Files
third_party_mesa3d/src/broadcom/compiler/nir_to_vir.c
2020-10-13 21:21:33 +00:00

3162 lines
119 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2016 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "util/format/u_format.h"
#include "util/u_helpers.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "common/v3d_device_info.h"
#include "v3d_compiler.h"
/* We don't do any address packing. */
#define __gen_user_data void
#define __gen_address_type uint32_t
#define __gen_address_offset(reloc) (*reloc)
#define __gen_emit_reloc(cl, reloc)
#include "cle/v3d_packet_v41_pack.h"
#define GENERAL_TMU_LOOKUP_PER_QUAD (0 << 7)
#define GENERAL_TMU_LOOKUP_PER_PIXEL (1 << 7)
#define GENERAL_TMU_LOOKUP_TYPE_8BIT_I (0 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_16BIT_I (1 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC2 (2 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC3 (3 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_VEC4 (4 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_8BIT_UI (5 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_16BIT_UI (6 << 0)
#define GENERAL_TMU_LOOKUP_TYPE_32BIT_UI (7 << 0)
#define V3D_TSY_SET_QUORUM 0
#define V3D_TSY_INC_WAITERS 1
#define V3D_TSY_DEC_WAITERS 2
#define V3D_TSY_INC_QUORUM 3
#define V3D_TSY_DEC_QUORUM 4
#define V3D_TSY_FREE_ALL 5
#define V3D_TSY_RELEASE 6
#define V3D_TSY_ACQUIRE 7
#define V3D_TSY_WAIT 8
#define V3D_TSY_WAIT_INC 9
#define V3D_TSY_WAIT_CHECK 10
#define V3D_TSY_WAIT_INC_CHECK 11
#define V3D_TSY_WAIT_CV 12
#define V3D_TSY_INC_SEMAPHORE 13
#define V3D_TSY_DEC_SEMAPHORE 14
#define V3D_TSY_SET_QUORUM_FREE_ALL 15
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
resize_qreg_array(struct v3d_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++)
(*regs)[i] = c->undef;
}
void
vir_emit_thrsw(struct v3d_compile *c)
{
if (c->threads == 1)
return;
/* Always thread switch after each texture operation for now.
*
* We could do better by batching a bunch of texture fetches up and
* then doing one thread switch and collecting all their results
* afterward.
*/
c->last_thrsw = vir_NOP(c);
c->last_thrsw->qpu.sig.thrsw = true;
c->last_thrsw_at_top_level = !c->in_control_flow;
/* We need to lock the scoreboard before any tlb acess happens. If this
* thread switch comes after we have emitted a tlb load, then it means
* that we can't lock on the last thread switch any more.
*/
if (c->emitted_tlb_load)
c->lock_scoreboard_on_first_thrsw = true;
}
uint32_t
v3d_get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
{
if (nir_src_is_const(instr->src[src])) {
int64_t add_val = nir_src_as_int(instr->src[src]);
if (add_val == 1)
return V3D_TMU_OP_WRITE_AND_READ_INC;
else if (add_val == -1)
return V3D_TMU_OP_WRITE_OR_READ_DEC;
}
return V3D_TMU_OP_WRITE_ADD_READ_PREFETCH;
}
static uint32_t
v3d_general_tmu_op(nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_ssbo:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_shared:
case nir_intrinsic_load_scratch:
case nir_intrinsic_store_ssbo:
case nir_intrinsic_store_shared:
case nir_intrinsic_store_scratch:
return V3D_TMU_OP_REGULAR;
case nir_intrinsic_ssbo_atomic_add:
return v3d_get_op_for_atomic_add(instr, 2);
case nir_intrinsic_shared_atomic_add:
return v3d_get_op_for_atomic_add(instr, 1);
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_shared_atomic_imin:
return V3D_TMU_OP_WRITE_SMIN;
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_shared_atomic_umin:
return V3D_TMU_OP_WRITE_UMIN_FULL_L1_CLEAR;
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_shared_atomic_imax:
return V3D_TMU_OP_WRITE_SMAX;
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_shared_atomic_umax:
return V3D_TMU_OP_WRITE_UMAX;
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_shared_atomic_and:
return V3D_TMU_OP_WRITE_AND_READ_INC;
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_shared_atomic_or:
return V3D_TMU_OP_WRITE_OR_READ_DEC;
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_shared_atomic_xor:
return V3D_TMU_OP_WRITE_XOR_READ_NOT;
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_shared_atomic_exchange:
return V3D_TMU_OP_WRITE_XCHG_READ_FLUSH;
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_shared_atomic_comp_swap:
return V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH;
default:
unreachable("unknown intrinsic op");
}
}
/**
* Implements indirect uniform loads and SSBO accesses through the TMU general
* memory access interface.
*/
static void
ntq_emit_tmu_general(struct v3d_compile *c, nir_intrinsic_instr *instr,
bool is_shared_or_scratch)
{
uint32_t tmu_op = v3d_general_tmu_op(instr);
/* If we were able to replace atomic_add for an inc/dec, then we
* need/can to do things slightly different, like not loading the
* amount to add/sub, as that is implicit.
*/
bool atomic_add_replaced =
((instr->intrinsic == nir_intrinsic_ssbo_atomic_add ||
instr->intrinsic == nir_intrinsic_shared_atomic_add) &&
(tmu_op == V3D_TMU_OP_WRITE_AND_READ_INC ||
tmu_op == V3D_TMU_OP_WRITE_OR_READ_DEC));
bool is_store = (instr->intrinsic == nir_intrinsic_store_ssbo ||
instr->intrinsic == nir_intrinsic_store_scratch ||
instr->intrinsic == nir_intrinsic_store_shared);
bool is_load = (instr->intrinsic == nir_intrinsic_load_uniform ||
instr->intrinsic == nir_intrinsic_load_ubo ||
instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_load_shared);
if (!is_load)
c->tmu_dirty_rcl = true;
bool has_index = !is_shared_or_scratch;
int offset_src;
if (instr->intrinsic == nir_intrinsic_load_uniform) {
offset_src = 0;
} else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
instr->intrinsic == nir_intrinsic_load_ubo ||
instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_load_shared ||
atomic_add_replaced) {
offset_src = 0 + has_index;
} else if (is_store) {
offset_src = 1 + has_index;
} else {
offset_src = 0 + has_index;
}
bool dynamic_src = !nir_src_is_const(instr->src[offset_src]);
uint32_t const_offset = 0;
if (!dynamic_src)
const_offset = nir_src_as_uint(instr->src[offset_src]);
struct qreg base_offset;
if (instr->intrinsic == nir_intrinsic_load_uniform) {
const_offset += nir_intrinsic_base(instr);
base_offset = vir_uniform(c, QUNIFORM_UBO_ADDR,
v3d_unit_data_create(0, const_offset));
const_offset = 0;
} else if (instr->intrinsic == nir_intrinsic_load_ubo) {
uint32_t index = nir_src_as_uint(instr->src[0]);
/* On OpenGL QUNIFORM_UBO_ADDR takes a UBO index
* shifted up by 1 (0 is gallium's constant buffer 0).
*/
if (c->key->environment == V3D_ENVIRONMENT_OPENGL)
index++;
base_offset =
vir_uniform(c, QUNIFORM_UBO_ADDR,
v3d_unit_data_create(index, const_offset));
const_offset = 0;
} else if (is_shared_or_scratch) {
/* Shared and scratch variables have no buffer index, and all
* start from a common base that we set up at the start of
* dispatch.
*/
if (instr->intrinsic == nir_intrinsic_load_scratch ||
instr->intrinsic == nir_intrinsic_store_scratch) {
base_offset = c->spill_base;
} else {
base_offset = c->cs_shared_offset;
const_offset += nir_intrinsic_base(instr);
}
} else {
base_offset = vir_uniform(c, QUNIFORM_SSBO_OFFSET,
nir_src_as_uint(instr->src[is_store ?
1 : 0]));
}
struct qreg tmud = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUD);
unsigned writemask = is_store ? nir_intrinsic_write_mask(instr) : 0;
uint32_t base_const_offset = const_offset;
int first_component = -1;
int last_component = -1;
do {
int tmu_writes = 1; /* address */
if (is_store) {
/* Find the first set of consecutive components that
* are enabled in the writemask and emit the TMUD
* instructions for them.
*/
first_component = ffs(writemask) - 1;
last_component = first_component;
while (writemask & BITFIELD_BIT(last_component + 1))
last_component++;
assert(first_component >= 0 &&
first_component <= last_component &&
last_component < instr->num_components);
struct qreg tmud = vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_TMUD);
for (int i = first_component; i <= last_component; i++) {
struct qreg data =
ntq_get_src(c, instr->src[0], i);
vir_MOV_dest(c, tmud, data);
tmu_writes++;
}
/* Update the offset for the TMU write based on the
* the first component we are writing.
*/
const_offset = base_const_offset + first_component * 4;
/* Clear these components from the writemask */
uint32_t written_mask =
BITFIELD_RANGE(first_component, tmu_writes - 1);
writemask &= ~written_mask;
} else if (!is_load && !atomic_add_replaced) {
struct qreg data =
ntq_get_src(c, instr->src[1 + has_index], 0);
vir_MOV_dest(c, tmud, data);
tmu_writes++;
if (tmu_op == V3D_TMU_OP_WRITE_CMPXCHG_READ_FLUSH) {
data = ntq_get_src(c, instr->src[2 + has_index],
0);
vir_MOV_dest(c, tmud, data);
tmu_writes++;
}
}
/* Make sure we won't exceed the 16-entry TMU fifo if each
* thread is storing at the same time.
*/
while (tmu_writes > 16 / c->threads)
c->threads /= 2;
/* The spec says that for atomics, the TYPE field is ignored,
* but that doesn't seem to be the case for CMPXCHG. Just use
* the number of tmud writes we did to decide the type (or
* choose "32bit" for atomic reads, which has been fine).
*/
uint32_t num_components;
if (is_load || atomic_add_replaced) {
num_components = instr->num_components;
} else {
assert(tmu_writes > 1);
num_components = tmu_writes - 1;
}
uint32_t perquad = is_load
? GENERAL_TMU_LOOKUP_PER_QUAD
: GENERAL_TMU_LOOKUP_PER_PIXEL;
uint32_t config = (0xffffff00 |
tmu_op << 3|
perquad);
if (num_components == 1) {
config |= GENERAL_TMU_LOOKUP_TYPE_32BIT_UI;
} else {
config |= GENERAL_TMU_LOOKUP_TYPE_VEC2 +
num_components - 2;
}
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
}
struct qreg tmua;
if (config == ~0)
tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA);
else
tmua = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUAU);
struct qinst *tmu;
if (dynamic_src) {
struct qreg offset = base_offset;
if (const_offset != 0) {
offset = vir_ADD(c, offset,
vir_uniform_ui(c, const_offset));
}
struct qreg data =
ntq_get_src(c, instr->src[offset_src], 0);
tmu = vir_ADD_dest(c, tmua, offset, data);
} else {
if (const_offset != 0) {
tmu = vir_ADD_dest(c, tmua, base_offset,
vir_uniform_ui(c, const_offset));
} else {
tmu = vir_MOV_dest(c, tmua, base_offset);
}
}
if (config != ~0) {
tmu->uniform =
vir_get_uniform_index(c, QUNIFORM_CONSTANT,
config);
}
if (vir_in_nonuniform_control_flow(c))
vir_set_cond(tmu, V3D_QPU_COND_IFA);
vir_emit_thrsw(c);
/* Read the result, or wait for the TMU op to complete. */
for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
ntq_store_dest(c, &instr->dest, i,
vir_MOV(c, vir_LDTMU(c)));
}
if (nir_intrinsic_dest_components(instr) == 0)
vir_TMUWT(c);
} while (is_store && writemask != 0);
}
static struct qreg *
ntq_init_ssa_def(struct v3d_compile *c, nir_ssa_def *def)
{
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
def->num_components);
_mesa_hash_table_insert(c->def_ht, def, qregs);
return qregs;
}
static bool
is_ld_signal(const struct v3d_qpu_sig *sig)
{
return (sig->ldunif ||
sig->ldunifa ||
sig->ldunifrf ||
sig->ldunifarf ||
sig->ldtmu ||
sig->ldvary ||
sig->ldvpm ||
sig->ldtlb ||
sig->ldtlbu);
}
/**
* This function is responsible for getting VIR results into the associated
* storage for a NIR instruction.
*
* If it's a NIR SSA def, then we just set the associated hash table entry to
* the new result.
*
* If it's a NIR reg, then we need to update the existing qreg assigned to the
* NIR destination with the incoming value. To do that without introducing
* new MOVs, we require that the incoming qreg either be a uniform, or be
* SSA-defined by the previous VIR instruction in the block and rewritable by
* this function. That lets us sneak ahead and insert the SF flag beforehand
* (knowing that the previous instruction doesn't depend on flags) and rewrite
* its destination to be the NIR reg's destination
*/
void
ntq_store_dest(struct v3d_compile *c, nir_dest *dest, int chan,
struct qreg result)
{
struct qinst *last_inst = NULL;
if (!list_is_empty(&c->cur_block->instructions))
last_inst = (struct qinst *)c->cur_block->instructions.prev;
assert((result.file == QFILE_TEMP &&
last_inst && last_inst == c->defs[result.index]));
if (dest->is_ssa) {
assert(chan < dest->ssa.num_components);
struct qreg *qregs;
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, &dest->ssa);
if (entry)
qregs = entry->data;
else
qregs = ntq_init_ssa_def(c, &dest->ssa);
qregs[chan] = result;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
struct qreg *qregs = entry->data;
/* If the previous instruction can't be predicated for
* the store into the nir_register, then emit a MOV
* that can be.
*/
if (vir_in_nonuniform_control_flow(c) &&
is_ld_signal(&c->defs[last_inst->dst.index]->qpu.sig)) {
result = vir_MOV(c, result);
last_inst = c->defs[result.index];
}
/* We know they're both temps, so just rewrite index. */
c->defs[last_inst->dst.index] = NULL;
last_inst->dst.index = qregs[chan].index;
/* If we're in control flow, then make this update of the reg
* conditional on the execution mask.
*/
if (vir_in_nonuniform_control_flow(c)) {
last_inst->dst.index = qregs[chan].index;
/* Set the flags to the current exec mask.
*/
c->cursor = vir_before_inst(last_inst);
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
c->cursor = vir_after_inst(last_inst);
vir_set_cond(last_inst, V3D_QPU_COND_IFA);
}
}
}
struct qreg
ntq_get_src(struct v3d_compile *c, nir_src src, int i)
{
struct hash_entry *entry;
if (src.is_ssa) {
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
assert(i < src.ssa->num_components);
} else {
nir_register *reg = src.reg.reg;
entry = _mesa_hash_table_search(c->def_ht, reg);
assert(reg->num_array_elems == 0);
assert(src.reg.base_offset == 0);
assert(i < reg->num_components);
}
struct qreg *qregs = entry->data;
return qregs[i];
}
static struct qreg
ntq_get_alu_src(struct v3d_compile *c, nir_alu_instr *instr,
unsigned src)
{
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
unsigned chan = ffs(instr->dest.write_mask) - 1;
struct qreg r = ntq_get_src(c, instr->src[src].src,
instr->src[src].swizzle[chan]);
assert(!instr->src[src].abs);
assert(!instr->src[src].negate);
return r;
};
static struct qreg
ntq_minify(struct v3d_compile *c, struct qreg size, struct qreg level)
{
return vir_MAX(c, vir_SHR(c, size, level), vir_uniform_ui(c, 1));
}
static void
ntq_emit_txs(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
int lod_index = nir_tex_instr_src_index(instr, nir_tex_src_lod);
int dest_size = nir_tex_instr_dest_size(instr);
struct qreg lod = c->undef;
if (lod_index != -1)
lod = ntq_get_src(c, instr->src[lod_index].src, 0);
for (int i = 0; i < dest_size; i++) {
assert(i < 3);
enum quniform_contents contents;
if (instr->is_array && i == dest_size - 1)
contents = QUNIFORM_TEXTURE_ARRAY_SIZE;
else
contents = QUNIFORM_TEXTURE_WIDTH + i;
struct qreg size = vir_uniform(c, contents, unit);
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_MS:
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
case GLSL_SAMPLER_DIM_BUF:
/* Don't minify the array size. */
if (!(instr->is_array && i == dest_size - 1)) {
size = ntq_minify(c, size, lod);
}
break;
case GLSL_SAMPLER_DIM_RECT:
/* There's no LOD field for rects */
break;
default:
unreachable("Bad sampler type");
}
ntq_store_dest(c, &instr->dest, i, size);
}
}
static void
ntq_emit_tex(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
/* Since each texture sampling op requires uploading uniforms to
* reference the texture, there's no HW support for texture size and
* you just upload uniforms containing the size.
*/
switch (instr->op) {
case nir_texop_query_levels:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_TEXTURE_LEVELS, unit));
return;
case nir_texop_texture_samples:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_TEXTURE_SAMPLES, unit));
return;
case nir_texop_txs:
ntq_emit_txs(c, instr);
return;
default:
break;
}
if (c->devinfo->ver >= 40)
v3d40_vir_emit_tex(c, instr);
else
v3d33_vir_emit_tex(c, instr);
}
static struct qreg
ntq_fsincos(struct v3d_compile *c, struct qreg src, bool is_cos)
{
struct qreg input = vir_FMUL(c, src, vir_uniform_f(c, 1.0f / M_PI));
if (is_cos)
input = vir_FADD(c, input, vir_uniform_f(c, 0.5));
struct qreg periods = vir_FROUND(c, input);
struct qreg sin_output = vir_SIN(c, vir_FSUB(c, input, periods));
return vir_XOR(c, sin_output, vir_SHL(c,
vir_FTOIN(c, periods),
vir_uniform_ui(c, -1)));
}
static struct qreg
ntq_fsign(struct v3d_compile *c, struct qreg src)
{
struct qreg t = vir_get_temp(c);
vir_MOV_dest(c, t, vir_uniform_f(c, 0.0));
vir_set_pf(vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_f(c, 1.0));
vir_set_pf(vir_FMOV_dest(c, vir_nop_reg(), src), V3D_QPU_PF_PUSHN);
vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_f(c, -1.0));
return vir_MOV(c, t);
}
static void
emit_fragcoord_input(struct v3d_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = vir_FXCD(c);
c->inputs[attr * 4 + 1] = vir_FYCD(c);
c->inputs[attr * 4 + 2] = c->payload_z;
c->inputs[attr * 4 + 3] = vir_RECIP(c, c->payload_w);
}
static struct qreg
emit_fragment_varying(struct v3d_compile *c, nir_variable *var,
uint8_t swizzle, int array_index)
{
struct qreg r3 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R3);
struct qreg r5 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R5);
struct qreg vary;
if (c->devinfo->ver >= 41) {
struct qinst *ldvary = vir_add_inst(V3D_QPU_A_NOP, c->undef,
c->undef, c->undef);
ldvary->qpu.sig.ldvary = true;
vary = vir_emit_def(c, ldvary);
} else {
vir_NOP(c)->qpu.sig.ldvary = true;
vary = r3;
}
/* For gl_PointCoord input or distance along a line, we'll be called
* with no nir_variable, and we don't count toward VPM size so we
* don't track an input slot.
*/
if (!var) {
return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
}
int i = c->num_inputs++;
c->input_slots[i] =
v3d_slot_from_slot_and_component(var->data.location +
array_index, swizzle);
switch (var->data.interpolation) {
case INTERP_MODE_NONE:
/* If a gl_FrontColor or gl_BackColor input has no interp
* qualifier, then if we're using glShadeModel(GL_FLAT) it
* needs to be flat shaded.
*/
switch (var->data.location + array_index) {
case VARYING_SLOT_COL0:
case VARYING_SLOT_COL1:
case VARYING_SLOT_BFC0:
case VARYING_SLOT_BFC1:
if (c->fs_key->shade_model_flat) {
BITSET_SET(c->flat_shade_flags, i);
vir_MOV_dest(c, c->undef, vary);
return vir_MOV(c, r5);
} else {
return vir_FADD(c, vir_FMUL(c, vary,
c->payload_w), r5);
}
default:
break;
}
/* FALLTHROUGH */
case INTERP_MODE_SMOOTH:
if (var->data.centroid) {
BITSET_SET(c->centroid_flags, i);
return vir_FADD(c, vir_FMUL(c, vary,
c->payload_w_centroid), r5);
} else {
return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
}
case INTERP_MODE_NOPERSPECTIVE:
BITSET_SET(c->noperspective_flags, i);
return vir_FADD(c, vir_MOV(c, vary), r5);
case INTERP_MODE_FLAT:
BITSET_SET(c->flat_shade_flags, i);
vir_MOV_dest(c, c->undef, vary);
return vir_MOV(c, r5);
default:
unreachable("Bad interp mode");
}
}
static void
emit_fragment_input(struct v3d_compile *c, int attr, nir_variable *var,
int array_index)
{
for (int i = 0; i < glsl_get_vector_elements(var->type); i++) {
int chan = var->data.location_frac + i;
c->inputs[attr * 4 + chan] =
emit_fragment_varying(c, var, chan, array_index);
}
}
static void
emit_compact_fragment_input(struct v3d_compile *c, int attr, nir_variable *var,
int array_index)
{
/* Compact variables are scalar arrays where each set of 4 elements
* consumes a single location.
*/
int loc_offset = array_index / 4;
int chan = var->data.location_frac + array_index % 4;
c->inputs[(attr + loc_offset) * 4 + chan] =
emit_fragment_varying(c, var, chan, loc_offset);
}
static void
add_output(struct v3d_compile *c,
uint32_t decl_offset,
uint8_t slot,
uint8_t swizzle)
{
uint32_t old_array_size = c->outputs_array_size;
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
decl_offset + 1);
if (old_array_size != c->outputs_array_size) {
c->output_slots = reralloc(c,
c->output_slots,
struct v3d_varying_slot,
c->outputs_array_size);
}
c->output_slots[decl_offset] =
v3d_slot_from_slot_and_component(slot, swizzle);
}
/**
* If compare_instr is a valid comparison instruction, emits the
* compare_instr's comparison and returns the sel_instr's return value based
* on the compare_instr's result.
*/
static bool
ntq_emit_comparison(struct v3d_compile *c,
nir_alu_instr *compare_instr,
enum v3d_qpu_cond *out_cond)
{
struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
struct qreg src1;
if (nir_op_infos[compare_instr->op].num_inputs > 1)
src1 = ntq_get_alu_src(c, compare_instr, 1);
bool cond_invert = false;
struct qreg nop = vir_nop_reg();
switch (compare_instr->op) {
case nir_op_feq32:
case nir_op_seq:
vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_ieq32:
vir_set_pf(vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_fneu32:
case nir_op_sne:
vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_ine32:
vir_set_pf(vir_XOR_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_fge32:
case nir_op_sge:
vir_set_pf(vir_FCMP_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ige32:
vir_set_pf(vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_uge32:
vir_set_pf(vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_slt:
case nir_op_flt32:
vir_set_pf(vir_FCMP_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHN);
break;
case nir_op_ilt32:
vir_set_pf(vir_MIN_dest(c, nop, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ult32:
vir_set_pf(vir_SUB_dest(c, nop, src0, src1), V3D_QPU_PF_PUSHC);
break;
case nir_op_i2b32:
vir_set_pf(vir_MOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_f2b32:
vir_set_pf(vir_FMOV_dest(c, nop, src0), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
default:
return false;
}
*out_cond = cond_invert ? V3D_QPU_COND_IFNA : V3D_QPU_COND_IFA;
return true;
}
/* Finds an ALU instruction that generates our src value that could
* (potentially) be greedily emitted in the consuming instruction.
*/
static struct nir_alu_instr *
ntq_get_alu_parent(nir_src src)
{
if (!src.is_ssa || src.ssa->parent_instr->type != nir_instr_type_alu)
return NULL;
nir_alu_instr *instr = nir_instr_as_alu(src.ssa->parent_instr);
if (!instr)
return NULL;
/* If the ALU instr's srcs are non-SSA, then we would have to avoid
* moving emission of the ALU instr down past another write of the
* src.
*/
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
if (!instr->src[i].src.is_ssa)
return NULL;
}
return instr;
}
/* Turns a NIR bool into a condition code to predicate on. */
static enum v3d_qpu_cond
ntq_emit_bool_to_cond(struct v3d_compile *c, nir_src src)
{
nir_alu_instr *compare = ntq_get_alu_parent(src);
if (!compare)
goto out;
enum v3d_qpu_cond cond;
if (ntq_emit_comparison(c, compare, &cond))
return cond;
out:
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), ntq_get_src(c, src, 0)),
V3D_QPU_PF_PUSHZ);
return V3D_QPU_COND_IFNA;
}
static void
ntq_emit_alu(struct v3d_compile *c, nir_alu_instr *instr)
{
/* This should always be lowered to ALU operations for V3D. */
assert(!instr->dest.saturate);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in order
* into each writemask channel.
*/
if (instr->op == nir_op_vec2 ||
instr->op == nir_op_vec3 ||
instr->op == nir_op_vec4) {
struct qreg srcs[4];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
srcs[i] = ntq_get_src(c, instr->src[i].src,
instr->src[i].swizzle[0]);
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
ntq_store_dest(c, &instr->dest.dest, i,
vir_MOV(c, srcs[i]));
return;
}
/* General case: We can just grab the one used channel per src. */
struct qreg src[nir_op_infos[instr->op].num_inputs];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
src[i] = ntq_get_alu_src(c, instr, i);
}
struct qreg result;
switch (instr->op) {
case nir_op_mov:
result = vir_MOV(c, src[0]);
break;
case nir_op_fneg:
result = vir_XOR(c, src[0], vir_uniform_ui(c, 1 << 31));
break;
case nir_op_ineg:
result = vir_NEG(c, src[0]);
break;
case nir_op_fmul:
result = vir_FMUL(c, src[0], src[1]);
break;
case nir_op_fadd:
result = vir_FADD(c, src[0], src[1]);
break;
case nir_op_fsub:
result = vir_FSUB(c, src[0], src[1]);
break;
case nir_op_fmin:
result = vir_FMIN(c, src[0], src[1]);
break;
case nir_op_fmax:
result = vir_FMAX(c, src[0], src[1]);
break;
case nir_op_f2i32: {
nir_alu_instr *src0_alu = ntq_get_alu_parent(instr->src[0].src);
if (src0_alu && src0_alu->op == nir_op_fround_even) {
result = vir_FTOIN(c, ntq_get_alu_src(c, src0_alu, 0));
} else {
result = vir_FTOIZ(c, src[0]);
}
break;
}
case nir_op_f2u32:
result = vir_FTOUZ(c, src[0]);
break;
case nir_op_i2f32:
result = vir_ITOF(c, src[0]);
break;
case nir_op_u2f32:
result = vir_UTOF(c, src[0]);
break;
case nir_op_b2f32:
result = vir_AND(c, src[0], vir_uniform_f(c, 1.0));
break;
case nir_op_b2i32:
result = vir_AND(c, src[0], vir_uniform_ui(c, 1));
break;
case nir_op_iadd:
result = vir_ADD(c, src[0], src[1]);
break;
case nir_op_ushr:
result = vir_SHR(c, src[0], src[1]);
break;
case nir_op_isub:
result = vir_SUB(c, src[0], src[1]);
break;
case nir_op_ishr:
result = vir_ASR(c, src[0], src[1]);
break;
case nir_op_ishl:
result = vir_SHL(c, src[0], src[1]);
break;
case nir_op_imin:
result = vir_MIN(c, src[0], src[1]);
break;
case nir_op_umin:
result = vir_UMIN(c, src[0], src[1]);
break;
case nir_op_imax:
result = vir_MAX(c, src[0], src[1]);
break;
case nir_op_umax:
result = vir_UMAX(c, src[0], src[1]);
break;
case nir_op_iand:
result = vir_AND(c, src[0], src[1]);
break;
case nir_op_ior:
result = vir_OR(c, src[0], src[1]);
break;
case nir_op_ixor:
result = vir_XOR(c, src[0], src[1]);
break;
case nir_op_inot:
result = vir_NOT(c, src[0]);
break;
case nir_op_ufind_msb:
result = vir_SUB(c, vir_uniform_ui(c, 31), vir_CLZ(c, src[0]));
break;
case nir_op_imul:
result = vir_UMUL(c, src[0], src[1]);
break;
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt: {
enum v3d_qpu_cond cond;
ASSERTED bool ok = ntq_emit_comparison(c, instr, &cond);
assert(ok);
result = vir_MOV(c, vir_SEL(c, cond,
vir_uniform_f(c, 1.0),
vir_uniform_f(c, 0.0)));
break;
}
case nir_op_i2b32:
case nir_op_f2b32:
case nir_op_feq32:
case nir_op_fneu32:
case nir_op_fge32:
case nir_op_flt32:
case nir_op_ieq32:
case nir_op_ine32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_ilt32:
case nir_op_ult32: {
enum v3d_qpu_cond cond;
ASSERTED bool ok = ntq_emit_comparison(c, instr, &cond);
assert(ok);
result = vir_MOV(c, vir_SEL(c, cond,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0)));
break;
}
case nir_op_b32csel:
result = vir_MOV(c,
vir_SEL(c,
ntq_emit_bool_to_cond(c, instr->src[0].src),
src[1], src[2]));
break;
case nir_op_fcsel:
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), src[0]),
V3D_QPU_PF_PUSHZ);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
src[1], src[2]));
break;
case nir_op_frcp:
result = vir_RECIP(c, src[0]);
break;
case nir_op_frsq:
result = vir_RSQRT(c, src[0]);
break;
case nir_op_fexp2:
result = vir_EXP(c, src[0]);
break;
case nir_op_flog2:
result = vir_LOG(c, src[0]);
break;
case nir_op_fceil:
result = vir_FCEIL(c, src[0]);
break;
case nir_op_ffloor:
result = vir_FFLOOR(c, src[0]);
break;
case nir_op_fround_even:
result = vir_FROUND(c, src[0]);
break;
case nir_op_ftrunc:
result = vir_FTRUNC(c, src[0]);
break;
case nir_op_fsin:
result = ntq_fsincos(c, src[0], false);
break;
case nir_op_fcos:
result = ntq_fsincos(c, src[0], true);
break;
case nir_op_fsign:
result = ntq_fsign(c, src[0]);
break;
case nir_op_fabs: {
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_ABS);
break;
}
case nir_op_iabs:
result = vir_MAX(c, src[0], vir_NEG(c, src[0]));
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
result = vir_FDX(c, src[0]);
break;
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
result = vir_FDY(c, src[0]);
break;
case nir_op_uadd_carry:
vir_set_pf(vir_ADD_dest(c, vir_nop_reg(), src[0], src[1]),
V3D_QPU_PF_PUSHC);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFA,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0)));
break;
case nir_op_pack_half_2x16_split:
result = vir_VFPACK(c, src[0], src[1]);
break;
case nir_op_unpack_half_2x16_split_x:
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_L);
break;
case nir_op_unpack_half_2x16_split_y:
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_H);
break;
case nir_op_fquantize2f16: {
/* F32 -> F16 -> F32 conversion */
struct qreg tmp = vir_FMOV(c, src[0]);
vir_set_pack(c->defs[tmp.index], V3D_QPU_PACK_L);
tmp = vir_FMOV(c, tmp);
vir_set_unpack(c->defs[tmp.index], 0, V3D_QPU_UNPACK_L);
/* Check for denorm */
struct qreg abs_src = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[abs_src.index], 0, V3D_QPU_UNPACK_ABS);
struct qreg threshold = vir_uniform_f(c, ldexpf(1.0, -14));
vir_set_pf(vir_FCMP_dest(c, vir_nop_reg(), abs_src, threshold),
V3D_QPU_PF_PUSHC);
/* Return +/-0 for denorms */
struct qreg zero =
vir_AND(c, src[0], vir_uniform_ui(c, 0x80000000));
result = vir_FMOV(c, vir_SEL(c, V3D_QPU_COND_IFNA, tmp, zero));
break;
}
default:
fprintf(stderr, "unknown NIR ALU inst: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
/* We have a scalar result, so the instruction should only have a
* single channel written to.
*/
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
ntq_store_dest(c, &instr->dest.dest,
ffs(instr->dest.write_mask) - 1, result);
}
/* Each TLB read/write setup (a render target or depth buffer) takes an 8-bit
* specifier. They come from a register that's preloaded with 0xffffffff
* (0xff gets you normal vec4 f16 RT0 writes), and when one is neaded the low
* 8 bits are shifted off the bottom and 0xff shifted in from the top.
*/
#define TLB_TYPE_F16_COLOR (3 << 6)
#define TLB_TYPE_I32_COLOR (1 << 6)
#define TLB_TYPE_F32_COLOR (0 << 6)
#define TLB_RENDER_TARGET_SHIFT 3 /* Reversed! 7 = RT 0, 0 = RT 7. */
#define TLB_SAMPLE_MODE_PER_SAMPLE (0 << 2)
#define TLB_SAMPLE_MODE_PER_PIXEL (1 << 2)
#define TLB_F16_SWAP_HI_LO (1 << 1)
#define TLB_VEC_SIZE_4_F16 (1 << 0)
#define TLB_VEC_SIZE_2_F16 (0 << 0)
#define TLB_VEC_SIZE_MINUS_1_SHIFT 0
/* Triggers Z/Stencil testing, used when the shader state's "FS modifies Z"
* flag is set.
*/
#define TLB_TYPE_DEPTH ((2 << 6) | (0 << 4))
#define TLB_DEPTH_TYPE_INVARIANT (0 << 2) /* Unmodified sideband input used */
#define TLB_DEPTH_TYPE_PER_PIXEL (1 << 2) /* QPU result used */
#define TLB_V42_DEPTH_TYPE_INVARIANT (0 << 3) /* Unmodified sideband input used */
#define TLB_V42_DEPTH_TYPE_PER_PIXEL (1 << 3) /* QPU result used */
/* Stencil is a single 32-bit write. */
#define TLB_TYPE_STENCIL_ALPHA ((2 << 6) | (1 << 4))
static void
vir_emit_tlb_color_write(struct v3d_compile *c, unsigned rt)
{
if (!(c->fs_key->cbufs & (1 << rt)) || !c->output_color_var[rt])
return;
struct qreg tlb_reg = vir_magic_reg(V3D_QPU_WADDR_TLB);
struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
nir_variable *var = c->output_color_var[rt];
int num_components = glsl_get_vector_elements(var->type);
uint32_t conf = 0xffffff00;
struct qinst *inst;
conf |= c->msaa_per_sample_output ? TLB_SAMPLE_MODE_PER_SAMPLE :
TLB_SAMPLE_MODE_PER_PIXEL;
conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
if (c->fs_key->swap_color_rb & (1 << rt))
num_components = MAX2(num_components, 3);
assert(num_components != 0);
enum glsl_base_type type = glsl_get_base_type(var->type);
bool is_int_format = type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT;
bool is_32b_tlb_format = is_int_format ||
(c->fs_key->f32_color_rb & (1 << rt));
if (is_int_format) {
/* The F32 vs I32 distinction was dropped in 4.2. */
if (c->devinfo->ver < 42)
conf |= TLB_TYPE_I32_COLOR;
else
conf |= TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) << TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
if (c->fs_key->f32_color_rb & (1 << rt)) {
conf |= TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
conf |= TLB_TYPE_F16_COLOR;
conf |= TLB_F16_SWAP_HI_LO;
if (num_components >= 3)
conf |= TLB_VEC_SIZE_4_F16;
else
conf |= TLB_VEC_SIZE_2_F16;
}
}
int num_samples = c->msaa_per_sample_output ? V3D_MAX_SAMPLES : 1;
for (int i = 0; i < num_samples; i++) {
struct qreg *color = c->msaa_per_sample_output ?
&c->sample_colors[(rt * V3D_MAX_SAMPLES + i) * 4] :
&c->outputs[var->data.driver_location * 4];
struct qreg r = color[0];
struct qreg g = color[1];
struct qreg b = color[2];
struct qreg a = color[3];
if (c->fs_key->swap_color_rb & (1 << rt)) {
r = color[2];
b = color[0];
}
if (c->fs_key->sample_alpha_to_one)
a = vir_uniform_f(c, 1.0);
if (is_32b_tlb_format) {
if (i == 0) {
inst = vir_MOV_dest(c, tlbu_reg, r);
inst->uniform =
vir_get_uniform_index(c,
QUNIFORM_CONSTANT,
conf);
} else {
inst = vir_MOV_dest(c, tlb_reg, r);
}
if (num_components >= 2)
vir_MOV_dest(c, tlb_reg, g);
if (num_components >= 3)
vir_MOV_dest(c, tlb_reg, b);
if (num_components >= 4)
vir_MOV_dest(c, tlb_reg, a);
} else {
inst = vir_VFPACK_dest(c, tlb_reg, r, g);
if (conf != ~0 && i == 0) {
inst->dst = tlbu_reg;
inst->uniform =
vir_get_uniform_index(c,
QUNIFORM_CONSTANT,
conf);
}
if (num_components >= 3)
inst = vir_VFPACK_dest(c, tlb_reg, b, a);
}
}
}
static void
emit_frag_end(struct v3d_compile *c)
{
if (c->output_sample_mask_index != -1) {
vir_SETMSF_dest(c, vir_nop_reg(),
vir_AND(c,
vir_MSF(c),
c->outputs[c->output_sample_mask_index]));
}
bool has_any_tlb_color_write = false;
for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++) {
if (c->fs_key->cbufs & (1 << rt) && c->output_color_var[rt])
has_any_tlb_color_write = true;
}
if (c->fs_key->sample_alpha_to_coverage && c->output_color_var[0]) {
struct nir_variable *var = c->output_color_var[0];
struct qreg *color = &c->outputs[var->data.driver_location * 4];
vir_SETMSF_dest(c, vir_nop_reg(),
vir_AND(c,
vir_MSF(c),
vir_FTOC(c, color[3])));
}
struct qreg tlbu_reg = vir_magic_reg(V3D_QPU_WADDR_TLBU);
if (c->output_position_index != -1) {
struct qinst *inst = vir_MOV_dest(c, tlbu_reg,
c->outputs[c->output_position_index]);
uint8_t tlb_specifier = TLB_TYPE_DEPTH;
if (c->devinfo->ver >= 42) {
tlb_specifier |= (TLB_V42_DEPTH_TYPE_PER_PIXEL |
TLB_SAMPLE_MODE_PER_PIXEL);
} else
tlb_specifier |= TLB_DEPTH_TYPE_PER_PIXEL;
inst->uniform = vir_get_uniform_index(c, QUNIFORM_CONSTANT,
tlb_specifier |
0xffffff00);
c->writes_z = true;
} else if (c->s->info.fs.uses_discard ||
!c->s->info.fs.early_fragment_tests ||
c->fs_key->sample_alpha_to_coverage ||
!has_any_tlb_color_write) {
/* Emit passthrough Z if it needed to be delayed until shader
* end due to potential discards.
*
* Since (single-threaded) fragment shaders always need a TLB
* write, emit passthrouh Z if we didn't have any color
* buffers and flag us as potentially discarding, so that we
* can use Z as the TLB write.
*/
c->s->info.fs.uses_discard = true;
struct qinst *inst = vir_MOV_dest(c, tlbu_reg,
vir_nop_reg());
uint8_t tlb_specifier = TLB_TYPE_DEPTH;
if (c->devinfo->ver >= 42) {
/* The spec says the PER_PIXEL flag is ignored for
* invariant writes, but the simulator demands it.
*/
tlb_specifier |= (TLB_V42_DEPTH_TYPE_INVARIANT |
TLB_SAMPLE_MODE_PER_PIXEL);
} else {
tlb_specifier |= TLB_DEPTH_TYPE_INVARIANT;
}
inst->uniform = vir_get_uniform_index(c,
QUNIFORM_CONSTANT,
tlb_specifier |
0xffffff00);
c->writes_z = true;
}
/* XXX: Performance improvement: Merge Z write and color writes TLB
* uniform setup
*/
for (int rt = 0; rt < V3D_MAX_DRAW_BUFFERS; rt++)
vir_emit_tlb_color_write(c, rt);
}
static inline void
vir_VPM_WRITE_indirect(struct v3d_compile *c,
struct qreg val,
struct qreg vpm_index)
{
assert(c->devinfo->ver >= 40);
vir_STVPMV(c, vpm_index, val);
}
static void
vir_VPM_WRITE(struct v3d_compile *c, struct qreg val, uint32_t vpm_index)
{
if (c->devinfo->ver >= 40) {
vir_VPM_WRITE_indirect(c, val, vir_uniform_ui(c, vpm_index));
} else {
/* XXX: v3d33_vir_vpm_write_setup(c); */
vir_MOV_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM), val);
}
}
static void
emit_vert_end(struct v3d_compile *c)
{
/* GFXH-1684: VPM writes need to be complete by the end of the shader.
*/
if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
vir_VPMWT(c);
}
static void
emit_geom_end(struct v3d_compile *c)
{
/* GFXH-1684: VPM writes need to be complete by the end of the shader.
*/
if (c->devinfo->ver >= 40 && c->devinfo->ver <= 42)
vir_VPMWT(c);
}
void
v3d_optimize_nir(struct nir_shader *s)
{
bool progress;
unsigned lower_flrp =
(s->options->lower_flrp16 ? 16 : 0) |
(s->options->lower_flrp32 ? 32 : 0) |
(s->options->lower_flrp64 ? 64 : 0);
do {
progress = false;
NIR_PASS_V(s, nir_lower_vars_to_ssa);
NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS(progress, s, nir_lower_phis_to_scalar);
NIR_PASS(progress, s, nir_copy_prop);
NIR_PASS(progress, s, nir_opt_remove_phis);
NIR_PASS(progress, s, nir_opt_dce);
NIR_PASS(progress, s, nir_opt_dead_cf);
NIR_PASS(progress, s, nir_opt_cse);
NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
NIR_PASS(progress, s, nir_opt_algebraic);
NIR_PASS(progress, s, nir_opt_constant_folding);
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
lower_flrp,
false /* always_precise */);
if (lower_flrp_progress) {
NIR_PASS(progress, s, nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, s, nir_opt_undef);
} while (progress);
NIR_PASS(progress, s, nir_opt_move, nir_move_load_ubo);
}
static int
driver_location_compare(const void *in_a, const void *in_b)
{
const nir_variable *const *a = in_a;
const nir_variable *const *b = in_b;
if ((*a)->data.driver_location == (*b)->data.driver_location)
return (*a)->data.location_frac - (*b)->data.location_frac;
return (*a)->data.driver_location - (*b)->data.driver_location;
}
static struct qreg
ntq_emit_vpm_read(struct v3d_compile *c,
uint32_t *num_components_queued,
uint32_t *remaining,
uint32_t vpm_index)
{
struct qreg vpm = vir_reg(QFILE_VPM, vpm_index);
if (c->devinfo->ver >= 40 ) {
return vir_LDVPMV_IN(c,
vir_uniform_ui(c,
(*num_components_queued)++));
}
if (*num_components_queued != 0) {
(*num_components_queued)--;
return vir_MOV(c, vpm);
}
uint32_t num_components = MIN2(*remaining, 32);
v3d33_vir_vpm_read_setup(c, num_components);
*num_components_queued = num_components - 1;
*remaining -= num_components;
return vir_MOV(c, vpm);
}
static void
ntq_setup_vs_inputs(struct v3d_compile *c)
{
/* Figure out how many components of each vertex attribute the shader
* uses. Each variable should have been split to individual
* components and unused ones DCEed. The vertex fetcher will load
* from the start of the attribute to the number of components we
* declare we need in c->vattr_sizes[].
*/
nir_foreach_shader_in_variable(var, c->s) {
/* No VS attribute array support. */
assert(MAX2(glsl_get_length(var->type), 1) == 1);
unsigned loc = var->data.driver_location;
int start_component = var->data.location_frac;
int num_components = glsl_get_components(var->type);
c->vattr_sizes[loc] = MAX2(c->vattr_sizes[loc],
start_component + num_components);
}
unsigned num_components = 0;
uint32_t vpm_components_queued = 0;
bool uses_iid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_INSTANCE_ID |
1ull << SYSTEM_VALUE_INSTANCE_INDEX);
bool uses_biid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_BASE_INSTANCE);
bool uses_vid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_VERTEX_ID |
1ull << SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
num_components += uses_iid;
num_components += uses_biid;
num_components += uses_vid;
for (int i = 0; i < ARRAY_SIZE(c->vattr_sizes); i++)
num_components += c->vattr_sizes[i];
if (uses_iid) {
c->iid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
if (uses_biid) {
c->biid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
if (uses_vid) {
c->vid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
/* The actual loads will happen directly in nir_intrinsic_load_input
* on newer versions.
*/
if (c->devinfo->ver >= 40)
return;
for (int loc = 0; loc < ARRAY_SIZE(c->vattr_sizes); loc++) {
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + 1) * 4);
for (int i = 0; i < c->vattr_sizes[loc]; i++) {
c->inputs[loc * 4 + i] =
ntq_emit_vpm_read(c,
&vpm_components_queued,
&num_components,
loc * 4 + i);
}
}
if (c->devinfo->ver >= 40) {
assert(vpm_components_queued == num_components);
} else {
assert(vpm_components_queued == 0);
assert(num_components == 0);
}
}
static bool
program_reads_point_coord(struct v3d_compile *c)
{
nir_foreach_shader_in_variable(var, c->s) {
if (util_varying_is_point_coord(var->data.location,
c->fs_key->point_sprite_mask)) {
return true;
}
}
return false;
}
static void
get_sorted_input_variables(struct v3d_compile *c,
unsigned *num_entries,
nir_variable ***vars)
{
*num_entries = 0;
nir_foreach_shader_in_variable(var, c->s)
(*num_entries)++;
*vars = ralloc_array(c, nir_variable *, *num_entries);
unsigned i = 0;
nir_foreach_shader_in_variable(var, c->s)
(*vars)[i++] = var;
/* Sort the variables so that we emit the input setup in
* driver_location order. This is required for VPM reads, whose data
* is fetched into the VPM in driver_location (TGSI register index)
* order.
*/
qsort(*vars, *num_entries, sizeof(**vars), driver_location_compare);
}
static void
ntq_setup_gs_inputs(struct v3d_compile *c)
{
nir_variable **vars;
unsigned num_entries;
get_sorted_input_variables(c, &num_entries, &vars);
for (unsigned i = 0; i < num_entries; i++) {
nir_variable *var = vars[i];
/* All GS inputs are arrays with as many entries as vertices
* in the input primitive, but here we only care about the
* per-vertex input type.
*/
const struct glsl_type *type = glsl_without_array(var->type);
unsigned array_len = MAX2(glsl_get_length(type), 1);
unsigned loc = var->data.driver_location;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + array_len) * 4);
for (unsigned j = 0; j < array_len; j++) {
unsigned num_elements = glsl_get_vector_elements(type);
for (unsigned k = 0; k < num_elements; k++) {
unsigned chan = var->data.location_frac + k;
unsigned input_idx = c->num_inputs++;
struct v3d_varying_slot slot =
v3d_slot_from_slot_and_component(var->data.location + j, chan);
c->input_slots[input_idx] = slot;
}
}
}
}
static void
ntq_setup_fs_inputs(struct v3d_compile *c)
{
nir_variable **vars;
unsigned num_entries;
get_sorted_input_variables(c, &num_entries, &vars);
for (unsigned i = 0; i < num_entries; i++) {
nir_variable *var = vars[i];
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + array_len) * 4);
if (var->data.location == VARYING_SLOT_POS) {
emit_fragcoord_input(c, loc);
} else if (util_varying_is_point_coord(var->data.location,
c->fs_key->point_sprite_mask)) {
c->inputs[loc * 4 + 0] = c->point_x;
c->inputs[loc * 4 + 1] = c->point_y;
} else if (var->data.compact) {
for (int j = 0; j < array_len; j++)
emit_compact_fragment_input(c, loc, var, j);
} else {
for (int j = 0; j < array_len; j++)
emit_fragment_input(c, loc + j, var, j);
}
}
}
static void
ntq_setup_outputs(struct v3d_compile *c)
{
if (c->s->info.stage != MESA_SHADER_FRAGMENT)
return;
nir_foreach_shader_out_variable(var, c->s) {
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location * 4;
assert(array_len == 1);
(void)array_len;
for (int i = 0; i < 4 - var->data.location_frac; i++) {
add_output(c, loc + var->data.location_frac + i,
var->data.location,
var->data.location_frac + i);
}
switch (var->data.location) {
case FRAG_RESULT_COLOR:
c->output_color_var[0] = var;
c->output_color_var[1] = var;
c->output_color_var[2] = var;
c->output_color_var[3] = var;
break;
case FRAG_RESULT_DATA0:
case FRAG_RESULT_DATA1:
case FRAG_RESULT_DATA2:
case FRAG_RESULT_DATA3:
c->output_color_var[var->data.location -
FRAG_RESULT_DATA0] = var;
break;
case FRAG_RESULT_DEPTH:
c->output_position_index = loc;
break;
case FRAG_RESULT_SAMPLE_MASK:
c->output_sample_mask_index = loc;
break;
}
}
}
/**
* Sets up the mapping from nir_register to struct qreg *.
*
* Each nir_register gets a struct qreg per 32-bit component being stored.
*/
static void
ntq_setup_registers(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_register, nir_reg, node, list) {
unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
array_len *
nir_reg->num_components);
_mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
for (int i = 0; i < array_len * nir_reg->num_components; i++)
qregs[i] = vir_get_temp(c);
}
}
static void
ntq_emit_load_const(struct v3d_compile *c, nir_load_const_instr *instr)
{
/* XXX perf: Experiment with using immediate loads to avoid having
* these end up in the uniform stream. Watch out for breaking the
* small immediates optimization in the process!
*/
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, instr->value[i].u32);
_mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
}
static void
ntq_emit_ssa_undef(struct v3d_compile *c, nir_ssa_undef_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
/* VIR needs there to be *some* value, so pick 0 (same as for
* ntq_setup_registers().
*/
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, 0);
}
static void
ntq_emit_image_size(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
unsigned image_index = nir_src_as_uint(instr->src[0]);
bool is_array = nir_intrinsic_image_array(instr);
assert(nir_src_as_uint(instr->src[1]) == 0);
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_IMAGE_WIDTH, image_index));
if (instr->num_components > 1) {
ntq_store_dest(c, &instr->dest, 1,
vir_uniform(c,
instr->num_components == 2 && is_array ?
QUNIFORM_IMAGE_ARRAY_SIZE :
QUNIFORM_IMAGE_HEIGHT,
image_index));
}
if (instr->num_components > 2) {
ntq_store_dest(c, &instr->dest, 2,
vir_uniform(c,
is_array ?
QUNIFORM_IMAGE_ARRAY_SIZE :
QUNIFORM_IMAGE_DEPTH,
image_index));
}
}
static void
vir_emit_tlb_color_read(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
assert(c->s->info.stage == MESA_SHADER_FRAGMENT);
int rt = nir_src_as_uint(instr->src[0]);
assert(rt < V3D_MAX_DRAW_BUFFERS);
int sample_index = nir_intrinsic_base(instr) ;
assert(sample_index < V3D_MAX_SAMPLES);
int component = nir_intrinsic_component(instr);
assert(component < 4);
/* We need to emit our TLB reads after we have acquired the scoreboard
* lock, or the GPU will hang. Usually, we do our scoreboard locking on
* the last thread switch to improve parallelism, however, that is only
* guaranteed to happen before the tlb color writes.
*
* To fix that, we make sure we always emit a thread switch before the
* first tlb color read. If that happens to be the last thread switch
* we emit, then everything is fine, but otherwsie, if any code after
* this point needs to emit additional thread switches, then we will
* switch the strategy to locking the scoreboard on the first thread
* switch instead -- see vir_emit_thrsw().
*/
if (!c->emitted_tlb_load) {
if (!c->last_thrsw_at_top_level) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
c->emitted_tlb_load = true;
}
struct qreg *color_reads_for_sample =
&c->color_reads[(rt * V3D_MAX_SAMPLES + sample_index) * 4];
if (color_reads_for_sample[component].file == QFILE_NULL) {
enum pipe_format rt_format = c->fs_key->color_fmt[rt].format;
int num_components =
util_format_get_nr_components(rt_format);
const bool swap_rb = c->fs_key->swap_color_rb & (1 << rt);
if (swap_rb)
num_components = MAX2(num_components, 3);
nir_variable *var = c->output_color_var[rt];
enum glsl_base_type type = glsl_get_base_type(var->type);
bool is_int_format = type == GLSL_TYPE_INT ||
type == GLSL_TYPE_UINT;
bool is_32b_tlb_format = is_int_format ||
(c->fs_key->f32_color_rb & (1 << rt));
int num_samples = c->fs_key->msaa ? V3D_MAX_SAMPLES : 1;
uint32_t conf = 0xffffff00;
conf |= c->fs_key->msaa ? TLB_SAMPLE_MODE_PER_SAMPLE :
TLB_SAMPLE_MODE_PER_PIXEL;
conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
if (is_32b_tlb_format) {
/* The F32 vs I32 distinction was dropped in 4.2. */
conf |= (c->devinfo->ver < 42 && is_int_format) ?
TLB_TYPE_I32_COLOR : TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
conf |= TLB_TYPE_F16_COLOR;
conf |= TLB_F16_SWAP_HI_LO;
if (num_components >= 3)
conf |= TLB_VEC_SIZE_4_F16;
else
conf |= TLB_VEC_SIZE_2_F16;
}
for (int i = 0; i < num_samples; i++) {
struct qreg r, g, b, a;
if (is_32b_tlb_format) {
r = conf != 0xffffffff && i == 0?
vir_TLBU_COLOR_READ(c, conf) :
vir_TLB_COLOR_READ(c);
if (num_components >= 2)
g = vir_TLB_COLOR_READ(c);
if (num_components >= 3)
b = vir_TLB_COLOR_READ(c);
if (num_components >= 4)
a = vir_TLB_COLOR_READ(c);
} else {
struct qreg rg = conf != 0xffffffff && i == 0 ?
vir_TLBU_COLOR_READ(c, conf) :
vir_TLB_COLOR_READ(c);
r = vir_FMOV(c, rg);
vir_set_unpack(c->defs[r.index], 0,
V3D_QPU_UNPACK_L);
g = vir_FMOV(c, rg);
vir_set_unpack(c->defs[g.index], 0,
V3D_QPU_UNPACK_H);
if (num_components > 2) {
struct qreg ba = vir_TLB_COLOR_READ(c);
b = vir_FMOV(c, ba);
vir_set_unpack(c->defs[b.index], 0,
V3D_QPU_UNPACK_L);
a = vir_FMOV(c, ba);
vir_set_unpack(c->defs[a.index], 0,
V3D_QPU_UNPACK_H);
}
}
struct qreg *color_reads =
&c->color_reads[(rt * V3D_MAX_SAMPLES + i) * 4];
color_reads[0] = swap_rb ? b : r;
if (num_components >= 2)
color_reads[1] = g;
if (num_components >= 3)
color_reads[2] = swap_rb ? r : b;
if (num_components >= 4)
color_reads[3] = a;
}
}
assert(color_reads_for_sample[component].file != QFILE_NULL);
ntq_store_dest(c, &instr->dest, 0,
vir_MOV(c, color_reads_for_sample[component]));
}
static void
ntq_emit_load_uniform(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
if (nir_src_is_const(instr->src[0])) {
int offset = (nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[0]));
assert(offset % 4 == 0);
/* We need dwords */
offset = offset / 4;
for (int i = 0; i < instr->num_components; i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_UNIFORM,
offset + i));
}
} else {
ntq_emit_tmu_general(c, instr, false);
}
}
static void
ntq_emit_load_input(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
/* XXX: Use ldvpmv (uniform offset) or ldvpmd (non-uniform offset)
* and enable PIPE_SHADER_CAP_INDIRECT_INPUT_ADDR.
*/
unsigned offset =
nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]);
if (c->s->info.stage != MESA_SHADER_FRAGMENT && c->devinfo->ver >= 40) {
/* Emit the LDVPM directly now, rather than at the top
* of the shader like we did for V3D 3.x (which needs
* vpmsetup when not just taking the next offset).
*
* Note that delaying like this may introduce stalls,
* as LDVPMV takes a minimum of 1 instruction but may
* be slower if the VPM unit is busy with another QPU.
*/
int index = 0;
if (c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_INSTANCE_ID)) {
index++;
}
if (c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_BASE_INSTANCE)) {
index++;
}
if (c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_VERTEX_ID)) {
index++;
}
for (int i = 0; i < offset; i++)
index += c->vattr_sizes[i];
index += nir_intrinsic_component(instr);
for (int i = 0; i < instr->num_components; i++) {
struct qreg vpm_offset = vir_uniform_ui(c, index++);
ntq_store_dest(c, &instr->dest, i,
vir_LDVPMV_IN(c, vpm_offset));
}
} else {
for (int i = 0; i < instr->num_components; i++) {
int comp = nir_intrinsic_component(instr) + i;
ntq_store_dest(c, &instr->dest, i,
vir_MOV(c, c->inputs[offset * 4 + comp]));
}
}
}
static void
ntq_emit_per_sample_color_write(struct v3d_compile *c,
nir_intrinsic_instr *instr)
{
assert(instr->intrinsic == nir_intrinsic_store_tlb_sample_color_v3d);
unsigned rt = nir_src_as_uint(instr->src[1]);
assert(rt < V3D_MAX_DRAW_BUFFERS);
unsigned sample_idx = nir_intrinsic_base(instr);
assert(sample_idx < V3D_MAX_SAMPLES);
unsigned offset = (rt * V3D_MAX_SAMPLES + sample_idx) * 4;
for (int i = 0; i < instr->num_components; i++) {
c->sample_colors[offset + i] =
vir_MOV(c, ntq_get_src(c, instr->src[0], i));
}
}
static void
ntq_emit_color_write(struct v3d_compile *c,
nir_intrinsic_instr *instr)
{
unsigned offset = (nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[1])) * 4 +
nir_intrinsic_component(instr);
for (int i = 0; i < instr->num_components; i++) {
c->outputs[offset + i] =
vir_MOV(c, ntq_get_src(c, instr->src[0], i));
}
}
static void
emit_store_output_gs(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
assert(instr->num_components == 1);
struct qreg offset = ntq_get_src(c, instr->src[1], 0);
uint32_t base_offset = nir_intrinsic_base(instr);
if (base_offset)
offset = vir_ADD(c, vir_uniform_ui(c, base_offset), offset);
/* Usually, for VS or FS, we only emit outputs once at program end so
* our VPM writes are never in non-uniform control flow, but this
* is not true for GS, where we are emitting multiple vertices.
*/
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
}
struct qreg val = ntq_get_src(c, instr->src[0], 0);
/* The offset isnt necessarily dynamically uniform for a geometry
* shader. This can happen if the shader sometimes doesnt emit one of
* the vertices. In that case subsequent vertices will be written to
* different offsets in the VPM and we need to use the scatter write
* instruction to have a different offset for each lane.
*/
if (nir_src_is_dynamically_uniform(instr->src[1]))
vir_VPM_WRITE_indirect(c, val, offset);
else
vir_STVPMD(c, offset, val);
if (vir_in_nonuniform_control_flow(c)) {
struct qinst *last_inst =
(struct qinst *)c->cur_block->instructions.prev;
vir_set_cond(last_inst, V3D_QPU_COND_IFA);
}
}
static void
ntq_emit_store_output(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
/* XXX perf: Use stvpmv with uniform non-constant offsets and
* stvpmd with non-uniform offsets and enable
* PIPE_SHADER_CAP_INDIRECT_OUTPUT_ADDR.
*/
if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
ntq_emit_color_write(c, instr);
} else if (c->s->info.stage == MESA_SHADER_GEOMETRY) {
emit_store_output_gs(c, instr);
} else {
assert(c->s->info.stage == MESA_SHADER_VERTEX);
assert(instr->num_components == 1);
vir_VPM_WRITE(c,
ntq_get_src(c, instr->src[0], 0),
nir_intrinsic_base(instr));
}
}
static void
ntq_emit_intrinsic(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
switch (instr->intrinsic) {
case nir_intrinsic_load_uniform:
ntq_emit_load_uniform(c, instr);
break;
case nir_intrinsic_load_ubo:
ntq_emit_tmu_general(c, instr, false);
break;
case nir_intrinsic_ssbo_atomic_add:
case nir_intrinsic_ssbo_atomic_imin:
case nir_intrinsic_ssbo_atomic_umin:
case nir_intrinsic_ssbo_atomic_imax:
case nir_intrinsic_ssbo_atomic_umax:
case nir_intrinsic_ssbo_atomic_and:
case nir_intrinsic_ssbo_atomic_or:
case nir_intrinsic_ssbo_atomic_xor:
case nir_intrinsic_ssbo_atomic_exchange:
case nir_intrinsic_ssbo_atomic_comp_swap:
case nir_intrinsic_load_ssbo:
case nir_intrinsic_store_ssbo:
ntq_emit_tmu_general(c, instr, false);
break;
case nir_intrinsic_shared_atomic_add:
case nir_intrinsic_shared_atomic_imin:
case nir_intrinsic_shared_atomic_umin:
case nir_intrinsic_shared_atomic_imax:
case nir_intrinsic_shared_atomic_umax:
case nir_intrinsic_shared_atomic_and:
case nir_intrinsic_shared_atomic_or:
case nir_intrinsic_shared_atomic_xor:
case nir_intrinsic_shared_atomic_exchange:
case nir_intrinsic_shared_atomic_comp_swap:
case nir_intrinsic_load_shared:
case nir_intrinsic_store_shared:
case nir_intrinsic_load_scratch:
case nir_intrinsic_store_scratch:
ntq_emit_tmu_general(c, instr, true);
break;
case nir_intrinsic_image_load:
case nir_intrinsic_image_store:
case nir_intrinsic_image_atomic_add:
case nir_intrinsic_image_atomic_imin:
case nir_intrinsic_image_atomic_umin:
case nir_intrinsic_image_atomic_imax:
case nir_intrinsic_image_atomic_umax:
case nir_intrinsic_image_atomic_and:
case nir_intrinsic_image_atomic_or:
case nir_intrinsic_image_atomic_xor:
case nir_intrinsic_image_atomic_exchange:
case nir_intrinsic_image_atomic_comp_swap:
v3d40_vir_emit_image_load_store(c, instr);
break;
case nir_intrinsic_get_ssbo_size:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_GET_BUFFER_SIZE,
nir_src_as_uint(instr->src[0])));
break;
case nir_intrinsic_get_ubo_size:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_GET_UBO_SIZE,
nir_src_comp_as_uint(instr->src[0], 0)));
break;
case nir_intrinsic_load_user_clip_plane:
for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
nir_intrinsic_ucp_id(instr) *
4 + i));
}
break;
case nir_intrinsic_load_viewport_x_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE, 0));
break;
case nir_intrinsic_load_viewport_y_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Y_SCALE, 0));
break;
case nir_intrinsic_load_viewport_z_scale:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0));
break;
case nir_intrinsic_load_viewport_z_offset:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0));
break;
case nir_intrinsic_load_alpha_ref_float:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_ALPHA_REF, 0));
break;
case nir_intrinsic_load_line_coord:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->line_x));
break;
case nir_intrinsic_load_line_width:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_LINE_WIDTH, 0));
break;
case nir_intrinsic_load_aa_line_width:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_AA_LINE_WIDTH, 0));
break;
case nir_intrinsic_load_sample_mask_in:
ntq_store_dest(c, &instr->dest, 0, vir_MSF(c));
break;
case nir_intrinsic_load_helper_invocation:
vir_set_pf(vir_MSF_dest(c, vir_nop_reg()), V3D_QPU_PF_PUSHZ);
ntq_store_dest(c, &instr->dest, 0,
vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFA,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0))));
break;
case nir_intrinsic_load_front_face:
/* The register contains 0 (front) or 1 (back), and we need to
* turn it into a NIR bool where true means front.
*/
ntq_store_dest(c, &instr->dest, 0,
vir_ADD(c,
vir_uniform_ui(c, -1),
vir_REVF(c)));
break;
case nir_intrinsic_load_base_instance:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->biid));
break;
case nir_intrinsic_load_instance_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->iid));
break;
case nir_intrinsic_load_vertex_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->vid));
break;
case nir_intrinsic_load_tlb_color_v3d:
vir_emit_tlb_color_read(c, instr);
break;
case nir_intrinsic_load_input:
ntq_emit_load_input(c, instr);
break;
case nir_intrinsic_store_tlb_sample_color_v3d:
ntq_emit_per_sample_color_write(c, instr);
break;
case nir_intrinsic_store_output:
ntq_emit_store_output(c, instr);
break;
case nir_intrinsic_image_size:
ntq_emit_image_size(c, instr);
break;
case nir_intrinsic_discard:
if (vir_in_nonuniform_control_flow(c)) {
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFA);
} else {
vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0));
}
break;
case nir_intrinsic_discard_if: {
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, instr->src[0]);
if (vir_in_nonuniform_control_flow(c)) {
struct qinst *exec_flag = vir_MOV_dest(c, vir_nop_reg(),
c->execute);
if (cond == V3D_QPU_COND_IFA) {
vir_set_uf(exec_flag, V3D_QPU_UF_ANDZ);
} else {
vir_set_uf(exec_flag, V3D_QPU_UF_NORNZ);
cond = V3D_QPU_COND_IFA;
}
}
vir_set_cond(vir_SETMSF_dest(c, vir_nop_reg(),
vir_uniform_ui(c, 0)), cond);
break;
}
case nir_intrinsic_memory_barrier:
case nir_intrinsic_memory_barrier_buffer:
case nir_intrinsic_memory_barrier_image:
case nir_intrinsic_memory_barrier_shared:
case nir_intrinsic_memory_barrier_tcs_patch:
case nir_intrinsic_group_memory_barrier:
/* We don't do any instruction scheduling of these NIR
* instructions between each other, so we just need to make
* sure that the TMU operations before the barrier are flushed
* before the ones after the barrier. That is currently
* handled by having a THRSW in each of them and a LDTMU
* series or a TMUWT after.
*/
break;
case nir_intrinsic_control_barrier:
/* Emit a TSY op to get all invocations in the workgroup
* (actually supergroup) to block until the last invocation
* reaches the TSY op.
*/
if (c->devinfo->ver >= 42) {
vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNCB));
} else {
struct qinst *sync =
vir_BARRIERID_dest(c,
vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNCU));
sync->uniform =
vir_get_uniform_index(c, QUNIFORM_CONSTANT,
0xffffff00 |
V3D_TSY_WAIT_INC_CHECK);
}
/* The blocking of a TSY op only happens at the next thread
* switch. No texturing may be outstanding at the time of a
* TSY blocking operation.
*/
vir_emit_thrsw(c);
break;
case nir_intrinsic_load_num_work_groups:
for (int i = 0; i < 3; i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_NUM_WORK_GROUPS,
i));
}
break;
case nir_intrinsic_load_local_invocation_index:
ntq_store_dest(c, &instr->dest, 0,
vir_SHR(c, c->cs_payload[1],
vir_uniform_ui(c, 32 - c->local_invocation_index_bits)));
break;
case nir_intrinsic_load_work_group_id:
ntq_store_dest(c, &instr->dest, 0,
vir_AND(c, c->cs_payload[0],
vir_uniform_ui(c, 0xffff)));
ntq_store_dest(c, &instr->dest, 1,
vir_SHR(c, c->cs_payload[0],
vir_uniform_ui(c, 16)));
ntq_store_dest(c, &instr->dest, 2,
vir_AND(c, c->cs_payload[1],
vir_uniform_ui(c, 0xffff)));
break;
case nir_intrinsic_load_subgroup_id:
ntq_store_dest(c, &instr->dest, 0, vir_EIDX(c));
break;
case nir_intrinsic_load_per_vertex_input: {
/* col: vertex index, row = varying index */
struct qreg col = ntq_get_src(c, instr->src[0], 0);
uint32_t row_idx = nir_intrinsic_base(instr) * 4 +
nir_intrinsic_component(instr);
for (int i = 0; i < instr->num_components; i++) {
struct qreg row = vir_uniform_ui(c, row_idx++);
ntq_store_dest(c, &instr->dest, i,
vir_LDVPMG_IN(c, row, col));
}
break;
}
case nir_intrinsic_emit_vertex:
case nir_intrinsic_end_primitive:
unreachable("Should have been lowered in v3d_nir_lower_io");
break;
case nir_intrinsic_load_primitive_id: {
/* gl_PrimitiveIdIn is written by the GBG in the first word of
* VPM output header. According to docs, we should read this
* using ldvpm(v,d)_in (See Table 71).
*/
ntq_store_dest(c, &instr->dest, 0,
vir_LDVPMV_IN(c, vir_uniform_ui(c, 0)));
break;
}
case nir_intrinsic_load_invocation_id:
ntq_store_dest(c, &instr->dest, 0, vir_IID(c));
break;
case nir_intrinsic_load_fb_layers_v3d:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_FB_LAYERS, 0));
break;
case nir_intrinsic_load_sample_id:
ntq_store_dest(c, &instr->dest, 0, vir_SAMPID(c));
break;
case nir_intrinsic_load_sample_pos:
ntq_store_dest(c, &instr->dest, 0,
vir_FSUB(c, vir_FXCD(c), vir_ITOF(c, vir_XCD(c))));
ntq_store_dest(c, &instr->dest, 1,
vir_FSUB(c, vir_FYCD(c), vir_ITOF(c, vir_YCD(c))));
break;
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
}
/* Clears (activates) the execute flags for any channels whose jump target
* matches this block.
*
* XXX perf: Could we be using flpush/flpop somehow for our execution channel
* enabling?
*
* XXX perf: For uniform control flow, we should be able to skip c->execute
* handling entirely.
*/
static void
ntq_activate_execute_for_block(struct v3d_compile *c)
{
vir_set_pf(vir_XOR_dest(c, vir_nop_reg(),
c->execute, vir_uniform_ui(c, c->cur_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
}
static void
ntq_emit_uniform_if(struct v3d_compile *c, nir_if *if_stmt)
{
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = vir_new_block(c);
struct qblock *after_block = vir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = vir_new_block(c);
/* Set up the flags for the IF condition (taking the THEN branch). */
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
/* Jump to ELSE. */
vir_BRANCH(c, cond == V3D_QPU_COND_IFA ?
V3D_QPU_BRANCH_COND_ALLNA :
V3D_QPU_BRANCH_COND_ALLA);
vir_link_blocks(c->cur_block, else_block);
vir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
vir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* At the end of the THEN block, jump to ENDIF */
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALWAYS);
vir_link_blocks(c->cur_block, after_block);
/* Emit the else block. */
vir_set_emit_block(c, else_block);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
vir_link_blocks(c->cur_block, after_block);
vir_set_emit_block(c, after_block);
}
static void
ntq_emit_nonuniform_if(struct v3d_compile *c, nir_if *if_stmt)
{
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = vir_new_block(c);
struct qblock *after_block = vir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = vir_new_block(c);
bool was_uniform_control_flow = false;
if (!vir_in_nonuniform_control_flow(c)) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_uniform_control_flow = true;
}
/* Set up the flags for the IF condition (taking the THEN branch). */
enum v3d_qpu_cond cond = ntq_emit_bool_to_cond(c, if_stmt->condition);
/* Update the flags+cond to mean "Taking the ELSE branch (!cond) and
* was previously active (execute Z) for updating the exec flags.
*/
if (was_uniform_control_flow) {
cond = v3d_qpu_cond_invert(cond);
} else {
struct qinst *inst = vir_MOV_dest(c, vir_nop_reg(), c->execute);
if (cond == V3D_QPU_COND_IFA) {
vir_set_uf(inst, V3D_QPU_UF_NORNZ);
} else {
vir_set_uf(inst, V3D_QPU_UF_ANDZ);
cond = V3D_QPU_COND_IFA;
}
}
vir_MOV_cond(c, cond,
c->execute,
vir_uniform_ui(c, else_block->index));
/* Jump to ELSE if nothing is active for THEN, otherwise fall
* through.
*/
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLNA);
vir_link_blocks(c->cur_block, else_block);
vir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
vir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* Handle the end of the THEN block. First, all currently
* active channels update their execute flags to point to
* ENDIF
*/
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, after_block->index));
/* If everything points at ENDIF, then jump there immediately. */
vir_set_pf(vir_XOR_dest(c, vir_nop_reg(),
c->execute,
vir_uniform_ui(c, after_block->index)),
V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLA);
vir_link_blocks(c->cur_block, after_block);
vir_link_blocks(c->cur_block, else_block);
vir_set_emit_block(c, else_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
vir_link_blocks(c->cur_block, after_block);
vir_set_emit_block(c, after_block);
if (was_uniform_control_flow)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
}
static void
ntq_emit_if(struct v3d_compile *c, nir_if *nif)
{
bool was_in_control_flow = c->in_control_flow;
c->in_control_flow = true;
if (!vir_in_nonuniform_control_flow(c) &&
nir_src_is_dynamically_uniform(nif->condition)) {
ntq_emit_uniform_if(c, nif);
} else {
ntq_emit_nonuniform_if(c, nif);
}
c->in_control_flow = was_in_control_flow;
}
static void
ntq_emit_jump(struct v3d_compile *c, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_break:
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_break_block->index));
break;
case nir_jump_continue:
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_cont_block->index));
break;
case nir_jump_return:
unreachable("All returns shouold be lowered\n");
break;
case nir_jump_goto:
case nir_jump_goto_if:
unreachable("not supported\n");
break;
}
}
static void
ntq_emit_instr(struct v3d_compile *c, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
ntq_emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
ntq_emit_load_const(c, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex:
ntq_emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
ntq_emit_jump(c, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void
ntq_emit_block(struct v3d_compile *c, nir_block *block)
{
nir_foreach_instr(instr, block) {
ntq_emit_instr(c, instr);
}
}
static void ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
ntq_emit_loop(struct v3d_compile *c, nir_loop *loop)
{
bool was_in_control_flow = c->in_control_flow;
c->in_control_flow = true;
bool was_uniform_control_flow = false;
if (!vir_in_nonuniform_control_flow(c)) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_uniform_control_flow = true;
}
struct qblock *save_loop_cont_block = c->loop_cont_block;
struct qblock *save_loop_break_block = c->loop_break_block;
c->loop_cont_block = vir_new_block(c);
c->loop_break_block = vir_new_block(c);
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_set_emit_block(c, c->loop_cont_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &loop->body);
/* Re-enable any previous continues now, so our ANYA check below
* works.
*
* XXX: Use the .ORZ flags update, instead.
*/
vir_set_pf(vir_XOR_dest(c,
vir_nop_reg(),
c->execute,
vir_uniform_ui(c, c->loop_cont_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
vir_set_pf(vir_MOV_dest(c, vir_nop_reg(), c->execute), V3D_QPU_PF_PUSHZ);
struct qinst *branch = vir_BRANCH(c, V3D_QPU_BRANCH_COND_ANYA);
/* Pixels that were not dispatched or have been discarded should not
* contribute to looping again.
*/
branch->qpu.branch.msfign = V3D_QPU_MSFIGN_P;
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_link_blocks(c->cur_block, c->loop_break_block);
vir_set_emit_block(c, c->loop_break_block);
if (was_uniform_control_flow)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
c->loop_break_block = save_loop_break_block;
c->loop_cont_block = save_loop_cont_block;
c->loops++;
c->in_control_flow = was_in_control_flow;
}
static void
ntq_emit_function(struct v3d_compile *c, nir_function_impl *func)
{
fprintf(stderr, "FUNCTIONS not handled.\n");
abort();
}
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
ntq_emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
ntq_emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
ntq_emit_loop(c, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
ntq_emit_function(c, nir_cf_node_as_function(node));
break;
default:
fprintf(stderr, "Unknown NIR node type\n");
abort();
}
}
}
static void
ntq_emit_impl(struct v3d_compile *c, nir_function_impl *impl)
{
ntq_setup_registers(c, &impl->registers);
ntq_emit_cf_list(c, &impl->body);
}
static void
nir_to_vir(struct v3d_compile *c)
{
switch (c->s->info.stage) {
case MESA_SHADER_FRAGMENT:
c->payload_w = vir_MOV(c, vir_reg(QFILE_REG, 0));
c->payload_w_centroid = vir_MOV(c, vir_reg(QFILE_REG, 1));
c->payload_z = vir_MOV(c, vir_reg(QFILE_REG, 2));
/* V3D 4.x can disable implicit point coordinate varyings if
* they are not used.
*/
if (c->fs_key->is_points &&
(c->devinfo->ver < 40 || program_reads_point_coord(c))) {
c->point_x = emit_fragment_varying(c, NULL, 0, 0);
c->point_y = emit_fragment_varying(c, NULL, 0, 0);
c->uses_implicit_point_line_varyings = true;
} else if (c->fs_key->is_lines &&
(c->devinfo->ver < 40 ||
(c->s->info.system_values_read &
BITFIELD64_BIT(SYSTEM_VALUE_LINE_COORD)))) {
c->line_x = emit_fragment_varying(c, NULL, 0, 0);
c->uses_implicit_point_line_varyings = true;
}
c->force_per_sample_msaa =
c->s->info.fs.uses_sample_qualifier ||
(c->s->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
SYSTEM_BIT_SAMPLE_POS));
break;
case MESA_SHADER_COMPUTE:
/* Set up the TSO for barriers, assuming we do some. */
if (c->devinfo->ver < 42) {
vir_BARRIERID_dest(c, vir_reg(QFILE_MAGIC,
V3D_QPU_WADDR_SYNC));
}
c->cs_payload[0] = vir_MOV(c, vir_reg(QFILE_REG, 0));
c->cs_payload[1] = vir_MOV(c, vir_reg(QFILE_REG, 2));
/* Set up the division between gl_LocalInvocationIndex and
* wg_in_mem in the payload reg.
*/
int wg_size = (c->s->info.cs.local_size[0] *
c->s->info.cs.local_size[1] *
c->s->info.cs.local_size[2]);
c->local_invocation_index_bits =
ffs(util_next_power_of_two(MAX2(wg_size, 64))) - 1;
assert(c->local_invocation_index_bits <= 8);
if (c->s->info.cs.shared_size) {
struct qreg wg_in_mem = vir_SHR(c, c->cs_payload[1],
vir_uniform_ui(c, 16));
if (c->s->info.cs.local_size[0] != 1 ||
c->s->info.cs.local_size[1] != 1 ||
c->s->info.cs.local_size[2] != 1) {
int wg_bits = (16 -
c->local_invocation_index_bits);
int wg_mask = (1 << wg_bits) - 1;
wg_in_mem = vir_AND(c, wg_in_mem,
vir_uniform_ui(c, wg_mask));
}
struct qreg shared_per_wg =
vir_uniform_ui(c, c->s->info.cs.shared_size);
c->cs_shared_offset =
vir_ADD(c,
vir_uniform(c, QUNIFORM_SHARED_OFFSET,0),
vir_UMUL(c, wg_in_mem, shared_per_wg));
}
break;
default:
break;
}
if (c->s->scratch_size) {
v3d_setup_spill_base(c);
c->spill_size += V3D_CHANNELS * c->s->scratch_size;
}
switch (c->s->info.stage) {
case MESA_SHADER_VERTEX:
ntq_setup_vs_inputs(c);
break;
case MESA_SHADER_GEOMETRY:
ntq_setup_gs_inputs(c);
break;
case MESA_SHADER_FRAGMENT:
ntq_setup_fs_inputs(c);
break;
case MESA_SHADER_COMPUTE:
break;
default:
unreachable("unsupported shader stage");
}
ntq_setup_outputs(c);
/* Find the main function and emit the body. */
nir_foreach_function(function, c->s) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
ntq_emit_impl(c, function->impl);
}
}
const nir_shader_compiler_options v3d_nir_options = {
.lower_all_io_to_temps = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_bitfield_insert_to_shifts = true,
.lower_bitfield_extract_to_shifts = true,
.lower_bitfield_reverse = true,
.lower_bit_count = true,
.lower_cs_local_id_from_index = true,
.lower_ffract = true,
.lower_fmod = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_pack_snorm_4x8 = true,
.lower_unpack_unorm_4x8 = true,
.lower_unpack_snorm_4x8 = true,
.lower_pack_half_2x16 = true,
.lower_unpack_half_2x16 = true,
.lower_fdiv = true,
.lower_find_lsb = true,
.lower_ffma16 = true,
.lower_ffma32 = true,
.lower_ffma64 = true,
.lower_flrp32 = true,
.lower_fpow = true,
.lower_fsat = true,
.lower_fsqrt = true,
.lower_ifind_msb = true,
.lower_isign = true,
.lower_ldexp = true,
.lower_mul_high = true,
.lower_wpos_pntc = true,
.lower_rotate = true,
.lower_to_scalar = true,
};
/**
* When demoting a shader down to single-threaded, removes the THRSW
* instructions (one will still be inserted at v3d_vir_to_qpu() for the
* program end).
*/
static void
vir_remove_thrsw(struct v3d_compile *c)
{
vir_for_each_block(block, c) {
vir_for_each_inst_safe(inst, block) {
if (inst->qpu.sig.thrsw)
vir_remove_instruction(c, inst);
}
}
c->last_thrsw = NULL;
}
void
vir_emit_last_thrsw(struct v3d_compile *c)
{
/* On V3D before 4.1, we need a TMU op to be outstanding when thread
* switching, so disable threads if we didn't do any TMU ops (each of
* which would have emitted a THRSW).
*/
if (!c->last_thrsw_at_top_level && c->devinfo->ver < 41) {
c->threads = 1;
if (c->last_thrsw)
vir_remove_thrsw(c);
return;
}
/* If we're threaded and the last THRSW was in conditional code, then
* we need to emit another one so that we can flag it as the last
* thrsw.
*/
if (c->last_thrsw && !c->last_thrsw_at_top_level) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
/* If we're threaded, then we need to mark the last THRSW instruction
* so we can emit a pair of them at QPU emit time.
*
* For V3D 4.x, we can spawn the non-fragment shaders already in the
* post-last-THRSW state, so we can skip this.
*/
if (!c->last_thrsw && c->s->info.stage == MESA_SHADER_FRAGMENT) {
assert(c->devinfo->ver >= 41);
vir_emit_thrsw(c);
}
if (c->last_thrsw)
c->last_thrsw->is_last_thrsw = true;
}
/* There's a flag in the shader for "center W is needed for reasons other than
* non-centroid varyings", so we just walk the program after VIR optimization
* to see if it's used. It should be harmless to set even if we only use
* center W for varyings.
*/
static void
vir_check_payload_w(struct v3d_compile *c)
{
if (c->s->info.stage != MESA_SHADER_FRAGMENT)
return;
vir_for_each_inst_inorder(inst, c) {
for (int i = 0; i < vir_get_nsrc(inst); i++) {
if (inst->src[i].file == QFILE_REG &&
inst->src[i].index == 0) {
c->uses_center_w = true;
return;
}
}
}
}
void
v3d_nir_to_vir(struct v3d_compile *c)
{
if (V3D_DEBUG & (V3D_DEBUG_NIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d NIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
nir_print_shader(c->s, stderr);
}
nir_to_vir(c);
/* Emit the last THRSW before STVPM and TLB writes. */
vir_emit_last_thrsw(c);
switch (c->s->info.stage) {
case MESA_SHADER_FRAGMENT:
emit_frag_end(c);
break;
case MESA_SHADER_GEOMETRY:
emit_geom_end(c);
break;
case MESA_SHADER_VERTEX:
emit_vert_end(c);
break;
case MESA_SHADER_COMPUTE:
break;
default:
unreachable("bad stage");
}
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d pre-opt VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
vir_optimize(c);
vir_check_payload_w(c);
/* XXX perf: On VC4, we do a VIR-level instruction scheduling here.
* We used that on that platform to pipeline TMU writes and reduce the
* number of thread switches, as well as try (mostly successfully) to
* reduce maximum register pressure to allow more threads. We should
* do something of that sort for V3D -- either instruction scheduling
* here, or delay the the THRSW and LDTMUs from our texture
* instructions until the results are needed.
*/
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
/* Attempt to allocate registers for the temporaries. If we fail,
* reduce thread count and try again.
*/
int min_threads = (c->devinfo->ver >= 41) ? 2 : 1;
struct qpu_reg *temp_registers;
while (true) {
bool spilled;
temp_registers = v3d_register_allocate(c, &spilled);
if (spilled)
continue;
if (temp_registers)
break;
if (c->threads == min_threads &&
(V3D_DEBUG & V3D_DEBUG_RA)) {
fprintf(stderr,
"Failed to register allocate using %s\n",
c->fallback_scheduler ? "the fallback scheduler:" :
"the normal scheduler: \n");
vir_dump(c);
char *shaderdb;
int ret = v3d_shaderdb_dump(c, &shaderdb);
if (ret > 0) {
fprintf(stderr, "%s\n", shaderdb);
free(shaderdb);
}
}
if (c->threads == min_threads) {
if (c->fallback_scheduler) {
fprintf(stderr,
"Failed to register allocate at %d "
"threads with any strategy.\n",
c->threads);
}
c->compilation_result =
V3D_COMPILATION_FAILED_REGISTER_ALLOCATION;
return;
}
c->threads /= 2;
if (c->threads == 1)
vir_remove_thrsw(c);
}
if (c->spills &&
(V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage)))) {
fprintf(stderr, "%s prog %d/%d spilled VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
v3d_vir_to_qpu(c, temp_registers);
}