Files
third_party_mesa3d/src/gallium/drivers/iris/iris_program.c
2019-02-21 10:26:10 -08:00

1300 lines
43 KiB
C

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* @file iris_program.c
*
* This file contains the driver interface for compiling shaders.
*
* See iris_program_cache.c for the in-memory program cache where the
* compiled shaders are stored.
*/
#include <stdio.h>
#include <errno.h>
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "pipe/p_context.h"
#include "pipe/p_screen.h"
#include "util/u_atomic.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "intel/compiler/brw_compiler.h"
#include "intel/compiler/brw_nir.h"
#include "iris_context.h"
static unsigned
get_new_program_id(struct iris_screen *screen)
{
return p_atomic_inc_return(&screen->program_id);
}
/**
* An uncompiled, API-facing shader. This is the Gallium CSO for shaders.
* It primarily contains the NIR for the shader.
*
* Each API-facing shader can be compiled into multiple shader variants,
* based on non-orthogonal state dependencies, recorded in the shader key.
*
* See iris_compiled_shader, which represents a compiled shader variant.
*/
struct iris_uncompiled_shader {
nir_shader *nir;
struct pipe_stream_output_info stream_output;
unsigned program_id;
/** Bitfield of (1 << IRIS_NOS_*) flags. */
unsigned nos;
};
static nir_ssa_def *
get_aoa_deref_offset(nir_builder *b,
nir_deref_instr *deref,
unsigned elem_size)
{
unsigned array_size = elem_size;
nir_ssa_def *offset = nir_imm_int(b, 0);
while (deref->deref_type != nir_deref_type_var) {
assert(deref->deref_type == nir_deref_type_array);
/* This level's element size is the previous level's array size */
nir_ssa_def *index = nir_ssa_for_src(b, deref->arr.index, 1);
assert(deref->arr.index.ssa);
offset = nir_iadd(b, offset,
nir_imul(b, index, nir_imm_int(b, array_size)));
deref = nir_deref_instr_parent(deref);
assert(glsl_type_is_array(deref->type));
array_size *= glsl_get_length(deref->type);
}
/* Accessing an invalid surface index with the dataport can result in a
* hang. According to the spec "if the index used to select an individual
* element is negative or greater than or equal to the size of the array,
* the results of the operation are undefined but may not lead to
* termination" -- which is one of the possible outcomes of the hang.
* Clamp the index to prevent access outside of the array bounds.
*/
return nir_umin(b, offset, nir_imm_int(b, array_size - elem_size));
}
static void
iris_lower_storage_image_derefs(nir_shader *nir)
{
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, impl);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
switch (intrin->intrinsic) {
case nir_intrinsic_image_deref_load:
case nir_intrinsic_image_deref_store:
case nir_intrinsic_image_deref_atomic_add:
case nir_intrinsic_image_deref_atomic_min:
case nir_intrinsic_image_deref_atomic_max:
case nir_intrinsic_image_deref_atomic_and:
case nir_intrinsic_image_deref_atomic_or:
case nir_intrinsic_image_deref_atomic_xor:
case nir_intrinsic_image_deref_atomic_exchange:
case nir_intrinsic_image_deref_atomic_comp_swap:
case nir_intrinsic_image_deref_size:
case nir_intrinsic_image_deref_samples: {
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
nir_variable *var = nir_deref_instr_get_variable(deref);
b.cursor = nir_before_instr(&intrin->instr);
nir_ssa_def *index =
nir_iadd(&b, nir_imm_int(&b, var->data.driver_location),
get_aoa_deref_offset(&b, deref, 1));
brw_nir_rewrite_image_intrinsic(intrin, index);
break;
}
default:
break;
}
}
}
}
// XXX: need unify_interfaces() at link time...
static void
update_so_info(struct pipe_stream_output_info *so_info)
{
for (unsigned i = 0; i < so_info->num_outputs; i++) {
struct pipe_stream_output *output = &so_info->output[i];
/* The VUE header contains three scalar fields packed together:
* - gl_PointSize is stored in VARYING_SLOT_PSIZ.w
* - gl_Layer is stored in VARYING_SLOT_PSIZ.y
* - gl_ViewportIndex is stored in VARYING_SLOT_PSIZ.z
*/
switch (output->register_index) {
case VARYING_SLOT_LAYER:
assert(output->num_components == 1);
output->register_index = VARYING_SLOT_PSIZ;
output->start_component = 1;
break;
case VARYING_SLOT_VIEWPORT:
assert(output->num_components == 1);
output->register_index = VARYING_SLOT_PSIZ;
output->start_component = 2;
break;
case VARYING_SLOT_PSIZ:
assert(output->num_components == 1);
output->start_component = 3;
break;
}
//info->outputs_written |= 1ull << output->register_index;
}
}
/**
* The pipe->create_[stage]_state() driver hooks.
*
* Performs basic NIR preprocessing, records any state dependencies, and
* returns an iris_uncompiled_shader as the Gallium CSO.
*
* Actual shader compilation to assembly happens later, at first use.
*/
static void *
iris_create_uncompiled_shader(struct pipe_context *ctx,
nir_shader *nir,
const struct pipe_stream_output_info *so_info)
{
//struct iris_context *ice = (struct iris_context *)ctx;
struct iris_screen *screen = (struct iris_screen *)ctx->screen;
const struct gen_device_info *devinfo = &screen->devinfo;
struct iris_uncompiled_shader *ish =
calloc(1, sizeof(struct iris_uncompiled_shader));
if (!ish)
return NULL;
nir = brw_preprocess_nir(screen->compiler, nir);
NIR_PASS_V(nir, brw_nir_lower_image_load_store, devinfo);
NIR_PASS_V(nir, iris_lower_storage_image_derefs);
ish->program_id = get_new_program_id(screen);
ish->nir = nir;
if (so_info) {
memcpy(&ish->stream_output, so_info, sizeof(*so_info));
update_so_info(&ish->stream_output);
}
switch (nir->info.stage) {
case MESA_SHADER_VERTEX:
/* User clip planes */
if (nir->info.clip_distance_array_size == 0)
ish->nos |= IRIS_NOS_RASTERIZER;
// XXX: NOS
break;
case MESA_SHADER_TESS_CTRL:
// XXX: NOS
break;
case MESA_SHADER_TESS_EVAL:
// XXX: NOS
break;
case MESA_SHADER_GEOMETRY:
// XXX: NOS
break;
case MESA_SHADER_FRAGMENT:
ish->nos |= IRIS_NOS_FRAMEBUFFER |
IRIS_NOS_DEPTH_STENCIL_ALPHA |
IRIS_NOS_RASTERIZER |
IRIS_NOS_BLEND;
/* The program key needs the VUE map if there are > 16 inputs */
if (util_bitcount64(ish->nir->info.inputs_read &
BRW_FS_VARYING_INPUT_MASK) > 16) {
ish->nos |= IRIS_NOS_LAST_VUE_MAP;
}
break;
case MESA_SHADER_COMPUTE:
// XXX: NOS
break;
default:
break;
}
// XXX: precompile!
// XXX: disallow more than 64KB of shared variables
return ish;
}
static void *
iris_create_shader_state(struct pipe_context *ctx,
const struct pipe_shader_state *state)
{
assert(state->type == PIPE_SHADER_IR_NIR);
return iris_create_uncompiled_shader(ctx, state->ir.nir,
&state->stream_output);
}
static void *
iris_create_compute_state(struct pipe_context *ctx,
const struct pipe_compute_state *state)
{
assert(state->ir_type == PIPE_SHADER_IR_NIR);
return iris_create_uncompiled_shader(ctx, (void *) state->prog, NULL);
}
/**
* The pipe->delete_[stage]_state() driver hooks.
*
* Frees the iris_uncompiled_shader.
*/
static void
iris_delete_shader_state(struct pipe_context *ctx, void *state)
{
struct iris_uncompiled_shader *ish = state;
ralloc_free(ish->nir);
free(ish);
}
/**
* The pipe->bind_[stage]_state() driver hook.
*
* Binds an uncompiled shader as the current one for a particular stage.
* Updates dirty tracking to account for the shader's NOS.
*/
static void
bind_state(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
gl_shader_stage stage)
{
uint64_t dirty_bit = IRIS_DIRTY_UNCOMPILED_VS << stage;
const uint64_t nos = ish ? ish->nos : 0;
ice->shaders.uncompiled[stage] = ish;
ice->state.dirty |= dirty_bit;
/* Record that CSOs need to mark IRIS_DIRTY_UNCOMPILED_XS when they change
* (or that they no longer need to do so).
*/
for (int i = 0; i < IRIS_NOS_COUNT; i++) {
if (nos & (1 << i))
ice->state.dirty_for_nos[i] |= dirty_bit;
else
ice->state.dirty_for_nos[i] &= ~dirty_bit;
}
}
static void
iris_bind_vs_state(struct pipe_context *ctx, void *state)
{
bind_state((void *) ctx, state, MESA_SHADER_VERTEX);
}
static void
iris_bind_tcs_state(struct pipe_context *ctx, void *state)
{
bind_state((void *) ctx, state, MESA_SHADER_TESS_CTRL);
}
static void
iris_bind_tes_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *)ctx;
/* Enabling/disabling optional stages requires a URB reconfiguration. */
if (!!state != !!ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL])
ice->state.dirty |= IRIS_DIRTY_URB;
bind_state((void *) ctx, state, MESA_SHADER_TESS_EVAL);
}
static void
iris_bind_gs_state(struct pipe_context *ctx, void *state)
{
struct iris_context *ice = (struct iris_context *)ctx;
/* Enabling/disabling optional stages requires a URB reconfiguration. */
if (!!state != !!ice->shaders.uncompiled[MESA_SHADER_GEOMETRY])
ice->state.dirty |= IRIS_DIRTY_URB;
bind_state((void *) ctx, state, MESA_SHADER_GEOMETRY);
}
static void
iris_bind_fs_state(struct pipe_context *ctx, void *state)
{
bind_state((void *) ctx, state, MESA_SHADER_FRAGMENT);
}
static void
iris_bind_cs_state(struct pipe_context *ctx, void *state)
{
bind_state((void *) ctx, state, MESA_SHADER_COMPUTE);
}
/**
* Sets up the starting offsets for the groups of binding table entries
* common to all pipeline stages.
*
* Unused groups are initialized to 0xd0d0d0d0 to make it obvious that they're
* unused but also make sure that addition of small offsets to them will
* trigger some of our asserts that surface indices are < BRW_MAX_SURFACES.
*/
static uint32_t
assign_common_binding_table_offsets(const struct gen_device_info *devinfo,
const struct nir_shader *nir,
struct brw_stage_prog_data *prog_data,
uint32_t next_binding_table_offset,
unsigned num_system_values)
{
const struct shader_info *info = &nir->info;
if (info->num_textures) {
prog_data->binding_table.texture_start = next_binding_table_offset;
prog_data->binding_table.gather_texture_start = next_binding_table_offset;
next_binding_table_offset += info->num_textures;
} else {
prog_data->binding_table.texture_start = 0xd0d0d0d0;
prog_data->binding_table.gather_texture_start = 0xd0d0d0d0;
}
if (info->num_images) {
prog_data->binding_table.image_start = next_binding_table_offset;
next_binding_table_offset += info->num_images;
} else {
prog_data->binding_table.image_start = 0xd0d0d0d0;
}
int num_ubos = info->num_ubos +
((nir->num_uniforms || num_system_values) ? 1 : 0);
if (num_ubos) {
//assert(info->num_ubos <= BRW_MAX_UBO);
prog_data->binding_table.ubo_start = next_binding_table_offset;
next_binding_table_offset += num_ubos;
} else {
prog_data->binding_table.ubo_start = 0xd0d0d0d0;
}
if (info->num_ssbos || info->num_abos) {
prog_data->binding_table.ssbo_start = next_binding_table_offset;
// XXX: see iris_state "wasting 16 binding table slots for ABOs" comment
next_binding_table_offset += IRIS_MAX_ABOS + info->num_ssbos;
} else {
prog_data->binding_table.ssbo_start = 0xd0d0d0d0;
}
prog_data->binding_table.shader_time_start = 0xd0d0d0d0;
/* This may or may not be used depending on how the compile goes. */
prog_data->binding_table.pull_constants_start = next_binding_table_offset;
next_binding_table_offset++;
/* Plane 0 is just the regular texture section */
prog_data->binding_table.plane_start[0] = prog_data->binding_table.texture_start;
prog_data->binding_table.plane_start[1] = next_binding_table_offset;
next_binding_table_offset += info->num_textures;
prog_data->binding_table.plane_start[2] = next_binding_table_offset;
next_binding_table_offset += info->num_textures;
/* Set the binding table size */
prog_data->binding_table.size_bytes = next_binding_table_offset * 4;
return next_binding_table_offset;
}
/**
* Associate NIR uniform variables with the prog_data->param[] mechanism
* used by the backend. Also, decide which UBOs we'd like to push in an
* ideal situation (though the backend can reduce this).
*/
static void
iris_setup_uniforms(const struct brw_compiler *compiler,
void *mem_ctx,
nir_shader *nir,
struct brw_stage_prog_data *prog_data,
enum brw_param_builtin **out_system_values,
unsigned *out_num_system_values)
{
/* We don't use params[], but fs_visitor::nir_setup_uniforms() asserts
* about it for compute shaders, so go ahead and make some fake ones
* which the backend will dead code eliminate.
*/
prog_data->nr_params = nir->num_uniforms;
prog_data->param = rzalloc_array(mem_ctx, uint32_t, prog_data->nr_params);
/* The intel compiler assumes that num_uniforms is in bytes. For
* scalar that means 4 bytes per uniform slot.
*
* Ref: brw_nir_lower_uniforms, type_size_scalar_bytes.
*/
nir->num_uniforms *= 4;
const unsigned IRIS_MAX_SYSTEM_VALUES = 32;
enum brw_param_builtin *system_values =
rzalloc_array(mem_ctx, enum brw_param_builtin, IRIS_MAX_SYSTEM_VALUES);
unsigned num_system_values = 0;
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_builder b;
nir_builder_init(&b, impl);
b.cursor = nir_before_block(nir_start_block(impl));
nir_ssa_def *temp_ubo_name = nir_ssa_undef(&b, 1, 32);
/* Turn system value intrinsics into uniforms */
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
unsigned idx = num_system_values;
switch (intrin->intrinsic) {
case nir_intrinsic_load_user_clip_plane: {
unsigned ucp = nir_intrinsic_ucp_id(intrin);
for (int i = 0; i < 4; i++) {
system_values[num_system_values++] =
BRW_PARAM_BUILTIN_CLIP_PLANE(ucp, i);
}
break;
}
default:
continue;
}
b.cursor = nir_before_instr(instr);
unsigned comps = nir_intrinsic_dest_components(intrin);
nir_ssa_def *offset = nir_imm_int(&b, idx * sizeof(uint32_t));
nir_intrinsic_instr *load =
nir_intrinsic_instr_create(nir, nir_intrinsic_load_ubo);
load->num_components = comps;
load->src[0] = nir_src_for_ssa(temp_ubo_name);
load->src[1] = nir_src_for_ssa(offset);
nir_ssa_dest_init(&load->instr, &load->dest, comps, 32, NULL);
nir_builder_instr_insert(&b, &load->instr);
nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
nir_src_for_ssa(&load->dest.ssa));
nir_instr_remove(instr);
}
}
nir_validate_shader(nir, "before remapping");
/* Place the new params at the front of constant buffer 0. */
if (num_system_values > 0) {
nir->num_uniforms += num_system_values * sizeof(uint32_t);
system_values = reralloc(mem_ctx, system_values, enum brw_param_builtin,
num_system_values);
nir_foreach_block(block, impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
if (load->intrinsic != nir_intrinsic_load_ubo)
continue;
b.cursor = nir_before_instr(instr);
assert(load->src[0].is_ssa);
if (load->src[0].ssa == temp_ubo_name) {
nir_instr_rewrite_src(instr, &load->src[0],
nir_src_for_ssa(nir_imm_int(&b, 0)));
} else if (nir_src_as_uint(load->src[0]) == 0) {
nir_ssa_def *offset =
nir_iadd(&b, load->src[1].ssa,
nir_imm_int(&b, 4 * num_system_values));
nir_instr_rewrite_src(instr, &load->src[1],
nir_src_for_ssa(offset));
}
}
}
/* We need to fold the new iadds for brw_nir_analyze_ubo_ranges */
nir_opt_constant_folding(nir);
} else {
ralloc_free(system_values);
system_values = NULL;
}
nir_validate_shader(nir, "after remap");
// XXX: vs clip planes?
if (nir->info.stage != MESA_SHADER_COMPUTE)
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
*out_system_values = system_values;
*out_num_system_values = num_system_values;
}
/**
* Compile a vertex shader, and upload the assembly.
*/
static bool
iris_compile_vs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_vs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_vs_prog_data *vs_prog_data =
rzalloc(mem_ctx, struct brw_vs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &vs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
enum brw_param_builtin *system_values;
unsigned num_system_values;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
if (key->nr_userclip_plane_consts) {
nir_function_impl *impl = nir_shader_get_entrypoint(nir);
nir_lower_clip_vs(nir, (1 << key->nr_userclip_plane_consts) - 1, true);
nir_lower_io_to_temporaries(nir, impl, true, false);
nir_lower_global_vars_to_local(nir);
nir_lower_vars_to_ssa(nir);
nir_shader_gather_info(nir, impl);
}
// XXX: alt mode
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values);
assign_common_binding_table_offsets(devinfo, nir, prog_data, 0,
num_system_values);
brw_compute_vue_map(devinfo,
&vue_prog_data->vue_map, nir->info.outputs_written,
nir->info.separate_shader);
/* Don't tell the backend about our clip plane constants, we've already
* lowered them in NIR and we don't want it doing it again.
*/
struct brw_vs_prog_key key_no_ucp = *key;
key_no_ucp.nr_userclip_plane_consts = 0;
char *error_str = NULL;
const unsigned *program =
brw_compile_vs(compiler, &ice->dbg, mem_ctx, &key_no_ucp, vs_prog_data,
nir, -1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile vertex shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
uint32_t *so_decls =
ice->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
iris_upload_and_bind_shader(ice, IRIS_CACHE_VS, key, program, prog_data,
so_decls, system_values, num_system_values);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current vertex shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_vs(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_VERTEX];
struct brw_vs_prog_key key = { .program_string_id = ish->program_id };
ice->vtbl.populate_vs_key(ice, &ish->nir->info, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_VS, &key))
return;
UNUSED bool success = iris_compile_vs(ice, ish, &key);
}
/**
* Get the shader_info for a given stage, or NULL if the stage is disabled.
*/
const struct shader_info *
iris_get_shader_info(const struct iris_context *ice, gl_shader_stage stage)
{
const struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
if (!ish)
return NULL;
const nir_shader *nir = ish->nir;
return &nir->info;
}
// XXX: this function is gross
unsigned
iris_get_shader_num_ubos(const struct iris_context *ice, gl_shader_stage stage)
{
const struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
const struct iris_compiled_shader *shader = ice->shaders.prog[stage];
if (ish) {
const nir_shader *nir = ish->nir;
/* see assign_common_binding_table_offsets */
return nir->info.num_ubos +
((nir->num_uniforms || shader->num_system_values) ? 1 : 0);
}
return 0;
}
/**
* Get the union of TCS output and TES input slots.
*
* TCS and TES need to agree on a common URB entry layout. In particular,
* the data for all patch vertices is stored in a single URB entry (unlike
* GS which has one entry per input vertex). This means that per-vertex
* array indexing needs a stride.
*
* SSO requires locations to match, but doesn't require the number of
* outputs/inputs to match (in fact, the TCS often has extra outputs).
* So, we need to take the extra step of unifying these on the fly.
*/
static void
get_unified_tess_slots(const struct iris_context *ice,
uint64_t *per_vertex_slots,
uint32_t *per_patch_slots)
{
const struct shader_info *tcs =
iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
const struct shader_info *tes =
iris_get_shader_info(ice, MESA_SHADER_TESS_EVAL);
*per_vertex_slots = tes->inputs_read;
*per_patch_slots = tes->patch_inputs_read;
if (tcs) {
*per_vertex_slots |= tcs->outputs_written;
*per_patch_slots |= tcs->patch_outputs_written;
}
}
/**
* Compile a tessellation control shader, and upload the assembly.
*/
static bool
iris_compile_tcs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_tcs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct nir_shader_compiler_options *options =
compiler->glsl_compiler_options[MESA_SHADER_TESS_CTRL].NirOptions;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_tcs_prog_data *tcs_prog_data =
rzalloc(mem_ctx, struct brw_tcs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
enum brw_param_builtin *system_values = NULL;
unsigned num_system_values = 0;
nir_shader *nir;
if (ish) {
nir = nir_shader_clone(mem_ctx, ish->nir);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values);
assign_common_binding_table_offsets(devinfo, nir, prog_data, 0,
num_system_values);
} else {
nir = brw_nir_create_passthrough_tcs(mem_ctx, compiler, options, key);
/* Reserve space for passing the default tess levels as constants. */
prog_data->param = rzalloc_array(mem_ctx, uint32_t, 8);
prog_data->nr_params = 8;
prog_data->ubo_ranges[0].length = 1;
}
char *error_str = NULL;
const unsigned *program =
brw_compile_tcs(compiler, &ice->dbg, mem_ctx, key, tcs_prog_data, nir,
-1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile evaluation shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
iris_upload_and_bind_shader(ice, IRIS_CACHE_TCS, key, program, prog_data,
NULL, system_values, num_system_values);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current tessellation control shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_tcs(struct iris_context *ice)
{
struct iris_uncompiled_shader *tcs =
ice->shaders.uncompiled[MESA_SHADER_TESS_CTRL];
const struct shader_info *tes_info =
iris_get_shader_info(ice, MESA_SHADER_TESS_EVAL);
struct brw_tcs_prog_key key = {
.program_string_id = tcs ? tcs->program_id : 0,
.tes_primitive_mode = tes_info->tess.primitive_mode,
.input_vertices = ice->state.vertices_per_patch,
};
get_unified_tess_slots(ice, &key.outputs_written,
&key.patch_outputs_written);
ice->vtbl.populate_tcs_key(ice, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_TCS, &key))
return;
UNUSED bool success = iris_compile_tcs(ice, tcs, &key);
}
/**
* Compile a tessellation evaluation shader, and upload the assembly.
*/
static bool
iris_compile_tes(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_tes_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_tes_prog_data *tes_prog_data =
rzalloc(mem_ctx, struct brw_tes_prog_data);
struct brw_vue_prog_data *vue_prog_data = &tes_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
enum brw_param_builtin *system_values;
unsigned num_system_values;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values);
assign_common_binding_table_offsets(devinfo, nir, prog_data, 0,
num_system_values);
struct brw_vue_map input_vue_map;
brw_compute_tess_vue_map(&input_vue_map, key->inputs_read,
key->patch_inputs_read);
char *error_str = NULL;
const unsigned *program =
brw_compile_tes(compiler, &ice->dbg, mem_ctx, key, &input_vue_map,
tes_prog_data, nir, NULL, -1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile evaluation shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
uint32_t *so_decls =
ice->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
iris_upload_and_bind_shader(ice, IRIS_CACHE_TES, key, program, prog_data,
so_decls, system_values, num_system_values);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current tessellation evaluation shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_tes(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL];
struct brw_tes_prog_key key = { .program_string_id = ish->program_id };
get_unified_tess_slots(ice, &key.inputs_read, &key.patch_inputs_read);
ice->vtbl.populate_tes_key(ice, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_TES, &key))
return;
UNUSED bool success = iris_compile_tes(ice, ish, &key);
}
/**
* Compile a geometry shader, and upload the assembly.
*/
static bool
iris_compile_gs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_gs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_gs_prog_data *gs_prog_data =
rzalloc(mem_ctx, struct brw_gs_prog_data);
struct brw_vue_prog_data *vue_prog_data = &gs_prog_data->base;
struct brw_stage_prog_data *prog_data = &vue_prog_data->base;
enum brw_param_builtin *system_values;
unsigned num_system_values;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values);
assign_common_binding_table_offsets(devinfo, nir, prog_data, 0,
num_system_values);
brw_compute_vue_map(devinfo,
&vue_prog_data->vue_map, nir->info.outputs_written,
nir->info.separate_shader);
char *error_str = NULL;
const unsigned *program =
brw_compile_gs(compiler, &ice->dbg, mem_ctx, key, gs_prog_data, nir,
NULL, -1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile geometry shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
uint32_t *so_decls =
ice->vtbl.create_so_decl_list(&ish->stream_output,
&vue_prog_data->vue_map);
iris_upload_and_bind_shader(ice, IRIS_CACHE_GS, key, program, prog_data,
so_decls, system_values, num_system_values);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current geometry shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_gs(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_GEOMETRY];
if (!ish) {
iris_unbind_shader(ice, IRIS_CACHE_GS);
return;
}
struct brw_gs_prog_key key = { .program_string_id = ish->program_id };
ice->vtbl.populate_gs_key(ice, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_GS, &key))
return;
UNUSED bool success = iris_compile_gs(ice, ish, &key);
}
/**
* Compile a fragment (pixel) shader, and upload the assembly.
*/
static bool
iris_compile_fs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_wm_prog_key *key,
struct brw_vue_map *vue_map)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_wm_prog_data *fs_prog_data =
rzalloc(mem_ctx, struct brw_wm_prog_data);
struct brw_stage_prog_data *prog_data = &fs_prog_data->base;
enum brw_param_builtin *system_values;
unsigned num_system_values;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
// XXX: alt mode
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values);
assign_common_binding_table_offsets(devinfo, nir, prog_data,
MAX2(key->nr_color_regions, 1),
num_system_values);
char *error_str = NULL;
const unsigned *program =
brw_compile_fs(compiler, &ice->dbg, mem_ctx, key, fs_prog_data,
nir, NULL, -1, -1, -1, true, false, vue_map, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile fragment shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
//brw_alloc_stage_scratch(brw, &brw->wm.base, prog_data.base.total_scratch);
iris_upload_and_bind_shader(ice, IRIS_CACHE_FS, key, program, prog_data,
NULL, system_values, num_system_values);
ralloc_free(mem_ctx);
return true;
}
/**
* Update the current fragment shader variant.
*
* Fill out the key, look in the cache, compile and bind if needed.
*/
static void
iris_update_compiled_fs(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_FRAGMENT];
struct brw_wm_prog_key key = { .program_string_id = ish->program_id };
ice->vtbl.populate_fs_key(ice, &key);
if (ish->nos & IRIS_NOS_LAST_VUE_MAP)
key.input_slots_valid = ice->shaders.last_vue_map->slots_valid;
if (iris_bind_cached_shader(ice, IRIS_CACHE_FS, &key))
return;
UNUSED bool success =
iris_compile_fs(ice, ish, &key, ice->shaders.last_vue_map);
}
/**
* Get the compiled shader for the last enabled geometry stage.
*
* This stage is the one which will feed stream output and the rasterizer.
*/
static struct iris_compiled_shader *
last_vue_shader(struct iris_context *ice)
{
if (ice->shaders.prog[MESA_SHADER_GEOMETRY])
return ice->shaders.prog[MESA_SHADER_GEOMETRY];
if (ice->shaders.prog[MESA_SHADER_TESS_EVAL])
return ice->shaders.prog[MESA_SHADER_TESS_EVAL];
return ice->shaders.prog[MESA_SHADER_VERTEX];
}
/**
* Update the last enabled stage's VUE map.
*
* When the shader feeding the rasterizer's output interface changes, we
* need to re-emit various packets.
*/
static void
update_last_vue_map(struct iris_context *ice,
struct brw_stage_prog_data *prog_data)
{
struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
struct brw_vue_map *old_map = ice->shaders.last_vue_map;
const uint64_t changed_slots =
(old_map ? old_map->slots_valid : 0ull) ^ vue_map->slots_valid;
if (changed_slots & VARYING_BIT_VIEWPORT) {
// XXX: could use ctx->Const.MaxViewports for old API efficiency
ice->state.num_viewports =
(vue_map->slots_valid & VARYING_BIT_VIEWPORT) ? IRIS_MAX_VIEWPORTS : 1;
ice->state.dirty |= IRIS_DIRTY_CLIP |
IRIS_DIRTY_SF_CL_VIEWPORT |
IRIS_DIRTY_CC_VIEWPORT |
IRIS_DIRTY_SCISSOR_RECT |
IRIS_DIRTY_UNCOMPILED_FS |
ice->state.dirty_for_nos[IRIS_NOS_LAST_VUE_MAP];
// XXX: CC_VIEWPORT?
}
if (changed_slots || (old_map && old_map->separate != vue_map->separate)) {
ice->state.dirty |= IRIS_DIRTY_SBE;
}
ice->shaders.last_vue_map = &vue_prog_data->vue_map;
}
/**
* Get the prog_data for a given stage, or NULL if the stage is disabled.
*/
static struct brw_vue_prog_data *
get_vue_prog_data(struct iris_context *ice, gl_shader_stage stage)
{
if (!ice->shaders.prog[stage])
return NULL;
return (void *) ice->shaders.prog[stage]->prog_data;
}
/**
* Update the current shader variants for the given state.
*
* This should be called on every draw call to ensure that the correct
* shaders are bound. It will also flag any dirty state triggered by
* swapping out those shaders.
*/
void
iris_update_compiled_shaders(struct iris_context *ice)
{
const uint64_t dirty = ice->state.dirty;
struct brw_vue_prog_data *old_prog_datas[4];
if (!(dirty & IRIS_DIRTY_URB)) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++)
old_prog_datas[i] = get_vue_prog_data(ice, i);
}
if (dirty & (IRIS_DIRTY_UNCOMPILED_TCS | IRIS_DIRTY_UNCOMPILED_TES)) {
struct iris_uncompiled_shader *tes =
ice->shaders.uncompiled[MESA_SHADER_TESS_EVAL];
if (tes) {
iris_update_compiled_tcs(ice);
iris_update_compiled_tes(ice);
} else {
iris_unbind_shader(ice, IRIS_CACHE_TCS);
iris_unbind_shader(ice, IRIS_CACHE_TES);
}
}
if (dirty & IRIS_DIRTY_UNCOMPILED_VS)
iris_update_compiled_vs(ice);
if (dirty & IRIS_DIRTY_UNCOMPILED_GS)
iris_update_compiled_gs(ice);
struct iris_compiled_shader *shader = last_vue_shader(ice);
update_last_vue_map(ice, shader->prog_data);
if (ice->state.streamout != shader->streamout) {
ice->state.streamout = shader->streamout;
ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST | IRIS_DIRTY_STREAMOUT;
}
if (dirty & IRIS_DIRTY_UNCOMPILED_FS)
iris_update_compiled_fs(ice);
// ...
/* Changing shader interfaces may require a URB configuration. */
if (!(dirty & IRIS_DIRTY_URB)) {
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
struct brw_vue_prog_data *old = old_prog_datas[i];
struct brw_vue_prog_data *new = get_vue_prog_data(ice, i);
if (!!old != !!new ||
(new && new->urb_entry_size != old->urb_entry_size)) {
ice->state.dirty |= IRIS_DIRTY_URB;
break;
}
}
}
}
static bool
iris_compile_cs(struct iris_context *ice,
struct iris_uncompiled_shader *ish,
const struct brw_cs_prog_key *key)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
const struct brw_compiler *compiler = screen->compiler;
const struct gen_device_info *devinfo = &screen->devinfo;
void *mem_ctx = ralloc_context(NULL);
struct brw_cs_prog_data *cs_prog_data =
rzalloc(mem_ctx, struct brw_cs_prog_data);
struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
enum brw_param_builtin *system_values;
unsigned num_system_values;
nir_shader *nir = nir_shader_clone(mem_ctx, ish->nir);
cs_prog_data->binding_table.work_groups_start = 0;
prog_data->total_shared = nir->info.cs.shared_size;
iris_setup_uniforms(compiler, mem_ctx, nir, prog_data, &system_values,
&num_system_values);
assign_common_binding_table_offsets(devinfo, nir, prog_data, 1,
num_system_values);
char *error_str = NULL;
const unsigned *program =
brw_compile_cs(compiler, &ice->dbg, mem_ctx, key, cs_prog_data,
nir, -1, &error_str);
if (program == NULL) {
dbg_printf("Failed to compile compute shader: %s\n", error_str);
ralloc_free(mem_ctx);
return false;
}
iris_upload_and_bind_shader(ice, IRIS_CACHE_CS, key, program, prog_data,
NULL, system_values, num_system_values);
ralloc_free(mem_ctx);
return true;
}
void
iris_update_compiled_compute_shader(struct iris_context *ice)
{
struct iris_uncompiled_shader *ish =
ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
struct brw_cs_prog_key key = { .program_string_id = ish->program_id };
ice->vtbl.populate_cs_key(ice, &key);
if (iris_bind_cached_shader(ice, IRIS_CACHE_CS, &key))
return;
UNUSED bool success = iris_compile_cs(ice, ish, &key);
}
void
iris_fill_cs_push_const_buffer(struct brw_cs_prog_data *cs_prog_data,
uint32_t *dst)
{
struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
assert(cs_prog_data->push.total.size > 0);
assert(cs_prog_data->push.cross_thread.size == 0);
assert(cs_prog_data->push.per_thread.dwords == 1);
assert(prog_data->param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
for (unsigned t = 0; t < cs_prog_data->threads; t++)
dst[8 * t] = t;
}
/**
* Allocate scratch BOs as needed for the given per-thread size and stage.
*
* Returns the 32-bit "Scratch Space Base Pointer" value.
*/
uint32_t
iris_get_scratch_space(struct iris_context *ice,
unsigned per_thread_scratch,
gl_shader_stage stage)
{
struct iris_screen *screen = (struct iris_screen *)ice->ctx.screen;
struct iris_bufmgr *bufmgr = screen->bufmgr;
const struct gen_device_info *devinfo = &screen->devinfo;
unsigned encoded_size = ffs(per_thread_scratch) - 11;
assert(encoded_size < (1 << 16));
struct iris_bo **bop = &ice->shaders.scratch_bos[encoded_size][stage];
/* The documentation for 3DSTATE_PS "Scratch Space Base Pointer" says:
*
* "Scratch Space per slice is computed based on 4 sub-slices. SW must
* allocate scratch space enough so that each slice has 4 slices
* allowed."
*
* According to the other driver team, this applies to compute shaders
* as well. This is not currently documented at all.
*/
unsigned subslice_total = 4 * devinfo->num_slices;
assert(subslice_total >= screen->subslice_total);
if (!*bop) {
unsigned scratch_ids_per_subslice = devinfo->max_cs_threads;
uint32_t max_threads[] = {
[MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
[MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
[MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
[MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
[MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
[MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslice_total,
};
uint32_t size = per_thread_scratch * max_threads[stage];
*bop = iris_bo_alloc(bufmgr, "scratch", size, IRIS_MEMZONE_SHADER);
}
return (*bop)->gtt_offset;
}
void
iris_init_program_functions(struct pipe_context *ctx)
{
ctx->create_vs_state = iris_create_shader_state;
ctx->create_tcs_state = iris_create_shader_state;
ctx->create_tes_state = iris_create_shader_state;
ctx->create_gs_state = iris_create_shader_state;
ctx->create_fs_state = iris_create_shader_state;
ctx->create_compute_state = iris_create_compute_state;
ctx->delete_vs_state = iris_delete_shader_state;
ctx->delete_tcs_state = iris_delete_shader_state;
ctx->delete_tes_state = iris_delete_shader_state;
ctx->delete_gs_state = iris_delete_shader_state;
ctx->delete_fs_state = iris_delete_shader_state;
ctx->delete_compute_state = iris_delete_shader_state;
ctx->bind_vs_state = iris_bind_vs_state;
ctx->bind_tcs_state = iris_bind_tcs_state;
ctx->bind_tes_state = iris_bind_tes_state;
ctx->bind_gs_state = iris_bind_gs_state;
ctx->bind_fs_state = iris_bind_fs_state;
ctx->bind_compute_state = iris_bind_cs_state;
}