Files
third_party_mesa3d/src/intel/compiler/brw_fs_sel_peephole.cpp
Ian Romanick 38807ceeae intel/fs: sel.cond writes the flags on Gfx4 and Gfx5
On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented
using a separte cmpn and sel instruction.  This lowering occurs in
fs_vistor::lower_minmax which is called very, very late... a long, long
time after the first calls to opt_cmod_propagation.  As a result,
conditional modifiers can be incorrectly propagated across sel.cond on
those platforms.

No tests were affected by this change, and I find that quite shocking.
After just changing flags_written(), all of the atan tests started
failing on ILK.  That required the change in cmod_propagatin (and the
addition of the prop_across_into_sel_gfx5 unit test).

Shader-db results for ILK and GM45 are below.  I looked at a couple
before and after shaders... and every case that I looked at had
experienced incorrect cmod propagation.  This affected a LOT of apps!
Euro Truck Simulator 2, The Talos Principle, Serious Sam 3, Sanctum 2,
Gang Beasts, and on and on... :(

I discovered this bug while working on a couple new optimization
passes.  One of the passes attempts to remove condition modifiers that
are never used.  The pass made no progress except on ILK and GM45.
After investigating a couple of the affected shaders, I noticed that
the code in those shaders looked wrong... investigation led to this
cause.

v2: Trivial changes in the unit tests.

v3: Fix type in comment in unit tests.  Noticed by Jason and Priit.

v4: Tweak handling of BRW_OPCODE_SEL special case.  Suggested by Jason.

Fixes: df1aec763e ("i965/fs: Define methods to calculate the flag subset read or written by an fs_inst.")
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Tested-by: Dave Airlie <airlied@redhat.com>

Iron Lake
total instructions in shared programs: 8180493 -> 8181781 (0.02%)
instructions in affected programs: 541796 -> 543084 (0.24%)
helped: 28
HURT: 1158
helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1
helped stats (rel) min: 0.35% max: 0.86% x̄: 0.53% x̃: 0.50%
HURT stats (abs)   min: 1 max: 3 x̄: 1.14 x̃: 1
HURT stats (rel)   min: 0.12% max: 4.00% x̄: 0.37% x̃: 0.23%
95% mean confidence interval for instructions value: 1.06 1.11
95% mean confidence interval for instructions %-change: 0.31% 0.38%
Instructions are HURT.

total cycles in shared programs: 239420470 -> 239421690 (<.01%)
cycles in affected programs: 2925992 -> 2927212 (0.04%)
helped: 49
HURT: 157
helped stats (abs) min: 2 max: 284 x̄: 62.69 x̃: 70
helped stats (rel) min: 0.04% max: 6.20% x̄: 1.68% x̃: 1.96%
HURT stats (abs)   min: 2 max: 48 x̄: 27.34 x̃: 24
HURT stats (rel)   min: 0.02% max: 2.91% x̄: 0.31% x̃: 0.20%
95% mean confidence interval for cycles value: -0.80 12.64
95% mean confidence interval for cycles %-change: -0.31% <.01%
Inconclusive result (value mean confidence interval includes 0).

GM45
total instructions in shared programs: 4985517 -> 4986207 (0.01%)
instructions in affected programs: 306935 -> 307625 (0.22%)
helped: 14
HURT: 625
helped stats (abs) min: 1 max: 1 x̄: 1.00 x̃: 1
helped stats (rel) min: 0.35% max: 0.82% x̄: 0.52% x̃: 0.49%
HURT stats (abs)   min: 1 max: 3 x̄: 1.13 x̃: 1
HURT stats (rel)   min: 0.12% max: 3.90% x̄: 0.34% x̃: 0.22%
95% mean confidence interval for instructions value: 1.04 1.12
95% mean confidence interval for instructions %-change: 0.29% 0.36%
Instructions are HURT.

total cycles in shared programs: 153827268 -> 153828052 (<.01%)
cycles in affected programs: 1669290 -> 1670074 (0.05%)
helped: 24
HURT: 84
helped stats (abs) min: 2 max: 232 x̄: 64.33 x̃: 67
helped stats (rel) min: 0.04% max: 4.62% x̄: 1.60% x̃: 1.94%
HURT stats (abs)   min: 2 max: 48 x̄: 27.71 x̃: 24
HURT stats (rel)   min: 0.02% max: 2.66% x̄: 0.34% x̃: 0.14%
95% mean confidence interval for cycles value: -1.94 16.46
95% mean confidence interval for cycles %-change: -0.29% 0.11%
Inconclusive result (value mean confidence interval includes 0).

Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/12191>
2021-08-11 13:09:20 -07:00

229 lines
7.3 KiB
C++

/*
* Copyright © 2013 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_fs.h"
#include "brw_cfg.h"
/** @file brw_fs_sel_peephole.cpp
*
* This file contains the opt_peephole_sel() optimization pass that replaces
* MOV instructions to the same destination in the "then" and "else" bodies of
* an if statement with SEL instructions.
*/
/* Four MOVs seems to be pretty typical, so I picked the next power of two in
* the hopes that it would handle almost anything possible in a single
* pass.
*/
#define MAX_MOVS 8 /**< The maximum number of MOVs to attempt to match. */
using namespace brw;
/**
* Scans forwards from an IF counting consecutive MOV instructions in the
* "then" and "else" blocks of the if statement.
*
* A pointer to the bblock_t following the IF is passed as the <then_block>
* argument. The function stores pointers to the MOV instructions in the
* <then_mov> and <else_mov> arrays.
*
* \return the minimum number of MOVs found in the two branches or zero if
* an error occurred.
*
* E.g.:
* IF ...
* then_mov[0] = MOV g4, ...
* then_mov[1] = MOV g5, ...
* then_mov[2] = MOV g6, ...
* ELSE ...
* else_mov[0] = MOV g4, ...
* else_mov[1] = MOV g5, ...
* else_mov[2] = MOV g7, ...
* ENDIF
* returns 3.
*/
static int
count_movs_from_if(const intel_device_info *devinfo,
fs_inst *then_mov[MAX_MOVS], fs_inst *else_mov[MAX_MOVS],
bblock_t *then_block, bblock_t *else_block)
{
int then_movs = 0;
foreach_inst_in_block(fs_inst, inst, then_block) {
if (then_movs == MAX_MOVS || inst->opcode != BRW_OPCODE_MOV ||
inst->flags_written(devinfo))
break;
then_mov[then_movs] = inst;
then_movs++;
}
int else_movs = 0;
foreach_inst_in_block(fs_inst, inst, else_block) {
if (else_movs == MAX_MOVS || inst->opcode != BRW_OPCODE_MOV ||
inst->flags_written(devinfo))
break;
else_mov[else_movs] = inst;
else_movs++;
}
return MIN2(then_movs, else_movs);
}
/**
* Try to replace IF/MOV+/ELSE/MOV+/ENDIF with SEL.
*
* Many GLSL shaders contain the following pattern:
*
* x = condition ? foo : bar
*
* or
*
* if (...) a.xyzw = foo.xyzw;
* else a.xyzw = bar.xyzw;
*
* The compiler emits an ir_if tree for this, since each subexpression might be
* a complex tree that could have side-effects or short-circuit logic.
*
* However, the common case is to simply select one of two constants or
* variable values---which is exactly what SEL is for. In this case, the
* assembly looks like:
*
* (+f0) IF
* MOV dst src0
* ...
* ELSE
* MOV dst src1
* ...
* ENDIF
*
* where each pair of MOVs to a common destination and can be easily translated
* into
*
* (+f0) SEL dst src0 src1
*
* If src0 is an immediate value, we promote it to a temporary GRF.
*/
bool
fs_visitor::opt_peephole_sel()
{
bool progress = false;
foreach_block (block, cfg) {
/* IF instructions, by definition, can only be found at the ends of
* basic blocks.
*/
fs_inst *if_inst = (fs_inst *)block->end();
if (if_inst->opcode != BRW_OPCODE_IF)
continue;
fs_inst *else_mov[MAX_MOVS] = { NULL };
fs_inst *then_mov[MAX_MOVS] = { NULL };
bblock_t *then_block = block->next();
bblock_t *else_block = NULL;
foreach_list_typed(bblock_link, child, link, &block->children) {
if (child->block != then_block) {
if (child->block->prev()->end()->opcode == BRW_OPCODE_ELSE) {
else_block = child->block;
}
break;
}
}
if (else_block == NULL)
continue;
int movs = count_movs_from_if(devinfo, then_mov, else_mov, then_block, else_block);
if (movs == 0)
continue;
/* Generate SEL instructions for pairs of MOVs to a common destination. */
for (int i = 0; i < movs; i++) {
if (!then_mov[i] || !else_mov[i])
break;
/* Check that the MOVs are the right form. */
if (!then_mov[i]->dst.equals(else_mov[i]->dst) ||
then_mov[i]->exec_size != else_mov[i]->exec_size ||
then_mov[i]->group != else_mov[i]->group ||
then_mov[i]->force_writemask_all != else_mov[i]->force_writemask_all ||
then_mov[i]->is_partial_write() ||
else_mov[i]->is_partial_write() ||
then_mov[i]->conditional_mod != BRW_CONDITIONAL_NONE ||
else_mov[i]->conditional_mod != BRW_CONDITIONAL_NONE) {
movs = i;
break;
}
/* Check that source types for mov operations match. */
if (then_mov[i]->src[0].type != else_mov[i]->src[0].type) {
movs = i;
break;
}
}
if (movs == 0)
continue;
for (int i = 0; i < movs; i++) {
const fs_builder ibld = fs_builder(this, then_block, then_mov[i])
.at(block, if_inst);
if (then_mov[i]->src[0].equals(else_mov[i]->src[0])) {
ibld.MOV(then_mov[i]->dst, then_mov[i]->src[0]);
} else {
/* Only the last source register can be a constant, so if the MOV
* in the "then" clause uses a constant, we need to put it in a
* temporary.
*/
fs_reg src0(then_mov[i]->src[0]);
if (src0.file == IMM) {
src0 = ibld.vgrf(then_mov[i]->src[0].type);
ibld.MOV(src0, then_mov[i]->src[0]);
}
/* 64-bit immediates can't be placed in src1. */
fs_reg src1(else_mov[i]->src[0]);
if (src1.file == IMM && type_sz(src1.type) == 8) {
src1 = ibld.vgrf(else_mov[i]->src[0].type);
ibld.MOV(src1, else_mov[i]->src[0]);
}
set_predicate_inv(if_inst->predicate, if_inst->predicate_inverse,
ibld.SEL(then_mov[i]->dst, src0, src1));
}
then_mov[i]->remove(then_block);
else_mov[i]->remove(else_block);
}
progress = true;
}
if (progress)
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return progress;
}