
|
depth_layout_string(earlier->depth_layout));
|
|
}
|
|
|
|
earlier->depth_layout = var->depth_layout;
|
|
|
|
} else {
|
|
_mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
|
|
}
|
|
|
|
return earlier;
|
|
}
|
|
|
|
/**
|
|
* Generate the IR for an initializer in a variable declaration
|
|
*/
|
|
ir_rvalue *
|
|
process_initializer(ir_variable *var, ast_declaration *decl,
|
|
ast_fully_specified_type *type,
|
|
exec_list *initializer_instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
ir_rvalue *result = NULL;
|
|
|
|
YYLTYPE initializer_loc = decl->initializer->get_location();
|
|
|
|
/* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "All uniform variables are read-only and are initialized either
|
|
* directly by an application via API commands, or indirectly by
|
|
* OpenGL."
|
|
*/
|
|
if ((state->language_version <= 110)
|
|
&& (var->mode == ir_var_uniform)) {
|
|
_mesa_glsl_error(& initializer_loc, state,
|
|
"cannot initialize uniforms in GLSL 1.10");
|
|
}
|
|
|
|
if (var->type->is_sampler()) {
|
|
_mesa_glsl_error(& initializer_loc, state,
|
|
"cannot initialize samplers");
|
|
}
|
|
|
|
if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
|
|
_mesa_glsl_error(& initializer_loc, state,
|
|
"cannot initialize %s shader input / %s",
|
|
_mesa_glsl_shader_target_name(state->target),
|
|
(state->target == vertex_shader)
|
|
? "attribute" : "varying");
|
|
}
|
|
|
|
ir_dereference *const lhs = new(state) ir_dereference_variable(var);
|
|
ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
|
|
state);
|
|
|
|
/* Calculate the constant value if this is a const or uniform
|
|
* declaration.
|
|
*/
|
|
if (type->qualifier.flags.q.constant
|
|
|| type->qualifier.flags.q.uniform) {
|
|
ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs, true);
|
|
if (new_rhs != NULL) {
|
|
rhs = new_rhs;
|
|
|
|
ir_constant *constant_value = rhs->constant_expression_value();
|
|
if (!constant_value) {
|
|
_mesa_glsl_error(& initializer_loc, state,
|
|
"initializer of %s variable `%s' must be a "
|
|
"constant expression",
|
|
(type->qualifier.flags.q.constant)
|
|
? "const" : "uniform",
|
|
decl->identifier);
|
|
if (var->type->is_numeric()) {
|
|
/* Reduce cascading errors. */
|
|
var->constant_value = ir_constant::zero(state, var->type);
|
|
}
|
|
} else {
|
|
rhs = constant_value;
|
|
var->constant_value = constant_value;
|
|
}
|
|
} else {
|
|
_mesa_glsl_error(&initializer_loc, state,
|
|
"initializer of type %s cannot be assigned to "
|
|
"variable of type %s",
|
|
rhs->type->name, var->type->name);
|
|
if (var->type->is_numeric()) {
|
|
/* Reduce cascading errors. */
|
|
var->constant_value = ir_constant::zero(state, var->type);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rhs && !rhs->type->is_error()) {
|
|
bool temp = var->read_only;
|
|
if (type->qualifier.flags.q.constant)
|
|
var->read_only = false;
|
|
|
|
/* Never emit code to initialize a uniform.
|
|
*/
|
|
const glsl_type *initializer_type;
|
|
if (!type->qualifier.flags.q.uniform) {
|
|
result = do_assignment(initializer_instructions, state,
|
|
lhs, rhs, true,
|
|
type->get_location());
|
|
initializer_type = result->type;
|
|
} else
|
|
initializer_type = rhs->type;
|
|
|
|
var->constant_initializer = rhs->constant_expression_value();
|
|
var->has_initializer = true;
|
|
|
|
/* If the declared variable is an unsized array, it must inherrit
|
|
* its full type from the initializer. A declaration such as
|
|
*
|
|
* uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
|
|
*
|
|
* becomes
|
|
*
|
|
* uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
|
|
*
|
|
* The assignment generated in the if-statement (below) will also
|
|
* automatically handle this case for non-uniforms.
|
|
*
|
|
* If the declared variable is not an array, the types must
|
|
* already match exactly. As a result, the type assignment
|
|
* here can be done unconditionally. For non-uniforms the call
|
|
* to do_assignment can change the type of the initializer (via
|
|
* the implicit conversion rules). For uniforms the initializer
|
|
* must be a constant expression, and the type of that expression
|
|
* was validated above.
|
|
*/
|
|
var->type = initializer_type;
|
|
|
|
var->read_only = temp;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
ir_rvalue *
|
|
ast_declarator_list::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
const struct glsl_type *decl_type;
|
|
const char *type_name = NULL;
|
|
ir_rvalue *result = NULL;
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
/* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "To ensure that a particular output variable is invariant, it is
|
|
* necessary to use the invariant qualifier. It can either be used to
|
|
* qualify a previously declared variable as being invariant
|
|
*
|
|
* invariant gl_Position; // make existing gl_Position be invariant"
|
|
*
|
|
* In these cases the parser will set the 'invariant' flag in the declarator
|
|
* list, and the type will be NULL.
|
|
*/
|
|
if (this->invariant) {
|
|
assert(this->type == NULL);
|
|
|
|
if (state->current_function != NULL) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"All uses of `invariant' keyword must be at global "
|
|
"scope\n");
|
|
}
|
|
|
|
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
|
|
assert(!decl->is_array);
|
|
assert(decl->array_size == NULL);
|
|
assert(decl->initializer == NULL);
|
|
|
|
ir_variable *const earlier =
|
|
state->symbols->get_variable(decl->identifier);
|
|
if (earlier == NULL) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"Undeclared variable `%s' cannot be marked "
|
|
"invariant\n", decl->identifier);
|
|
} else if ((state->target == vertex_shader)
|
|
&& (earlier->mode != ir_var_out)) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"`%s' cannot be marked invariant, vertex shader "
|
|
"outputs only\n", decl->identifier);
|
|
} else if ((state->target == fragment_shader)
|
|
&& (earlier->mode != ir_var_in)) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"`%s' cannot be marked invariant, fragment shader "
|
|
"inputs only\n", decl->identifier);
|
|
} else if (earlier->used) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"variable `%s' may not be redeclared "
|
|
"`invariant' after being used",
|
|
earlier->name);
|
|
} else {
|
|
earlier->invariant = true;
|
|
}
|
|
}
|
|
|
|
/* Invariant redeclarations do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
assert(this->type != NULL);
|
|
assert(!this->invariant);
|
|
|
|
/* The type specifier may contain a structure definition. Process that
|
|
* before any of the variable declarations.
|
|
*/
|
|
(void) this->type->specifier->hir(instructions, state);
|
|
|
|
decl_type = this->type->specifier->glsl_type(& type_name, state);
|
|
if (this->declarations.is_empty()) {
|
|
/* If there is no structure involved in the program text, there are two
|
|
* possible scenarios:
|
|
*
|
|
* - The program text contained something like 'vec4;'. This is an
|
|
* empty declaration. It is valid but weird. Emit a warning.
|
|
*
|
|
* - The program text contained something like 'S;' and 'S' is not the
|
|
* name of a known structure type. This is both invalid and weird.
|
|
* Emit an error.
|
|
*
|
|
* Note that if decl_type is NULL and there is a structure involved,
|
|
* there must have been some sort of error with the structure. In this
|
|
* case we assume that an error was already generated on this line of
|
|
* code for the structure. There is no need to generate an additional,
|
|
* confusing error.
|
|
*/
|
|
assert(this->type->specifier->structure == NULL || decl_type != NULL
|
|
|| state->error);
|
|
if (this->type->specifier->structure == NULL) {
|
|
if (decl_type != NULL) {
|
|
_mesa_glsl_warning(&loc, state, "empty declaration");
|
|
} else {
|
|
_mesa_glsl_error(&loc, state,
|
|
"invalid type `%s' in empty declaration",
|
|
type_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
|
|
const struct glsl_type *var_type;
|
|
ir_variable *var;
|
|
|
|
/* FINISHME: Emit a warning if a variable declaration shadows a
|
|
* FINISHME: declaration at a higher scope.
|
|
*/
|
|
|
|
if ((decl_type == NULL) || decl_type->is_void()) {
|
|
if (type_name != NULL) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"invalid type `%s' in declaration of `%s'",
|
|
type_name, decl->identifier);
|
|
} else {
|
|
_mesa_glsl_error(& loc, state,
|
|
"invalid type in declaration of `%s'",
|
|
decl->identifier);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (decl->is_array) {
|
|
var_type = process_array_type(&loc, decl_type, decl->array_size,
|
|
state);
|
|
if (var_type->is_error())
|
|
continue;
|
|
} else {
|
|
var_type = decl_type;
|
|
}
|
|
|
|
var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
|
|
|
|
/* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
|
|
*
|
|
* "Global variables can only use the qualifiers const,
|
|
* attribute, uni form, or varying. Only one may be
|
|
* specified.
|
|
*
|
|
* Local variables can only use the qualifier const."
|
|
*
|
|
* This is relaxed in GLSL 1.30. It is also relaxed by any extension
|
|
* that adds the 'layout' keyword.
|
|
*/
|
|
if ((state->language_version < 130)
|
|
&& !state->ARB_explicit_attrib_location_enable
|
|
&& !state->ARB_fragment_coord_conventions_enable) {
|
|
if (this->type->qualifier.flags.q.out) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"`out' qualifier in declaration of `%s' "
|
|
"only valid for function parameters in %s.",
|
|
decl->identifier, state->version_string);
|
|
}
|
|
if (this->type->qualifier.flags.q.in) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"`in' qualifier in declaration of `%s' "
|
|
"only valid for function parameters in %s.",
|
|
decl->identifier, state->version_string);
|
|
}
|
|
/* FINISHME: Test for other invalid qualifiers. */
|
|
}
|
|
|
|
apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
|
|
& loc);
|
|
|
|
if (this->type->qualifier.flags.q.invariant) {
|
|
if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
|
|
var->mode == ir_var_inout)) {
|
|
/* FINISHME: Note that this doesn't work for invariant on
|
|
* a function signature outval
|
|
*/
|
|
_mesa_glsl_error(& loc, state,
|
|
"`%s' cannot be marked invariant, vertex shader "
|
|
"outputs only\n", var->name);
|
|
} else if ((state->target == fragment_shader) &&
|
|
!(var->mode == ir_var_in || var->mode == ir_var_inout)) {
|
|
/* FINISHME: Note that this doesn't work for invariant on
|
|
* a function signature inval
|
|
*/
|
|
_mesa_glsl_error(& loc, state,
|
|
"`%s' cannot be marked invariant, fragment shader "
|
|
"inputs only\n", var->name);
|
|
}
|
|
}
|
|
|
|
if (state->current_function != NULL) {
|
|
const char *mode = NULL;
|
|
const char *extra = "";
|
|
|
|
/* There is no need to check for 'inout' here because the parser will
|
|
* only allow that in function parameter lists.
|
|
*/
|
|
if (this->type->qualifier.flags.q.attribute) {
|
|
mode = "attribute";
|
|
} else if (this->type->qualifier.flags.q.uniform) {
|
|
mode = "uniform";
|
|
} else if (this->type->qualifier.flags.q.varying) {
|
|
mode = "varying";
|
|
} else if (this->type->qualifier.flags.q.in) {
|
|
mode = "in";
|
|
extra = " or in function parameter list";
|
|
} else if (this->type->qualifier.flags.q.out) {
|
|
mode = "out";
|
|
extra = " or in function parameter list";
|
|
}
|
|
|
|
if (mode) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"%s variable `%s' must be declared at "
|
|
"global scope%s",
|
|
mode, var->name, extra);
|
|
}
|
|
} else if (var->mode == ir_var_in) {
|
|
var->read_only = true;
|
|
|
|
if (state->target == vertex_shader) {
|
|
bool error_emitted = false;
|
|
|
|
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "Vertex shader inputs can only be float, floating-point
|
|
* vectors, matrices, signed and unsigned integers and integer
|
|
* vectors. Vertex shader inputs can also form arrays of these
|
|
* types, but not structures."
|
|
*
|
|
* From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
|
|
*
|
|
* "Vertex shader inputs can only be float, floating-point
|
|
* vectors, matrices, signed and unsigned integers and integer
|
|
* vectors. They cannot be arrays or structures."
|
|
*
|
|
* From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* "The attribute qualifier can be used only with float,
|
|
* floating-point vectors, and matrices. Attribute variables
|
|
* cannot be declared as arrays or structures."
|
|
*/
|
|
const glsl_type *check_type = var->type->is_array()
|
|
? var->type->fields.array : var->type;
|
|
|
|
switch (check_type->base_type) {
|
|
case GLSL_TYPE_FLOAT:
|
|
break;
|
|
case GLSL_TYPE_UINT:
|
|
case GLSL_TYPE_INT:
|
|
if (state->language_version > 120)
|
|
break;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
_mesa_glsl_error(& loc, state,
|
|
"vertex shader input / attribute cannot have "
|
|
"type %s`%s'",
|
|
var->type->is_array() ? "array of " : "",
|
|
check_type->name);
|
|
error_emitted = true;
|
|
}
|
|
|
|
if (!error_emitted && (state->language_version <= 130)
|
|
&& var->type->is_array()) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"vertex shader input / attribute cannot have "
|
|
"array type");
|
|
error_emitted = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Integer vertex outputs must be qualified with 'flat'.
|
|
*
|
|
* From section 4.3.6 of the GLSL 1.30 spec:
|
|
* "If a vertex output is a signed or unsigned integer or integer
|
|
* vector, then it must be qualified with the interpolation qualifier
|
|
* flat."
|
|
*/
|
|
if (state->language_version >= 130
|
|
&& state->target == vertex_shader
|
|
&& state->current_function == NULL
|
|
&& var->type->is_integer()
|
|
&& var->mode == ir_var_out
|
|
&& var->interpolation != INTERP_QUALIFIER_FLAT) {
|
|
|
|
_mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
|
|
"then it must be qualified with 'flat'");
|
|
}
|
|
|
|
|
|
/* Interpolation qualifiers cannot be applied to 'centroid' and
|
|
* 'centroid varying'.
|
|
*
|
|
* From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
|
|
* "interpolation qualifiers may only precede the qualifiers in,
|
|
* centroid in, out, or centroid out in a declaration. They do not apply
|
|
* to the deprecated storage qualifiers varying or centroid varying."
|
|
*/
|
|
if (state->language_version >= 130
|
|
&& this->type->qualifier.has_interpolation()
|
|
&& this->type->qualifier.flags.q.varying) {
|
|
|
|
const char *i = this->type->qualifier.interpolation_string();
|
|
assert(i != NULL);
|
|
const char *s;
|
|
if (this->type->qualifier.flags.q.centroid)
|
|
s = "centroid varying";
|
|
else
|
|
s = "varying";
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
"qualifier '%s' cannot be applied to the "
|
|
"deprecated storage qualifier '%s'", i, s);
|
|
}
|
|
|
|
|
|
/* Interpolation qualifiers can only apply to vertex shader outputs and
|
|
* fragment shader inputs.
|
|
*
|
|
* From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
|
|
* "Outputs from a vertex shader (out) and inputs to a fragment
|
|
* shader (in) can be further qualified with one or more of these
|
|
* interpolation qualifiers"
|
|
*/
|
|
if (state->language_version >= 130
|
|
&& this->type->qualifier.has_interpolation()) {
|
|
|
|
const char *i = this->type->qualifier.interpolation_string();
|
|
assert(i != NULL);
|
|
|
|
switch (state->target) {
|
|
case vertex_shader:
|
|
if (this->type->qualifier.flags.q.in) {
|
|
_mesa_glsl_error(&loc, state,
|
|
"qualifier '%s' cannot be applied to vertex "
|
|
"shader inputs", i);
|
|
}
|
|
break;
|
|
case fragment_shader:
|
|
if (this->type->qualifier.flags.q.out) {
|
|
_mesa_glsl_error(&loc, state,
|
|
"qualifier '%s' cannot be applied to fragment "
|
|
"shader outputs", i);
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
|
|
/* From section 4.3.4 of the GLSL 1.30 spec:
|
|
* "It is an error to use centroid in in a vertex shader."
|
|
*/
|
|
if (state->language_version >= 130
|
|
&& this->type->qualifier.flags.q.centroid
|
|
&& this->type->qualifier.flags.q.in
|
|
&& state->target == vertex_shader) {
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
"'centroid in' cannot be used in a vertex shader");
|
|
}
|
|
|
|
|
|
/* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
|
|
*/
|
|
if (this->type->specifier->precision != ast_precision_none
|
|
&& state->language_version != 100
|
|
&& state->language_version < 130) {
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
"precision qualifiers are supported only in GLSL ES "
|
|
"1.00, and GLSL 1.30 and later");
|
|
}
|
|
|
|
|
|
/* Precision qualifiers only apply to floating point and integer types.
|
|
*
|
|
* From section 4.5.2 of the GLSL 1.30 spec:
|
|
* "Any floating point or any integer declaration can have the type
|
|
* preceded by one of these precision qualifiers [...] Literal
|
|
* constants do not have precision qualifiers. Neither do Boolean
|
|
* variables.
|
|
*
|
|
* In GLSL ES, sampler types are also allowed.
|
|
*
|
|
* From page 87 of the GLSL ES spec:
|
|
* "RESOLUTION: Allow sampler types to take a precision qualifier."
|
|
*/
|
|
if (this->type->specifier->precision != ast_precision_none
|
|
&& !var->type->is_float()
|
|
&& !var->type->is_integer()
|
|
&& !(var->type->is_sampler() && state->es_shader)
|
|
&& !(var->type->is_array()
|
|
&& (var->type->fields.array->is_float()
|
|
|| var->type->fields.array->is_integer()))) {
|
|
|
|
_mesa_glsl_error(&loc, state,
|
|
"precision qualifiers apply only to floating point"
|
|
"%s types", state->es_shader ? ", integer, and sampler"
|
|
: "and integer");
|
|
}
|
|
|
|
/* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* "[Sampler types] can only be declared as function
|
|
* parameters or uniform variables (see Section 4.3.5
|
|
* "Uniform")".
|
|
*/
|
|
if (var_type->contains_sampler() &&
|
|
!this->type->qualifier.flags.q.uniform) {
|
|
_mesa_glsl_error(&loc, state, "samplers must be declared uniform");
|
|
}
|
|
|
|
/* Process the initializer and add its instructions to a temporary
|
|
* list. This list will be added to the instruction stream (below) after
|
|
* the declaration is added. This is done because in some cases (such as
|
|
* redeclarations) the declaration may not actually be added to the
|
|
* instruction stream.
|
|
*/
|
|
exec_list initializer_instructions;
|
|
ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
|
|
|
|
if (decl->initializer != NULL) {
|
|
result = process_initializer((earlier == NULL) ? var : earlier,
|
|
decl, this->type,
|
|
&initializer_instructions, state);
|
|
}
|
|
|
|
/* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "It is an error to write to a const variable outside of
|
|
* its declaration, so they must be initialized when
|
|
* declared."
|
|
*/
|
|
if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"const declaration of `%s' must be initialized",
|
|
decl->identifier);
|
|
}
|
|
|
|
/* If the declaration is not a redeclaration, there are a few additional
|
|
* semantic checks that must be applied. In addition, variable that was
|
|
* created for the declaration should be added to the IR stream.
|
|
*/
|
|
if (earlier == NULL) {
|
|
/* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
|
|
*
|
|
* "Identifiers starting with "gl_" are reserved for use by
|
|
* OpenGL, and may not be declared in a shader as either a
|
|
* variable or a function."
|
|
*/
|
|
if (strncmp(decl->identifier, "gl_", 3) == 0)
|
|
_mesa_glsl_error(& loc, state,
|
|
"identifier `%s' uses reserved `gl_' prefix",
|
|
decl->identifier);
|
|
else if (strstr(decl->identifier, "__")) {
|
|
/* From page 14 (page 20 of the PDF) of the GLSL 1.10
|
|
* spec:
|
|
*
|
|
* "In addition, all identifiers containing two
|
|
* consecutive underscores (__) are reserved as
|
|
* possible future keywords."
|
|
*/
|
|
_mesa_glsl_error(& loc, state,
|
|
"identifier `%s' uses reserved `__' string",
|
|
decl->identifier);
|
|
}
|
|
|
|
/* Add the variable to the symbol table. Note that the initializer's
|
|
* IR was already processed earlier (though it hasn't been emitted
|
|
* yet), without the variable in scope.
|
|
*
|
|
* This differs from most C-like languages, but it follows the GLSL
|
|
* specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
|
|
* spec:
|
|
*
|
|
* "Within a declaration, the scope of a name starts immediately
|
|
* after the initializer if present or immediately after the name
|
|
* being declared if not."
|
|
*/
|
|
if (!state->symbols->add_variable(var)) {
|
|
YYLTYPE loc = this->get_location();
|
|
_mesa_glsl_error(&loc, state, "name `%s' already taken in the "
|
|
"current scope", decl->identifier);
|
|
continue;
|
|
}
|
|
|
|
/* Push the variable declaration to the top. It means that all the
|
|
* variable declarations will appear in a funny last-to-first order,
|
|
* but otherwise we run into trouble if a function is prototyped, a
|
|
* global var is decled, then the function is defined with usage of
|
|
* the global var. See glslparsertest's CorrectModule.frag.
|
|
*/
|
|
instructions->push_head(var);
|
|
}
|
|
|
|
instructions->append_list(&initializer_instructions);
|
|
}
|
|
|
|
|
|
/* Generally, variable declarations do not have r-values. However,
|
|
* one is used for the declaration in
|
|
*
|
|
* while (bool b = some_condition()) {
|
|
* ...
|
|
* }
|
|
*
|
|
* so we return the rvalue from the last seen declaration here.
|
|
*/
|
|
return result;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_parameter_declarator::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
const struct glsl_type *type;
|
|
const char *name = NULL;
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
type = this->type->specifier->glsl_type(& name, state);
|
|
|
|
if (type == NULL) {
|
|
if (name != NULL) {
|
|
_mesa_glsl_error(& loc, state,
|
|
"invalid type `%s' in declaration of `%s'",
|
|
name, this->identifier);
|
|
} else {
|
|
_mesa_glsl_error(& loc, state,
|
|
"invalid type in declaration of `%s'",
|
|
this->identifier);
|
|
}
|
|
|
|
type = glsl_type::error_type;
|
|
}
|
|
|
|
/* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "Functions that accept no input arguments need not use void in the
|
|
* argument list because prototypes (or definitions) are required and
|
|
* therefore there is no ambiguity when an empty argument list "( )" is
|
|
* declared. The idiom "(void)" as a parameter list is provided for
|
|
* convenience."
|
|
*
|
|
* Placing this check here prevents a void parameter being set up
|
|
* for a function, which avoids tripping up checks for main taking
|
|
* parameters and lookups of an unnamed symbol.
|
|
*/
|
|
if (type->is_void()) {
|
|
if (this->identifier != NULL)
|
|
_mesa_glsl_error(& loc, state,
|
|
"named parameter cannot have type `void'");
|
|
|
|
is_void = true;
|
|
return NULL;
|
|
}
|
|
|
|
if (formal_parameter && (this->identifier == NULL)) {
|
|
_mesa_glsl_error(& loc, state, "formal parameter lacks a name");
|
|
return NULL;
|
|
}
|
|
|
|
/* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
|
|
* call already handled the "vec4[..] foo" case.
|
|
*/
|
|
if (this->is_array) {
|
|
type = process_array_type(&loc, type, this->array_size, state);
|
|
}
|
|
|
|
if (!type->is_error() && type->array_size() == 0) {
|
|
_mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
|
|
"a declared size.");
|
|
type = glsl_type::error_type;
|
|
}
|
|
|
|
is_void = false;
|
|
ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
|
|
|
|
/* Apply any specified qualifiers to the parameter declaration. Note that
|
|
* for function parameters the default mode is 'in'.
|
|
*/
|
|
apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
|
|
|
|
/* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* "Samplers cannot be treated as l-values; hence cannot be used
|
|
* as out or inout function parameters, nor can they be assigned
|
|
* into."
|
|
*/
|
|
if ((var->mode == ir_var_inout || var->mode == ir_var_out)
|
|
&& type->contains_sampler()) {
|
|
_mesa_glsl_error(&loc, state, "out and inout parameters cannot contain samplers");
|
|
type = glsl_type::error_type;
|
|
}
|
|
|
|
/* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "When calling a function, expressions that do not evaluate to
|
|
* l-values cannot be passed to parameters declared as out or inout."
|
|
*
|
|
* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
|
|
*
|
|
* "Other binary or unary expressions, non-dereferenced arrays,
|
|
* function names, swizzles with repeated fields, and constants
|
|
* cannot be l-values."
|
|
*
|
|
* So for GLSL 1.10, passing an array as an out or inout parameter is not
|
|
* allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
|
|
*/
|
|
if ((var->mode == ir_var_inout || var->mode == ir_var_out)
|
|
&& type->is_array() && state->language_version == 110) {
|
|
_mesa_glsl_error(&loc, state, "Arrays cannot be out or inout parameters in GLSL 1.10");
|
|
type = glsl_type::error_type;
|
|
}
|
|
|
|
instructions->push_tail(var);
|
|
|
|
/* Parameter declarations do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void
|
|
ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
|
|
bool formal,
|
|
exec_list *ir_parameters,
|
|
_mesa_glsl_parse_state *state)
|
|
{
|
|
ast_parameter_declarator *void_param = NULL;
|
|
unsigned count = 0;
|
|
|
|
foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
|
|
param->formal_parameter = formal;
|
|
param->hir(ir_parameters, state);
|
|
|
|
if (param->is_void)
|
|
void_param = param;
|
|
|
|
count++;
|
|
}
|
|
|
|
if ((void_param != NULL) && (count > 1)) {
|
|
YYLTYPE loc = void_param->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
"`void' parameter must be only parameter");
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
emit_function(_mesa_glsl_parse_state *state, ir_function *f)
|
|
{
|
|
/* IR invariants disallow function declarations or definitions
|
|
* nested within other function definitions. But there is no
|
|
* requirement about the relative order of function declarations
|
|
* and definitions with respect to one another. So simply insert
|
|
* the new ir_function block at the end of the toplevel instruction
|
|
* list.
|
|
*/
|
|
state->toplevel_ir->push_tail(f);
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_function::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
ir_function *f = NULL;
|
|
ir_function_signature *sig = NULL;
|
|
exec_list hir_parameters;
|
|
|
|
const char *const name = identifier;
|
|
|
|
/* New functions are always added to the top-level IR instruction stream,
|
|
* so this instruction list pointer is ignored. See also emit_function
|
|
* (called below).
|
|
*/
|
|
(void) instructions;
|
|
|
|
/* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
|
|
*
|
|
* "Function declarations (prototypes) cannot occur inside of functions;
|
|
* they must be at global scope, or for the built-in functions, outside
|
|
* the global scope."
|
|
*
|
|
* From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
|
|
*
|
|
* "User defined functions may only be defined within the global scope."
|
|
*
|
|
* Note that this language does not appear in GLSL 1.10.
|
|
*/
|
|
if ((state->current_function != NULL) && (state->language_version != 110)) {
|
|
YYLTYPE loc = this->get_location();
|
|
_mesa_glsl_error(&loc, state,
|
|
"declaration of function `%s' not allowed within "
|
|
"function body", name);
|
|
}
|
|
|
|
/* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
|
|
*
|
|
* "Identifiers starting with "gl_" are reserved for use by
|
|
* OpenGL, and may not be declared in a shader as either a
|
|
* variable or a function."
|
|
*/
|
|
if (strncmp(name, "gl_", 3) == 0) {
|
|
YYLTYPE loc = this->get_location();
|
|
_mesa_glsl_error(&loc, state,
|
|
"identifier `%s' uses reserved `gl_' prefix", name);
|
|
}
|
|
|
|
/* Convert the list of function parameters to HIR now so that they can be
|
|
* used below to compare this function's signature with previously seen
|
|
* signatures for functions with the same name.
|
|
*/
|
|
ast_parameter_declarator::parameters_to_hir(& this->parameters,
|
|
is_definition,
|
|
& hir_parameters, state);
|
|
|
|
const char *return_type_name;
|
|
const glsl_type *return_type =
|
|
this->return_type->specifier->glsl_type(& return_type_name, state);
|
|
|
|
if (!return_type) {
|
|
YYLTYPE loc = this->get_location();
|
|
_mesa_glsl_error(&loc, state,
|
|
"function `%s' has undeclared return type `%s'",
|
|
name, return_type_name);
|
|
return_type = glsl_type::error_type;
|
|
}
|
|
|
|
/* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
|
|
* "No qualifier is allowed on the return type of a function."
|
|
*/
|
|
if (this->return_type->has_qualifiers()) {
|
|
YYLTYPE loc = this->get_location();
|
|
_mesa_glsl_error(& loc, state,
|
|
"function `%s' return type has qualifiers", name);
|
|
}
|
|
|
|
/* From page 17 (page 23 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* "[Sampler types] can only be declared as function parameters
|
|
* or uniform variables (see Section 4.3.5 "Uniform")".
|
|
*/
|
|
if (return_type->contains_sampler()) {
|
|
YYLTYPE loc = this->get_location();
|
|
_mesa_glsl_error(&loc, state,
|
|
"function `%s' return type can't contain a sampler",
|
|
name);
|
|
}
|
|
|
|
/* Verify that this function's signature either doesn't match a previously
|
|
* seen signature for a function with the same name, or, if a match is found,
|
|
* that the previously seen signature does not have an associated definition.
|
|
*/
|
|
f = state->symbols->get_function(name);
|
|
if (f != NULL && (state->es_shader || f->has_user_signature())) {
|
|
sig = f->exact_matching_signature(&hir_parameters);
|
|
if (sig != NULL) {
|
|
const char *badvar = sig->qualifiers_match(&hir_parameters);
|
|
if (badvar != NULL) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
|
|
"qualifiers don't match prototype", name, badvar);
|
|
}
|
|
|
|
if (sig->return_type != return_type) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
|
|
"match prototype", name);
|
|
}
|
|
|
|
if (is_definition && sig->is_defined) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state, "function `%s' redefined", name);
|
|
}
|
|
}
|
|
} else {
|
|
f = new(ctx) ir_function(name);
|
|
if (!state->symbols->add_function(f)) {
|
|
/* This function name shadows a non-function use of the same name. */
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
|
|
"non-function", name);
|
|
return NULL;
|
|
}
|
|
|
|
emit_function(state, f);
|
|
}
|
|
|
|
/* Verify the return type of main() */
|
|
if (strcmp(name, "main") == 0) {
|
|
if (! return_type->is_void()) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state, "main() must return void");
|
|
}
|
|
|
|
if (!hir_parameters.is_empty()) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state, "main() must not take any parameters");
|
|
}
|
|
}
|
|
|
|
/* Finish storing the information about this new function in its signature.
|
|
*/
|
|
if (sig == NULL) {
|
|
sig = new(ctx) ir_function_signature(return_type);
|
|
f->add_signature(sig);
|
|
}
|
|
|
|
sig->replace_parameters(&hir_parameters);
|
|
signature = sig;
|
|
|
|
/* Function declarations (prototypes) do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_function_definition::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
prototype->is_definition = true;
|
|
prototype->hir(instructions, state);
|
|
|
|
ir_function_signature *signature = prototype->signature;
|
|
if (signature == NULL)
|
|
return NULL;
|
|
|
|
assert(state->current_function == NULL);
|
|
state->current_function = signature;
|
|
state->found_return = false;
|
|
|
|
/* Duplicate parameters declared in the prototype as concrete variables.
|
|
* Add these to the symbol table.
|
|
*/
|
|
state->symbols->push_scope();
|
|
foreach_iter(exec_list_iterator, iter, signature->parameters) {
|
|
ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
|
|
|
|
assert(var != NULL);
|
|
|
|
/* The only way a parameter would "exist" is if two parameters have
|
|
* the same name.
|
|
*/
|
|
if (state->symbols->name_declared_this_scope(var->name)) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
|
|
} else {
|
|
state->symbols->add_variable(var);
|
|
}
|
|
}
|
|
|
|
/* Convert the body of the function to HIR. */
|
|
this->body->hir(&signature->body, state);
|
|
signature->is_defined = true;
|
|
|
|
state->symbols->pop_scope();
|
|
|
|
assert(state->current_function == signature);
|
|
state->current_function = NULL;
|
|
|
|
if (!signature->return_type->is_void() && !state->found_return) {
|
|
YYLTYPE loc = this->get_location();
|
|
_mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
|
|
"%s, but no return statement",
|
|
signature->function_name(),
|
|
signature->return_type->name);
|
|
}
|
|
|
|
/* Function definitions do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_jump_statement::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
|
|
switch (mode) {
|
|
case ast_return: {
|
|
ir_return *inst;
|
|
assert(state->current_function);
|
|
|
|
if (opt_return_value) {
|
|
ir_rvalue *const ret = opt_return_value->hir(instructions, state);
|
|
|
|
/* The value of the return type can be NULL if the shader says
|
|
* 'return foo();' and foo() is a function that returns void.
|
|
*
|
|
* NOTE: The GLSL spec doesn't say that this is an error. The type
|
|
* of the return value is void. If the return type of the function is
|
|
* also void, then this should compile without error. Seriously.
|
|
*/
|
|
const glsl_type *const ret_type =
|
|
(ret == NULL) ? glsl_type::void_type : ret->type;
|
|
|
|
/* Implicit conversions are not allowed for return values. */
|
|
if (state->current_function->return_type != ret_type) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
"`return' with wrong type %s, in function `%s' "
|
|
"returning %s",
|
|
ret_type->name,
|
|
state->current_function->function_name(),
|
|
state->current_function->return_type->name);
|
|
}
|
|
|
|
inst = new(ctx) ir_return(ret);
|
|
} else {
|
|
if (state->current_function->return_type->base_type !=
|
|
GLSL_TYPE_VOID) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
"`return' with no value, in function %s returning "
|
|
"non-void",
|
|
state->current_function->function_name());
|
|
}
|
|
inst = new(ctx) ir_return;
|
|
}
|
|
|
|
state->found_return = true;
|
|
instructions->push_tail(inst);
|
|
break;
|
|
}
|
|
|
|
case ast_discard:
|
|
if (state->target != fragment_shader) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
"`discard' may only appear in a fragment shader");
|
|
}
|
|
instructions->push_tail(new(ctx) ir_discard);
|
|
break;
|
|
|
|
case ast_break:
|
|
case ast_continue:
|
|
/* FINISHME: Handle switch-statements. They cannot contain 'continue',
|
|
* FINISHME: and they use a different IR instruction for 'break'.
|
|
*/
|
|
/* FINISHME: Correctly handle the nesting. If a switch-statement is
|
|
* FINISHME: inside a loop, a 'continue' is valid and will bind to the
|
|
* FINISHME: loop.
|
|
*/
|
|
if (state->loop_or_switch_nesting == NULL) {
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
"`%s' may only appear in a loop",
|
|
(mode == ast_break) ? "break" : "continue");
|
|
} else {
|
|
ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
|
|
|
|
/* Inline the for loop expression again, since we don't know
|
|
* where near the end of the loop body the normal copy of it
|
|
* is going to be placed.
|
|
*/
|
|
if (mode == ast_continue &&
|
|
state->loop_or_switch_nesting_ast->rest_expression) {
|
|
state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
|
|
state);
|
|
}
|
|
|
|
if (loop != NULL) {
|
|
ir_loop_jump *const jump =
|
|
new(ctx) ir_loop_jump((mode == ast_break)
|
|
? ir_loop_jump::jump_break
|
|
: ir_loop_jump::jump_continue);
|
|
instructions->push_tail(jump);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/* Jump instructions do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_selection_statement::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
|
|
ir_rvalue *const condition = this->condition->hir(instructions, state);
|
|
|
|
/* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "Any expression whose type evaluates to a Boolean can be used as the
|
|
* conditional expression bool-expression. Vector types are not accepted
|
|
* as the expression to if."
|
|
*
|
|
* The checks are separated so that higher quality diagnostics can be
|
|
* generated for cases where both rules are violated.
|
|
*/
|
|
if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
|
|
YYLTYPE loc = this->condition->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
|
|
"boolean");
|
|
}
|
|
|
|
ir_if *const stmt = new(ctx) ir_if(condition);
|
|
|
|
if (then_statement != NULL) {
|
|
state->symbols->push_scope();
|
|
then_statement->hir(& stmt->then_instructions, state);
|
|
state->symbols->pop_scope();
|
|
}
|
|
|
|
if (else_statement != NULL) {
|
|
state->symbols->push_scope();
|
|
else_statement->hir(& stmt->else_instructions, state);
|
|
state->symbols->pop_scope();
|
|
}
|
|
|
|
instructions->push_tail(stmt);
|
|
|
|
/* if-statements do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void
|
|
ast_iteration_statement::condition_to_hir(ir_loop *stmt,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
|
|
if (condition != NULL) {
|
|
ir_rvalue *const cond =
|
|
condition->hir(& stmt->body_instructions, state);
|
|
|
|
if ((cond == NULL)
|
|
|| !cond->type->is_boolean() || !cond->type->is_scalar()) {
|
|
YYLTYPE loc = condition->get_location();
|
|
|
|
_mesa_glsl_error(& loc, state,
|
|
"loop condition must be scalar boolean");
|
|
} else {
|
|
/* As the first code in the loop body, generate a block that looks
|
|
* like 'if (!condition) break;' as the loop termination condition.
|
|
*/
|
|
ir_rvalue *const not_cond =
|
|
new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
|
|
NULL);
|
|
|
|
ir_if *const if_stmt = new(ctx) ir_if(not_cond);
|
|
|
|
ir_jump *const break_stmt =
|
|
new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
|
|
|
|
if_stmt->then_instructions.push_tail(break_stmt);
|
|
stmt->body_instructions.push_tail(if_stmt);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_iteration_statement::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
void *ctx = state;
|
|
|
|
/* For-loops and while-loops start a new scope, but do-while loops do not.
|
|
*/
|
|
if (mode != ast_do_while)
|
|
state->symbols->push_scope();
|
|
|
|
if (init_statement != NULL)
|
|
init_statement->hir(instructions, state);
|
|
|
|
ir_loop *const stmt = new(ctx) ir_loop();
|
|
instructions->push_tail(stmt);
|
|
|
|
/* Track the current loop and / or switch-statement nesting.
|
|
*/
|
|
ir_instruction *const nesting = state->loop_or_switch_nesting;
|
|
ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
|
|
|
|
state->loop_or_switch_nesting = stmt;
|
|
state->loop_or_switch_nesting_ast = this;
|
|
|
|
if (mode != ast_do_while)
|
|
condition_to_hir(stmt, state);
|
|
|
|
if (body != NULL)
|
|
body->hir(& stmt->body_instructions, state);
|
|
|
|
if (rest_expression != NULL)
|
|
rest_expression->hir(& stmt->body_instructions, state);
|
|
|
|
if (mode == ast_do_while)
|
|
condition_to_hir(stmt, state);
|
|
|
|
if (mode != ast_do_while)
|
|
state->symbols->pop_scope();
|
|
|
|
/* Restore previous nesting before returning.
|
|
*/
|
|
state->loop_or_switch_nesting = nesting;
|
|
state->loop_or_switch_nesting_ast = nesting_ast;
|
|
|
|
/* Loops do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_type_specifier::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
if (!this->is_precision_statement && this->structure == NULL)
|
|
return NULL;
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
|
|
if (this->precision != ast_precision_none
|
|
&& state->language_version != 100
|
|
&& state->language_version < 130) {
|
|
_mesa_glsl_error(&loc, state,
|
|
"precision qualifiers exist only in "
|
|
"GLSL ES 1.00, and GLSL 1.30 and later");
|
|
return NULL;
|
|
}
|
|
if (this->precision != ast_precision_none
|
|
&& this->structure != NULL) {
|
|
_mesa_glsl_error(&loc, state,
|
|
"precision qualifiers do not apply to structures");
|
|
return NULL;
|
|
}
|
|
|
|
/* If this is a precision statement, check that the type to which it is
|
|
* applied is either float or int.
|
|
*
|
|
* From section 4.5.3 of the GLSL 1.30 spec:
|
|
* "The precision statement
|
|
* precision precision-qualifier type;
|
|
* can be used to establish a default precision qualifier. The type
|
|
* field can be either int or float [...]. Any other types or
|
|
* qualifiers will result in an error.
|
|
*/
|
|
if (this->is_precision_statement) {
|
|
assert(this->precision != ast_precision_none);
|
|
assert(this->structure == NULL); /* The check for structures was
|
|
* performed above. */
|
|
if (this->is_array) {
|
|
_mesa_glsl_error(&loc, state,
|
|
"default precision statements do not apply to "
|
|
"arrays");
|
|
return NULL;
|
|
}
|
|
if (this->type_specifier != ast_float
|
|
&& this->type_specifier != ast_int) {
|
|
_mesa_glsl_error(&loc, state,
|
|
"default precision statements apply only to types "
|
|
"float and int");
|
|
return NULL;
|
|
}
|
|
|
|
/* FINISHME: Translate precision statements into IR. */
|
|
return NULL;
|
|
}
|
|
|
|
if (this->structure != NULL)
|
|
return this->structure->hir(instructions, state);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
ast_struct_specifier::hir(exec_list *instructions,
|
|
struct _mesa_glsl_parse_state *state)
|
|
{
|
|
unsigned decl_count = 0;
|
|
|
|
/* Make an initial pass over the list of structure fields to determine how
|
|
* many there are. Each element in this list is an ast_declarator_list.
|
|
* This means that we actually need to count the number of elements in the
|
|
* 'declarations' list in each of the elements.
|
|
*/
|
|
foreach_list_typed (ast_declarator_list, decl_list, link,
|
|
&this->declarations) {
|
|
foreach_list_const (decl_ptr, & decl_list->declarations) {
|
|
decl_count++;
|
|
}
|
|
}
|
|
|
|
/* Allocate storage for the structure fields and process the field
|
|
* declarations. As the declarations are processed, try to also convert
|
|
* the types to HIR. This ensures that structure definitions embedded in
|
|
* other structure definitions are processed.
|
|
*/
|
|
glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
|
|
decl_count);
|
|
|
|
unsigned i = 0;
|
|
foreach_list_typed (ast_declarator_list, decl_list, link,
|
|
&this->declarations) {
|
|
const char *type_name;
|
|
|
|
decl_list->type->specifier->hir(instructions, state);
|
|
|
|
/* Section 10.9 of the GLSL ES 1.00 specification states that
|
|
* embedded structure definitions have been removed from the language.
|
|
*/
|
|
if (state->es_shader && decl_list->type->specifier->structure != NULL) {
|
|
YYLTYPE loc = this->get_location();
|
|
_mesa_glsl_error(&loc, state, "Embedded structure definitions are "
|
|
"not allowed in GLSL ES 1.00.");
|
|
}
|
|
|
|
const glsl_type *decl_type =
|
|
decl_list->type->specifier->glsl_type(& type_name, state);
|
|
|
|
foreach_list_typed (ast_declaration, decl, link,
|
|
&decl_list->declarations) {
|
|
const struct glsl_type *field_type = decl_type;
|
|
if (decl->is_array) {
|
|
YYLTYPE loc = decl->get_location();
|
|
field_type = process_array_type(&loc, decl_type, decl->array_size,
|
|
state);
|
|
}
|
|
fields[i].type = (field_type != NULL)
|
|
? field_type : glsl_type::error_type;
|
|
fields[i].name = decl->identifier;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
assert(i == decl_count);
|
|
|
|
const glsl_type *t =
|
|
glsl_type::get_record_instance(fields, decl_count, this->name);
|
|
|
|
YYLTYPE loc = this->get_location();
|
|
if (!state->symbols->add_type(name, t)) {
|
|
_mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
|
|
} else {
|
|
const glsl_type **s = reralloc(state, state->user_structures,
|
|
const glsl_type *,
|
|
state->num_user_structures + 1);
|
|
if (s != NULL) {
|
|
s[state->num_user_structures] = t;
|
|
state->user_structures = s;
|
|
state->num_user_structures++;
|
|
}
|
|
}
|
|
|
|
/* Structure type definitions do not have r-values.
|
|
*/
|
|
return NULL;
|
|
}
|