Files
third_party_mesa3d/src/mesa/pipe/softpipe/sp_prim_setup.c
Brian e785f190f0 Don't always declare frag shader INPUT[0] as fragment position.
We were doing this for the sake of softpipe and the tgsi intergrepter since
we always need the fragment position and W-coordinate information in order
to compute fragment interpolants.
But that's not appropriate for hardware drivers.
The tgsi interpreter now get x,y,w information from a separate tgsi_exec_vector
variable setup by softpipe.
The new pipe_shader_state->input_map[] defines how vert shader outputs map
to frag shader inputs.  It may go away though, since one can also examine
the semantic label on frag shader input[0] to figure things out.
2007-12-14 11:00:46 -07:00

1334 lines
39 KiB
C

/**************************************************************************
*
* Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* \brief Primitive rasterization/rendering (points, lines, triangles)
*
* \author Keith Whitwell <keith@tungstengraphics.com>
* \author Brian Paul
*/
#include "sp_context.h"
#include "sp_headers.h"
#include "sp_quad.h"
#include "sp_state.h"
#include "sp_prim_setup.h"
#include "pipe/draw/draw_private.h"
#include "pipe/draw/draw_vertex.h"
#include "pipe/p_util.h"
#include "pipe/p_shader_tokens.h"
#define DEBUG_VERTS 0
/**
* Triangle edge info
*/
struct edge {
float dx; /**< X(v1) - X(v0), used only during setup */
float dy; /**< Y(v1) - Y(v0), used only during setup */
float dxdy; /**< dx/dy */
float sx, sy; /**< first sample point coord */
int lines; /**< number of lines on this edge */
};
/**
* Triangle setup info (derived from draw_stage).
* Also used for line drawing (taking some liberties).
*/
struct setup_stage {
struct draw_stage stage; /**< This must be first (base class) */
struct softpipe_context *softpipe;
/* Vertices are just an array of floats making up each attribute in
* turn. Currently fixed at 4 floats, but should change in time.
* Codegen will help cope with this.
*/
const struct vertex_header *vmax;
const struct vertex_header *vmid;
const struct vertex_header *vmin;
const struct vertex_header *vprovoke;
struct edge ebot;
struct edge etop;
struct edge emaj;
float oneoverarea;
struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
struct tgsi_interp_coef posCoef; /* For Z, W */
struct quad_header quad;
uint firstFpInput; /** Semantic type of first frag input */
struct {
int left[2]; /**< [0] = row0, [1] = row1 */
int right[2];
int y;
unsigned y_flags;
unsigned mask; /**< mask of MASK_BOTTOM/TOP_LEFT/RIGHT bits */
} span;
};
/**
* Basically a cast wrapper.
*/
static INLINE struct setup_stage *setup_stage( struct draw_stage *stage )
{
return (struct setup_stage *)stage;
}
/**
* Clip setup->quad against the scissor/surface bounds.
*/
static INLINE void
quad_clip(struct setup_stage *setup)
{
const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
const int minx = (int) cliprect->minx;
const int maxx = (int) cliprect->maxx;
const int miny = (int) cliprect->miny;
const int maxy = (int) cliprect->maxy;
if (setup->quad.x0 >= maxx ||
setup->quad.y0 >= maxy ||
setup->quad.x0 + 1 < minx ||
setup->quad.y0 + 1 < miny) {
/* totally clipped */
setup->quad.mask = 0x0;
return;
}
if (setup->quad.x0 < minx)
setup->quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
if (setup->quad.y0 < miny)
setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
if (setup->quad.x0 == maxx - 1)
setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
if (setup->quad.y0 == maxy - 1)
setup->quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
}
/**
* Emit a quad (pass to next stage) with clipping.
*/
static INLINE void
clip_emit_quad(struct setup_stage *setup)
{
quad_clip(setup);
if (setup->quad.mask) {
struct softpipe_context *sp = setup->softpipe;
sp->quad.first->run(sp->quad.first, &setup->quad);
}
}
/**
* Emit a quad (pass to next stage). No clipping is done.
*/
static INLINE void
emit_quad( struct setup_stage *setup, int x, int y, unsigned mask )
{
struct softpipe_context *sp = setup->softpipe;
setup->quad.x0 = x;
setup->quad.y0 = y;
setup->quad.mask = mask;
sp->quad.first->run(sp->quad.first, &setup->quad);
}
/**
* Given an X or Y coordinate, return the block/quad coordinate that it
* belongs to.
*/
static INLINE int block( int x )
{
return x & ~1;
}
/**
* Compute mask which indicates which pixels in the 2x2 quad are actually inside
* the triangle's bounds.
*
* this is pretty nasty... may need to rework flush_spans again to
* fix it, if possible.
*/
static unsigned calculate_mask( struct setup_stage *setup, int x )
{
unsigned mask = 0x0;
if (x >= setup->span.left[0] && x < setup->span.right[0])
mask |= MASK_TOP_LEFT;
if (x >= setup->span.left[1] && x < setup->span.right[1])
mask |= MASK_BOTTOM_LEFT;
if (x+1 >= setup->span.left[0] && x+1 < setup->span.right[0])
mask |= MASK_TOP_RIGHT;
if (x+1 >= setup->span.left[1] && x+1 < setup->span.right[1])
mask |= MASK_BOTTOM_RIGHT;
return mask;
}
/**
* Render a horizontal span of quads
*/
static void flush_spans( struct setup_stage *setup )
{
int minleft, maxright;
int x;
switch (setup->span.y_flags) {
case 0x3:
/* both odd and even lines written (both quad rows) */
minleft = MIN2(setup->span.left[0], setup->span.left[1]);
maxright = MAX2(setup->span.right[0], setup->span.right[1]);
break;
case 0x1:
/* only even line written (quad top row) */
minleft = setup->span.left[0];
maxright = setup->span.right[0];
break;
case 0x2:
/* only odd line written (quad bottom row) */
minleft = setup->span.left[1];
maxright = setup->span.right[1];
break;
default:
return;
}
/* XXX this loop could be moved into the above switch cases and
* calculate_mask() could be simplified a bit...
*/
for (x = block(minleft); x <= block(maxright); x += 2) {
emit_quad( setup, x, setup->span.y,
calculate_mask( setup, x ) );
}
setup->span.y = 0;
setup->span.y_flags = 0;
setup->span.right[0] = 0;
setup->span.right[1] = 0;
}
#if DEBUG_VERTS
static void print_vertex(const struct setup_stage *setup,
const struct vertex_header *v)
{
int i;
fprintf(stderr, "Vertex: (%p)\n", v);
for (i = 0; i < setup->quad.nr_attrs; i++) {
fprintf(stderr, " %d: %f %f %f %f\n", i,
v->data[i][0], v->data[i][1], v->data[i][2], v->data[i][3]);
}
}
#endif
static boolean setup_sort_vertices( struct setup_stage *setup,
const struct prim_header *prim )
{
const struct vertex_header *v0 = prim->v[0];
const struct vertex_header *v1 = prim->v[1];
const struct vertex_header *v2 = prim->v[2];
#if DEBUG_VERTS
fprintf(stderr, "Triangle:\n");
print_vertex(setup, v0);
print_vertex(setup, v1);
print_vertex(setup, v2);
#endif
setup->vprovoke = v2;
/* determine bottom to top order of vertices */
{
float y0 = v0->data[0][1];
float y1 = v1->data[0][1];
float y2 = v2->data[0][1];
if (y0 <= y1) {
if (y1 <= y2) {
/* y0<=y1<=y2 */
setup->vmin = v0;
setup->vmid = v1;
setup->vmax = v2;
}
else if (y2 <= y0) {
/* y2<=y0<=y1 */
setup->vmin = v2;
setup->vmid = v0;
setup->vmax = v1;
}
else {
/* y0<=y2<=y1 */
setup->vmin = v0;
setup->vmid = v2;
setup->vmax = v1;
}
}
else {
if (y0 <= y2) {
/* y1<=y0<=y2 */
setup->vmin = v1;
setup->vmid = v0;
setup->vmax = v2;
}
else if (y2 <= y1) {
/* y2<=y1<=y0 */
setup->vmin = v2;
setup->vmid = v1;
setup->vmax = v0;
}
else {
/* y1<=y2<=y0 */
setup->vmin = v1;
setup->vmid = v2;
setup->vmax = v0;
}
}
}
setup->ebot.dx = setup->vmid->data[0][0] - setup->vmin->data[0][0];
setup->ebot.dy = setup->vmid->data[0][1] - setup->vmin->data[0][1];
setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
setup->etop.dx = setup->vmax->data[0][0] - setup->vmid->data[0][0];
setup->etop.dy = setup->vmax->data[0][1] - setup->vmid->data[0][1];
/*
* Compute triangle's area. Use 1/area to compute partial
* derivatives of attributes later.
*
* The area will be the same as prim->det, but the sign may be
* different depending on how the vertices get sorted above.
*
* To determine whether the primitive is front or back facing we
* use the prim->det value because its sign is correct.
*/
{
const float area = (setup->emaj.dx * setup->ebot.dy -
setup->ebot.dx * setup->emaj.dy);
setup->oneoverarea = 1.0f / area;
/*
_mesa_printf("%s one-over-area %f area %f det %f\n",
__FUNCTION__, setup->oneoverarea, area, prim->det );
*/
}
/* We need to know if this is a front or back-facing triangle for:
* - the GLSL gl_FrontFacing fragment attribute (bool)
* - two-sided stencil test
*/
setup->quad.facing = (prim->det > 0.0) ^ (setup->softpipe->rasterizer->front_winding == PIPE_WINDING_CW);
return TRUE;
}
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
* The value value comes from vertex->data[slot][i].
* The result will be put into setup->coef[slot].a0[i].
* \param slot which attribute slot
* \param i which component of the slot (0..3)
*/
static void const_coeff( struct setup_stage *setup,
struct tgsi_interp_coef *coef,
uint vertSlot, uint i)
{
assert(i <= 3);
coef->dadx[i] = 0;
coef->dady[i] = 0;
/* need provoking vertex info!
*/
coef->a0[i] = setup->vprovoke->data[vertSlot][i];
}
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a triangle.
*/
static void tri_linear_coeff( struct setup_stage *setup,
struct tgsi_interp_coef *coef,
uint vertSlot, uint i)
{
float botda = setup->vmid->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
float majda = setup->vmax->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
float dadx = a * setup->oneoverarea;
float dady = b * setup->oneoverarea;
assert(i <= 3);
coef->dadx[i] = dadx;
coef->dady[i] = dady;
/* calculate a0 as the value which would be sampled for the
* fragment at (0,0), taking into account that we want to sample at
* pixel centers, in other words (0.5, 0.5).
*
* this is neat but unfortunately not a good way to do things for
* triangles with very large values of dadx or dady as it will
* result in the subtraction and re-addition from a0 of a very
* large number, which means we'll end up loosing a lot of the
* fractional bits and precision from a0. the way to fix this is
* to define a0 as the sample at a pixel center somewhere near vmin
* instead - i'll switch to this later.
*/
coef->a0[i] = (setup->vmin->data[vertSlot][i] -
(dadx * (setup->vmin->data[0][0] - 0.5f) +
dady * (setup->vmin->data[0][1] - 0.5f)));
/*
_mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n",
slot, "xyzw"[i],
setup->coef[slot].a0[i],
setup->coef[slot].dadx[i],
setup->coef[slot].dady[i]);
*/
}
/**
* Compute a0, dadx and dady for a perspective-corrected interpolant,
* for a triangle.
* We basically multiply the vertex value by 1/w before computing
* the plane coefficients (a0, dadx, dady).
* Later, when we compute the value at a particular fragment position we'll
* divide the interpolated value by the interpolated W at that fragment.
*/
static void tri_persp_coeff( struct setup_stage *setup,
struct tgsi_interp_coef *coef,
uint vertSlot, uint i)
{
/* premultiply by 1/w (v->data[0][3] is always W):
*/
float mina = setup->vmin->data[vertSlot][i] * setup->vmin->data[0][3];
float mida = setup->vmid->data[vertSlot][i] * setup->vmid->data[0][3];
float maxa = setup->vmax->data[vertSlot][i] * setup->vmax->data[0][3];
float botda = mida - mina;
float majda = maxa - mina;
float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
float dadx = a * setup->oneoverarea;
float dady = b * setup->oneoverarea;
/*
printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
setup->vmin->data[vertSlot][i],
setup->vmid->data[vertSlot][i],
setup->vmax->data[vertSlot][i]
);
*/
assert(i <= 3);
coef->dadx[i] = dadx;
coef->dady[i] = dady;
coef->a0[i] = (mina -
(dadx * (setup->vmin->data[0][0] - 0.5f) +
dady * (setup->vmin->data[0][1] - 0.5f)));
}
/**
* Special coefficient setup for gl_FragCoord.
* X and Y are trivial, though Y has to be inverted for OpenGL.
* Z and W are copied from posCoef which should have already been computed.
* We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
*/
static void
setup_fragcoord_coeff(struct setup_stage *setup)
{
const int winHeight = setup->softpipe->framebuffer.cbufs[0]->height;
/*X*/
setup->coef[0].a0[0] = 0;
setup->coef[0].dadx[0] = 1.0;
setup->coef[0].dady[0] = 0.0;
/*Y*/
setup->coef[0].a0[1] = winHeight - 1;
setup->coef[0].dadx[1] = 0.0;
setup->coef[0].dady[1] = -1.0;
/*Z*/
setup->coef[0].a0[2] = setup->posCoef.a0[2];
setup->coef[0].dadx[2] = setup->posCoef.dadx[2];
setup->coef[0].dady[2] = setup->posCoef.dady[2];
/*w*/
setup->coef[0].a0[3] = setup->posCoef.a0[3];
setup->coef[0].dadx[3] = setup->posCoef.dadx[3];
setup->coef[0].dady[3] = setup->posCoef.dady[3];
}
/**
* Compute the setup->coef[] array dadx, dady, a0 values.
* Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
*/
static void setup_tri_coefficients( struct setup_stage *setup )
{
const enum interp_mode *interp = setup->softpipe->vertex_info.interp_mode;
#define USE_INPUT_MAP 0
#if USE_INPUT_MAP
const struct pipe_shader_state *fs = &setup->softpipe->fs->shader;
#endif
uint fragSlot;
/* z and w are done by linear interpolation:
*/
tri_linear_coeff(setup, &setup->posCoef, 0, 2);
tri_linear_coeff(setup, &setup->posCoef, 0, 3);
/* setup interpolation for all the remaining attributes:
*/
for (fragSlot = 0; fragSlot < setup->quad.nr_attrs; fragSlot++) {
/* which vertex output maps to this fragment input: */
#if !USE_INPUT_MAP
uint vertSlot;
if (setup->firstFpInput == TGSI_SEMANTIC_POSITION) {
if (fragSlot == 0) {
setup_fragcoord_coeff(setup);
continue;
}
vertSlot = fragSlot;
}
else {
vertSlot = fragSlot + 1;
}
#else
uint vertSlot = fs->input_map[fragSlot];
if (vertSlot == 0) {
/* special case: shader is reading gl_FragCoord */
/* XXX with a new INTERP_POSITION token, we could just add a
* new case to the switch below.
*/
setup_fragcoord_coeff(setup);
}
else {
#endif
uint j;
switch (interp[vertSlot]) {
case INTERP_CONSTANT:
for (j = 0; j < NUM_CHANNELS; j++)
const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
break;
case INTERP_LINEAR:
for (j = 0; j < NUM_CHANNELS; j++)
tri_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
break;
case INTERP_PERSPECTIVE:
for (j = 0; j < NUM_CHANNELS; j++)
tri_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
break;
default:
/* invalid interp mode */
assert(0);
}
#if USE_INPUT_MAP
}
#endif
}
}
static void setup_tri_edges( struct setup_stage *setup )
{
float vmin_x = setup->vmin->data[0][0] + 0.5f;
float vmid_x = setup->vmid->data[0][0] + 0.5f;
float vmin_y = setup->vmin->data[0][1] - 0.5f;
float vmid_y = setup->vmid->data[0][1] - 0.5f;
float vmax_y = setup->vmax->data[0][1] - 0.5f;
setup->emaj.sy = CEILF(vmin_y);
setup->emaj.lines = (int) CEILF(vmax_y - setup->emaj.sy);
setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
setup->etop.sy = CEILF(vmid_y);
setup->etop.lines = (int) CEILF(vmax_y - setup->etop.sy);
setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
setup->ebot.sy = CEILF(vmin_y);
setup->ebot.lines = (int) CEILF(vmid_y - setup->ebot.sy);
setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
}
/**
* Render the upper or lower half of a triangle.
* Scissoring/cliprect is applied here too.
*/
static void subtriangle( struct setup_stage *setup,
struct edge *eleft,
struct edge *eright,
unsigned lines )
{
const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
const int minx = (int) cliprect->minx;
const int maxx = (int) cliprect->maxx;
const int miny = (int) cliprect->miny;
const int maxy = (int) cliprect->maxy;
int y, start_y, finish_y;
int sy = (int)eleft->sy;
assert((int)eleft->sy == (int) eright->sy);
/* clip top/bottom */
start_y = sy;
finish_y = sy + lines;
if (start_y < miny)
start_y = miny;
if (finish_y > maxy)
finish_y = maxy;
start_y -= sy;
finish_y -= sy;
/*
_mesa_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
*/
for (y = start_y; y < finish_y; y++) {
/* avoid accumulating adds as floats don't have the precision to
* accurately iterate large triangle edges that way. luckily we
* can just multiply these days.
*
* this is all drowned out by the attribute interpolation anyway.
*/
int left = (int)(eleft->sx + y * eleft->dxdy);
int right = (int)(eright->sx + y * eright->dxdy);
/* clip left/right */
if (left < minx)
left = minx;
if (right > maxx)
right = maxx;
if (left < right) {
int _y = sy + y;
if (block(_y) != setup->span.y) {
flush_spans(setup);
setup->span.y = block(_y);
}
setup->span.left[_y&1] = left;
setup->span.right[_y&1] = right;
setup->span.y_flags |= 1<<(_y&1);
}
}
/* save the values so that emaj can be restarted:
*/
eleft->sx += lines * eleft->dxdy;
eright->sx += lines * eright->dxdy;
eleft->sy += lines;
eright->sy += lines;
}
/**
* Do setup for triangle rasterization, then render the triangle.
*/
static void setup_tri( struct draw_stage *stage,
struct prim_header *prim )
{
struct setup_stage *setup = setup_stage( stage );
/*
_mesa_printf("%s\n", __FUNCTION__ );
*/
setup_sort_vertices( setup, prim );
setup_tri_coefficients( setup );
setup_tri_edges( setup );
setup->quad.prim = PRIM_TRI;
setup->span.y = 0;
setup->span.y_flags = 0;
setup->span.right[0] = 0;
setup->span.right[1] = 0;
/* setup->span.z_mode = tri_z_mode( setup->ctx ); */
/* init_constant_attribs( setup ); */
if (setup->oneoverarea < 0.0) {
/* emaj on left:
*/
subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
}
else {
/* emaj on right:
*/
subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
}
flush_spans( setup );
}
/**
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a line.
*/
static void
line_linear_coeff(struct setup_stage *setup,
struct tgsi_interp_coef *coef,
uint vertSlot, uint i)
{
const float da = setup->vmax->data[vertSlot][i] - setup->vmin->data[vertSlot][i];
const float dadx = da * setup->emaj.dx * setup->oneoverarea;
const float dady = da * setup->emaj.dy * setup->oneoverarea;
coef->dadx[i] = dadx;
coef->dady[i] = dady;
coef->a0[i] = (setup->vmin->data[vertSlot][i] -
(dadx * (setup->vmin->data[0][0] - 0.5f) +
dady * (setup->vmin->data[0][1] - 0.5f)));
}
/**
* Compute a0, dadx and dady for a perspective-corrected interpolant,
* for a line.
*/
static void
line_persp_coeff(struct setup_stage *setup,
struct tgsi_interp_coef *coef,
uint vertSlot, uint i)
{
/* XXX double-check/verify this arithmetic */
const float a0 = setup->vmin->data[vertSlot][i] * setup->vmin->data[0][3];
const float a1 = setup->vmax->data[vertSlot][i] * setup->vmin->data[0][3];
const float da = a1 - a0;
const float dadx = da * setup->emaj.dx * setup->oneoverarea;
const float dady = da * setup->emaj.dy * setup->oneoverarea;
coef->dadx[i] = dadx;
coef->dady[i] = dady;
coef->a0[i] = (setup->vmin->data[vertSlot][i] -
(dadx * (setup->vmin->data[0][0] - 0.5f) +
dady * (setup->vmin->data[0][1] - 0.5f)));
}
/**
* Compute the setup->coef[] array dadx, dady, a0 values.
* Must be called after setup->vmin,vmax are initialized.
*/
static INLINE void
setup_line_coefficients(struct setup_stage *setup, struct prim_header *prim)
{
const enum interp_mode *interp = setup->softpipe->vertex_info.interp_mode;
const struct pipe_shader_state *fs = &setup->softpipe->fs->shader;
unsigned fragSlot;
/* use setup->vmin, vmax to point to vertices */
setup->vprovoke = prim->v[1];
setup->vmin = prim->v[0];
setup->vmax = prim->v[1];
setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
/* NOTE: this is not really 1/area */
setup->oneoverarea = 1.0f / (setup->emaj.dx * setup->emaj.dx +
setup->emaj.dy * setup->emaj.dy);
/* z and w are done by linear interpolation:
*/
line_linear_coeff(setup, &setup->posCoef, 0, 2);
line_linear_coeff(setup, &setup->posCoef, 0, 3);
/* setup interpolation for all the remaining attributes:
*/
for (fragSlot = 0; fragSlot < setup->quad.nr_attrs; fragSlot++) {
/* which vertex output maps to this fragment input: */
uint vertSlot = fs->input_map[fragSlot];
if (vertSlot == 0) {
/* special case: shader is reading gl_FragCoord */
setup_fragcoord_coeff(setup);
}
else {
uint j;
switch (interp[vertSlot]) {
case INTERP_CONSTANT:
for (j = 0; j < NUM_CHANNELS; j++)
const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
break;
case INTERP_LINEAR:
for (j = 0; j < NUM_CHANNELS; j++)
line_linear_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
break;
case INTERP_PERSPECTIVE:
for (j = 0; j < NUM_CHANNELS; j++)
line_persp_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
break;
default:
/* invalid interp mode */
assert(0);
}
}
}
}
/**
* Plot a pixel in a line segment.
*/
static INLINE void
plot(struct setup_stage *setup, int x, int y)
{
const int iy = y & 1;
const int ix = x & 1;
const int quadX = x - ix;
const int quadY = y - iy;
const int mask = (1 << ix) << (2 * iy);
if (quadX != setup->quad.x0 ||
quadY != setup->quad.y0)
{
/* flush prev quad, start new quad */
if (setup->quad.x0 != -1)
clip_emit_quad(setup);
setup->quad.x0 = quadX;
setup->quad.y0 = quadY;
setup->quad.mask = 0x0;
}
setup->quad.mask |= mask;
}
/**
* Determine whether or not to emit a line fragment by checking
* line stipple pattern.
*/
static INLINE unsigned
stipple_test(int counter, ushort pattern, int factor)
{
int b = (counter / factor) & 0xf;
return (1 << b) & pattern;
}
/**
* Do setup for line rasterization, then render the line.
* XXX single-pixel width, no stipple, etc
*/
static void
setup_line(struct draw_stage *stage, struct prim_header *prim)
{
const struct vertex_header *v0 = prim->v[0];
const struct vertex_header *v1 = prim->v[1];
struct setup_stage *setup = setup_stage( stage );
struct softpipe_context *sp = setup->softpipe;
int x0 = (int) v0->data[0][0];
int x1 = (int) v1->data[0][0];
int y0 = (int) v0->data[0][1];
int y1 = (int) v1->data[0][1];
int dx = x1 - x0;
int dy = y1 - y0;
int xstep, ystep;
if (dx == 0 && dy == 0)
return;
setup_line_coefficients(setup, prim);
if (dx < 0) {
dx = -dx; /* make positive */
xstep = -1;
}
else {
xstep = 1;
}
if (dy < 0) {
dy = -dy; /* make positive */
ystep = -1;
}
else {
ystep = 1;
}
assert(dx >= 0);
assert(dy >= 0);
setup->quad.x0 = setup->quad.y0 = -1;
setup->quad.mask = 0x0;
setup->quad.prim = PRIM_LINE;
/* XXX temporary: set coverage to 1.0 so the line appears
* if AA mode happens to be enabled.
*/
setup->quad.coverage[0] =
setup->quad.coverage[1] =
setup->quad.coverage[2] =
setup->quad.coverage[3] = 1.0;
if (dx > dy) {
/*** X-major line ***/
int i;
const int errorInc = dy + dy;
int error = errorInc - dx;
const int errorDec = error - dx;
for (i = 0; i < dx; i++) {
if (!sp->rasterizer->line_stipple_enable ||
stipple_test(sp->line_stipple_counter,
(ushort) sp->rasterizer->line_stipple_pattern,
sp->rasterizer->line_stipple_factor + 1)) {
plot(setup, x0, y0);
}
x0 += xstep;
if (error < 0) {
error += errorInc;
}
else {
error += errorDec;
y0 += ystep;
}
sp->line_stipple_counter++;
}
}
else {
/*** Y-major line ***/
int i;
const int errorInc = dx + dx;
int error = errorInc - dy;
const int errorDec = error - dy;
for (i = 0; i < dy; i++) {
if (!sp->rasterizer->line_stipple_enable ||
stipple_test(sp->line_stipple_counter,
(ushort) sp->rasterizer->line_stipple_pattern,
sp->rasterizer->line_stipple_factor + 1)) {
plot(setup, x0, y0);
}
y0 += ystep;
if (error < 0) {
error += errorInc;
}
else {
error += errorDec;
x0 += xstep;
}
sp->line_stipple_counter++;
}
}
/* draw final quad */
if (setup->quad.mask) {
clip_emit_quad(setup);
}
}
static void
point_persp_coeff(struct setup_stage *setup,
const struct vertex_header *vert,
struct tgsi_interp_coef *coef,
uint vertSlot, uint i)
{
assert(i <= 3);
coef->dadx[i] = 0.0F;
coef->dady[i] = 0.0F;
coef->a0[i] = vert->data[vertSlot][i] * vert->data[0][3];
}
/**
* Do setup for point rasterization, then render the point.
* Round or square points...
* XXX could optimize a lot for 1-pixel points.
*/
static void
setup_point(struct draw_stage *stage, struct prim_header *prim)
{
struct setup_stage *setup = setup_stage( stage );
const struct pipe_shader_state *fs = &setup->softpipe->fs->shader;
const enum interp_mode *interp = setup->softpipe->vertex_info.interp_mode;
const struct vertex_header *v0 = prim->v[0];
const int sizeAttr = setup->softpipe->psize_slot;
const float size
= sizeAttr > 0 ? v0->data[sizeAttr][0]
: setup->softpipe->rasterizer->point_size;
const float halfSize = 0.5F * size;
const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
const float x = v0->data[0][0]; /* Note: data[0] is always position */
const float y = v0->data[0][1];
uint fragSlot;
/* For points, all interpolants are constant-valued.
* However, for point sprites, we'll need to setup texcoords appropriately.
* XXX: which coefficients are the texcoords???
* We may do point sprites as textured quads...
*
* KW: We don't know which coefficients are texcoords - ultimately
* the choice of what interpolation mode to use for each attribute
* should be determined by the fragment program, using
* per-attribute declaration statements that include interpolation
* mode as a parameter. So either the fragment program will have
* to be adjusted for pointsprite vs normal point behaviour, or
* otherwise a special interpolation mode will have to be defined
* which matches the required behaviour for point sprites. But -
* the latter is not a feature of normal hardware, and as such
* probably should be ruled out on that basis.
*/
setup->vprovoke = prim->v[0];
/* setup Z, W */
const_coeff(setup, &setup->posCoef, 0, 2);
const_coeff(setup, &setup->posCoef, 0, 3);
for (fragSlot = 0; fragSlot < setup->quad.nr_attrs; fragSlot++) {
/* which vertex output maps to this fragment input: */
uint vertSlot = fs->input_map[fragSlot];
if (vertSlot == 0) {
/* special case: shader is reading gl_FragCoord */
setup_fragcoord_coeff(setup);
}
else {
uint j;
switch (interp[vertSlot]) {
case INTERP_CONSTANT:
/* fall-through */
case INTERP_LINEAR:
for (j = 0; j < NUM_CHANNELS; j++)
const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
break;
case INTERP_PERSPECTIVE:
for (j = 0; j < NUM_CHANNELS; j++)
point_persp_coeff(setup, setup->vprovoke,
&setup->coef[fragSlot], vertSlot, j);
break;
default:
assert(0);
}
}
}
setup->quad.prim = PRIM_POINT;
if (halfSize <= 0.5 && !round) {
/* special case for 1-pixel points */
const int ix = ((int) x) & 1;
const int iy = ((int) y) & 1;
setup->quad.x0 = (int) x - ix;
setup->quad.y0 = (int) y - iy;
setup->quad.mask = (1 << ix) << (2 * iy);
clip_emit_quad(setup);
}
else {
if (round) {
/* rounded points */
const int ixmin = block((int) (x - halfSize));
const int ixmax = block((int) (x + halfSize));
const int iymin = block((int) (y - halfSize));
const int iymax = block((int) (y + halfSize));
const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
const float rmax = halfSize + 0.7071F;
const float rmin2 = MAX2(0.0F, rmin * rmin);
const float rmax2 = rmax * rmax;
const float cscale = 1.0F / (rmax2 - rmin2);
int ix, iy;
for (iy = iymin; iy <= iymax; iy += 2) {
for (ix = ixmin; ix <= ixmax; ix += 2) {
float dx, dy, dist2, cover;
setup->quad.mask = 0x0;
dx = (ix + 0.5f) - x;
dy = (iy + 0.5f) - y;
dist2 = dx * dx + dy * dy;
if (dist2 <= rmax2) {
cover = 1.0F - (dist2 - rmin2) * cscale;
setup->quad.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
setup->quad.mask |= MASK_TOP_LEFT;
}
dx = (ix + 1.5f) - x;
dy = (iy + 0.5f) - y;
dist2 = dx * dx + dy * dy;
if (dist2 <= rmax2) {
cover = 1.0F - (dist2 - rmin2) * cscale;
setup->quad.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
setup->quad.mask |= MASK_TOP_RIGHT;
}
dx = (ix + 0.5f) - x;
dy = (iy + 1.5f) - y;
dist2 = dx * dx + dy * dy;
if (dist2 <= rmax2) {
cover = 1.0F - (dist2 - rmin2) * cscale;
setup->quad.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
setup->quad.mask |= MASK_BOTTOM_LEFT;
}
dx = (ix + 1.5f) - x;
dy = (iy + 1.5f) - y;
dist2 = dx * dx + dy * dy;
if (dist2 <= rmax2) {
cover = 1.0F - (dist2 - rmin2) * cscale;
setup->quad.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
setup->quad.mask |= MASK_BOTTOM_RIGHT;
}
if (setup->quad.mask) {
setup->quad.x0 = ix;
setup->quad.y0 = iy;
clip_emit_quad(setup);
}
}
}
}
else {
/* square points */
const int xmin = (int) (x + 0.75 - halfSize);
const int ymin = (int) (y + 0.25 - halfSize);
const int xmax = xmin + (int) size;
const int ymax = ymin + (int) size;
/* XXX could apply scissor to xmin,ymin,xmax,ymax now */
const int ixmin = block(xmin);
const int ixmax = block(xmax - 1);
const int iymin = block(ymin);
const int iymax = block(ymax - 1);
int ix, iy;
/*
printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
*/
for (iy = iymin; iy <= iymax; iy += 2) {
uint rowMask = 0xf;
if (iy < ymin) {
/* above the top edge */
rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
}
if (iy + 1 >= ymax) {
/* below the bottom edge */
rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
}
for (ix = ixmin; ix <= ixmax; ix += 2) {
uint mask = rowMask;
if (ix < xmin) {
/* fragment is past left edge of point, turn off left bits */
mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
}
if (ix + 1 >= xmax) {
/* past the right edge */
mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
}
setup->quad.mask = mask;
setup->quad.x0 = ix;
setup->quad.y0 = iy;
clip_emit_quad(setup);
}
}
}
}
}
static void setup_begin( struct draw_stage *stage )
{
struct setup_stage *setup = setup_stage(stage);
struct softpipe_context *sp = setup->softpipe;
const struct pipe_shader_state *fs = &setup->softpipe->fs->shader;
setup->quad.nr_attrs = setup->softpipe->nr_frag_attrs;
setup->firstFpInput = fs->input_semantic_name[0];
sp->quad.first->begin(sp->quad.first);
}
static void setup_end( struct draw_stage *stage )
{
}
static void reset_stipple_counter( struct draw_stage *stage )
{
struct setup_stage *setup = setup_stage(stage);
setup->softpipe->line_stipple_counter = 0;
}
static void render_destroy( struct draw_stage *stage )
{
FREE( stage );
}
/**
* Create a new primitive setup/render stage.
*/
struct draw_stage *sp_draw_render_stage( struct softpipe_context *softpipe )
{
struct setup_stage *setup = CALLOC_STRUCT(setup_stage);
setup->softpipe = softpipe;
setup->stage.draw = softpipe->draw;
setup->stage.begin = setup_begin;
setup->stage.point = setup_point;
setup->stage.line = setup_line;
setup->stage.tri = setup_tri;
setup->stage.end = setup_end;
setup->stage.reset_stipple_counter = reset_stipple_counter;
setup->stage.destroy = render_destroy;
setup->quad.coef = setup->coef;
setup->quad.posCoef = &setup->posCoef;
return &setup->stage;
}
/* Recalculate det. This is only used in the test harness below:
*/
static void calc_det( struct prim_header *header )
{
/* Window coords: */
const float *v0 = header->v[0]->data[0];
const float *v1 = header->v[1]->data[0];
const float *v2 = header->v[2]->data[0];
/* edge vectors e = v0 - v2, f = v1 - v2 */
const float ex = v0[0] - v2[0];
const float ey = v0[1] - v2[1];
const float fx = v1[0] - v2[0];
const float fy = v1[1] - v2[1];
/* det = cross(e,f).z */
header->det = ex * fy - ey * fx;
}
/* Test harness - feed vertex buffer back into prim pipeline.
*
* The big issue at this point is that reset_stipple doesn't make it
* through the interface. Probably need to split primitives at reset
* stipple, perhaps using the ~0 index marker.
*/
void sp_vbuf_setup_draw( struct pipe_context *pipe,
unsigned primitive,
const ushort *elements,
unsigned nr_elements,
const void *vertex_buffer,
unsigned nr_vertices )
{
struct softpipe_context *softpipe = softpipe_context( pipe );
struct setup_stage *setup = setup_stage( softpipe->setup );
struct prim_header prim;
unsigned vertex_size = setup->stage.draw->vertex_info.size * sizeof(float);
unsigned i, j;
prim.det = 0;
prim.reset_line_stipple = 0;
prim.edgeflags = 0;
prim.pad = 0;
setup->stage.begin( &setup->stage );
switch (primitive) {
case PIPE_PRIM_TRIANGLES:
for (i = 0; i < nr_elements; i += 3) {
for (j = 0; j < 3; j++)
prim.v[j] = (struct vertex_header *)((char *)vertex_buffer +
elements[i+j] * vertex_size);
calc_det(&prim);
setup->stage.tri( &setup->stage, &prim );
}
break;
case PIPE_PRIM_LINES:
for (i = 0; i < nr_elements; i += 2) {
for (j = 0; j < 2; j++)
prim.v[j] = (struct vertex_header *)((char *)vertex_buffer +
elements[i+j] * vertex_size);
setup->stage.line( &setup->stage, &prim );
}
break;
case PIPE_PRIM_POINTS:
for (i = 0; i < nr_elements; i += 2) {
prim.v[i] = (struct vertex_header *)((char *)vertex_buffer +
elements[i] * vertex_size);
setup->stage.point( &setup->stage, &prim );
}
break;
}
setup->stage.end( &setup->stage );
}