
Reviewed-by: Timothy Arceri <tarceri@itsqueeze.com Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4324>
1374 lines
48 KiB
C
1374 lines
48 KiB
C
/*
|
|
* Mesa 3-D graphics library
|
|
*
|
|
* Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
|
|
* (C) Copyright IBM Corporation 2006
|
|
* Copyright (C) 2009 VMware, Inc. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included
|
|
* in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
|
|
/**
|
|
* \file arrayobj.c
|
|
*
|
|
* Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
|
|
* the GL_ARB_vertex_array_object extension.
|
|
*
|
|
* \todo
|
|
* The code in this file borrows a lot from bufferobj.c. There's a certain
|
|
* amount of cruft left over from that origin that may be unnecessary.
|
|
*
|
|
* \author Ian Romanick <idr@us.ibm.com>
|
|
* \author Brian Paul
|
|
*/
|
|
|
|
|
|
#include "glheader.h"
|
|
#include "hash.h"
|
|
#include "image.h"
|
|
#include "util/imports.h"
|
|
#include "context.h"
|
|
#include "bufferobj.h"
|
|
#include "arrayobj.h"
|
|
#include "macros.h"
|
|
#include "mtypes.h"
|
|
#include "state.h"
|
|
#include "varray.h"
|
|
#include "util/bitscan.h"
|
|
#include "util/u_atomic.h"
|
|
#include "util/u_math.h"
|
|
|
|
|
|
const GLubyte
|
|
_mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
|
|
{
|
|
/* ATTRIBUTE_MAP_MODE_IDENTITY
|
|
*
|
|
* Grab vertex processing attribute VERT_ATTRIB_POS from
|
|
* the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
|
|
* attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
|
|
* VERT_ATTRIB_GENERIC0.
|
|
*/
|
|
{
|
|
VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
|
|
VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
|
|
VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
|
|
VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
|
|
VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
|
|
VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
|
|
VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
|
|
VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
|
|
VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
|
|
VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
|
|
VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
|
|
VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
|
|
VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
|
|
VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
|
|
VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
|
|
VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
|
|
VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
|
|
VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
|
|
VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
|
|
VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
|
|
VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
|
|
VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
|
|
VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
|
|
VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
|
|
VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
|
|
VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
|
|
VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
|
|
VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
|
|
VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
|
|
VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
|
|
VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
|
|
VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
|
|
},
|
|
|
|
/* ATTRIBUTE_MAP_MODE_POSITION
|
|
*
|
|
* Grab vertex processing attribute VERT_ATTRIB_POS as well as
|
|
* vertex processing attribute VERT_ATTRIB_GENERIC0 from the
|
|
* VAO attribute VERT_ATTRIB_POS.
|
|
*/
|
|
{
|
|
VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
|
|
VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
|
|
VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
|
|
VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
|
|
VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
|
|
VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
|
|
VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
|
|
VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
|
|
VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
|
|
VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
|
|
VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
|
|
VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
|
|
VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
|
|
VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
|
|
VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
|
|
VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
|
|
VERT_ATTRIB_POS, /* VERT_ATTRIB_GENERIC0 */
|
|
VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
|
|
VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
|
|
VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
|
|
VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
|
|
VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
|
|
VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
|
|
VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
|
|
VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
|
|
VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
|
|
VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
|
|
VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
|
|
VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
|
|
VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
|
|
VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
|
|
VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
|
|
},
|
|
|
|
/* ATTRIBUTE_MAP_MODE_GENERIC0
|
|
*
|
|
* Grab vertex processing attribute VERT_ATTRIB_POS as well as
|
|
* vertex processing attribute VERT_ATTRIB_GENERIC0 from the
|
|
* VAO attribute VERT_ATTRIB_GENERIC0.
|
|
*/
|
|
{
|
|
VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_POS */
|
|
VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
|
|
VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
|
|
VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
|
|
VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
|
|
VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
|
|
VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
|
|
VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
|
|
VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
|
|
VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
|
|
VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
|
|
VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
|
|
VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
|
|
VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
|
|
VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
|
|
VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
|
|
VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
|
|
VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
|
|
VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
|
|
VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
|
|
VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
|
|
VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
|
|
VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
|
|
VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
|
|
VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
|
|
VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
|
|
VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
|
|
VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
|
|
VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
|
|
VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
|
|
VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
|
|
VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Look up the array object for the given ID.
|
|
*
|
|
* \returns
|
|
* Either a pointer to the array object with the specified ID or \c NULL for
|
|
* a non-existent ID. The spec defines ID 0 as being technically
|
|
* non-existent.
|
|
*/
|
|
|
|
struct gl_vertex_array_object *
|
|
_mesa_lookup_vao(struct gl_context *ctx, GLuint id)
|
|
{
|
|
/* The ARB_direct_state_access specification says:
|
|
*
|
|
* "<vaobj> is [compatibility profile:
|
|
* zero, indicating the default vertex array object, or]
|
|
* the name of the vertex array object."
|
|
*/
|
|
if (id == 0) {
|
|
if (ctx->API == API_OPENGL_COMPAT)
|
|
return ctx->Array.DefaultVAO;
|
|
|
|
return NULL;
|
|
} else {
|
|
struct gl_vertex_array_object *vao;
|
|
|
|
if (ctx->Array.LastLookedUpVAO &&
|
|
ctx->Array.LastLookedUpVAO->Name == id) {
|
|
vao = ctx->Array.LastLookedUpVAO;
|
|
} else {
|
|
vao = (struct gl_vertex_array_object *)
|
|
_mesa_HashLookupLocked(ctx->Array.Objects, id);
|
|
|
|
_mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
|
|
}
|
|
|
|
return vao;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Looks up the array object for the given ID.
|
|
*
|
|
* While _mesa_lookup_vao doesn't generate an error if the object does not
|
|
* exist, this function comes in two variants.
|
|
* If is_ext_dsa is false, this function generates a GL_INVALID_OPERATION
|
|
* error if the array object does not exist. It also returns the default
|
|
* array object when ctx is a compatibility profile context and id is zero.
|
|
* If is_ext_dsa is true, 0 is not a valid name. If the name exists but
|
|
* the object has never been bound, it is initialized.
|
|
*/
|
|
struct gl_vertex_array_object *
|
|
_mesa_lookup_vao_err(struct gl_context *ctx, GLuint id,
|
|
bool is_ext_dsa, const char *caller)
|
|
{
|
|
/* The ARB_direct_state_access specification says:
|
|
*
|
|
* "<vaobj> is [compatibility profile:
|
|
* zero, indicating the default vertex array object, or]
|
|
* the name of the vertex array object."
|
|
*/
|
|
if (id == 0) {
|
|
if (is_ext_dsa || ctx->API == API_OPENGL_CORE) {
|
|
_mesa_error(ctx, GL_INVALID_OPERATION,
|
|
"%s(zero is not valid vaobj name%s)",
|
|
caller,
|
|
is_ext_dsa ? "" : " in a core profile context");
|
|
return NULL;
|
|
}
|
|
|
|
return ctx->Array.DefaultVAO;
|
|
} else {
|
|
struct gl_vertex_array_object *vao;
|
|
|
|
if (ctx->Array.LastLookedUpVAO &&
|
|
ctx->Array.LastLookedUpVAO->Name == id) {
|
|
vao = ctx->Array.LastLookedUpVAO;
|
|
} else {
|
|
vao = (struct gl_vertex_array_object *)
|
|
_mesa_HashLookupLocked(ctx->Array.Objects, id);
|
|
|
|
/* The ARB_direct_state_access specification says:
|
|
*
|
|
* "An INVALID_OPERATION error is generated if <vaobj> is not
|
|
* [compatibility profile: zero or] the name of an existing
|
|
* vertex array object."
|
|
*/
|
|
if (!vao || (!is_ext_dsa && !vao->EverBound)) {
|
|
_mesa_error(ctx, GL_INVALID_OPERATION,
|
|
"%s(non-existent vaobj=%u)", caller, id);
|
|
return NULL;
|
|
}
|
|
|
|
/* The EXT_direct_state_access specification says:
|
|
*
|
|
* "If the vertex array object named by the vaobj parameter has not
|
|
* been previously bound but has been generated (without subsequent
|
|
* deletion) by GenVertexArrays, the GL first creates a new state
|
|
* vector in the same manner as when BindVertexArray creates a new
|
|
* vertex array object."
|
|
*/
|
|
if (vao && is_ext_dsa && !vao->EverBound)
|
|
vao->EverBound = true;
|
|
|
|
_mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
|
|
}
|
|
|
|
return vao;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* For all the vertex binding points in the array object, unbind any pointers
|
|
* to any buffer objects (VBOs).
|
|
* This is done just prior to array object destruction.
|
|
*/
|
|
static void
|
|
unbind_array_object_vbos(struct gl_context *ctx, struct gl_vertex_array_object *obj)
|
|
{
|
|
GLuint i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
|
|
_mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
|
|
}
|
|
|
|
|
|
/**
|
|
* Allocate and initialize a new vertex array object.
|
|
*/
|
|
struct gl_vertex_array_object *
|
|
_mesa_new_vao(struct gl_context *ctx, GLuint name)
|
|
{
|
|
struct gl_vertex_array_object *obj = CALLOC_STRUCT(gl_vertex_array_object);
|
|
if (obj)
|
|
_mesa_initialize_vao(ctx, obj, name);
|
|
return obj;
|
|
}
|
|
|
|
|
|
/**
|
|
* Delete an array object.
|
|
*/
|
|
void
|
|
_mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
|
|
{
|
|
unbind_array_object_vbos(ctx, obj);
|
|
_mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
|
|
free(obj->Label);
|
|
free(obj);
|
|
}
|
|
|
|
|
|
/**
|
|
* Set ptr to vao w/ reference counting.
|
|
* Note: this should only be called from the _mesa_reference_vao()
|
|
* inline function.
|
|
*/
|
|
void
|
|
_mesa_reference_vao_(struct gl_context *ctx,
|
|
struct gl_vertex_array_object **ptr,
|
|
struct gl_vertex_array_object *vao)
|
|
{
|
|
assert(*ptr != vao);
|
|
|
|
if (*ptr) {
|
|
/* Unreference the old array object */
|
|
struct gl_vertex_array_object *oldObj = *ptr;
|
|
|
|
bool deleteFlag;
|
|
if (oldObj->SharedAndImmutable) {
|
|
deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
|
|
} else {
|
|
assert(oldObj->RefCount > 0);
|
|
oldObj->RefCount--;
|
|
deleteFlag = (oldObj->RefCount == 0);
|
|
}
|
|
|
|
if (deleteFlag)
|
|
_mesa_delete_vao(ctx, oldObj);
|
|
|
|
*ptr = NULL;
|
|
}
|
|
assert(!*ptr);
|
|
|
|
if (vao) {
|
|
/* reference new array object */
|
|
if (vao->SharedAndImmutable) {
|
|
p_atomic_inc(&vao->RefCount);
|
|
} else {
|
|
assert(vao->RefCount > 0);
|
|
vao->RefCount++;
|
|
}
|
|
|
|
*ptr = vao;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Initialize attributes of a vertex array within a vertex array object.
|
|
* \param vao the container vertex array object
|
|
* \param index which array in the VAO to initialize
|
|
* \param size number of components (1, 2, 3 or 4) per attribute
|
|
* \param type datatype of the attribute (GL_FLOAT, GL_INT, etc).
|
|
*/
|
|
static void
|
|
init_array(struct gl_context *ctx,
|
|
struct gl_vertex_array_object *vao,
|
|
gl_vert_attrib index, GLint size, GLint type)
|
|
{
|
|
assert(index < ARRAY_SIZE(vao->VertexAttrib));
|
|
struct gl_array_attributes *array = &vao->VertexAttrib[index];
|
|
assert(index < ARRAY_SIZE(vao->BufferBinding));
|
|
struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[index];
|
|
|
|
_mesa_set_vertex_format(&array->Format, size, type, GL_RGBA,
|
|
GL_FALSE, GL_FALSE, GL_FALSE);
|
|
array->Stride = 0;
|
|
array->Ptr = NULL;
|
|
array->RelativeOffset = 0;
|
|
ASSERT_BITFIELD_SIZE(struct gl_array_attributes, BufferBindingIndex,
|
|
VERT_ATTRIB_MAX - 1);
|
|
array->BufferBindingIndex = index;
|
|
|
|
binding->Offset = 0;
|
|
binding->Stride = array->Format._ElementSize;
|
|
binding->BufferObj = NULL;
|
|
binding->_BoundArrays = BITFIELD_BIT(index);
|
|
|
|
/* Vertex array buffers */
|
|
_mesa_reference_buffer_object(ctx, &binding->BufferObj,
|
|
ctx->Shared->NullBufferObj);
|
|
}
|
|
|
|
|
|
/**
|
|
* Initialize a gl_vertex_array_object's arrays.
|
|
*/
|
|
void
|
|
_mesa_initialize_vao(struct gl_context *ctx,
|
|
struct gl_vertex_array_object *vao,
|
|
GLuint name)
|
|
{
|
|
GLuint i;
|
|
|
|
vao->Name = name;
|
|
|
|
vao->RefCount = 1;
|
|
vao->SharedAndImmutable = false;
|
|
|
|
/* Init the individual arrays */
|
|
for (i = 0; i < ARRAY_SIZE(vao->VertexAttrib); i++) {
|
|
switch (i) {
|
|
case VERT_ATTRIB_NORMAL:
|
|
init_array(ctx, vao, VERT_ATTRIB_NORMAL, 3, GL_FLOAT);
|
|
break;
|
|
case VERT_ATTRIB_COLOR1:
|
|
init_array(ctx, vao, VERT_ATTRIB_COLOR1, 3, GL_FLOAT);
|
|
break;
|
|
case VERT_ATTRIB_FOG:
|
|
init_array(ctx, vao, VERT_ATTRIB_FOG, 1, GL_FLOAT);
|
|
break;
|
|
case VERT_ATTRIB_COLOR_INDEX:
|
|
init_array(ctx, vao, VERT_ATTRIB_COLOR_INDEX, 1, GL_FLOAT);
|
|
break;
|
|
case VERT_ATTRIB_EDGEFLAG:
|
|
init_array(ctx, vao, VERT_ATTRIB_EDGEFLAG, 1, GL_UNSIGNED_BYTE);
|
|
break;
|
|
case VERT_ATTRIB_POINT_SIZE:
|
|
init_array(ctx, vao, VERT_ATTRIB_POINT_SIZE, 1, GL_FLOAT);
|
|
break;
|
|
default:
|
|
init_array(ctx, vao, i, 4, GL_FLOAT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
vao->_AttributeMapMode = ATTRIBUTE_MAP_MODE_IDENTITY;
|
|
|
|
_mesa_reference_buffer_object(ctx, &vao->IndexBufferObj,
|
|
ctx->Shared->NullBufferObj);
|
|
}
|
|
|
|
|
|
/**
|
|
* Compute the offset range for the provided binding.
|
|
*
|
|
* This is a helper function for the below.
|
|
*/
|
|
static void
|
|
compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
|
|
const struct gl_vertex_buffer_binding *binding,
|
|
GLsizeiptr* min, GLsizeiptr* max)
|
|
{
|
|
/* The function is meant to work on VBO bindings */
|
|
assert(_mesa_is_bufferobj(binding->BufferObj));
|
|
|
|
/* Start with an inverted range of relative offsets. */
|
|
GLuint min_offset = ~(GLuint)0;
|
|
GLuint max_offset = 0;
|
|
|
|
/* We work on the unmapped originaly VAO array entries. */
|
|
GLbitfield mask = vao->Enabled & binding->_BoundArrays;
|
|
/* The binding should be active somehow, not to return inverted ranges */
|
|
assert(mask);
|
|
while (mask) {
|
|
const int i = u_bit_scan(&mask);
|
|
const GLuint off = vao->VertexAttrib[i].RelativeOffset;
|
|
min_offset = MIN2(off, min_offset);
|
|
max_offset = MAX2(off, max_offset);
|
|
}
|
|
|
|
*min = binding->Offset + (GLsizeiptr)min_offset;
|
|
*max = binding->Offset + (GLsizeiptr)max_offset;
|
|
}
|
|
|
|
|
|
/**
|
|
* Update the unique binding and pos/generic0 map tracking in the vao.
|
|
*
|
|
* The idea is to build up information in the vao so that a consuming
|
|
* backend can execute the following to set up buffer and vertex element
|
|
* information:
|
|
*
|
|
* const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
|
|
*
|
|
* // Attribute data is in a VBO.
|
|
* GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
|
|
* while (vbomask) {
|
|
* // The attribute index to start pulling a binding
|
|
* const gl_vert_attrib i = ffs(vbomask) - 1;
|
|
* const struct gl_vertex_buffer_binding *const binding
|
|
* = _mesa_draw_buffer_binding(vao, i);
|
|
*
|
|
* <insert code to handle the vertex buffer object at binding>
|
|
*
|
|
* const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
|
|
* GLbitfield attrmask = vbomask & boundmask;
|
|
* assert(attrmask);
|
|
* // Walk attributes belonging to the binding
|
|
* while (attrmask) {
|
|
* const gl_vert_attrib attr = u_bit_scan(&attrmask);
|
|
* const struct gl_array_attributes *const attrib
|
|
* = _mesa_draw_array_attrib(vao, attr);
|
|
*
|
|
* <insert code to handle the vertex element refering to the binding>
|
|
* }
|
|
* vbomask &= ~boundmask;
|
|
* }
|
|
*
|
|
* // Process user space buffers
|
|
* GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
|
|
* while (usermask) {
|
|
* // The attribute index to start pulling a binding
|
|
* const gl_vert_attrib i = ffs(usermask) - 1;
|
|
* const struct gl_vertex_buffer_binding *const binding
|
|
* = _mesa_draw_buffer_binding(vao, i);
|
|
*
|
|
* <insert code to handle a set of interleaved user space arrays at binding>
|
|
*
|
|
* const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
|
|
* GLbitfield attrmask = usermask & boundmask;
|
|
* assert(attrmask);
|
|
* // Walk interleaved attributes with a common stride and instance divisor
|
|
* while (attrmask) {
|
|
* const gl_vert_attrib attr = u_bit_scan(&attrmask);
|
|
* const struct gl_array_attributes *const attrib
|
|
* = _mesa_draw_array_attrib(vao, attr);
|
|
*
|
|
* <insert code to handle non vbo vertex arrays>
|
|
* }
|
|
* usermask &= ~boundmask;
|
|
* }
|
|
*
|
|
* // Process values that should have better been uniforms in the application
|
|
* GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
|
|
* while (curmask) {
|
|
* const gl_vert_attrib attr = u_bit_scan(&curmask);
|
|
* const struct gl_array_attributes *const attrib
|
|
* = _mesa_draw_current_attrib(ctx, attr);
|
|
*
|
|
* <insert code to handle current values>
|
|
* }
|
|
*
|
|
*
|
|
* Note that the scan below must not incoporate any context state.
|
|
* The rationale is that once a VAO is finalized it should not
|
|
* be touched anymore. That means, do not incorporate the
|
|
* gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
|
|
* A backend driver may further reduce the handled vertex processing
|
|
* inputs based on their vertex shader inputs. But scanning for
|
|
* collapsable binding points to reduce relocs is done based on the
|
|
* enabled arrays.
|
|
* Also VAOs may be shared between contexts due to their use in dlists
|
|
* thus no context state should bleed into the VAO.
|
|
*/
|
|
void
|
|
_mesa_update_vao_derived_arrays(struct gl_context *ctx,
|
|
struct gl_vertex_array_object *vao)
|
|
{
|
|
/* Make sure we do not run into problems with shared objects */
|
|
assert(!vao->SharedAndImmutable || vao->NewArrays == 0);
|
|
|
|
/* Limit used for common binding scanning below. */
|
|
const GLsizeiptr MaxRelativeOffset =
|
|
ctx->Const.MaxVertexAttribRelativeOffset;
|
|
|
|
/* The gl_vertex_array_object::_AttributeMapMode denotes the way
|
|
* VERT_ATTRIB_{POS,GENERIC0} mapping is done.
|
|
*
|
|
* This mapping is used to map between the OpenGL api visible
|
|
* VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
|
|
* The mapping only depends on the enabled bits of the
|
|
* VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
|
|
*
|
|
* This map needs to be applied when finally translating to the bitmasks
|
|
* as consumed by the driver backends. The duplicate scanning is here
|
|
* can as well be done in the OpenGL API numbering without this map.
|
|
*/
|
|
const gl_attribute_map_mode mode = vao->_AttributeMapMode;
|
|
/* Enabled array bits. */
|
|
const GLbitfield enabled = vao->Enabled;
|
|
/* VBO array bits. */
|
|
const GLbitfield vbos = vao->VertexAttribBufferMask;
|
|
const GLbitfield divisor_is_nonzero = vao->NonZeroDivisorMask;
|
|
|
|
/* Compute and store effectively enabled and mapped vbo arrays */
|
|
vao->_EffEnabledVBO = _mesa_vao_enable_to_vp_inputs(mode, enabled & vbos);
|
|
vao->_EffEnabledNonZeroDivisor =
|
|
_mesa_vao_enable_to_vp_inputs(mode, enabled & divisor_is_nonzero);
|
|
/* Walk those enabled arrays that have a real vbo attached */
|
|
GLbitfield mask = enabled;
|
|
while (mask) {
|
|
/* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
|
|
const int i = ffs(mask) - 1;
|
|
/* The binding from the first to be processed attribute. */
|
|
const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
|
|
struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
|
|
|
|
/* The scan goes different for user space arrays than vbos */
|
|
if (_mesa_is_bufferobj(binding->BufferObj)) {
|
|
/* The bound arrays. */
|
|
const GLbitfield bound = enabled & binding->_BoundArrays;
|
|
|
|
/* Start this current effective binding with the actual bound arrays */
|
|
GLbitfield eff_bound_arrays = bound;
|
|
|
|
/*
|
|
* If there is nothing left to scan just update the effective binding
|
|
* information. If the VAO is already only using a single binding point
|
|
* we end up here. So the overhead of this scan for an application
|
|
* carefully preparing the VAO for draw is low.
|
|
*/
|
|
|
|
GLbitfield scanmask = mask & vbos & ~bound;
|
|
/* Is there something left to scan? */
|
|
if (scanmask == 0) {
|
|
/* Just update the back reference from the attrib to the binding and
|
|
* the effective offset.
|
|
*/
|
|
GLbitfield attrmask = eff_bound_arrays;
|
|
while (attrmask) {
|
|
const int j = u_bit_scan(&attrmask);
|
|
struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
|
|
|
|
/* Update the index into the common binding point and offset */
|
|
attrib2->_EffBufferBindingIndex = bindex;
|
|
attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
|
|
assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
|
|
}
|
|
/* Finally this is the set of effectively bound arrays with the
|
|
* original binding offset.
|
|
*/
|
|
binding->_EffOffset = binding->Offset;
|
|
/* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
|
|
binding->_EffBoundArrays =
|
|
_mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
|
|
|
|
} else {
|
|
/* In the VBO case, scan for attribute/binding
|
|
* combinations with relative bindings in the range of
|
|
* [0, ctx->Const.MaxVertexAttribRelativeOffset].
|
|
* Note that this does also go beyond just interleaved arrays
|
|
* as long as they use the same VBO, binding parameters and the
|
|
* offsets stay within bounds that the backend still can handle.
|
|
*/
|
|
|
|
GLsizeiptr min_offset, max_offset;
|
|
compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
|
|
assert(max_offset <= min_offset + MaxRelativeOffset);
|
|
|
|
/* Now scan. */
|
|
while (scanmask) {
|
|
/* Do not use u_bit_scan as we can walk multiple
|
|
* attrib arrays at once
|
|
*/
|
|
const int j = ffs(scanmask) - 1;
|
|
const struct gl_array_attributes *attrib2 =
|
|
&vao->VertexAttrib[j];
|
|
const struct gl_vertex_buffer_binding *binding2 =
|
|
&vao->BufferBinding[attrib2->BufferBindingIndex];
|
|
|
|
/* Remove those attrib bits from the mask that are bound to the
|
|
* same effective binding point.
|
|
*/
|
|
const GLbitfield bound2 = enabled & binding2->_BoundArrays;
|
|
scanmask &= ~bound2;
|
|
|
|
/* Check if we have an identical binding */
|
|
if (binding->Stride != binding2->Stride)
|
|
continue;
|
|
if (binding->InstanceDivisor != binding2->InstanceDivisor)
|
|
continue;
|
|
if (binding->BufferObj != binding2->BufferObj)
|
|
continue;
|
|
/* Check if we can fold both bindings into a common binding */
|
|
GLsizeiptr min_offset2, max_offset2;
|
|
compute_vbo_offset_range(vao, binding2,
|
|
&min_offset2, &max_offset2);
|
|
/* If the relative offset is within the limits ... */
|
|
if (min_offset + MaxRelativeOffset < max_offset2)
|
|
continue;
|
|
if (min_offset2 + MaxRelativeOffset < max_offset)
|
|
continue;
|
|
/* ... add this array to the effective binding */
|
|
eff_bound_arrays |= bound2;
|
|
min_offset = MIN2(min_offset, min_offset2);
|
|
max_offset = MAX2(max_offset, max_offset2);
|
|
assert(max_offset <= min_offset + MaxRelativeOffset);
|
|
}
|
|
|
|
/* Update the back reference from the attrib to the binding */
|
|
GLbitfield attrmask = eff_bound_arrays;
|
|
while (attrmask) {
|
|
const int j = u_bit_scan(&attrmask);
|
|
struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
|
|
const struct gl_vertex_buffer_binding *binding2 =
|
|
&vao->BufferBinding[attrib2->BufferBindingIndex];
|
|
|
|
/* Update the index into the common binding point and offset */
|
|
attrib2->_EffBufferBindingIndex = bindex;
|
|
attrib2->_EffRelativeOffset =
|
|
binding2->Offset + attrib2->RelativeOffset - min_offset;
|
|
assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
|
|
}
|
|
/* Finally this is the set of effectively bound arrays */
|
|
binding->_EffOffset = min_offset;
|
|
/* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
|
|
binding->_EffBoundArrays =
|
|
_mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
|
|
}
|
|
|
|
/* Mark all the effective bound arrays as processed. */
|
|
mask &= ~eff_bound_arrays;
|
|
|
|
} else {
|
|
/* Scanning of common bindings for user space arrays.
|
|
*/
|
|
|
|
const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
|
|
const GLbitfield bound = VERT_BIT(i);
|
|
|
|
/* Note that user space array pointers can only happen using a one
|
|
* to one binding point to array mapping.
|
|
* The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
|
|
* user space arrays collected at multiple binding points.
|
|
* The only provider of user space interleaved arrays with a single
|
|
* binding point is the mesa internal vbo module. But that one
|
|
* provides a perfect interleaved set of arrays.
|
|
*
|
|
* If this would not be true we would potentially get attribute arrays
|
|
* with user space pointers that may not lie within the
|
|
* MaxRelativeOffset range but still attached to a single binding.
|
|
* Then we would need to store the effective attribute and binding
|
|
* grouping information in a seperate array beside
|
|
* gl_array_attributes/gl_vertex_buffer_binding.
|
|
*/
|
|
assert(util_bitcount(binding->_BoundArrays & vao->Enabled) == 1
|
|
|| (vao->Enabled & ~binding->_BoundArrays) == 0);
|
|
|
|
/* Start this current effective binding with the array */
|
|
GLbitfield eff_bound_arrays = bound;
|
|
|
|
const GLubyte *ptr = attrib->Ptr;
|
|
unsigned vertex_end = attrib->Format._ElementSize;
|
|
|
|
/* Walk other user space arrays and see which are interleaved
|
|
* using the same binding parameters.
|
|
*/
|
|
GLbitfield scanmask = mask & ~vbos & ~bound;
|
|
while (scanmask) {
|
|
const int j = u_bit_scan(&scanmask);
|
|
const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
|
|
const struct gl_vertex_buffer_binding *binding2 =
|
|
&vao->BufferBinding[attrib2->BufferBindingIndex];
|
|
|
|
/* See the comment at the same assert above. */
|
|
assert(util_bitcount(binding2->_BoundArrays & vao->Enabled) == 1
|
|
|| (vao->Enabled & ~binding->_BoundArrays) == 0);
|
|
|
|
/* Check if we have an identical binding */
|
|
if (binding->Stride != binding2->Stride)
|
|
continue;
|
|
if (binding->InstanceDivisor != binding2->InstanceDivisor)
|
|
continue;
|
|
if (ptr <= attrib2->Ptr) {
|
|
if (ptr + binding->Stride < attrib2->Ptr +
|
|
attrib2->Format._ElementSize)
|
|
continue;
|
|
unsigned end = attrib2->Ptr + attrib2->Format._ElementSize - ptr;
|
|
vertex_end = MAX2(vertex_end, end);
|
|
} else {
|
|
if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
|
|
continue;
|
|
vertex_end += (GLsizei)(ptr - attrib2->Ptr);
|
|
ptr = attrib2->Ptr;
|
|
}
|
|
|
|
/* User space buffer object */
|
|
assert(!_mesa_is_bufferobj(binding2->BufferObj));
|
|
|
|
eff_bound_arrays |= VERT_BIT(j);
|
|
}
|
|
|
|
/* Update the back reference from the attrib to the binding */
|
|
GLbitfield attrmask = eff_bound_arrays;
|
|
while (attrmask) {
|
|
const int j = u_bit_scan(&attrmask);
|
|
struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
|
|
|
|
/* Update the index into the common binding point and the offset */
|
|
attrib2->_EffBufferBindingIndex = bindex;
|
|
attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
|
|
assert(attrib2->_EffRelativeOffset <= binding->Stride);
|
|
}
|
|
/* Finally this is the set of effectively bound arrays */
|
|
binding->_EffOffset = (GLintptr)ptr;
|
|
/* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
|
|
binding->_EffBoundArrays =
|
|
_mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
|
|
|
|
/* Mark all the effective bound arrays as processed. */
|
|
mask &= ~eff_bound_arrays;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* Make sure the above code works as expected. */
|
|
for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
|
|
/* Query the original api defined attrib/binding information ... */
|
|
const unsigned char *const map =_mesa_vao_attribute_map[mode];
|
|
if (vao->Enabled & VERT_BIT(map[attr])) {
|
|
const struct gl_array_attributes *attrib =
|
|
&vao->VertexAttrib[map[attr]];
|
|
const struct gl_vertex_buffer_binding *binding =
|
|
&vao->BufferBinding[attrib->BufferBindingIndex];
|
|
/* ... and compare that with the computed attrib/binding */
|
|
const struct gl_vertex_buffer_binding *binding2 =
|
|
&vao->BufferBinding[attrib->_EffBufferBindingIndex];
|
|
assert(binding->Stride == binding2->Stride);
|
|
assert(binding->InstanceDivisor == binding2->InstanceDivisor);
|
|
assert(binding->BufferObj == binding2->BufferObj);
|
|
if (_mesa_is_bufferobj(binding->BufferObj)) {
|
|
assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
|
|
assert(binding->Offset + attrib->RelativeOffset ==
|
|
binding2->_EffOffset + attrib->_EffRelativeOffset);
|
|
} else {
|
|
assert(attrib->_EffRelativeOffset < binding->Stride);
|
|
assert((GLintptr)attrib->Ptr ==
|
|
binding2->_EffOffset + attrib->_EffRelativeOffset);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
_mesa_set_vao_immutable(struct gl_context *ctx,
|
|
struct gl_vertex_array_object *vao)
|
|
{
|
|
_mesa_update_vao_derived_arrays(ctx, vao);
|
|
vao->NewArrays = 0;
|
|
vao->SharedAndImmutable = true;
|
|
}
|
|
|
|
|
|
bool
|
|
_mesa_all_varyings_in_vbos(const struct gl_vertex_array_object *vao)
|
|
{
|
|
/* Walk those enabled arrays that have the default vbo attached */
|
|
GLbitfield mask = vao->Enabled & ~vao->VertexAttribBufferMask;
|
|
|
|
while (mask) {
|
|
/* Do not use u_bit_scan64 as we can walk multiple
|
|
* attrib arrays at once
|
|
*/
|
|
const int i = ffs(mask) - 1;
|
|
const struct gl_array_attributes *attrib_array =
|
|
&vao->VertexAttrib[i];
|
|
const struct gl_vertex_buffer_binding *buffer_binding =
|
|
&vao->BufferBinding[attrib_array->BufferBindingIndex];
|
|
|
|
/* We have already masked out vao->VertexAttribBufferMask */
|
|
assert(!_mesa_is_bufferobj(buffer_binding->BufferObj));
|
|
|
|
/* Bail out once we find the first non vbo with a non zero stride */
|
|
if (buffer_binding->Stride != 0)
|
|
return false;
|
|
|
|
/* Note that we cannot use the xor variant since the _BoundArray mask
|
|
* may contain array attributes that are bound but not enabled.
|
|
*/
|
|
mask &= ~buffer_binding->_BoundArrays;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
_mesa_all_buffers_are_unmapped(const struct gl_vertex_array_object *vao)
|
|
{
|
|
/* Walk the enabled arrays that have a vbo attached */
|
|
GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
|
|
|
|
while (mask) {
|
|
const int i = ffs(mask) - 1;
|
|
const struct gl_array_attributes *attrib_array =
|
|
&vao->VertexAttrib[i];
|
|
const struct gl_vertex_buffer_binding *buffer_binding =
|
|
&vao->BufferBinding[attrib_array->BufferBindingIndex];
|
|
|
|
/* We have already masked with vao->VertexAttribBufferMask */
|
|
assert(_mesa_is_bufferobj(buffer_binding->BufferObj));
|
|
|
|
/* Bail out once we find the first disallowed mapping */
|
|
if (_mesa_check_disallowed_mapping(buffer_binding->BufferObj))
|
|
return false;
|
|
|
|
/* We have handled everything that is bound to this buffer_binding. */
|
|
mask &= ~buffer_binding->_BoundArrays;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Map buffer objects used in attribute arrays.
|
|
*/
|
|
void
|
|
_mesa_vao_map_arrays(struct gl_context *ctx, struct gl_vertex_array_object *vao,
|
|
GLbitfield access)
|
|
{
|
|
GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
|
|
while (mask) {
|
|
/* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
|
|
const gl_vert_attrib attr = ffs(mask) - 1;
|
|
const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
|
|
struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
|
|
mask &= ~binding->_BoundArrays;
|
|
|
|
struct gl_buffer_object *bo = binding->BufferObj;
|
|
assert(_mesa_is_bufferobj(bo));
|
|
if (_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
|
|
continue;
|
|
|
|
ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Map buffer objects used in the vao, attribute arrays and index buffer.
|
|
*/
|
|
void
|
|
_mesa_vao_map(struct gl_context *ctx, struct gl_vertex_array_object *vao,
|
|
GLbitfield access)
|
|
{
|
|
struct gl_buffer_object *bo = vao->IndexBufferObj;
|
|
|
|
/* map the index buffer, if there is one, and not already mapped */
|
|
if (_mesa_is_bufferobj(bo) && !_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
|
|
ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
|
|
|
|
_mesa_vao_map_arrays(ctx, vao, access);
|
|
}
|
|
|
|
|
|
/**
|
|
* Unmap buffer objects used in attribute arrays.
|
|
*/
|
|
void
|
|
_mesa_vao_unmap_arrays(struct gl_context *ctx,
|
|
struct gl_vertex_array_object *vao)
|
|
{
|
|
GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
|
|
while (mask) {
|
|
/* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
|
|
const gl_vert_attrib attr = ffs(mask) - 1;
|
|
const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
|
|
struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
|
|
mask &= ~binding->_BoundArrays;
|
|
|
|
struct gl_buffer_object *bo = binding->BufferObj;
|
|
assert(_mesa_is_bufferobj(bo));
|
|
if (!_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
|
|
continue;
|
|
|
|
ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Unmap buffer objects used in the vao, attribute arrays and index buffer.
|
|
*/
|
|
void
|
|
_mesa_vao_unmap(struct gl_context *ctx, struct gl_vertex_array_object *vao)
|
|
{
|
|
struct gl_buffer_object *bo = vao->IndexBufferObj;
|
|
|
|
/* unmap the index buffer, if there is one, and still mapped */
|
|
if (_mesa_is_bufferobj(bo) && _mesa_bufferobj_mapped(bo, MAP_INTERNAL))
|
|
ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
|
|
|
|
_mesa_vao_unmap_arrays(ctx, vao);
|
|
}
|
|
|
|
|
|
/**********************************************************************/
|
|
/* API Functions */
|
|
/**********************************************************************/
|
|
|
|
|
|
/**
|
|
* ARB version of glBindVertexArray()
|
|
*/
|
|
static ALWAYS_INLINE void
|
|
bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
|
|
{
|
|
struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
|
|
struct gl_vertex_array_object *newObj = NULL;
|
|
|
|
assert(oldObj != NULL);
|
|
|
|
if (oldObj->Name == id)
|
|
return; /* rebinding the same array object- no change */
|
|
|
|
/*
|
|
* Get pointer to new array object (newObj)
|
|
*/
|
|
if (id == 0) {
|
|
/* The spec says there is no array object named 0, but we use
|
|
* one internally because it simplifies things.
|
|
*/
|
|
newObj = ctx->Array.DefaultVAO;
|
|
}
|
|
else {
|
|
/* non-default array object */
|
|
newObj = _mesa_lookup_vao(ctx, id);
|
|
if (!no_error && !newObj) {
|
|
_mesa_error(ctx, GL_INVALID_OPERATION,
|
|
"glBindVertexArray(non-gen name)");
|
|
return;
|
|
}
|
|
|
|
newObj->EverBound = GL_TRUE;
|
|
}
|
|
|
|
/* The _DrawArrays pointer is pointing at the VAO being unbound and
|
|
* that VAO may be in the process of being deleted. If it's not going
|
|
* to be deleted, this will have no effect, because the pointer needs
|
|
* to be updated by the VBO module anyway.
|
|
*
|
|
* Before the VBO module can update the pointer, we have to set it
|
|
* to NULL for drivers not to set up arrays which are not bound,
|
|
* or to prevent a crash if the VAO being unbound is going to be
|
|
* deleted.
|
|
*/
|
|
_mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
|
|
|
|
_mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_BindVertexArray_no_error(GLuint id)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
bind_vertex_array(ctx, id, true);
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_BindVertexArray(GLuint id)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
bind_vertex_array(ctx, id, false);
|
|
}
|
|
|
|
|
|
/**
|
|
* Delete a set of array objects.
|
|
*
|
|
* \param n Number of array objects to delete.
|
|
* \param ids Array of \c n array object IDs.
|
|
*/
|
|
static void
|
|
delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
|
|
{
|
|
GLsizei i;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
/* IDs equal to 0 should be silently ignored. */
|
|
if (!ids[i])
|
|
continue;
|
|
|
|
struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
|
|
|
|
if (obj) {
|
|
assert(obj->Name == ids[i]);
|
|
|
|
/* If the array object is currently bound, the spec says "the binding
|
|
* for that object reverts to zero and the default vertex array
|
|
* becomes current."
|
|
*/
|
|
if (obj == ctx->Array.VAO)
|
|
_mesa_BindVertexArray_no_error(0);
|
|
|
|
/* The ID is immediately freed for re-use */
|
|
_mesa_HashRemoveLocked(ctx->Array.Objects, obj->Name);
|
|
|
|
if (ctx->Array.LastLookedUpVAO == obj)
|
|
_mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
|
|
if (ctx->Array._DrawVAO == obj)
|
|
_mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
|
|
|
|
/* Unreference the array object.
|
|
* If refcount hits zero, the object will be deleted.
|
|
*/
|
|
_mesa_reference_vao(ctx, &obj, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
delete_vertex_arrays(ctx, n, ids);
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
|
|
if (n < 0) {
|
|
_mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
|
|
return;
|
|
}
|
|
|
|
delete_vertex_arrays(ctx, n, ids);
|
|
}
|
|
|
|
|
|
/**
|
|
* Generate a set of unique array object IDs and store them in \c arrays.
|
|
* Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
|
|
* below.
|
|
*
|
|
* \param n Number of IDs to generate.
|
|
* \param arrays Array of \c n locations to store the IDs.
|
|
* \param create Indicates that the objects should also be created.
|
|
* \param func The name of the GL entry point.
|
|
*/
|
|
static void
|
|
gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
|
|
bool create, const char *func)
|
|
{
|
|
GLuint first;
|
|
GLint i;
|
|
|
|
if (!arrays)
|
|
return;
|
|
|
|
first = _mesa_HashFindFreeKeyBlock(ctx->Array.Objects, n);
|
|
|
|
/* For the sake of simplicity we create the array objects in both
|
|
* the Gen* and Create* cases. The only difference is the value of
|
|
* EverBound, which is set to true in the Create* case.
|
|
*/
|
|
for (i = 0; i < n; i++) {
|
|
struct gl_vertex_array_object *obj;
|
|
GLuint name = first + i;
|
|
|
|
obj = _mesa_new_vao(ctx, name);
|
|
if (!obj) {
|
|
_mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
|
|
return;
|
|
}
|
|
obj->EverBound = create;
|
|
_mesa_HashInsertLocked(ctx->Array.Objects, obj->Name, obj);
|
|
arrays[i] = first + i;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
|
|
bool create, const char *func)
|
|
{
|
|
if (n < 0) {
|
|
_mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
|
|
return;
|
|
}
|
|
|
|
gen_vertex_arrays(ctx, n, arrays, create, func);
|
|
}
|
|
|
|
|
|
/**
|
|
* ARB version of glGenVertexArrays()
|
|
* All arrays will be required to live in VBOs.
|
|
*/
|
|
void GLAPIENTRY
|
|
_mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
|
|
}
|
|
|
|
|
|
/**
|
|
* ARB_direct_state_access
|
|
* Generates ID's and creates the array objects.
|
|
*/
|
|
void GLAPIENTRY
|
|
_mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine if ID is the name of an array object.
|
|
*
|
|
* \param id ID of the potential array object.
|
|
* \return \c GL_TRUE if \c id is the name of a array object,
|
|
* \c GL_FALSE otherwise.
|
|
*/
|
|
GLboolean GLAPIENTRY
|
|
_mesa_IsVertexArray( GLuint id )
|
|
{
|
|
struct gl_vertex_array_object * obj;
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
|
|
|
|
obj = _mesa_lookup_vao(ctx, id);
|
|
|
|
return obj != NULL && obj->EverBound;
|
|
}
|
|
|
|
|
|
/**
|
|
* Sets the element array buffer binding of a vertex array object.
|
|
*
|
|
* This is the ARB_direct_state_access equivalent of
|
|
* glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
|
|
*/
|
|
static ALWAYS_INLINE void
|
|
vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
|
|
bool no_error)
|
|
{
|
|
struct gl_vertex_array_object *vao;
|
|
struct gl_buffer_object *bufObj;
|
|
|
|
ASSERT_OUTSIDE_BEGIN_END(ctx);
|
|
|
|
if (!no_error) {
|
|
/* The GL_ARB_direct_state_access specification says:
|
|
*
|
|
* "An INVALID_OPERATION error is generated by
|
|
* VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
|
|
* zero or] the name of an existing vertex array object."
|
|
*/
|
|
vao =_mesa_lookup_vao_err(ctx, vaobj, false, "glVertexArrayElementBuffer");
|
|
if (!vao)
|
|
return;
|
|
} else {
|
|
vao = _mesa_lookup_vao(ctx, vaobj);
|
|
}
|
|
|
|
if (buffer != 0) {
|
|
if (!no_error) {
|
|
/* The GL_ARB_direct_state_access specification says:
|
|
*
|
|
* "An INVALID_OPERATION error is generated if <buffer> is not zero
|
|
* or the name of an existing buffer object."
|
|
*/
|
|
bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
|
|
"glVertexArrayElementBuffer");
|
|
} else {
|
|
bufObj = _mesa_lookup_bufferobj(ctx, buffer);
|
|
}
|
|
} else {
|
|
bufObj = ctx->Shared->NullBufferObj;
|
|
}
|
|
|
|
if (bufObj) {
|
|
bufObj->UsageHistory |= USAGE_ELEMENT_ARRAY_BUFFER;
|
|
_mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
|
|
}
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
vertex_array_element_buffer(ctx, vaobj, buffer, true);
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
vertex_array_element_buffer(ctx, vaobj, buffer, false);
|
|
}
|
|
|
|
|
|
void GLAPIENTRY
|
|
_mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
|
|
{
|
|
GET_CURRENT_CONTEXT(ctx);
|
|
struct gl_vertex_array_object *vao;
|
|
|
|
ASSERT_OUTSIDE_BEGIN_END(ctx);
|
|
|
|
/* The GL_ARB_direct_state_access specification says:
|
|
*
|
|
* "An INVALID_OPERATION error is generated if <vaobj> is not
|
|
* [compatibility profile: zero or] the name of an existing
|
|
* vertex array object."
|
|
*/
|
|
vao = _mesa_lookup_vao_err(ctx, vaobj, false, "glGetVertexArrayiv");
|
|
if (!vao)
|
|
return;
|
|
|
|
/* The GL_ARB_direct_state_access specification says:
|
|
*
|
|
* "An INVALID_ENUM error is generated if <pname> is not
|
|
* ELEMENT_ARRAY_BUFFER_BINDING."
|
|
*/
|
|
if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
|
|
_mesa_error(ctx, GL_INVALID_ENUM,
|
|
"glGetVertexArrayiv(pname != "
|
|
"GL_ELEMENT_ARRAY_BUFFER_BINDING)");
|
|
return;
|
|
}
|
|
|
|
param[0] = vao->IndexBufferObj->Name;
|
|
}
|