Files
third_party_mesa3d/src/gallium/auxiliary/util/u_blit.c
Zack Rusin dfa25ea5cd gallium: allow setting of the internal stream output offset
D3D10 allows setting of the internal offset of a buffer, which is
in general only incremented via actual stream output writes. By
allowing setting of the internal offset draw_auto is capable
of rendering from buffers which have not been actually streamed
out to. Our interface didn't allow. This change functionally
shouldn't make any difference to OpenGL where instead of an
append_bitmask you just get a real array where -1 means append
(like in D3D) and 0 means do not append.

Signed-off-by: Zack Rusin <zackr@vmware.com>
Reviewed-by: Roland Scheidegger <sroland@vmware.com>
Reviewed-by: Jose Fonseca <jfonseca@vmware.com>
Reviewed-by: Marek Olšák <marek.olsak@amd.com>
2014-03-07 12:49:33 -05:00

611 lines
19 KiB
C

/**************************************************************************
*
* Copyright 2008 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Copy/blit pixel rect between surfaces
*
* @author Brian Paul
*/
#include "pipe/p_context.h"
#include "util/u_debug.h"
#include "pipe/p_defines.h"
#include "util/u_inlines.h"
#include "pipe/p_shader_tokens.h"
#include "pipe/p_state.h"
#include "util/u_blit.h"
#include "util/u_draw_quad.h"
#include "util/u_format.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/u_sampler.h"
#include "util/u_texture.h"
#include "util/u_simple_shaders.h"
#include "cso_cache/cso_context.h"
struct blit_state
{
struct pipe_context *pipe;
struct cso_context *cso;
struct pipe_blend_state blend_write_color;
struct pipe_depth_stencil_alpha_state dsa_keep_depthstencil;
struct pipe_rasterizer_state rasterizer;
struct pipe_sampler_state sampler;
struct pipe_viewport_state viewport;
struct pipe_vertex_element velem[2];
void *vs;
void *fs[PIPE_MAX_TEXTURE_TYPES][TGSI_WRITEMASK_XYZW + 1];
struct pipe_resource *vbuf; /**< quad vertices */
unsigned vbuf_slot;
float vertices[4][2][4]; /**< vertex/texcoords for quad */
};
/**
* Create state object for blit.
* Intended to be created once and re-used for many blit() calls.
*/
struct blit_state *
util_create_blit(struct pipe_context *pipe, struct cso_context *cso)
{
struct blit_state *ctx;
uint i;
ctx = CALLOC_STRUCT(blit_state);
if (!ctx)
return NULL;
ctx->pipe = pipe;
ctx->cso = cso;
/* disabled blending/masking */
ctx->blend_write_color.rt[0].colormask = PIPE_MASK_RGBA;
/* rasterizer */
ctx->rasterizer.cull_face = PIPE_FACE_NONE;
ctx->rasterizer.half_pixel_center = 1;
ctx->rasterizer.bottom_edge_rule = 1;
ctx->rasterizer.depth_clip = 1;
/* samplers */
ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE;
ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
ctx->sampler.min_img_filter = 0; /* set later */
ctx->sampler.mag_img_filter = 0; /* set later */
/* vertex elements state */
for (i = 0; i < 2; i++) {
ctx->velem[i].src_offset = i * 4 * sizeof(float);
ctx->velem[i].instance_divisor = 0;
ctx->velem[i].vertex_buffer_index = cso_get_aux_vertex_buffer_slot(cso);
ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
}
ctx->vbuf = NULL;
/* init vertex data that doesn't change */
for (i = 0; i < 4; i++) {
ctx->vertices[i][0][3] = 1.0f; /* w */
ctx->vertices[i][1][3] = 1.0f; /* q */
}
return ctx;
}
/**
* Destroy a blit context
*/
void
util_destroy_blit(struct blit_state *ctx)
{
struct pipe_context *pipe = ctx->pipe;
unsigned i, j;
if (ctx->vs)
pipe->delete_vs_state(pipe, ctx->vs);
for (i = 0; i < Elements(ctx->fs); i++) {
for (j = 0; j < Elements(ctx->fs[i]); j++) {
if (ctx->fs[i][j])
pipe->delete_fs_state(pipe, ctx->fs[i][j]);
}
}
pipe_resource_reference(&ctx->vbuf, NULL);
FREE(ctx);
}
/**
* Helper function to set the fragment shaders.
*/
static INLINE void
set_fragment_shader(struct blit_state *ctx, uint writemask,
enum pipe_texture_target pipe_tex)
{
if (!ctx->fs[pipe_tex][writemask]) {
unsigned tgsi_tex = util_pipe_tex_to_tgsi_tex(pipe_tex, 0);
ctx->fs[pipe_tex][writemask] =
util_make_fragment_tex_shader_writemask(ctx->pipe, tgsi_tex,
TGSI_INTERPOLATE_LINEAR,
writemask);
}
cso_set_fragment_shader_handle(ctx->cso, ctx->fs[pipe_tex][writemask]);
}
/**
* Helper function to set the vertex shader.
*/
static INLINE void
set_vertex_shader(struct blit_state *ctx)
{
/* vertex shader - still required to provide the linkage between
* fragment shader input semantics and vertex_element/buffers.
*/
if (!ctx->vs) {
const uint semantic_names[] = { TGSI_SEMANTIC_POSITION,
TGSI_SEMANTIC_GENERIC };
const uint semantic_indexes[] = { 0, 0 };
ctx->vs = util_make_vertex_passthrough_shader(ctx->pipe, 2,
semantic_names,
semantic_indexes);
}
cso_set_vertex_shader_handle(ctx->cso, ctx->vs);
}
/**
* Get offset of next free slot in vertex buffer for quad vertices.
*/
static unsigned
get_next_slot( struct blit_state *ctx )
{
const unsigned max_slots = 4096 / sizeof ctx->vertices;
if (ctx->vbuf_slot >= max_slots) {
pipe_resource_reference(&ctx->vbuf, NULL);
ctx->vbuf_slot = 0;
}
if (!ctx->vbuf) {
ctx->vbuf = pipe_buffer_create(ctx->pipe->screen,
PIPE_BIND_VERTEX_BUFFER,
PIPE_USAGE_STREAM,
max_slots * sizeof ctx->vertices);
}
return ctx->vbuf_slot++ * sizeof ctx->vertices;
}
/**
* Setup vertex data for the textured quad we'll draw.
* Note: y=0=top
*
* FIXME: We should call util_map_texcoords2d_onto_cubemap
* for cubemaps.
*/
static unsigned
setup_vertex_data_tex(struct blit_state *ctx,
unsigned src_target,
unsigned src_face,
float x0, float y0, float x1, float y1,
float s0, float t0, float s1, float t1,
float z)
{
unsigned offset;
ctx->vertices[0][0][0] = x0;
ctx->vertices[0][0][1] = y0;
ctx->vertices[0][0][2] = z;
ctx->vertices[0][1][0] = s0; /*s*/
ctx->vertices[0][1][1] = t0; /*t*/
ctx->vertices[0][1][2] = 0; /*r*/
ctx->vertices[1][0][0] = x1;
ctx->vertices[1][0][1] = y0;
ctx->vertices[1][0][2] = z;
ctx->vertices[1][1][0] = s1; /*s*/
ctx->vertices[1][1][1] = t0; /*t*/
ctx->vertices[1][1][2] = 0; /*r*/
ctx->vertices[2][0][0] = x1;
ctx->vertices[2][0][1] = y1;
ctx->vertices[2][0][2] = z;
ctx->vertices[2][1][0] = s1;
ctx->vertices[2][1][1] = t1;
ctx->vertices[3][1][2] = 0;
ctx->vertices[3][0][0] = x0;
ctx->vertices[3][0][1] = y1;
ctx->vertices[3][0][2] = z;
ctx->vertices[3][1][0] = s0;
ctx->vertices[3][1][1] = t1;
ctx->vertices[3][1][2] = 0;
if (src_target == PIPE_TEXTURE_CUBE ||
src_target == PIPE_TEXTURE_CUBE_ARRAY) {
/* Map cubemap texture coordinates inplace. */
const unsigned stride = sizeof ctx->vertices[0] / sizeof ctx->vertices[0][0][0];
util_map_texcoords2d_onto_cubemap(src_face,
&ctx->vertices[0][1][0], stride,
&ctx->vertices[0][1][0], stride,
TRUE);
}
offset = get_next_slot( ctx );
if (ctx->vbuf) {
pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf,
offset, sizeof(ctx->vertices), ctx->vertices);
}
return offset;
}
/**
* \return TRUE if two regions overlap, FALSE otherwise
*/
static boolean
regions_overlap(int srcX0, int srcY0,
int srcX1, int srcY1,
int dstX0, int dstY0,
int dstX1, int dstY1)
{
if (MAX2(srcX0, srcX1) < MIN2(dstX0, dstX1))
return FALSE; /* src completely left of dst */
if (MAX2(dstX0, dstX1) < MIN2(srcX0, srcX1))
return FALSE; /* dst completely left of src */
if (MAX2(srcY0, srcY1) < MIN2(dstY0, dstY1))
return FALSE; /* src completely above dst */
if (MAX2(dstY0, dstY1) < MIN2(srcY0, srcY1))
return FALSE; /* dst completely above src */
return TRUE; /* some overlap */
}
/**
* Can we blit from src format to dest format with a simple copy?
*/
static boolean
formats_compatible(enum pipe_format src_format,
enum pipe_format dst_format)
{
if (src_format == dst_format) {
return TRUE;
}
else {
const struct util_format_description *src_desc =
util_format_description(src_format);
const struct util_format_description *dst_desc =
util_format_description(dst_format);
return util_is_format_compatible(src_desc, dst_desc);
}
}
/**
* Copy pixel block from src surface to dst surface.
* Overlapping regions are acceptable.
* Flipping and stretching are supported.
* \param filter one of PIPE_TEX_MIPFILTER_NEAREST/LINEAR
* \param writemask controls which channels in the dest surface are sourced
* from the src surface. Disabled channels are sourced
* from (0,0,0,1).
*/
void
util_blit_pixels(struct blit_state *ctx,
struct pipe_resource *src_tex,
unsigned src_level,
int srcX0, int srcY0,
int srcX1, int srcY1,
int srcZ0,
struct pipe_surface *dst,
int dstX0, int dstY0,
int dstX1, int dstY1,
float z, uint filter,
uint writemask, uint zs_writemask)
{
struct pipe_context *pipe = ctx->pipe;
enum pipe_format src_format, dst_format;
const int srcW = abs(srcX1 - srcX0);
const int srcH = abs(srcY1 - srcY0);
boolean overlap;
boolean is_stencil, is_depth, blit_depth, blit_stencil;
const struct util_format_description *src_desc =
util_format_description(src_tex->format);
struct pipe_blit_info info;
assert(filter == PIPE_TEX_MIPFILTER_NEAREST ||
filter == PIPE_TEX_MIPFILTER_LINEAR);
assert(src_level <= src_tex->last_level);
/* do the regions overlap? */
overlap = src_tex == dst->texture &&
dst->u.tex.level == src_level &&
dst->u.tex.first_layer == srcZ0 &&
regions_overlap(srcX0, srcY0, srcX1, srcY1,
dstX0, dstY0, dstX1, dstY1);
src_format = util_format_linear(src_tex->format);
dst_format = util_format_linear(dst->texture->format);
/* See whether we will blit depth or stencil. */
is_depth = util_format_has_depth(src_desc);
is_stencil = util_format_has_stencil(src_desc);
blit_depth = is_depth && (zs_writemask & BLIT_WRITEMASK_Z);
blit_stencil = is_stencil && (zs_writemask & BLIT_WRITEMASK_STENCIL);
assert((writemask && !zs_writemask && !is_depth && !is_stencil) ||
(!writemask && (blit_depth || blit_stencil)));
/*
* XXX: z parameter is deprecated. dst->u.tex.first_layer
* specificies the destination layer.
*/
assert(z == 0.0f);
/*
* Check for simple case: no format conversion, no flipping, no stretching,
* no overlapping, same number of samples.
* Filter mode should not matter since there's no stretching.
*/
if (formats_compatible(src_format, dst_format) &&
src_tex->nr_samples == dst->texture->nr_samples &&
is_stencil == blit_stencil &&
is_depth == blit_depth &&
srcX0 < srcX1 &&
dstX0 < dstX1 &&
srcY0 < srcY1 &&
dstY0 < dstY1 &&
(dstX1 - dstX0) == (srcX1 - srcX0) &&
(dstY1 - dstY0) == (srcY1 - srcY0) &&
!overlap) {
struct pipe_box src_box;
src_box.x = srcX0;
src_box.y = srcY0;
src_box.z = srcZ0;
src_box.width = srcW;
src_box.height = srcH;
src_box.depth = 1;
pipe->resource_copy_region(pipe,
dst->texture, dst->u.tex.level,
dstX0, dstY0, dst->u.tex.first_layer,/* dest */
src_tex, src_level,
&src_box);
return;
}
memset(&info, 0, sizeof info);
info.dst.resource = dst->texture;
info.dst.level = dst->u.tex.level;
info.dst.box.x = dstX0;
info.dst.box.y = dstY0;
info.dst.box.z = dst->u.tex.first_layer;
info.dst.box.width = dstX1 - dstX0;
info.dst.box.height = dstY1 - dstY0;
assert(info.dst.box.width >= 0);
assert(info.dst.box.height >= 0);
info.dst.box.depth = 1;
info.dst.format = dst->texture->format;
info.src.resource = src_tex;
info.src.level = src_level;
info.src.box.x = srcX0;
info.src.box.y = srcY0;
info.src.box.z = srcZ0;
info.src.box.width = srcX1 - srcX0;
info.src.box.height = srcY1 - srcY0;
info.src.box.depth = 1;
info.src.format = src_tex->format;
info.mask = writemask | (zs_writemask << 4);
info.filter = filter;
info.scissor_enable = 0;
pipe->blit(pipe, &info);
}
/**
* Copy pixel block from src sampler view to dst surface.
*
* The sampler view's first_level field indicates the source
* mipmap level to use.
*
* The sampler view's first_layer indicate the layer to use, but for
* cube maps it must point to the first face. Face is passed in src_face.
*
* The main advantage over util_blit_pixels is that it allows to specify swizzles in
* pipe_sampler_view::swizzle_?.
*
* But there is no control over blitting Z and/or stencil.
*/
void
util_blit_pixels_tex(struct blit_state *ctx,
struct pipe_sampler_view *src_sampler_view,
int srcX0, int srcY0,
int srcX1, int srcY1,
unsigned src_face,
struct pipe_surface *dst,
int dstX0, int dstY0,
int dstX1, int dstY1,
float z, uint filter)
{
boolean normalized = src_sampler_view->texture->target != PIPE_TEXTURE_RECT;
struct pipe_framebuffer_state fb;
float s0, t0, s1, t1;
unsigned offset;
struct pipe_resource *tex = src_sampler_view->texture;
assert(filter == PIPE_TEX_MIPFILTER_NEAREST ||
filter == PIPE_TEX_MIPFILTER_LINEAR);
assert(tex);
assert(tex->width0 != 0);
assert(tex->height0 != 0);
s0 = (float) srcX0;
s1 = (float) srcX1;
t0 = (float) srcY0;
t1 = (float) srcY1;
if(normalized)
{
/* normalize according to the mipmap level's size */
int level = src_sampler_view->u.tex.first_level;
float w = (float) u_minify(tex->width0, level);
float h = (float) u_minify(tex->height0, level);
s0 /= w;
s1 /= w;
t0 /= h;
t1 /= h;
}
assert(ctx->pipe->screen->is_format_supported(ctx->pipe->screen, dst->format,
PIPE_TEXTURE_2D,
dst->texture->nr_samples,
PIPE_BIND_RENDER_TARGET));
/* save state (restored below) */
cso_save_blend(ctx->cso);
cso_save_depth_stencil_alpha(ctx->cso);
cso_save_rasterizer(ctx->cso);
cso_save_sample_mask(ctx->cso);
cso_save_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_save_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_save_stream_outputs(ctx->cso);
cso_save_viewport(ctx->cso);
cso_save_framebuffer(ctx->cso);
cso_save_fragment_shader(ctx->cso);
cso_save_vertex_shader(ctx->cso);
cso_save_geometry_shader(ctx->cso);
cso_save_vertex_elements(ctx->cso);
cso_save_aux_vertex_buffer_slot(ctx->cso);
/* set misc state we care about */
cso_set_blend(ctx->cso, &ctx->blend_write_color);
cso_set_depth_stencil_alpha(ctx->cso, &ctx->dsa_keep_depthstencil);
cso_set_sample_mask(ctx->cso, ~0);
cso_set_rasterizer(ctx->cso, &ctx->rasterizer);
cso_set_vertex_elements(ctx->cso, 2, ctx->velem);
cso_set_stream_outputs(ctx->cso, 0, NULL, NULL);
/* sampler */
ctx->sampler.normalized_coords = normalized;
ctx->sampler.min_img_filter = filter;
ctx->sampler.mag_img_filter = filter;
cso_single_sampler(ctx->cso, PIPE_SHADER_FRAGMENT, 0, &ctx->sampler);
cso_single_sampler_done(ctx->cso, PIPE_SHADER_FRAGMENT);
/* viewport */
ctx->viewport.scale[0] = 0.5f * dst->width;
ctx->viewport.scale[1] = 0.5f * dst->height;
ctx->viewport.scale[2] = 0.5f;
ctx->viewport.scale[3] = 1.0f;
ctx->viewport.translate[0] = 0.5f * dst->width;
ctx->viewport.translate[1] = 0.5f * dst->height;
ctx->viewport.translate[2] = 0.5f;
ctx->viewport.translate[3] = 0.0f;
cso_set_viewport(ctx->cso, &ctx->viewport);
/* texture */
cso_set_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT, 1, &src_sampler_view);
/* shaders */
set_fragment_shader(ctx, TGSI_WRITEMASK_XYZW,
src_sampler_view->texture->target);
set_vertex_shader(ctx);
cso_set_geometry_shader_handle(ctx->cso, NULL);
/* drawing dest */
memset(&fb, 0, sizeof(fb));
fb.width = dst->width;
fb.height = dst->height;
fb.nr_cbufs = 1;
fb.cbufs[0] = dst;
cso_set_framebuffer(ctx->cso, &fb);
/* draw quad */
offset = setup_vertex_data_tex(ctx,
src_sampler_view->texture->target,
src_face,
(float) dstX0 / dst->width * 2.0f - 1.0f,
(float) dstY0 / dst->height * 2.0f - 1.0f,
(float) dstX1 / dst->width * 2.0f - 1.0f,
(float) dstY1 / dst->height * 2.0f - 1.0f,
s0, t0, s1, t1,
z);
util_draw_vertex_buffer(ctx->pipe, ctx->cso, ctx->vbuf,
cso_get_aux_vertex_buffer_slot(ctx->cso),
offset,
PIPE_PRIM_TRIANGLE_FAN,
4, /* verts */
2); /* attribs/vert */
/* restore state we changed */
cso_restore_blend(ctx->cso);
cso_restore_depth_stencil_alpha(ctx->cso);
cso_restore_rasterizer(ctx->cso);
cso_restore_sample_mask(ctx->cso);
cso_restore_samplers(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_restore_sampler_views(ctx->cso, PIPE_SHADER_FRAGMENT);
cso_restore_viewport(ctx->cso);
cso_restore_framebuffer(ctx->cso);
cso_restore_fragment_shader(ctx->cso);
cso_restore_vertex_shader(ctx->cso);
cso_restore_geometry_shader(ctx->cso);
cso_restore_vertex_elements(ctx->cso);
cso_restore_aux_vertex_buffer_slot(ctx->cso);
cso_restore_stream_outputs(ctx->cso);
}