
We were doing this for the sake of softpipe and the tgsi intergrepter since we always need the fragment position and W-coordinate information in order to compute fragment interpolants. But that's not appropriate for hardware drivers. The tgsi interpreter now get x,y,w information from a separate tgsi_exec_vector variable setup by softpipe. The new pipe_shader_state->input_map[] defines how vert shader outputs map to frag shader inputs. It may go away though, since one can also examine the semantic label on frag shader input[0] to figure things out.
1334 lines
39 KiB
C
1334 lines
39 KiB
C
/**************************************************************************
|
|
*
|
|
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
|
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/**
|
|
* \brief Primitive rasterization/rendering (points, lines, triangles)
|
|
*
|
|
* \author Keith Whitwell <keith@tungstengraphics.com>
|
|
* \author Brian Paul
|
|
*/
|
|
|
|
|
|
#include "sp_context.h"
|
|
#include "sp_headers.h"
|
|
#include "sp_quad.h"
|
|
#include "sp_state.h"
|
|
#include "sp_prim_setup.h"
|
|
#include "pipe/draw/draw_private.h"
|
|
#include "pipe/draw/draw_vertex.h"
|
|
#include "pipe/p_util.h"
|
|
#include "pipe/p_shader_tokens.h"
|
|
|
|
#define DEBUG_VERTS 0
|
|
|
|
/**
|
|
* Triangle edge info
|
|
*/
|
|
struct edge {
|
|
float dx; /**< X(v1) - X(v0), used only during setup */
|
|
float dy; /**< Y(v1) - Y(v0), used only during setup */
|
|
float dxdy; /**< dx/dy */
|
|
float sx, sy; /**< first sample point coord */
|
|
int lines; /**< number of lines on this edge */
|
|
};
|
|
|
|
|
|
/**
|
|
* Triangle setup info (derived from draw_stage).
|
|
* Also used for line drawing (taking some liberties).
|
|
*/
|
|
struct setup_stage {
|
|
struct draw_stage stage; /**< This must be first (base class) */
|
|
|
|
struct softpipe_context *softpipe;
|
|
|
|
/* Vertices are just an array of floats making up each attribute in
|
|
* turn. Currently fixed at 4 floats, but should change in time.
|
|
* Codegen will help cope with this.
|
|
*/
|
|
const struct vertex_header *vmax;
|
|
const struct vertex_header *vmid;
|
|
const struct vertex_header *vmin;
|
|
const struct vertex_header *vprovoke;
|
|
|
|
struct edge ebot;
|
|
struct edge etop;
|
|
struct edge emaj;
|
|
|
|
float oneoverarea;
|
|
|
|
struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
|
|
struct tgsi_interp_coef posCoef; /* For Z, W */
|
|
struct quad_header quad;
|
|
|
|
uint firstFpInput; /** Semantic type of first frag input */
|
|
|
|
struct {
|
|
int left[2]; /**< [0] = row0, [1] = row1 */
|
|
int right[2];
|
|
int y;
|
|
unsigned y_flags;
|
|
unsigned mask; /**< mask of MASK_BOTTOM/TOP_LEFT/RIGHT bits */
|
|
} span;
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
* Basically a cast wrapper.
|
|
*/
|
|
static INLINE struct setup_stage *setup_stage( struct draw_stage *stage )
|
|
{
|
|
return (struct setup_stage *)stage;
|
|
}
|
|
|
|
|
|
/**
|
|
* Clip setup->quad against the scissor/surface bounds.
|
|
*/
|
|
static INLINE void
|
|
quad_clip(struct setup_stage *setup)
|
|
{
|
|
const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
|
|
const int minx = (int) cliprect->minx;
|
|
const int maxx = (int) cliprect->maxx;
|
|
const int miny = (int) cliprect->miny;
|
|
const int maxy = (int) cliprect->maxy;
|
|
|
|
if (setup->quad.x0 >= maxx ||
|
|
setup->quad.y0 >= maxy ||
|
|
setup->quad.x0 + 1 < minx ||
|
|
setup->quad.y0 + 1 < miny) {
|
|
/* totally clipped */
|
|
setup->quad.mask = 0x0;
|
|
return;
|
|
}
|
|
if (setup->quad.x0 < minx)
|
|
setup->quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
|
|
if (setup->quad.y0 < miny)
|
|
setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
|
|
if (setup->quad.x0 == maxx - 1)
|
|
setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
|
|
if (setup->quad.y0 == maxy - 1)
|
|
setup->quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
|
|
}
|
|
|
|
|
|
/**
|
|
* Emit a quad (pass to next stage) with clipping.
|
|
*/
|
|
static INLINE void
|
|
clip_emit_quad(struct setup_stage *setup)
|
|
{
|
|
quad_clip(setup);
|
|
if (setup->quad.mask) {
|
|
struct softpipe_context *sp = setup->softpipe;
|
|
sp->quad.first->run(sp->quad.first, &setup->quad);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Emit a quad (pass to next stage). No clipping is done.
|
|
*/
|
|
static INLINE void
|
|
emit_quad( struct setup_stage *setup, int x, int y, unsigned mask )
|
|
{
|
|
struct softpipe_context *sp = setup->softpipe;
|
|
setup->quad.x0 = x;
|
|
setup->quad.y0 = y;
|
|
setup->quad.mask = mask;
|
|
sp->quad.first->run(sp->quad.first, &setup->quad);
|
|
}
|
|
|
|
|
|
/**
|
|
* Given an X or Y coordinate, return the block/quad coordinate that it
|
|
* belongs to.
|
|
*/
|
|
static INLINE int block( int x )
|
|
{
|
|
return x & ~1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute mask which indicates which pixels in the 2x2 quad are actually inside
|
|
* the triangle's bounds.
|
|
*
|
|
* this is pretty nasty... may need to rework flush_spans again to
|
|
* fix it, if possible.
|
|
*/
|
|
static unsigned calculate_mask( struct setup_stage *setup, int x )
|
|
{
|
|
unsigned mask = 0x0;
|
|
|
|
if (x >= setup->span.left[0] && x < setup->span.right[0])
|
|
mask |= MASK_TOP_LEFT;
|
|
|
|
if (x >= setup->span.left[1] && x < setup->span.right[1])
|
|
mask |= MASK_BOTTOM_LEFT;
|
|
|
|
if (x+1 >= setup->span.left[0] && x+1 < setup->span.right[0])
|
|
mask |= MASK_TOP_RIGHT;
|
|
|
|
if (x+1 >= setup->span.left[1] && x+1 < setup->span.right[1])
|
|
mask |= MASK_BOTTOM_RIGHT;
|
|
|
|
return mask;
|
|
}
|
|
|
|
|
|
/**
|
|
* Render a horizontal span of quads
|
|
*/
|
|
static void flush_spans( struct setup_stage *setup )
|
|
{
|
|
int minleft, maxright;
|
|
int x;
|
|
|
|
switch (setup->span.y_flags) {
|
|
case 0x3:
|
|
/* both odd and even lines written (both quad rows) */
|
|
minleft = MIN2(setup->span.left[0], setup->span.left[1]);
|
|
maxright = MAX2(setup->span.right[0], setup->span.right[1]);
|
|
break;
|
|
|
|
case 0x1:
|
|
/* only even line written (quad top row) */
|
|
minleft = setup->span.left[0];
|
|
maxright = setup->span.right[0];
|
|
break;
|
|
|
|
case 0x2:
|
|
/* only odd line written (quad bottom row) */
|
|
minleft = setup->span.left[1];
|
|
maxright = setup->span.right[1];
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
|
|
/* XXX this loop could be moved into the above switch cases and
|
|
* calculate_mask() could be simplified a bit...
|
|
*/
|
|
for (x = block(minleft); x <= block(maxright); x += 2) {
|
|
emit_quad( setup, x, setup->span.y,
|
|
calculate_mask( setup, x ) );
|
|
}
|
|
|
|
setup->span.y = 0;
|
|
setup->span.y_flags = 0;
|
|
setup->span.right[0] = 0;
|
|
setup->span.right[1] = 0;
|
|
}
|
|
|
|
#if DEBUG_VERTS
|
|
static void print_vertex(const struct setup_stage *setup,
|
|
const struct vertex_header *v)
|
|
{
|
|
int i;
|
|
fprintf(stderr, "Vertex: (%p)\n", v);
|
|
for (i = 0; i < setup->quad.nr_attrs; i++) {
|
|
fprintf(stderr, " %d: %f %f %f %f\n", i,
|
|
v->data[i][0], v->data[i][1], v->data[i][2], v->data[i][3]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static boolean setup_sort_vertices( struct setup_stage *setup,
|
|
const struct prim_header *prim )
|
|
{
|
|
const struct vertex_header *v0 = prim->v[0];
|
|
const struct vertex_header *v1 = prim->v[1];
|
|
const struct vertex_header *v2 = prim->v[2];
|
|
|
|
#if DEBUG_VERTS
|
|
fprintf(stderr, "Triangle:\n");
|
|
print_vertex(setup, v0);
|
|
print_vertex(setup, v1);
|
|
print_vertex(setup, v2);
|
|
#endif
|
|
|
|
setup->vprovoke = v2;
|
|
|
|
/* determine bottom to top order of vertices */
|
|
{
|
|
float y0 = v0->data[0][1];
|
|
float y1 = v1->data[0][1];
|
|
float y2 = v2->data[0][1];
|
|
if (y0 <= y1) {
|
|
if (y1 <= y2) {
|
|
/* y0<=y1<=y2 */
|
|
setup->vmin = v0;
|
|
setup->vmid = v1;
|
|
setup->vmax = v2;
|
|
}
|
|
else if (y2 <= y0) {
|
|
/* y2<=y0<=y1 */
|
|
setup->vmin = v2;
|
|
setup->vmid = v0;
|
|
setup->vmax = v1;
|
|
}
|
|
else {
|
|
/* y0<=y2<=y1 */
|
|
setup->vmin = v0;
|
|
setup->vmid = v2;
|
|
setup->vmax = v1;
|
|
}
|
|
}
|
|
else {
|
|
if (y0 <= y2) {
|
|
/* y1<=y0<=y2 */
|
|
setup->vmin = v1;
|
|
setup->vmid = v0;
|
|
setup->vmax = v2;
|
|
}
|
|
else if (y2 <= y1) {
|
|
/* y2<=y1<=y0 */
|
|
setup->vmin = v2;
|
|
setup->vmid = v1;
|
|
setup->vmax = v0;
|
|
}
|
|
else {
|
|
/* y1<=y2<=y0 */
|
|
setup->vmin = v1;
|
|
setup->vmid = v2;
|
|
setup->vmax = v0;
|
|
}
|
|
}
|
|
}
|
|
|
|
setup->ebot.dx = setup->vmid->data[0][0] - setup->vmin->data[0][0];
|
|
setup->ebot.dy = setup->vmid->data[0][1] - setup->vmin->data[0][1];
|
|
setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
|
|
setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
|
|
setup->etop.dx = setup->vmax->data[0][0] - setup->vmid->data[0][0];
|
|
setup->etop.dy = setup->vmax->data[0][1] - setup->vmid->data[0][1];
|
|
|
|
/*
|
|
* Compute triangle's area. Use 1/area to compute partial
|
|
* derivatives of attributes later.
|
|
*
|
|
* The area will be the same as prim->det, but the sign may be
|
|
* different depending on how the vertices get sorted above.
|
|
*
|
|
* To determine whether the primitive is front or back facing we
|
|
* use the prim->det value because its sign is correct.
|
|
*/
|
|
{
|
|
const float area = (setup->emaj.dx * setup->ebot.dy -
|
|
setup->ebot.dx * setup->emaj.dy);
|
|
|
|
setup->oneoverarea = 1.0f / area;
|
|
/*
|
|
_mesa_printf("%s one-over-area %f area %f det %f\n",
|
|
__FUNCTION__, setup->oneoverarea, area, prim->det );
|
|
*/
|
|
}
|
|
|
|
/* We need to know if this is a front or back-facing triangle for:
|
|
* - the GLSL gl_FrontFacing fragment attribute (bool)
|
|
* - two-sided stencil test
|
|
*/
|
|
setup->quad.facing = (prim->det > 0.0) ^ (setup->softpipe->rasterizer->front_winding == PIPE_WINDING_CW);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
|
|
* The value value comes from vertex->data[slot][i].
|
|
* The result will be put into setup->coef[slot].a0[i].
|
|
* \param slot which attribute slot
|
|
* \param i which component of the slot (0..3)
|
|
*/
|
|
static void const_coeff( struct setup_stage *setup,
|
|
struct tgsi_interp_coef *coef,
|
|
uint vertSlot, uint i)
|
|
{
|
|
assert(i <= 3);
|
|
|
|
coef->dadx[i] = 0;
|
|
coef->dady[i] = 0;
|
|
|
|
/* need provoking vertex info!
|
|
*/
|
|
coef->a0[i] = setup->vprovoke->data[vertSlot][i];
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute a0, dadx and dady for a linearly interpolated coefficient,
|
|
* for a triangle.
|
|
*/
|
|
static void tri_linear_coeff( struct setup_stage *setup,
|
|
struct tgsi_interp_coef *coef,
|
|
uint vertSlot, uint i)
|
|
{
|
|
float botda = setup->vmid->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
|
|
float majda = setup->vmax->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
|
|
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
|
|
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
|
|
float dadx = a * setup->oneoverarea;
|
|
float dady = b * setup->oneoverarea;
|
|
|
|
assert(i <= 3);
|
|
|
|
coef->dadx[i] = dadx;
|
|
coef->dady[i] = dady;
|
|
|
|
/* calculate a0 as the value which would be sampled for the
|
|
* fragment at (0,0), taking into account that we want to sample at
|
|
* pixel centers, in other words (0.5, 0.5).
|
|
*
|
|
* this is neat but unfortunately not a good way to do things for
|
|
* triangles with very large values of dadx or dady as it will
|
|
* result in the subtraction and re-addition from a0 of a very
|
|
* large number, which means we'll end up loosing a lot of the
|
|
* fractional bits and precision from a0. the way to fix this is
|
|
* to define a0 as the sample at a pixel center somewhere near vmin
|
|
* instead - i'll switch to this later.
|
|
*/
|
|
coef->a0[i] = (setup->vmin->data[vertSlot][i] -
|
|
(dadx * (setup->vmin->data[0][0] - 0.5f) +
|
|
dady * (setup->vmin->data[0][1] - 0.5f)));
|
|
|
|
/*
|
|
_mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n",
|
|
slot, "xyzw"[i],
|
|
setup->coef[slot].a0[i],
|
|
setup->coef[slot].dadx[i],
|
|
setup->coef[slot].dady[i]);
|
|
*/
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute a0, dadx and dady for a perspective-corrected interpolant,
|
|
* for a triangle.
|
|
* We basically multiply the vertex value by 1/w before computing
|
|
* the plane coefficients (a0, dadx, dady).
|
|
* Later, when we compute the value at a particular fragment position we'll
|
|
* divide the interpolated value by the interpolated W at that fragment.
|
|
*/
|
|
static void tri_persp_coeff( struct setup_stage *setup,
|
|
struct tgsi_interp_coef *coef,
|
|
uint vertSlot, uint i)
|
|
{
|
|
/* premultiply by 1/w (v->data[0][3] is always W):
|
|
*/
|
|
float mina = setup->vmin->data[vertSlot][i] * setup->vmin->data[0][3];
|
|
float mida = setup->vmid->data[vertSlot][i] * setup->vmid->data[0][3];
|
|
float maxa = setup->vmax->data[vertSlot][i] * setup->vmax->data[0][3];
|
|
float botda = mida - mina;
|
|
float majda = maxa - mina;
|
|
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
|
|
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
|
|
float dadx = a * setup->oneoverarea;
|
|
float dady = b * setup->oneoverarea;
|
|
|
|
/*
|
|
printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
|
|
setup->vmin->data[vertSlot][i],
|
|
setup->vmid->data[vertSlot][i],
|
|
setup->vmax->data[vertSlot][i]
|
|
);
|
|
*/
|
|
assert(i <= 3);
|
|
|
|
coef->dadx[i] = dadx;
|
|
coef->dady[i] = dady;
|
|
coef->a0[i] = (mina -
|
|
(dadx * (setup->vmin->data[0][0] - 0.5f) +
|
|
dady * (setup->vmin->data[0][1] - 0.5f)));
|
|
}
|
|
|
|
|
|
/**
|
|
* Special coefficient setup for gl_FragCoord.
|
|
* X and Y are trivial, though Y has to be inverted for OpenGL.
|
|
* Z and W are copied from posCoef which should have already been computed.
|
|
* We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
|
|
*/
|
|
static void
|
|
setup_fragcoord_coeff(struct setup_stage *setup)
|
|
{
|
|
const int winHeight = setup->softpipe->framebuffer.cbufs[0]->height;
|
|
/*X*/
|
|
setup->coef[0].a0[0] = 0;
|
|
setup->coef[0].dadx[0] = 1.0;
|
|
setup->coef[0].dady[0] = 0.0;
|
|
/*Y*/
|
|
setup->coef[0].a0[1] = winHeight - 1;
|
|
setup->coef[0].dadx[1] = 0.0;
|
|
setup->coef[0].dady[1] = -1.0;
|
|
/*Z*/
|
|
setup->coef[0].a0[2] = setup->posCoef.a0[2];
|
|
setup->coef[0].dadx[2] = setup->posCoef.dadx[2];
|
|
setup->coef[0].dady[2] = setup->posCoef.dady[2];
|
|
/*w*/
|
|
setup->coef[0].a0[3] = setup->posCoef.a0[3];
|
|
setup->coef[0].dadx[3] = setup->posCoef.dadx[3];
|
|
setup->coef[0].dady[3] = setup->posCoef.dady[3];
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Compute the setup->coef[] array dadx, dady, a0 values.
|
|
* Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
|
|
*/
|
|
static void setup_tri_coefficients( struct setup_stage *setup )
|
|
{
|
|
const enum interp_mode *interp = setup->softpipe->vertex_info.interp_mode;
|
|
#define USE_INPUT_MAP 0
|
|
#if USE_INPUT_MAP
|
|
const struct pipe_shader_state *fs = &setup->softpipe->fs->shader;
|
|
#endif
|
|
uint fragSlot;
|
|
|
|
/* z and w are done by linear interpolation:
|
|
*/
|
|
tri_linear_coeff(setup, &setup->posCoef, 0, 2);
|
|
tri_linear_coeff(setup, &setup->posCoef, 0, 3);
|
|
|
|
/* setup interpolation for all the remaining attributes:
|
|
*/
|
|
for (fragSlot = 0; fragSlot < setup->quad.nr_attrs; fragSlot++) {
|
|
/* which vertex output maps to this fragment input: */
|
|
#if !USE_INPUT_MAP
|
|
uint vertSlot;
|
|
if (setup->firstFpInput == TGSI_SEMANTIC_POSITION) {
|
|
if (fragSlot == 0) {
|
|
setup_fragcoord_coeff(setup);
|
|
continue;
|
|
}
|
|
vertSlot = fragSlot;
|
|
}
|
|
else {
|
|
vertSlot = fragSlot + 1;
|
|
}
|
|
|
|
#else
|
|
uint vertSlot = fs->input_map[fragSlot];
|
|
|
|
if (vertSlot == 0) {
|
|
/* special case: shader is reading gl_FragCoord */
|
|
/* XXX with a new INTERP_POSITION token, we could just add a
|
|
* new case to the switch below.
|
|
*/
|
|
setup_fragcoord_coeff(setup);
|
|
}
|
|
else {
|
|
#endif
|
|
uint j;
|
|
switch (interp[vertSlot]) {
|
|
case INTERP_CONSTANT:
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
|
|
break;
|
|
case INTERP_LINEAR:
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
tri_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
|
|
break;
|
|
case INTERP_PERSPECTIVE:
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
tri_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
|
|
break;
|
|
default:
|
|
/* invalid interp mode */
|
|
assert(0);
|
|
}
|
|
#if USE_INPUT_MAP
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void setup_tri_edges( struct setup_stage *setup )
|
|
{
|
|
float vmin_x = setup->vmin->data[0][0] + 0.5f;
|
|
float vmid_x = setup->vmid->data[0][0] + 0.5f;
|
|
|
|
float vmin_y = setup->vmin->data[0][1] - 0.5f;
|
|
float vmid_y = setup->vmid->data[0][1] - 0.5f;
|
|
float vmax_y = setup->vmax->data[0][1] - 0.5f;
|
|
|
|
setup->emaj.sy = CEILF(vmin_y);
|
|
setup->emaj.lines = (int) CEILF(vmax_y - setup->emaj.sy);
|
|
setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
|
|
setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
|
|
|
|
setup->etop.sy = CEILF(vmid_y);
|
|
setup->etop.lines = (int) CEILF(vmax_y - setup->etop.sy);
|
|
setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
|
|
setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
|
|
|
|
setup->ebot.sy = CEILF(vmin_y);
|
|
setup->ebot.lines = (int) CEILF(vmid_y - setup->ebot.sy);
|
|
setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
|
|
setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
|
|
}
|
|
|
|
|
|
/**
|
|
* Render the upper or lower half of a triangle.
|
|
* Scissoring/cliprect is applied here too.
|
|
*/
|
|
static void subtriangle( struct setup_stage *setup,
|
|
struct edge *eleft,
|
|
struct edge *eright,
|
|
unsigned lines )
|
|
{
|
|
const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
|
|
const int minx = (int) cliprect->minx;
|
|
const int maxx = (int) cliprect->maxx;
|
|
const int miny = (int) cliprect->miny;
|
|
const int maxy = (int) cliprect->maxy;
|
|
int y, start_y, finish_y;
|
|
int sy = (int)eleft->sy;
|
|
|
|
assert((int)eleft->sy == (int) eright->sy);
|
|
|
|
/* clip top/bottom */
|
|
start_y = sy;
|
|
finish_y = sy + lines;
|
|
|
|
if (start_y < miny)
|
|
start_y = miny;
|
|
|
|
if (finish_y > maxy)
|
|
finish_y = maxy;
|
|
|
|
start_y -= sy;
|
|
finish_y -= sy;
|
|
|
|
/*
|
|
_mesa_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
|
|
*/
|
|
|
|
for (y = start_y; y < finish_y; y++) {
|
|
|
|
/* avoid accumulating adds as floats don't have the precision to
|
|
* accurately iterate large triangle edges that way. luckily we
|
|
* can just multiply these days.
|
|
*
|
|
* this is all drowned out by the attribute interpolation anyway.
|
|
*/
|
|
int left = (int)(eleft->sx + y * eleft->dxdy);
|
|
int right = (int)(eright->sx + y * eright->dxdy);
|
|
|
|
/* clip left/right */
|
|
if (left < minx)
|
|
left = minx;
|
|
if (right > maxx)
|
|
right = maxx;
|
|
|
|
if (left < right) {
|
|
int _y = sy + y;
|
|
if (block(_y) != setup->span.y) {
|
|
flush_spans(setup);
|
|
setup->span.y = block(_y);
|
|
}
|
|
|
|
setup->span.left[_y&1] = left;
|
|
setup->span.right[_y&1] = right;
|
|
setup->span.y_flags |= 1<<(_y&1);
|
|
}
|
|
}
|
|
|
|
|
|
/* save the values so that emaj can be restarted:
|
|
*/
|
|
eleft->sx += lines * eleft->dxdy;
|
|
eright->sx += lines * eright->dxdy;
|
|
eleft->sy += lines;
|
|
eright->sy += lines;
|
|
}
|
|
|
|
|
|
/**
|
|
* Do setup for triangle rasterization, then render the triangle.
|
|
*/
|
|
static void setup_tri( struct draw_stage *stage,
|
|
struct prim_header *prim )
|
|
{
|
|
struct setup_stage *setup = setup_stage( stage );
|
|
|
|
/*
|
|
_mesa_printf("%s\n", __FUNCTION__ );
|
|
*/
|
|
|
|
setup_sort_vertices( setup, prim );
|
|
setup_tri_coefficients( setup );
|
|
setup_tri_edges( setup );
|
|
|
|
setup->quad.prim = PRIM_TRI;
|
|
|
|
setup->span.y = 0;
|
|
setup->span.y_flags = 0;
|
|
setup->span.right[0] = 0;
|
|
setup->span.right[1] = 0;
|
|
/* setup->span.z_mode = tri_z_mode( setup->ctx ); */
|
|
|
|
/* init_constant_attribs( setup ); */
|
|
|
|
if (setup->oneoverarea < 0.0) {
|
|
/* emaj on left:
|
|
*/
|
|
subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
|
|
subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
|
|
}
|
|
else {
|
|
/* emaj on right:
|
|
*/
|
|
subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
|
|
subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
|
|
}
|
|
|
|
flush_spans( setup );
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Compute a0, dadx and dady for a linearly interpolated coefficient,
|
|
* for a line.
|
|
*/
|
|
static void
|
|
line_linear_coeff(struct setup_stage *setup,
|
|
struct tgsi_interp_coef *coef,
|
|
uint vertSlot, uint i)
|
|
{
|
|
const float da = setup->vmax->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
|
|
const float dadx = da * setup->emaj.dx * setup->oneoverarea;
|
|
const float dady = da * setup->emaj.dy * setup->oneoverarea;
|
|
coef->dadx[i] = dadx;
|
|
coef->dady[i] = dady;
|
|
coef->a0[i] = (setup->vmin->data[vertSlot][i] -
|
|
(dadx * (setup->vmin->data[0][0] - 0.5f) +
|
|
dady * (setup->vmin->data[0][1] - 0.5f)));
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute a0, dadx and dady for a perspective-corrected interpolant,
|
|
* for a line.
|
|
*/
|
|
static void
|
|
line_persp_coeff(struct setup_stage *setup,
|
|
struct tgsi_interp_coef *coef,
|
|
uint vertSlot, uint i)
|
|
{
|
|
/* XXX double-check/verify this arithmetic */
|
|
const float a0 = setup->vmin->data[vertSlot][i] * setup->vmin->data[0][3];
|
|
const float a1 = setup->vmax->data[vertSlot][i] * setup->vmin->data[0][3];
|
|
const float da = a1 - a0;
|
|
const float dadx = da * setup->emaj.dx * setup->oneoverarea;
|
|
const float dady = da * setup->emaj.dy * setup->oneoverarea;
|
|
coef->dadx[i] = dadx;
|
|
coef->dady[i] = dady;
|
|
coef->a0[i] = (setup->vmin->data[vertSlot][i] -
|
|
(dadx * (setup->vmin->data[0][0] - 0.5f) +
|
|
dady * (setup->vmin->data[0][1] - 0.5f)));
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute the setup->coef[] array dadx, dady, a0 values.
|
|
* Must be called after setup->vmin,vmax are initialized.
|
|
*/
|
|
static INLINE void
|
|
setup_line_coefficients(struct setup_stage *setup, struct prim_header *prim)
|
|
{
|
|
const enum interp_mode *interp = setup->softpipe->vertex_info.interp_mode;
|
|
const struct pipe_shader_state *fs = &setup->softpipe->fs->shader;
|
|
unsigned fragSlot;
|
|
|
|
/* use setup->vmin, vmax to point to vertices */
|
|
setup->vprovoke = prim->v[1];
|
|
setup->vmin = prim->v[0];
|
|
setup->vmax = prim->v[1];
|
|
|
|
setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
|
|
setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
|
|
/* NOTE: this is not really 1/area */
|
|
setup->oneoverarea = 1.0f / (setup->emaj.dx * setup->emaj.dx +
|
|
setup->emaj.dy * setup->emaj.dy);
|
|
|
|
/* z and w are done by linear interpolation:
|
|
*/
|
|
line_linear_coeff(setup, &setup->posCoef, 0, 2);
|
|
line_linear_coeff(setup, &setup->posCoef, 0, 3);
|
|
|
|
/* setup interpolation for all the remaining attributes:
|
|
*/
|
|
for (fragSlot = 0; fragSlot < setup->quad.nr_attrs; fragSlot++) {
|
|
/* which vertex output maps to this fragment input: */
|
|
uint vertSlot = fs->input_map[fragSlot];
|
|
|
|
if (vertSlot == 0) {
|
|
/* special case: shader is reading gl_FragCoord */
|
|
setup_fragcoord_coeff(setup);
|
|
}
|
|
else {
|
|
uint j;
|
|
switch (interp[vertSlot]) {
|
|
case INTERP_CONSTANT:
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
|
|
break;
|
|
case INTERP_LINEAR:
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
line_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
|
|
break;
|
|
case INTERP_PERSPECTIVE:
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
line_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
|
|
break;
|
|
|
|
default:
|
|
/* invalid interp mode */
|
|
assert(0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Plot a pixel in a line segment.
|
|
*/
|
|
static INLINE void
|
|
plot(struct setup_stage *setup, int x, int y)
|
|
{
|
|
const int iy = y & 1;
|
|
const int ix = x & 1;
|
|
const int quadX = x - ix;
|
|
const int quadY = y - iy;
|
|
const int mask = (1 << ix) << (2 * iy);
|
|
|
|
if (quadX != setup->quad.x0 ||
|
|
quadY != setup->quad.y0)
|
|
{
|
|
/* flush prev quad, start new quad */
|
|
|
|
if (setup->quad.x0 != -1)
|
|
clip_emit_quad(setup);
|
|
|
|
setup->quad.x0 = quadX;
|
|
setup->quad.y0 = quadY;
|
|
setup->quad.mask = 0x0;
|
|
}
|
|
|
|
setup->quad.mask |= mask;
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine whether or not to emit a line fragment by checking
|
|
* line stipple pattern.
|
|
*/
|
|
static INLINE unsigned
|
|
stipple_test(int counter, ushort pattern, int factor)
|
|
{
|
|
int b = (counter / factor) & 0xf;
|
|
return (1 << b) & pattern;
|
|
}
|
|
|
|
|
|
/**
|
|
* Do setup for line rasterization, then render the line.
|
|
* XXX single-pixel width, no stipple, etc
|
|
*/
|
|
static void
|
|
setup_line(struct draw_stage *stage, struct prim_header *prim)
|
|
{
|
|
const struct vertex_header *v0 = prim->v[0];
|
|
const struct vertex_header *v1 = prim->v[1];
|
|
struct setup_stage *setup = setup_stage( stage );
|
|
struct softpipe_context *sp = setup->softpipe;
|
|
|
|
int x0 = (int) v0->data[0][0];
|
|
int x1 = (int) v1->data[0][0];
|
|
int y0 = (int) v0->data[0][1];
|
|
int y1 = (int) v1->data[0][1];
|
|
int dx = x1 - x0;
|
|
int dy = y1 - y0;
|
|
int xstep, ystep;
|
|
|
|
if (dx == 0 && dy == 0)
|
|
return;
|
|
|
|
setup_line_coefficients(setup, prim);
|
|
|
|
if (dx < 0) {
|
|
dx = -dx; /* make positive */
|
|
xstep = -1;
|
|
}
|
|
else {
|
|
xstep = 1;
|
|
}
|
|
|
|
if (dy < 0) {
|
|
dy = -dy; /* make positive */
|
|
ystep = -1;
|
|
}
|
|
else {
|
|
ystep = 1;
|
|
}
|
|
|
|
assert(dx >= 0);
|
|
assert(dy >= 0);
|
|
|
|
setup->quad.x0 = setup->quad.y0 = -1;
|
|
setup->quad.mask = 0x0;
|
|
setup->quad.prim = PRIM_LINE;
|
|
/* XXX temporary: set coverage to 1.0 so the line appears
|
|
* if AA mode happens to be enabled.
|
|
*/
|
|
setup->quad.coverage[0] =
|
|
setup->quad.coverage[1] =
|
|
setup->quad.coverage[2] =
|
|
setup->quad.coverage[3] = 1.0;
|
|
|
|
if (dx > dy) {
|
|
/*** X-major line ***/
|
|
int i;
|
|
const int errorInc = dy + dy;
|
|
int error = errorInc - dx;
|
|
const int errorDec = error - dx;
|
|
|
|
for (i = 0; i < dx; i++) {
|
|
if (!sp->rasterizer->line_stipple_enable ||
|
|
stipple_test(sp->line_stipple_counter,
|
|
(ushort) sp->rasterizer->line_stipple_pattern,
|
|
sp->rasterizer->line_stipple_factor + 1)) {
|
|
plot(setup, x0, y0);
|
|
}
|
|
|
|
x0 += xstep;
|
|
if (error < 0) {
|
|
error += errorInc;
|
|
}
|
|
else {
|
|
error += errorDec;
|
|
y0 += ystep;
|
|
}
|
|
|
|
sp->line_stipple_counter++;
|
|
}
|
|
}
|
|
else {
|
|
/*** Y-major line ***/
|
|
int i;
|
|
const int errorInc = dx + dx;
|
|
int error = errorInc - dy;
|
|
const int errorDec = error - dy;
|
|
|
|
for (i = 0; i < dy; i++) {
|
|
if (!sp->rasterizer->line_stipple_enable ||
|
|
stipple_test(sp->line_stipple_counter,
|
|
(ushort) sp->rasterizer->line_stipple_pattern,
|
|
sp->rasterizer->line_stipple_factor + 1)) {
|
|
plot(setup, x0, y0);
|
|
}
|
|
|
|
y0 += ystep;
|
|
|
|
if (error < 0) {
|
|
error += errorInc;
|
|
}
|
|
else {
|
|
error += errorDec;
|
|
x0 += xstep;
|
|
}
|
|
|
|
sp->line_stipple_counter++;
|
|
}
|
|
}
|
|
|
|
/* draw final quad */
|
|
if (setup->quad.mask) {
|
|
clip_emit_quad(setup);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
point_persp_coeff(struct setup_stage *setup,
|
|
const struct vertex_header *vert,
|
|
struct tgsi_interp_coef *coef,
|
|
uint vertSlot, uint i)
|
|
{
|
|
assert(i <= 3);
|
|
coef->dadx[i] = 0.0F;
|
|
coef->dady[i] = 0.0F;
|
|
coef->a0[i] = vert->data[vertSlot][i] * vert->data[0][3];
|
|
}
|
|
|
|
|
|
/**
|
|
* Do setup for point rasterization, then render the point.
|
|
* Round or square points...
|
|
* XXX could optimize a lot for 1-pixel points.
|
|
*/
|
|
static void
|
|
setup_point(struct draw_stage *stage, struct prim_header *prim)
|
|
{
|
|
struct setup_stage *setup = setup_stage( stage );
|
|
const struct pipe_shader_state *fs = &setup->softpipe->fs->shader;
|
|
const enum interp_mode *interp = setup->softpipe->vertex_info.interp_mode;
|
|
const struct vertex_header *v0 = prim->v[0];
|
|
const int sizeAttr = setup->softpipe->psize_slot;
|
|
const float size
|
|
= sizeAttr > 0 ? v0->data[sizeAttr][0]
|
|
: setup->softpipe->rasterizer->point_size;
|
|
const float halfSize = 0.5F * size;
|
|
const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
|
|
const float x = v0->data[0][0]; /* Note: data[0] is always position */
|
|
const float y = v0->data[0][1];
|
|
uint fragSlot;
|
|
|
|
/* For points, all interpolants are constant-valued.
|
|
* However, for point sprites, we'll need to setup texcoords appropriately.
|
|
* XXX: which coefficients are the texcoords???
|
|
* We may do point sprites as textured quads...
|
|
*
|
|
* KW: We don't know which coefficients are texcoords - ultimately
|
|
* the choice of what interpolation mode to use for each attribute
|
|
* should be determined by the fragment program, using
|
|
* per-attribute declaration statements that include interpolation
|
|
* mode as a parameter. So either the fragment program will have
|
|
* to be adjusted for pointsprite vs normal point behaviour, or
|
|
* otherwise a special interpolation mode will have to be defined
|
|
* which matches the required behaviour for point sprites. But -
|
|
* the latter is not a feature of normal hardware, and as such
|
|
* probably should be ruled out on that basis.
|
|
*/
|
|
setup->vprovoke = prim->v[0];
|
|
|
|
/* setup Z, W */
|
|
const_coeff(setup, &setup->posCoef, 0, 2);
|
|
const_coeff(setup, &setup->posCoef, 0, 3);
|
|
|
|
for (fragSlot = 0; fragSlot < setup->quad.nr_attrs; fragSlot++) {
|
|
/* which vertex output maps to this fragment input: */
|
|
uint vertSlot = fs->input_map[fragSlot];
|
|
|
|
if (vertSlot == 0) {
|
|
/* special case: shader is reading gl_FragCoord */
|
|
setup_fragcoord_coeff(setup);
|
|
}
|
|
else {
|
|
uint j;
|
|
switch (interp[vertSlot]) {
|
|
case INTERP_CONSTANT:
|
|
/* fall-through */
|
|
case INTERP_LINEAR:
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
|
|
break;
|
|
case INTERP_PERSPECTIVE:
|
|
for (j = 0; j < NUM_CHANNELS; j++)
|
|
point_persp_coeff(setup, setup->vprovoke,
|
|
&setup->coef[fragSlot], vertSlot, j);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
setup->quad.prim = PRIM_POINT;
|
|
|
|
if (halfSize <= 0.5 && !round) {
|
|
/* special case for 1-pixel points */
|
|
const int ix = ((int) x) & 1;
|
|
const int iy = ((int) y) & 1;
|
|
setup->quad.x0 = (int) x - ix;
|
|
setup->quad.y0 = (int) y - iy;
|
|
setup->quad.mask = (1 << ix) << (2 * iy);
|
|
clip_emit_quad(setup);
|
|
}
|
|
else {
|
|
if (round) {
|
|
/* rounded points */
|
|
const int ixmin = block((int) (x - halfSize));
|
|
const int ixmax = block((int) (x + halfSize));
|
|
const int iymin = block((int) (y - halfSize));
|
|
const int iymax = block((int) (y + halfSize));
|
|
const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
|
|
const float rmax = halfSize + 0.7071F;
|
|
const float rmin2 = MAX2(0.0F, rmin * rmin);
|
|
const float rmax2 = rmax * rmax;
|
|
const float cscale = 1.0F / (rmax2 - rmin2);
|
|
int ix, iy;
|
|
|
|
for (iy = iymin; iy <= iymax; iy += 2) {
|
|
for (ix = ixmin; ix <= ixmax; ix += 2) {
|
|
float dx, dy, dist2, cover;
|
|
|
|
setup->quad.mask = 0x0;
|
|
|
|
dx = (ix + 0.5f) - x;
|
|
dy = (iy + 0.5f) - y;
|
|
dist2 = dx * dx + dy * dy;
|
|
if (dist2 <= rmax2) {
|
|
cover = 1.0F - (dist2 - rmin2) * cscale;
|
|
setup->quad.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
|
|
setup->quad.mask |= MASK_TOP_LEFT;
|
|
}
|
|
|
|
dx = (ix + 1.5f) - x;
|
|
dy = (iy + 0.5f) - y;
|
|
dist2 = dx * dx + dy * dy;
|
|
if (dist2 <= rmax2) {
|
|
cover = 1.0F - (dist2 - rmin2) * cscale;
|
|
setup->quad.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
|
|
setup->quad.mask |= MASK_TOP_RIGHT;
|
|
}
|
|
|
|
dx = (ix + 0.5f) - x;
|
|
dy = (iy + 1.5f) - y;
|
|
dist2 = dx * dx + dy * dy;
|
|
if (dist2 <= rmax2) {
|
|
cover = 1.0F - (dist2 - rmin2) * cscale;
|
|
setup->quad.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
|
|
setup->quad.mask |= MASK_BOTTOM_LEFT;
|
|
}
|
|
|
|
dx = (ix + 1.5f) - x;
|
|
dy = (iy + 1.5f) - y;
|
|
dist2 = dx * dx + dy * dy;
|
|
if (dist2 <= rmax2) {
|
|
cover = 1.0F - (dist2 - rmin2) * cscale;
|
|
setup->quad.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
|
|
setup->quad.mask |= MASK_BOTTOM_RIGHT;
|
|
}
|
|
|
|
if (setup->quad.mask) {
|
|
setup->quad.x0 = ix;
|
|
setup->quad.y0 = iy;
|
|
clip_emit_quad(setup);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* square points */
|
|
const int xmin = (int) (x + 0.75 - halfSize);
|
|
const int ymin = (int) (y + 0.25 - halfSize);
|
|
const int xmax = xmin + (int) size;
|
|
const int ymax = ymin + (int) size;
|
|
/* XXX could apply scissor to xmin,ymin,xmax,ymax now */
|
|
const int ixmin = block(xmin);
|
|
const int ixmax = block(xmax - 1);
|
|
const int iymin = block(ymin);
|
|
const int iymax = block(ymax - 1);
|
|
int ix, iy;
|
|
|
|
/*
|
|
printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
|
|
*/
|
|
for (iy = iymin; iy <= iymax; iy += 2) {
|
|
uint rowMask = 0xf;
|
|
if (iy < ymin) {
|
|
/* above the top edge */
|
|
rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
|
|
}
|
|
if (iy + 1 >= ymax) {
|
|
/* below the bottom edge */
|
|
rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
|
|
}
|
|
|
|
for (ix = ixmin; ix <= ixmax; ix += 2) {
|
|
uint mask = rowMask;
|
|
|
|
if (ix < xmin) {
|
|
/* fragment is past left edge of point, turn off left bits */
|
|
mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
|
|
}
|
|
if (ix + 1 >= xmax) {
|
|
/* past the right edge */
|
|
mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
|
|
}
|
|
|
|
setup->quad.mask = mask;
|
|
setup->quad.x0 = ix;
|
|
setup->quad.y0 = iy;
|
|
clip_emit_quad(setup);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void setup_begin( struct draw_stage *stage )
|
|
{
|
|
struct setup_stage *setup = setup_stage(stage);
|
|
struct softpipe_context *sp = setup->softpipe;
|
|
const struct pipe_shader_state *fs = &setup->softpipe->fs->shader;
|
|
|
|
setup->quad.nr_attrs = setup->softpipe->nr_frag_attrs;
|
|
|
|
setup->firstFpInput = fs->input_semantic_name[0];
|
|
|
|
sp->quad.first->begin(sp->quad.first);
|
|
}
|
|
|
|
|
|
static void setup_end( struct draw_stage *stage )
|
|
{
|
|
}
|
|
|
|
|
|
static void reset_stipple_counter( struct draw_stage *stage )
|
|
{
|
|
struct setup_stage *setup = setup_stage(stage);
|
|
setup->softpipe->line_stipple_counter = 0;
|
|
}
|
|
|
|
|
|
static void render_destroy( struct draw_stage *stage )
|
|
{
|
|
FREE( stage );
|
|
}
|
|
|
|
|
|
/**
|
|
* Create a new primitive setup/render stage.
|
|
*/
|
|
struct draw_stage *sp_draw_render_stage( struct softpipe_context *softpipe )
|
|
{
|
|
struct setup_stage *setup = CALLOC_STRUCT(setup_stage);
|
|
|
|
setup->softpipe = softpipe;
|
|
setup->stage.draw = softpipe->draw;
|
|
setup->stage.begin = setup_begin;
|
|
setup->stage.point = setup_point;
|
|
setup->stage.line = setup_line;
|
|
setup->stage.tri = setup_tri;
|
|
setup->stage.end = setup_end;
|
|
setup->stage.reset_stipple_counter = reset_stipple_counter;
|
|
setup->stage.destroy = render_destroy;
|
|
|
|
setup->quad.coef = setup->coef;
|
|
setup->quad.posCoef = &setup->posCoef;
|
|
|
|
return &setup->stage;
|
|
}
|
|
|
|
|
|
/* Recalculate det. This is only used in the test harness below:
|
|
*/
|
|
static void calc_det( struct prim_header *header )
|
|
{
|
|
/* Window coords: */
|
|
const float *v0 = header->v[0]->data[0];
|
|
const float *v1 = header->v[1]->data[0];
|
|
const float *v2 = header->v[2]->data[0];
|
|
|
|
/* edge vectors e = v0 - v2, f = v1 - v2 */
|
|
const float ex = v0[0] - v2[0];
|
|
const float ey = v0[1] - v2[1];
|
|
const float fx = v1[0] - v2[0];
|
|
const float fy = v1[1] - v2[1];
|
|
|
|
/* det = cross(e,f).z */
|
|
header->det = ex * fy - ey * fx;
|
|
}
|
|
|
|
|
|
|
|
/* Test harness - feed vertex buffer back into prim pipeline.
|
|
*
|
|
* The big issue at this point is that reset_stipple doesn't make it
|
|
* through the interface. Probably need to split primitives at reset
|
|
* stipple, perhaps using the ~0 index marker.
|
|
*/
|
|
void sp_vbuf_setup_draw( struct pipe_context *pipe,
|
|
unsigned primitive,
|
|
const ushort *elements,
|
|
unsigned nr_elements,
|
|
const void *vertex_buffer,
|
|
unsigned nr_vertices )
|
|
{
|
|
struct softpipe_context *softpipe = softpipe_context( pipe );
|
|
struct setup_stage *setup = setup_stage( softpipe->setup );
|
|
struct prim_header prim;
|
|
unsigned vertex_size = setup->stage.draw->vertex_info.size * sizeof(float);
|
|
unsigned i, j;
|
|
|
|
prim.det = 0;
|
|
prim.reset_line_stipple = 0;
|
|
prim.edgeflags = 0;
|
|
prim.pad = 0;
|
|
|
|
setup->stage.begin( &setup->stage );
|
|
|
|
switch (primitive) {
|
|
case PIPE_PRIM_TRIANGLES:
|
|
for (i = 0; i < nr_elements; i += 3) {
|
|
for (j = 0; j < 3; j++)
|
|
prim.v[j] = (struct vertex_header *)((char *)vertex_buffer +
|
|
elements[i+j] * vertex_size);
|
|
|
|
calc_det(&prim);
|
|
setup->stage.tri( &setup->stage, &prim );
|
|
}
|
|
break;
|
|
|
|
case PIPE_PRIM_LINES:
|
|
for (i = 0; i < nr_elements; i += 2) {
|
|
for (j = 0; j < 2; j++)
|
|
prim.v[j] = (struct vertex_header *)((char *)vertex_buffer +
|
|
elements[i+j] * vertex_size);
|
|
|
|
setup->stage.line( &setup->stage, &prim );
|
|
}
|
|
break;
|
|
|
|
case PIPE_PRIM_POINTS:
|
|
for (i = 0; i < nr_elements; i += 2) {
|
|
prim.v[i] = (struct vertex_header *)((char *)vertex_buffer +
|
|
elements[i] * vertex_size);
|
|
setup->stage.point( &setup->stage, &prim );
|
|
}
|
|
break;
|
|
}
|
|
|
|
setup->stage.end( &setup->stage );
|
|
}
|