
Change block_pool->bo to be a pointer, and update its usage everywhere. This makes it simpler to switch it later to a list of BOs. v3: - Use a static "bos" field in the struct, instead of malloc'ing it. This will be later changed to a fixed length array of BOs. Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
1745 lines
57 KiB
C
1745 lines
57 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
#include <linux/memfd.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include "anv_private.h"
|
|
|
|
#include "util/hash_table.h"
|
|
#include "util/simple_mtx.h"
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
#define VG_NOACCESS_READ(__ptr) ({ \
|
|
VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
|
|
__typeof(*(__ptr)) __val = *(__ptr); \
|
|
VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
|
|
__val; \
|
|
})
|
|
#define VG_NOACCESS_WRITE(__ptr, __val) ({ \
|
|
VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
|
|
*(__ptr) = (__val); \
|
|
VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
|
|
})
|
|
#else
|
|
#define VG_NOACCESS_READ(__ptr) (*(__ptr))
|
|
#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
|
|
#endif
|
|
|
|
/* Design goals:
|
|
*
|
|
* - Lock free (except when resizing underlying bos)
|
|
*
|
|
* - Constant time allocation with typically only one atomic
|
|
*
|
|
* - Multiple allocation sizes without fragmentation
|
|
*
|
|
* - Can grow while keeping addresses and offset of contents stable
|
|
*
|
|
* - All allocations within one bo so we can point one of the
|
|
* STATE_BASE_ADDRESS pointers at it.
|
|
*
|
|
* The overall design is a two-level allocator: top level is a fixed size, big
|
|
* block (8k) allocator, which operates out of a bo. Allocation is done by
|
|
* either pulling a block from the free list or growing the used range of the
|
|
* bo. Growing the range may run out of space in the bo which we then need to
|
|
* grow. Growing the bo is tricky in a multi-threaded, lockless environment:
|
|
* we need to keep all pointers and contents in the old map valid. GEM bos in
|
|
* general can't grow, but we use a trick: we create a memfd and use ftruncate
|
|
* to grow it as necessary. We mmap the new size and then create a gem bo for
|
|
* it using the new gem userptr ioctl. Without heavy-handed locking around
|
|
* our allocation fast-path, there isn't really a way to munmap the old mmap,
|
|
* so we just keep it around until garbage collection time. While the block
|
|
* allocator is lockless for normal operations, we block other threads trying
|
|
* to allocate while we're growing the map. It sholdn't happen often, and
|
|
* growing is fast anyway.
|
|
*
|
|
* At the next level we can use various sub-allocators. The state pool is a
|
|
* pool of smaller, fixed size objects, which operates much like the block
|
|
* pool. It uses a free list for freeing objects, but when it runs out of
|
|
* space it just allocates a new block from the block pool. This allocator is
|
|
* intended for longer lived state objects such as SURFACE_STATE and most
|
|
* other persistent state objects in the API. We may need to track more info
|
|
* with these object and a pointer back to the CPU object (eg VkImage). In
|
|
* those cases we just allocate a slightly bigger object and put the extra
|
|
* state after the GPU state object.
|
|
*
|
|
* The state stream allocator works similar to how the i965 DRI driver streams
|
|
* all its state. Even with Vulkan, we need to emit transient state (whether
|
|
* surface state base or dynamic state base), and for that we can just get a
|
|
* block and fill it up. These cases are local to a command buffer and the
|
|
* sub-allocator need not be thread safe. The streaming allocator gets a new
|
|
* block when it runs out of space and chains them together so they can be
|
|
* easily freed.
|
|
*/
|
|
|
|
/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
|
|
* We use it to indicate the free list is empty. */
|
|
#define EMPTY UINT32_MAX
|
|
|
|
#define PAGE_SIZE 4096
|
|
|
|
struct anv_mmap_cleanup {
|
|
void *map;
|
|
size_t size;
|
|
uint32_t gem_handle;
|
|
};
|
|
|
|
#define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
|
|
|
|
#ifndef HAVE_MEMFD_CREATE
|
|
static inline int
|
|
memfd_create(const char *name, unsigned int flags)
|
|
{
|
|
return syscall(SYS_memfd_create, name, flags);
|
|
}
|
|
#endif
|
|
|
|
static inline uint32_t
|
|
ilog2_round_up(uint32_t value)
|
|
{
|
|
assert(value != 0);
|
|
return 32 - __builtin_clz(value - 1);
|
|
}
|
|
|
|
static inline uint32_t
|
|
round_to_power_of_two(uint32_t value)
|
|
{
|
|
return 1 << ilog2_round_up(value);
|
|
}
|
|
|
|
struct anv_state_table_cleanup {
|
|
void *map;
|
|
size_t size;
|
|
};
|
|
|
|
#define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
|
|
#define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
|
|
|
|
static VkResult
|
|
anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
|
|
|
|
VkResult
|
|
anv_state_table_init(struct anv_state_table *table,
|
|
struct anv_device *device,
|
|
uint32_t initial_entries)
|
|
{
|
|
VkResult result;
|
|
|
|
table->device = device;
|
|
|
|
table->fd = memfd_create("state table", MFD_CLOEXEC);
|
|
if (table->fd == -1)
|
|
return vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
|
|
/* Just make it 2GB up-front. The Linux kernel won't actually back it
|
|
* with pages until we either map and fault on one of them or we use
|
|
* userptr and send a chunk of it off to the GPU.
|
|
*/
|
|
if (ftruncate(table->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
if (!u_vector_init(&table->mmap_cleanups,
|
|
round_to_power_of_two(sizeof(struct anv_state_table_cleanup)),
|
|
128)) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
table->state.next = 0;
|
|
table->state.end = 0;
|
|
table->size = 0;
|
|
|
|
uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
|
|
result = anv_state_table_expand_range(table, initial_size);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_mmap_cleanups;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_mmap_cleanups:
|
|
u_vector_finish(&table->mmap_cleanups);
|
|
fail_fd:
|
|
close(table->fd);
|
|
|
|
return result;
|
|
}
|
|
|
|
static VkResult
|
|
anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
|
|
{
|
|
void *map;
|
|
struct anv_mmap_cleanup *cleanup;
|
|
|
|
/* Assert that we only ever grow the pool */
|
|
assert(size >= table->state.end);
|
|
|
|
/* Make sure that we don't go outside the bounds of the memfd */
|
|
if (size > BLOCK_POOL_MEMFD_SIZE)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
cleanup = u_vector_add(&table->mmap_cleanups);
|
|
if (!cleanup)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
*cleanup = ANV_MMAP_CLEANUP_INIT;
|
|
|
|
/* Just leak the old map until we destroy the pool. We can't munmap it
|
|
* without races or imposing locking on the block allocate fast path. On
|
|
* the whole the leaked maps adds up to less than the size of the
|
|
* current map. MAP_POPULATE seems like the right thing to do, but we
|
|
* should try to get some numbers.
|
|
*/
|
|
map = mmap(NULL, size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_POPULATE, table->fd, 0);
|
|
if (map == MAP_FAILED) {
|
|
return vk_errorf(table->device->instance, table->device,
|
|
VK_ERROR_OUT_OF_HOST_MEMORY, "mmap failed: %m");
|
|
}
|
|
|
|
cleanup->map = map;
|
|
cleanup->size = size;
|
|
|
|
table->map = map;
|
|
table->size = size;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_state_table_grow(struct anv_state_table *table)
|
|
{
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
|
|
PAGE_SIZE);
|
|
uint32_t old_size = table->size;
|
|
|
|
/* The block pool is always initialized to a nonzero size and this function
|
|
* is always called after initialization.
|
|
*/
|
|
assert(old_size > 0);
|
|
|
|
uint32_t required = MAX2(used, old_size);
|
|
if (used * 2 <= required) {
|
|
/* If we're in this case then this isn't the firsta allocation and we
|
|
* already have enough space on both sides to hold double what we
|
|
* have allocated. There's nothing for us to do.
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
uint32_t size = old_size * 2;
|
|
while (size < required)
|
|
size *= 2;
|
|
|
|
assert(size > table->size);
|
|
|
|
result = anv_state_table_expand_range(table, size);
|
|
|
|
done:
|
|
return result;
|
|
}
|
|
|
|
void
|
|
anv_state_table_finish(struct anv_state_table *table)
|
|
{
|
|
struct anv_state_table_cleanup *cleanup;
|
|
|
|
u_vector_foreach(cleanup, &table->mmap_cleanups) {
|
|
if (cleanup->map)
|
|
munmap(cleanup->map, cleanup->size);
|
|
}
|
|
|
|
u_vector_finish(&table->mmap_cleanups);
|
|
|
|
close(table->fd);
|
|
}
|
|
|
|
VkResult
|
|
anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
|
|
uint32_t count)
|
|
{
|
|
struct anv_block_state state, old, new;
|
|
VkResult result;
|
|
|
|
assert(idx);
|
|
|
|
while(1) {
|
|
state.u64 = __sync_fetch_and_add(&table->state.u64, count);
|
|
if (state.next + count <= state.end) {
|
|
assert(table->map);
|
|
struct anv_free_entry *entry = &table->map[state.next];
|
|
for (int i = 0; i < count; i++) {
|
|
entry[i].state.idx = state.next + i;
|
|
}
|
|
*idx = state.next;
|
|
return VK_SUCCESS;
|
|
} else if (state.next <= state.end) {
|
|
/* We allocated the first block outside the pool so we have to grow
|
|
* the pool. pool_state->next acts a mutex: threads who try to
|
|
* allocate now will get block indexes above the current limit and
|
|
* hit futex_wait below.
|
|
*/
|
|
new.next = state.next + count;
|
|
do {
|
|
result = anv_state_table_grow(table);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
new.end = table->size / ANV_STATE_ENTRY_SIZE;
|
|
} while (new.end < new.next);
|
|
|
|
old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
|
|
if (old.next != state.next)
|
|
futex_wake(&table->state.end, INT_MAX);
|
|
} else {
|
|
futex_wait(&table->state.end, state.end, NULL);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
anv_free_list_push(union anv_free_list *list,
|
|
struct anv_state_table *table,
|
|
uint32_t first, uint32_t count)
|
|
{
|
|
union anv_free_list current, old, new;
|
|
uint32_t last = first;
|
|
|
|
for (uint32_t i = 1; i < count; i++, last++)
|
|
table->map[last].next = last + 1;
|
|
|
|
old = *list;
|
|
do {
|
|
current = old;
|
|
table->map[last].next = current.offset;
|
|
new.offset = first;
|
|
new.count = current.count + 1;
|
|
old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
|
|
} while (old.u64 != current.u64);
|
|
}
|
|
|
|
struct anv_state *
|
|
anv_free_list_pop(union anv_free_list *list,
|
|
struct anv_state_table *table)
|
|
{
|
|
union anv_free_list current, new, old;
|
|
|
|
current.u64 = list->u64;
|
|
while (current.offset != EMPTY) {
|
|
__sync_synchronize();
|
|
new.offset = table->map[current.offset].next;
|
|
new.count = current.count + 1;
|
|
old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
|
|
if (old.u64 == current.u64) {
|
|
struct anv_free_entry *entry = &table->map[current.offset];
|
|
return &entry->state;
|
|
}
|
|
current = old;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* All pointers in the ptr_free_list are assumed to be page-aligned. This
|
|
* means that the bottom 12 bits should all be zero.
|
|
*/
|
|
#define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
|
|
#define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
|
|
#define PFL_PACK(ptr, count) ({ \
|
|
(void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
|
|
})
|
|
|
|
static bool
|
|
anv_ptr_free_list_pop(void **list, void **elem)
|
|
{
|
|
void *current = *list;
|
|
while (PFL_PTR(current) != NULL) {
|
|
void **next_ptr = PFL_PTR(current);
|
|
void *new_ptr = VG_NOACCESS_READ(next_ptr);
|
|
unsigned new_count = PFL_COUNT(current) + 1;
|
|
void *new = PFL_PACK(new_ptr, new_count);
|
|
void *old = __sync_val_compare_and_swap(list, current, new);
|
|
if (old == current) {
|
|
*elem = PFL_PTR(current);
|
|
return true;
|
|
}
|
|
current = old;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
anv_ptr_free_list_push(void **list, void *elem)
|
|
{
|
|
void *old, *current;
|
|
void **next_ptr = elem;
|
|
|
|
/* The pointer-based free list requires that the pointer be
|
|
* page-aligned. This is because we use the bottom 12 bits of the
|
|
* pointer to store a counter to solve the ABA concurrency problem.
|
|
*/
|
|
assert(((uintptr_t)elem & 0xfff) == 0);
|
|
|
|
old = *list;
|
|
do {
|
|
current = old;
|
|
VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
|
|
unsigned new_count = PFL_COUNT(current) + 1;
|
|
void *new = PFL_PACK(elem, new_count);
|
|
old = __sync_val_compare_and_swap(list, current, new);
|
|
} while (old != current);
|
|
}
|
|
|
|
static VkResult
|
|
anv_block_pool_expand_range(struct anv_block_pool *pool,
|
|
uint32_t center_bo_offset, uint32_t size);
|
|
|
|
VkResult
|
|
anv_block_pool_init(struct anv_block_pool *pool,
|
|
struct anv_device *device,
|
|
uint64_t start_address,
|
|
uint32_t initial_size,
|
|
uint64_t bo_flags)
|
|
{
|
|
VkResult result;
|
|
|
|
pool->device = device;
|
|
pool->bo_flags = bo_flags;
|
|
pool->start_address = gen_canonical_address(start_address);
|
|
|
|
pool->bo = &pool->bos;
|
|
|
|
anv_bo_init(pool->bo, 0, 0);
|
|
|
|
pool->fd = memfd_create("block pool", MFD_CLOEXEC);
|
|
if (pool->fd == -1)
|
|
return vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
|
|
/* Just make it 2GB up-front. The Linux kernel won't actually back it
|
|
* with pages until we either map and fault on one of them or we use
|
|
* userptr and send a chunk of it off to the GPU.
|
|
*/
|
|
if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
if (!u_vector_init(&pool->mmap_cleanups,
|
|
round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
|
|
128)) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
pool->state.next = 0;
|
|
pool->state.end = 0;
|
|
pool->back_state.next = 0;
|
|
pool->back_state.end = 0;
|
|
|
|
result = anv_block_pool_expand_range(pool, 0, initial_size);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_mmap_cleanups;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_mmap_cleanups:
|
|
u_vector_finish(&pool->mmap_cleanups);
|
|
fail_fd:
|
|
close(pool->fd);
|
|
|
|
return result;
|
|
}
|
|
|
|
void
|
|
anv_block_pool_finish(struct anv_block_pool *pool)
|
|
{
|
|
struct anv_mmap_cleanup *cleanup;
|
|
|
|
u_vector_foreach(cleanup, &pool->mmap_cleanups) {
|
|
if (cleanup->map)
|
|
munmap(cleanup->map, cleanup->size);
|
|
if (cleanup->gem_handle)
|
|
anv_gem_close(pool->device, cleanup->gem_handle);
|
|
}
|
|
|
|
u_vector_finish(&pool->mmap_cleanups);
|
|
|
|
close(pool->fd);
|
|
}
|
|
|
|
static VkResult
|
|
anv_block_pool_expand_range(struct anv_block_pool *pool,
|
|
uint32_t center_bo_offset, uint32_t size)
|
|
{
|
|
void *map;
|
|
uint32_t gem_handle;
|
|
struct anv_mmap_cleanup *cleanup;
|
|
|
|
/* Assert that we only ever grow the pool */
|
|
assert(center_bo_offset >= pool->back_state.end);
|
|
assert(size - center_bo_offset >= pool->state.end);
|
|
|
|
/* Assert that we don't go outside the bounds of the memfd */
|
|
assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
|
|
assert(size - center_bo_offset <=
|
|
BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
|
|
|
|
cleanup = u_vector_add(&pool->mmap_cleanups);
|
|
if (!cleanup)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
*cleanup = ANV_MMAP_CLEANUP_INIT;
|
|
|
|
/* Just leak the old map until we destroy the pool. We can't munmap it
|
|
* without races or imposing locking on the block allocate fast path. On
|
|
* the whole the leaked maps adds up to less than the size of the
|
|
* current map. MAP_POPULATE seems like the right thing to do, but we
|
|
* should try to get some numbers.
|
|
*/
|
|
map = mmap(NULL, size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_POPULATE, pool->fd,
|
|
BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
|
|
if (map == MAP_FAILED)
|
|
return vk_errorf(pool->device->instance, pool->device,
|
|
VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
|
|
|
|
gem_handle = anv_gem_userptr(pool->device, map, size);
|
|
if (gem_handle == 0) {
|
|
munmap(map, size);
|
|
return vk_errorf(pool->device->instance, pool->device,
|
|
VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
|
|
}
|
|
|
|
cleanup->map = map;
|
|
cleanup->size = size;
|
|
cleanup->gem_handle = gem_handle;
|
|
|
|
#if 0
|
|
/* Regular objects are created I915_CACHING_CACHED on LLC platforms and
|
|
* I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
|
|
* always created as I915_CACHING_CACHED, which on non-LLC means
|
|
* snooped. That can be useful but comes with a bit of overheard. Since
|
|
* we're eplicitly clflushing and don't want the overhead we need to turn
|
|
* it off. */
|
|
if (!pool->device->info.has_llc) {
|
|
anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
|
|
anv_gem_set_domain(pool->device, gem_handle,
|
|
I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
|
|
}
|
|
#endif
|
|
|
|
/* Now that we successfull allocated everything, we can write the new
|
|
* center_bo_offset back into pool. */
|
|
pool->center_bo_offset = center_bo_offset;
|
|
|
|
/* For block pool BOs we have to be a bit careful about where we place them
|
|
* in the GTT. There are two documented workarounds for state base address
|
|
* placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
|
|
* which state that those two base addresses do not support 48-bit
|
|
* addresses and need to be placed in the bottom 32-bit range.
|
|
* Unfortunately, this is not quite accurate.
|
|
*
|
|
* The real problem is that we always set the size of our state pools in
|
|
* STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
|
|
* likely significantly smaller. We do this because we do not no at the
|
|
* time we emit STATE_BASE_ADDRESS whether or not we will need to expand
|
|
* the pool during command buffer building so we don't actually have a
|
|
* valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
|
|
* overflows 48 bits, the GPU appears to treat all accesses to the buffer
|
|
* as being out of bounds and returns zero. For dynamic state, this
|
|
* usually just leads to rendering corruptions, but shaders that are all
|
|
* zero hang the GPU immediately.
|
|
*
|
|
* The easiest solution to do is exactly what the bogus workarounds say to
|
|
* do: restrict these buffers to 32-bit addresses. We could also pin the
|
|
* BO to some particular location of our choosing, but that's significantly
|
|
* more work than just not setting a flag. So, we explicitly DO NOT set
|
|
* the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
|
|
* hard work for us.
|
|
*/
|
|
anv_bo_init(pool->bo, gem_handle, size);
|
|
if (pool->bo_flags & EXEC_OBJECT_PINNED) {
|
|
pool->bo->offset = pool->start_address + BLOCK_POOL_MEMFD_CENTER -
|
|
center_bo_offset;
|
|
}
|
|
pool->bo->flags = pool->bo_flags;
|
|
pool->bo->map = map;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/** Returns current memory map of the block pool.
|
|
*
|
|
* The returned pointer points to the map for the memory at the specified
|
|
* offset. The offset parameter is relative to the "center" of the block pool
|
|
* rather than the start of the block pool BO map.
|
|
*/
|
|
void*
|
|
anv_block_pool_map(struct anv_block_pool *pool, int32_t offset)
|
|
{
|
|
return pool->bo->map + pool->center_bo_offset + offset;
|
|
}
|
|
|
|
/** Grows and re-centers the block pool.
|
|
*
|
|
* We grow the block pool in one or both directions in such a way that the
|
|
* following conditions are met:
|
|
*
|
|
* 1) The size of the entire pool is always a power of two.
|
|
*
|
|
* 2) The pool only grows on both ends. Neither end can get
|
|
* shortened.
|
|
*
|
|
* 3) At the end of the allocation, we have about twice as much space
|
|
* allocated for each end as we have used. This way the pool doesn't
|
|
* grow too far in one direction or the other.
|
|
*
|
|
* 4) If the _alloc_back() has never been called, then the back portion of
|
|
* the pool retains a size of zero. (This makes it easier for users of
|
|
* the block pool that only want a one-sided pool.)
|
|
*
|
|
* 5) We have enough space allocated for at least one more block in
|
|
* whichever side `state` points to.
|
|
*
|
|
* 6) The center of the pool is always aligned to both the block_size of
|
|
* the pool and a 4K CPU page.
|
|
*/
|
|
static uint32_t
|
|
anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
|
|
{
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
pthread_mutex_lock(&pool->device->mutex);
|
|
|
|
assert(state == &pool->state || state == &pool->back_state);
|
|
|
|
/* Gather a little usage information on the pool. Since we may have
|
|
* threadsd waiting in queue to get some storage while we resize, it's
|
|
* actually possible that total_used will be larger than old_size. In
|
|
* particular, block_pool_alloc() increments state->next prior to
|
|
* calling block_pool_grow, so this ensures that we get enough space for
|
|
* which ever side tries to grow the pool.
|
|
*
|
|
* We align to a page size because it makes it easier to do our
|
|
* calculations later in such a way that we state page-aigned.
|
|
*/
|
|
uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
|
|
uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
|
|
uint32_t total_used = front_used + back_used;
|
|
|
|
assert(state == &pool->state || back_used > 0);
|
|
|
|
uint32_t old_size = pool->bo->size;
|
|
|
|
/* The block pool is always initialized to a nonzero size and this function
|
|
* is always called after initialization.
|
|
*/
|
|
assert(old_size > 0);
|
|
|
|
/* The back_used and front_used may actually be smaller than the actual
|
|
* requirement because they are based on the next pointers which are
|
|
* updated prior to calling this function.
|
|
*/
|
|
uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
|
|
uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
|
|
|
|
if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
|
|
/* If we're in this case then this isn't the firsta allocation and we
|
|
* already have enough space on both sides to hold double what we
|
|
* have allocated. There's nothing for us to do.
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
uint32_t size = old_size * 2;
|
|
while (size < back_required + front_required)
|
|
size *= 2;
|
|
|
|
assert(size > pool->bo->size);
|
|
|
|
/* We compute a new center_bo_offset such that, when we double the size
|
|
* of the pool, we maintain the ratio of how much is used by each side.
|
|
* This way things should remain more-or-less balanced.
|
|
*/
|
|
uint32_t center_bo_offset;
|
|
if (back_used == 0) {
|
|
/* If we're in this case then we have never called alloc_back(). In
|
|
* this case, we want keep the offset at 0 to make things as simple
|
|
* as possible for users that don't care about back allocations.
|
|
*/
|
|
center_bo_offset = 0;
|
|
} else {
|
|
/* Try to "center" the allocation based on how much is currently in
|
|
* use on each side of the center line.
|
|
*/
|
|
center_bo_offset = ((uint64_t)size * back_used) / total_used;
|
|
|
|
/* Align down to a multiple of the page size */
|
|
center_bo_offset &= ~(PAGE_SIZE - 1);
|
|
|
|
assert(center_bo_offset >= back_used);
|
|
|
|
/* Make sure we don't shrink the back end of the pool */
|
|
if (center_bo_offset < back_required)
|
|
center_bo_offset = back_required;
|
|
|
|
/* Make sure that we don't shrink the front end of the pool */
|
|
if (size - center_bo_offset < front_required)
|
|
center_bo_offset = size - front_required;
|
|
}
|
|
|
|
assert(center_bo_offset % PAGE_SIZE == 0);
|
|
|
|
result = anv_block_pool_expand_range(pool, center_bo_offset, size);
|
|
|
|
pool->bo->flags = pool->bo_flags;
|
|
|
|
done:
|
|
pthread_mutex_unlock(&pool->device->mutex);
|
|
|
|
if (result == VK_SUCCESS) {
|
|
/* Return the appropriate new size. This function never actually
|
|
* updates state->next. Instead, we let the caller do that because it
|
|
* needs to do so in order to maintain its concurrency model.
|
|
*/
|
|
if (state == &pool->state) {
|
|
return pool->bo->size - pool->center_bo_offset;
|
|
} else {
|
|
assert(pool->center_bo_offset > 0);
|
|
return pool->center_bo_offset;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
anv_block_pool_alloc_new(struct anv_block_pool *pool,
|
|
struct anv_block_state *pool_state,
|
|
uint32_t block_size)
|
|
{
|
|
struct anv_block_state state, old, new;
|
|
|
|
while (1) {
|
|
state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
|
|
if (state.next + block_size <= state.end) {
|
|
return state.next;
|
|
} else if (state.next <= state.end) {
|
|
/* We allocated the first block outside the pool so we have to grow
|
|
* the pool. pool_state->next acts a mutex: threads who try to
|
|
* allocate now will get block indexes above the current limit and
|
|
* hit futex_wait below.
|
|
*/
|
|
new.next = state.next + block_size;
|
|
do {
|
|
new.end = anv_block_pool_grow(pool, pool_state);
|
|
} while (new.end < new.next);
|
|
|
|
old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
|
|
if (old.next != state.next)
|
|
futex_wake(&pool_state->end, INT_MAX);
|
|
return state.next;
|
|
} else {
|
|
futex_wait(&pool_state->end, state.end, NULL);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t
|
|
anv_block_pool_alloc(struct anv_block_pool *pool,
|
|
uint32_t block_size)
|
|
{
|
|
return anv_block_pool_alloc_new(pool, &pool->state, block_size);
|
|
}
|
|
|
|
/* Allocates a block out of the back of the block pool.
|
|
*
|
|
* This will allocated a block earlier than the "start" of the block pool.
|
|
* The offsets returned from this function will be negative but will still
|
|
* be correct relative to the block pool's map pointer.
|
|
*
|
|
* If you ever use anv_block_pool_alloc_back, then you will have to do
|
|
* gymnastics with the block pool's BO when doing relocations.
|
|
*/
|
|
int32_t
|
|
anv_block_pool_alloc_back(struct anv_block_pool *pool,
|
|
uint32_t block_size)
|
|
{
|
|
int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
|
|
block_size);
|
|
|
|
/* The offset we get out of anv_block_pool_alloc_new() is actually the
|
|
* number of bytes downwards from the middle to the end of the block.
|
|
* We need to turn it into a (negative) offset from the middle to the
|
|
* start of the block.
|
|
*/
|
|
assert(offset >= 0);
|
|
return -(offset + block_size);
|
|
}
|
|
|
|
VkResult
|
|
anv_state_pool_init(struct anv_state_pool *pool,
|
|
struct anv_device *device,
|
|
uint64_t start_address,
|
|
uint32_t block_size,
|
|
uint64_t bo_flags)
|
|
{
|
|
VkResult result = anv_block_pool_init(&pool->block_pool, device,
|
|
start_address,
|
|
block_size * 16,
|
|
bo_flags);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
result = anv_state_table_init(&pool->table, device, 64);
|
|
if (result != VK_SUCCESS) {
|
|
anv_block_pool_finish(&pool->block_pool);
|
|
return result;
|
|
}
|
|
|
|
assert(util_is_power_of_two_or_zero(block_size));
|
|
pool->block_size = block_size;
|
|
pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
|
|
for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
|
|
pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
|
|
pool->buckets[i].block.next = 0;
|
|
pool->buckets[i].block.end = 0;
|
|
}
|
|
VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void
|
|
anv_state_pool_finish(struct anv_state_pool *pool)
|
|
{
|
|
VG(VALGRIND_DESTROY_MEMPOOL(pool));
|
|
anv_state_table_finish(&pool->table);
|
|
anv_block_pool_finish(&pool->block_pool);
|
|
}
|
|
|
|
static uint32_t
|
|
anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
|
|
struct anv_block_pool *block_pool,
|
|
uint32_t state_size,
|
|
uint32_t block_size)
|
|
{
|
|
struct anv_block_state block, old, new;
|
|
uint32_t offset;
|
|
|
|
/* If our state is large, we don't need any sub-allocation from a block.
|
|
* Instead, we just grab whole (potentially large) blocks.
|
|
*/
|
|
if (state_size >= block_size)
|
|
return anv_block_pool_alloc(block_pool, state_size);
|
|
|
|
restart:
|
|
block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
|
|
|
|
if (block.next < block.end) {
|
|
return block.next;
|
|
} else if (block.next == block.end) {
|
|
offset = anv_block_pool_alloc(block_pool, block_size);
|
|
new.next = offset + state_size;
|
|
new.end = offset + block_size;
|
|
old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
|
|
if (old.next != block.next)
|
|
futex_wake(&pool->block.end, INT_MAX);
|
|
return offset;
|
|
} else {
|
|
futex_wait(&pool->block.end, block.end, NULL);
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
anv_state_pool_get_bucket(uint32_t size)
|
|
{
|
|
unsigned size_log2 = ilog2_round_up(size);
|
|
assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
|
|
if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
|
|
size_log2 = ANV_MIN_STATE_SIZE_LOG2;
|
|
return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
|
|
}
|
|
|
|
static uint32_t
|
|
anv_state_pool_get_bucket_size(uint32_t bucket)
|
|
{
|
|
uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
|
|
return 1 << size_log2;
|
|
}
|
|
|
|
/** Helper to push a chunk into the state table.
|
|
*
|
|
* It creates 'count' entries into the state table and update their sizes,
|
|
* offsets and maps, also pushing them as "free" states.
|
|
*/
|
|
static void
|
|
anv_state_pool_return_blocks(struct anv_state_pool *pool,
|
|
uint32_t chunk_offset, uint32_t count,
|
|
uint32_t block_size)
|
|
{
|
|
if (count == 0)
|
|
return;
|
|
|
|
/* Make sure we always return chunks aligned to the block_size */
|
|
assert(chunk_offset % block_size == 0);
|
|
|
|
uint32_t st_idx;
|
|
VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
|
|
assert(result == VK_SUCCESS);
|
|
for (int i = 0; i < count; i++) {
|
|
/* update states that were added back to the state table */
|
|
struct anv_state *state_i = anv_state_table_get(&pool->table,
|
|
st_idx + i);
|
|
state_i->alloc_size = block_size;
|
|
state_i->offset = chunk_offset + block_size * i;
|
|
state_i->map = anv_block_pool_map(&pool->block_pool, state_i->offset);
|
|
}
|
|
|
|
uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
|
|
anv_free_list_push(&pool->buckets[block_bucket].free_list,
|
|
&pool->table, st_idx, count);
|
|
}
|
|
|
|
static struct anv_state
|
|
anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
|
|
uint32_t size, uint32_t align)
|
|
{
|
|
uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
|
|
|
|
struct anv_state *state;
|
|
uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
|
|
int32_t offset;
|
|
|
|
/* Try free list first. */
|
|
state = anv_free_list_pop(&pool->buckets[bucket].free_list,
|
|
&pool->table);
|
|
if (state) {
|
|
assert(state->offset >= 0);
|
|
goto done;
|
|
}
|
|
|
|
/* Try to grab a chunk from some larger bucket and split it up */
|
|
for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
|
|
state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
|
|
if (state) {
|
|
unsigned chunk_size = anv_state_pool_get_bucket_size(b);
|
|
int32_t chunk_offset = state->offset;
|
|
|
|
/* First lets update the state we got to its new size. offset and map
|
|
* remain the same.
|
|
*/
|
|
state->alloc_size = alloc_size;
|
|
|
|
/* We've found a chunk that's larger than the requested state size.
|
|
* There are a couple of options as to what we do with it:
|
|
*
|
|
* 1) We could fully split the chunk into state.alloc_size sized
|
|
* pieces. However, this would mean that allocating a 16B
|
|
* state could potentially split a 2MB chunk into 512K smaller
|
|
* chunks. This would lead to unnecessary fragmentation.
|
|
*
|
|
* 2) The classic "buddy allocator" method would have us split the
|
|
* chunk in half and return one half. Then we would split the
|
|
* remaining half in half and return one half, and repeat as
|
|
* needed until we get down to the size we want. However, if
|
|
* you are allocating a bunch of the same size state (which is
|
|
* the common case), this means that every other allocation has
|
|
* to go up a level and every fourth goes up two levels, etc.
|
|
* This is not nearly as efficient as it could be if we did a
|
|
* little more work up-front.
|
|
*
|
|
* 3) Split the difference between (1) and (2) by doing a
|
|
* two-level split. If it's bigger than some fixed block_size,
|
|
* we split it into block_size sized chunks and return all but
|
|
* one of them. Then we split what remains into
|
|
* state.alloc_size sized chunks and return all but one.
|
|
*
|
|
* We choose option (3).
|
|
*/
|
|
if (chunk_size > pool->block_size &&
|
|
alloc_size < pool->block_size) {
|
|
assert(chunk_size % pool->block_size == 0);
|
|
/* We don't want to split giant chunks into tiny chunks. Instead,
|
|
* break anything bigger than a block into block-sized chunks and
|
|
* then break it down into bucket-sized chunks from there. Return
|
|
* all but the first block of the chunk to the block bucket.
|
|
*/
|
|
uint32_t push_back = (chunk_size / pool->block_size) - 1;
|
|
anv_state_pool_return_blocks(pool, chunk_offset + pool->block_size,
|
|
push_back, pool->block_size);
|
|
chunk_size = pool->block_size;
|
|
}
|
|
|
|
assert(chunk_size % alloc_size == 0);
|
|
uint32_t push_back = (chunk_size / alloc_size) - 1;
|
|
anv_state_pool_return_blocks(pool, chunk_offset + alloc_size,
|
|
push_back, alloc_size);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
|
|
&pool->block_pool,
|
|
alloc_size,
|
|
pool->block_size);
|
|
/* Everytime we allocate a new state, add it to the state pool */
|
|
uint32_t idx;
|
|
VkResult result = anv_state_table_add(&pool->table, &idx, 1);
|
|
assert(result == VK_SUCCESS);
|
|
|
|
state = anv_state_table_get(&pool->table, idx);
|
|
state->offset = offset;
|
|
state->alloc_size = alloc_size;
|
|
state->map = anv_block_pool_map(&pool->block_pool, offset);
|
|
|
|
done:
|
|
return *state;
|
|
}
|
|
|
|
struct anv_state
|
|
anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
|
|
{
|
|
if (size == 0)
|
|
return ANV_STATE_NULL;
|
|
|
|
struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
|
|
VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
|
|
return state;
|
|
}
|
|
|
|
struct anv_state
|
|
anv_state_pool_alloc_back(struct anv_state_pool *pool)
|
|
{
|
|
struct anv_state *state;
|
|
uint32_t alloc_size = pool->block_size;
|
|
|
|
state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
|
|
if (state) {
|
|
assert(state->offset < 0);
|
|
goto done;
|
|
}
|
|
|
|
int32_t offset;
|
|
offset = anv_block_pool_alloc_back(&pool->block_pool,
|
|
pool->block_size);
|
|
uint32_t idx;
|
|
VkResult result = anv_state_table_add(&pool->table, &idx, 1);
|
|
assert(result == VK_SUCCESS);
|
|
|
|
state = anv_state_table_get(&pool->table, idx);
|
|
state->offset = offset;
|
|
state->alloc_size = alloc_size;
|
|
state->map = anv_block_pool_map(&pool->block_pool, state->offset);
|
|
|
|
done:
|
|
VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
|
|
return *state;
|
|
}
|
|
|
|
static void
|
|
anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
|
|
{
|
|
assert(util_is_power_of_two_or_zero(state.alloc_size));
|
|
unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
|
|
|
|
if (state.offset < 0) {
|
|
assert(state.alloc_size == pool->block_size);
|
|
anv_free_list_push(&pool->back_alloc_free_list,
|
|
&pool->table, state.idx, 1);
|
|
} else {
|
|
anv_free_list_push(&pool->buckets[bucket].free_list,
|
|
&pool->table, state.idx, 1);
|
|
}
|
|
}
|
|
|
|
void
|
|
anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
|
|
{
|
|
if (state.alloc_size == 0)
|
|
return;
|
|
|
|
VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
|
|
anv_state_pool_free_no_vg(pool, state);
|
|
}
|
|
|
|
struct anv_state_stream_block {
|
|
struct anv_state block;
|
|
|
|
/* The next block */
|
|
struct anv_state_stream_block *next;
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
/* A pointer to the first user-allocated thing in this block. This is
|
|
* what valgrind sees as the start of the block.
|
|
*/
|
|
void *_vg_ptr;
|
|
#endif
|
|
};
|
|
|
|
/* The state stream allocator is a one-shot, single threaded allocator for
|
|
* variable sized blocks. We use it for allocating dynamic state.
|
|
*/
|
|
void
|
|
anv_state_stream_init(struct anv_state_stream *stream,
|
|
struct anv_state_pool *state_pool,
|
|
uint32_t block_size)
|
|
{
|
|
stream->state_pool = state_pool;
|
|
stream->block_size = block_size;
|
|
|
|
stream->block = ANV_STATE_NULL;
|
|
|
|
stream->block_list = NULL;
|
|
|
|
/* Ensure that next + whatever > block_size. This way the first call to
|
|
* state_stream_alloc fetches a new block.
|
|
*/
|
|
stream->next = block_size;
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
|
|
}
|
|
|
|
void
|
|
anv_state_stream_finish(struct anv_state_stream *stream)
|
|
{
|
|
struct anv_state_stream_block *next = stream->block_list;
|
|
while (next != NULL) {
|
|
struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
|
|
VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
|
|
VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
|
|
anv_state_pool_free_no_vg(stream->state_pool, sb.block);
|
|
next = sb.next;
|
|
}
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(stream));
|
|
}
|
|
|
|
struct anv_state
|
|
anv_state_stream_alloc(struct anv_state_stream *stream,
|
|
uint32_t size, uint32_t alignment)
|
|
{
|
|
if (size == 0)
|
|
return ANV_STATE_NULL;
|
|
|
|
assert(alignment <= PAGE_SIZE);
|
|
|
|
uint32_t offset = align_u32(stream->next, alignment);
|
|
if (offset + size > stream->block.alloc_size) {
|
|
uint32_t block_size = stream->block_size;
|
|
if (block_size < size)
|
|
block_size = round_to_power_of_two(size);
|
|
|
|
stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
|
|
block_size, PAGE_SIZE);
|
|
|
|
struct anv_state_stream_block *sb = stream->block.map;
|
|
VG_NOACCESS_WRITE(&sb->block, stream->block);
|
|
VG_NOACCESS_WRITE(&sb->next, stream->block_list);
|
|
stream->block_list = sb;
|
|
VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
|
|
|
|
VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
|
|
|
|
/* Reset back to the start plus space for the header */
|
|
stream->next = sizeof(*sb);
|
|
|
|
offset = align_u32(stream->next, alignment);
|
|
assert(offset + size <= stream->block.alloc_size);
|
|
}
|
|
|
|
struct anv_state state = stream->block;
|
|
state.offset += offset;
|
|
state.alloc_size = size;
|
|
state.map += offset;
|
|
|
|
stream->next = offset + size;
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
struct anv_state_stream_block *sb = stream->block_list;
|
|
void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
|
|
if (vg_ptr == NULL) {
|
|
vg_ptr = state.map;
|
|
VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
|
|
VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
|
|
} else {
|
|
void *state_end = state.map + state.alloc_size;
|
|
/* This only updates the mempool. The newly allocated chunk is still
|
|
* marked as NOACCESS. */
|
|
VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
|
|
/* Mark the newly allocated chunk as undefined */
|
|
VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
|
|
}
|
|
#endif
|
|
|
|
return state;
|
|
}
|
|
|
|
struct bo_pool_bo_link {
|
|
struct bo_pool_bo_link *next;
|
|
struct anv_bo bo;
|
|
};
|
|
|
|
void
|
|
anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
|
|
uint64_t bo_flags)
|
|
{
|
|
pool->device = device;
|
|
pool->bo_flags = bo_flags;
|
|
memset(pool->free_list, 0, sizeof(pool->free_list));
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
|
|
}
|
|
|
|
void
|
|
anv_bo_pool_finish(struct anv_bo_pool *pool)
|
|
{
|
|
for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
|
|
struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
|
|
while (link != NULL) {
|
|
struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
|
|
|
|
anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
|
|
anv_vma_free(pool->device, &link_copy.bo);
|
|
anv_gem_close(pool->device, link_copy.bo.gem_handle);
|
|
link = link_copy.next;
|
|
}
|
|
}
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(pool));
|
|
}
|
|
|
|
VkResult
|
|
anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
|
|
{
|
|
VkResult result;
|
|
|
|
const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
|
|
const unsigned pow2_size = 1 << size_log2;
|
|
const unsigned bucket = size_log2 - 12;
|
|
assert(bucket < ARRAY_SIZE(pool->free_list));
|
|
|
|
void *next_free_void;
|
|
if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
|
|
struct bo_pool_bo_link *next_free = next_free_void;
|
|
*bo = VG_NOACCESS_READ(&next_free->bo);
|
|
assert(bo->gem_handle);
|
|
assert(bo->map == next_free);
|
|
assert(size <= bo->size);
|
|
|
|
VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
struct anv_bo new_bo;
|
|
|
|
result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
new_bo.flags = pool->bo_flags;
|
|
|
|
if (!anv_vma_alloc(pool->device, &new_bo))
|
|
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
assert(new_bo.size == pow2_size);
|
|
|
|
new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
|
|
if (new_bo.map == MAP_FAILED) {
|
|
anv_gem_close(pool->device, new_bo.gem_handle);
|
|
anv_vma_free(pool->device, &new_bo);
|
|
return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
|
|
}
|
|
|
|
*bo = new_bo;
|
|
|
|
VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void
|
|
anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
|
|
{
|
|
/* Make a copy in case the anv_bo happens to be storred in the BO */
|
|
struct anv_bo bo = *bo_in;
|
|
|
|
VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
|
|
|
|
struct bo_pool_bo_link *link = bo.map;
|
|
VG_NOACCESS_WRITE(&link->bo, bo);
|
|
|
|
assert(util_is_power_of_two_or_zero(bo.size));
|
|
const unsigned size_log2 = ilog2_round_up(bo.size);
|
|
const unsigned bucket = size_log2 - 12;
|
|
assert(bucket < ARRAY_SIZE(pool->free_list));
|
|
|
|
anv_ptr_free_list_push(&pool->free_list[bucket], link);
|
|
}
|
|
|
|
// Scratch pool
|
|
|
|
void
|
|
anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
|
|
{
|
|
memset(pool, 0, sizeof(*pool));
|
|
}
|
|
|
|
void
|
|
anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
|
|
{
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
for (unsigned i = 0; i < 16; i++) {
|
|
struct anv_scratch_bo *bo = &pool->bos[i][s];
|
|
if (bo->exists > 0) {
|
|
anv_vma_free(device, &bo->bo);
|
|
anv_gem_close(device, bo->bo.gem_handle);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct anv_bo *
|
|
anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
|
|
gl_shader_stage stage, unsigned per_thread_scratch)
|
|
{
|
|
if (per_thread_scratch == 0)
|
|
return NULL;
|
|
|
|
unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
|
|
assert(scratch_size_log2 < 16);
|
|
|
|
struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
|
|
|
|
/* We can use "exists" to shortcut and ignore the critical section */
|
|
if (bo->exists)
|
|
return &bo->bo;
|
|
|
|
pthread_mutex_lock(&device->mutex);
|
|
|
|
__sync_synchronize();
|
|
if (bo->exists) {
|
|
pthread_mutex_unlock(&device->mutex);
|
|
return &bo->bo;
|
|
}
|
|
|
|
const struct anv_physical_device *physical_device =
|
|
&device->instance->physicalDevice;
|
|
const struct gen_device_info *devinfo = &physical_device->info;
|
|
|
|
const unsigned subslices = MAX2(physical_device->subslice_total, 1);
|
|
|
|
unsigned scratch_ids_per_subslice;
|
|
if (devinfo->is_haswell) {
|
|
/* WaCSScratchSize:hsw
|
|
*
|
|
* Haswell's scratch space address calculation appears to be sparse
|
|
* rather than tightly packed. The Thread ID has bits indicating
|
|
* which subslice, EU within a subslice, and thread within an EU it
|
|
* is. There's a maximum of two slices and two subslices, so these
|
|
* can be stored with a single bit. Even though there are only 10 EUs
|
|
* per subslice, this is stored in 4 bits, so there's an effective
|
|
* maximum value of 16 EUs. Similarly, although there are only 7
|
|
* threads per EU, this is stored in a 3 bit number, giving an
|
|
* effective maximum value of 8 threads per EU.
|
|
*
|
|
* This means that we need to use 16 * 8 instead of 10 * 7 for the
|
|
* number of threads per subslice.
|
|
*/
|
|
scratch_ids_per_subslice = 16 * 8;
|
|
} else if (devinfo->is_cherryview) {
|
|
/* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
|
|
* has 7 threads. The 6 EU devices appear to calculate thread IDs as if
|
|
* it had 8 EUs.
|
|
*/
|
|
scratch_ids_per_subslice = 8 * 7;
|
|
} else {
|
|
scratch_ids_per_subslice = devinfo->max_cs_threads;
|
|
}
|
|
|
|
uint32_t max_threads[] = {
|
|
[MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
|
|
[MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
|
|
[MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
|
|
[MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
|
|
[MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
|
|
[MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
|
|
};
|
|
|
|
uint32_t size = per_thread_scratch * max_threads[stage];
|
|
|
|
anv_bo_init_new(&bo->bo, device, size);
|
|
|
|
/* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
|
|
* are still relative to the general state base address. When we emit
|
|
* STATE_BASE_ADDRESS, we set general state base address to 0 and the size
|
|
* to the maximum (1 page under 4GB). This allows us to just place the
|
|
* scratch buffers anywhere we wish in the bottom 32 bits of address space
|
|
* and just set the scratch base pointer in 3DSTATE_*S using a relocation.
|
|
* However, in order to do so, we need to ensure that the kernel does not
|
|
* place the scratch BO above the 32-bit boundary.
|
|
*
|
|
* NOTE: Technically, it can't go "anywhere" because the top page is off
|
|
* limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
|
|
* kernel allocates space using
|
|
*
|
|
* end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
|
|
*
|
|
* so nothing will ever touch the top page.
|
|
*/
|
|
assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS));
|
|
|
|
if (device->instance->physicalDevice.has_exec_async)
|
|
bo->bo.flags |= EXEC_OBJECT_ASYNC;
|
|
|
|
if (device->instance->physicalDevice.use_softpin)
|
|
bo->bo.flags |= EXEC_OBJECT_PINNED;
|
|
|
|
anv_vma_alloc(device, &bo->bo);
|
|
|
|
/* Set the exists last because it may be read by other threads */
|
|
__sync_synchronize();
|
|
bo->exists = true;
|
|
|
|
pthread_mutex_unlock(&device->mutex);
|
|
|
|
return &bo->bo;
|
|
}
|
|
|
|
struct anv_cached_bo {
|
|
struct anv_bo bo;
|
|
|
|
uint32_t refcount;
|
|
};
|
|
|
|
VkResult
|
|
anv_bo_cache_init(struct anv_bo_cache *cache)
|
|
{
|
|
cache->bo_map = _mesa_pointer_hash_table_create(NULL);
|
|
if (!cache->bo_map)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
if (pthread_mutex_init(&cache->mutex, NULL)) {
|
|
_mesa_hash_table_destroy(cache->bo_map, NULL);
|
|
return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
|
|
"pthread_mutex_init failed: %m");
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void
|
|
anv_bo_cache_finish(struct anv_bo_cache *cache)
|
|
{
|
|
_mesa_hash_table_destroy(cache->bo_map, NULL);
|
|
pthread_mutex_destroy(&cache->mutex);
|
|
}
|
|
|
|
static struct anv_cached_bo *
|
|
anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
|
|
{
|
|
struct hash_entry *entry =
|
|
_mesa_hash_table_search(cache->bo_map,
|
|
(const void *)(uintptr_t)gem_handle);
|
|
if (!entry)
|
|
return NULL;
|
|
|
|
struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
|
|
assert(bo->bo.gem_handle == gem_handle);
|
|
|
|
return bo;
|
|
}
|
|
|
|
UNUSED static struct anv_bo *
|
|
anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
|
|
{
|
|
pthread_mutex_lock(&cache->mutex);
|
|
|
|
struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
|
|
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
|
|
return bo ? &bo->bo : NULL;
|
|
}
|
|
|
|
#define ANV_BO_CACHE_SUPPORTED_FLAGS \
|
|
(EXEC_OBJECT_WRITE | \
|
|
EXEC_OBJECT_ASYNC | \
|
|
EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
|
|
EXEC_OBJECT_PINNED | \
|
|
ANV_BO_EXTERNAL)
|
|
|
|
VkResult
|
|
anv_bo_cache_alloc(struct anv_device *device,
|
|
struct anv_bo_cache *cache,
|
|
uint64_t size, uint64_t bo_flags,
|
|
struct anv_bo **bo_out)
|
|
{
|
|
assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
|
|
|
|
struct anv_cached_bo *bo =
|
|
vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (!bo)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
bo->refcount = 1;
|
|
|
|
/* The kernel is going to give us whole pages anyway */
|
|
size = align_u64(size, 4096);
|
|
|
|
VkResult result = anv_bo_init_new(&bo->bo, device, size);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free(&device->alloc, bo);
|
|
return result;
|
|
}
|
|
|
|
bo->bo.flags = bo_flags;
|
|
|
|
if (!anv_vma_alloc(device, &bo->bo)) {
|
|
anv_gem_close(device, bo->bo.gem_handle);
|
|
vk_free(&device->alloc, bo);
|
|
return vk_errorf(device->instance, NULL,
|
|
VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"failed to allocate virtual address for BO");
|
|
}
|
|
|
|
assert(bo->bo.gem_handle);
|
|
|
|
pthread_mutex_lock(&cache->mutex);
|
|
|
|
_mesa_hash_table_insert(cache->bo_map,
|
|
(void *)(uintptr_t)bo->bo.gem_handle, bo);
|
|
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
|
|
*bo_out = &bo->bo;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
anv_bo_cache_import(struct anv_device *device,
|
|
struct anv_bo_cache *cache,
|
|
int fd, uint64_t bo_flags,
|
|
struct anv_bo **bo_out)
|
|
{
|
|
assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
|
|
assert(bo_flags & ANV_BO_EXTERNAL);
|
|
|
|
pthread_mutex_lock(&cache->mutex);
|
|
|
|
uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
|
|
if (!gem_handle) {
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
|
}
|
|
|
|
struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
|
|
if (bo) {
|
|
/* We have to be careful how we combine flags so that it makes sense.
|
|
* Really, though, if we get to this case and it actually matters, the
|
|
* client has imported a BO twice in different ways and they get what
|
|
* they have coming.
|
|
*/
|
|
uint64_t new_flags = ANV_BO_EXTERNAL;
|
|
new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_WRITE;
|
|
new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_ASYNC;
|
|
new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
|
|
new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_PINNED;
|
|
|
|
/* It's theoretically possible for a BO to get imported such that it's
|
|
* both pinned and not pinned. The only way this can happen is if it
|
|
* gets imported as both a semaphore and a memory object and that would
|
|
* be an application error. Just fail out in that case.
|
|
*/
|
|
if ((bo->bo.flags & EXEC_OBJECT_PINNED) !=
|
|
(bo_flags & EXEC_OBJECT_PINNED)) {
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
return vk_errorf(device->instance, NULL,
|
|
VK_ERROR_INVALID_EXTERNAL_HANDLE,
|
|
"The same BO was imported two different ways");
|
|
}
|
|
|
|
/* It's also theoretically possible that someone could export a BO from
|
|
* one heap and import it into another or to import the same BO into two
|
|
* different heaps. If this happens, we could potentially end up both
|
|
* allowing and disallowing 48-bit addresses. There's not much we can
|
|
* do about it if we're pinning so we just throw an error and hope no
|
|
* app is actually that stupid.
|
|
*/
|
|
if ((new_flags & EXEC_OBJECT_PINNED) &&
|
|
(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
|
|
(bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
return vk_errorf(device->instance, NULL,
|
|
VK_ERROR_INVALID_EXTERNAL_HANDLE,
|
|
"The same BO was imported on two different heaps");
|
|
}
|
|
|
|
bo->bo.flags = new_flags;
|
|
|
|
__sync_fetch_and_add(&bo->refcount, 1);
|
|
} else {
|
|
off_t size = lseek(fd, 0, SEEK_END);
|
|
if (size == (off_t)-1) {
|
|
anv_gem_close(device, gem_handle);
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
|
}
|
|
|
|
bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (!bo) {
|
|
anv_gem_close(device, gem_handle);
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
bo->refcount = 1;
|
|
|
|
anv_bo_init(&bo->bo, gem_handle, size);
|
|
bo->bo.flags = bo_flags;
|
|
|
|
if (!anv_vma_alloc(device, &bo->bo)) {
|
|
anv_gem_close(device, bo->bo.gem_handle);
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
vk_free(&device->alloc, bo);
|
|
return vk_errorf(device->instance, NULL,
|
|
VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"failed to allocate virtual address for BO");
|
|
}
|
|
|
|
_mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
|
|
}
|
|
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
*bo_out = &bo->bo;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
anv_bo_cache_export(struct anv_device *device,
|
|
struct anv_bo_cache *cache,
|
|
struct anv_bo *bo_in, int *fd_out)
|
|
{
|
|
assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
|
|
struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
|
|
|
|
/* This BO must have been flagged external in order for us to be able
|
|
* to export it. This is done based on external options passed into
|
|
* anv_AllocateMemory.
|
|
*/
|
|
assert(bo->bo.flags & ANV_BO_EXTERNAL);
|
|
|
|
int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
|
|
if (fd < 0)
|
|
return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
|
|
|
|
*fd_out = fd;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static bool
|
|
atomic_dec_not_one(uint32_t *counter)
|
|
{
|
|
uint32_t old, val;
|
|
|
|
val = *counter;
|
|
while (1) {
|
|
if (val == 1)
|
|
return false;
|
|
|
|
old = __sync_val_compare_and_swap(counter, val, val - 1);
|
|
if (old == val)
|
|
return true;
|
|
|
|
val = old;
|
|
}
|
|
}
|
|
|
|
void
|
|
anv_bo_cache_release(struct anv_device *device,
|
|
struct anv_bo_cache *cache,
|
|
struct anv_bo *bo_in)
|
|
{
|
|
assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
|
|
struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
|
|
|
|
/* Try to decrement the counter but don't go below one. If this succeeds
|
|
* then the refcount has been decremented and we are not the last
|
|
* reference.
|
|
*/
|
|
if (atomic_dec_not_one(&bo->refcount))
|
|
return;
|
|
|
|
pthread_mutex_lock(&cache->mutex);
|
|
|
|
/* We are probably the last reference since our attempt to decrement above
|
|
* failed. However, we can't actually know until we are inside the mutex.
|
|
* Otherwise, someone could import the BO between the decrement and our
|
|
* taking the mutex.
|
|
*/
|
|
if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
|
|
/* Turns out we're not the last reference. Unlock and bail. */
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
return;
|
|
}
|
|
|
|
struct hash_entry *entry =
|
|
_mesa_hash_table_search(cache->bo_map,
|
|
(const void *)(uintptr_t)bo->bo.gem_handle);
|
|
assert(entry);
|
|
_mesa_hash_table_remove(cache->bo_map, entry);
|
|
|
|
if (bo->bo.map)
|
|
anv_gem_munmap(bo->bo.map, bo->bo.size);
|
|
|
|
anv_vma_free(device, &bo->bo);
|
|
|
|
anv_gem_close(device, bo->bo.gem_handle);
|
|
|
|
/* Don't unlock until we've actually closed the BO. The whole point of
|
|
* the BO cache is to ensure that we correctly handle races with creating
|
|
* and releasing GEM handles and we don't want to let someone import the BO
|
|
* again between mutex unlock and closing the GEM handle.
|
|
*/
|
|
pthread_mutex_unlock(&cache->mutex);
|
|
|
|
vk_free(&device->alloc, bo);
|
|
}
|