Files
third_party_mesa3d/src/amd/vulkan/radv_pipeline_graphics.c

4167 lines
170 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "meta/radv_meta.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "nir/nir_serialize.h"
#include "nir/radv_nir.h"
#include "spirv/nir_spirv.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "util/u_atomic.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_shader_args.h"
#include "vk_nir_convert_ycbcr.h"
#include "vk_pipeline.h"
#include "vk_render_pass.h"
#include "vk_util.h"
#include "util/u_debug.h"
#include "ac_binary.h"
#include "ac_nir.h"
#include "ac_shader_util.h"
#include "aco_interface.h"
#include "sid.h"
#include "vk_format.h"
struct radv_blend_state {
uint32_t spi_shader_col_format;
uint32_t cb_shader_mask;
};
static bool
radv_is_static_vrs_enabled(const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
if (!state->fsr)
return false;
return state->fsr->fragment_size.width != 1 || state->fsr->fragment_size.height != 1 ||
state->fsr->combiner_ops[0] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR ||
state->fsr->combiner_ops[1] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
}
static bool
radv_is_vrs_enabled(const struct radv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state)
{
return radv_is_static_vrs_enabled(pipeline, state) ||
(pipeline->dynamic_states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE);
}
static bool
radv_pipeline_has_ds_attachments(const struct vk_render_pass_state *rp)
{
return rp->depth_attachment_format != VK_FORMAT_UNDEFINED || rp->stencil_attachment_format != VK_FORMAT_UNDEFINED;
}
static bool
radv_pipeline_has_color_attachments(const struct vk_render_pass_state *rp)
{
for (uint32_t i = 0; i < rp->color_attachment_count; ++i) {
if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED)
return true;
}
return false;
}
bool
radv_pipeline_has_ngg(const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
return shader->info.is_ngg;
}
bool
radv_pipeline_has_ngg_passthrough(const struct radv_graphics_pipeline *pipeline)
{
assert(radv_pipeline_has_ngg(pipeline));
struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
return shader->info.is_ngg_passthrough;
}
bool
radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline)
{
return !!pipeline->gs_copy_shader;
}
/**
* Get rid of DST in the blend factors by commuting the operands:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
void
radv_blend_remove_dst(VkBlendOp *func, VkBlendFactor *src_factor, VkBlendFactor *dst_factor, VkBlendFactor expected_dst,
VkBlendFactor replacement_src)
{
if (*src_factor == expected_dst && *dst_factor == VK_BLEND_FACTOR_ZERO) {
*src_factor = VK_BLEND_FACTOR_ZERO;
*dst_factor = replacement_src;
/* Commuting the operands requires reversing subtractions. */
if (*func == VK_BLEND_OP_SUBTRACT)
*func = VK_BLEND_OP_REVERSE_SUBTRACT;
else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
*func = VK_BLEND_OP_SUBTRACT;
}
}
static unsigned
radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format, bool blend_enable,
bool blend_need_alpha)
{
const struct util_format_description *desc = vk_format_description(vk_format);
bool use_rbplus = device->physical_device->rad_info.rbplus_allowed;
struct ac_spi_color_formats formats = {0};
unsigned format, ntype, swap;
format = ac_get_cb_format(device->physical_device->rad_info.gfx_level, desc->format);
ntype = ac_get_cb_number_type(desc->format);
swap = radv_translate_colorswap(vk_format, false);
ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats);
if (blend_enable && blend_need_alpha)
return formats.blend_alpha;
else if (blend_need_alpha)
return formats.alpha;
else if (blend_enable)
return formats.blend;
else
return formats.normal;
}
static bool
format_is_int8(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8;
}
static bool
format_is_int10(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
if (desc->nr_channels != 4)
return false;
for (unsigned i = 0; i < 4; i++) {
if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
return true;
}
return false;
}
static bool
format_is_float32(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].type == UTIL_FORMAT_TYPE_FLOAT && desc->channel[channel].size == 32;
}
unsigned
radv_compact_spi_shader_col_format(const struct radv_shader *ps, uint32_t spi_shader_col_format)
{
unsigned value = 0, num_mrts = 0;
unsigned i, num_targets;
/* Make sure to clear color attachments without exports because MRT holes are removed during
* compilation for optimal performance.
*/
spi_shader_col_format &= ps->info.ps.colors_written;
/* Compute the number of MRTs. */
num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4);
/* Remove holes in spi_shader_col_format. */
for (i = 0; i < num_targets; i++) {
unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
if (spi_format) {
value |= spi_format << (num_mrts * 4);
num_mrts++;
}
}
return value;
}
/*
* Ordered so that for each i,
* radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
*/
const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_SINT_PACK32,
};
unsigned
radv_format_meta_fs_key(struct radv_device *device, VkFormat format)
{
unsigned col_format = radv_choose_spi_color_format(device, format, false, false);
assert(col_format != V_028714_SPI_SHADER_32_AR);
bool is_int8 = format_is_int8(format);
bool is_int10 = format_is_int10(format);
if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8)
return 8;
else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8)
return 9;
else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10)
return 10;
else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10)
return 11;
else {
if (col_format >= V_028714_SPI_SHADER_32_AR)
--col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
--col_format; /* Skip V_028714_SPI_SHADER_ZERO */
return col_format;
}
}
static bool
radv_pipeline_needs_ps_epilog(const struct radv_graphics_pipeline *pipeline,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
{
/* Use a PS epilog when the fragment shader is compiled without the fragment output interface. */
if ((pipeline->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT) &&
(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT))
return true;
/* These dynamic states need to compile PS epilogs on-demand. */
if (pipeline->dynamic_states & (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK |
RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION))
return true;
return false;
}
static struct radv_blend_state
radv_pipeline_init_blend_state(struct radv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
{
const struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
struct radv_blend_state blend = {0};
unsigned spi_shader_col_format = 0;
if (radv_pipeline_needs_ps_epilog(pipeline, lib_flags))
return blend;
if (ps) {
spi_shader_col_format = ps->info.ps.spi_shader_col_format;
}
blend.cb_shader_mask = ac_get_cb_shader_mask(spi_shader_col_format);
blend.spi_shader_col_format = spi_shader_col_format;
return blend;
}
static bool
radv_pipeline_uses_vrs_attachment(const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
VkPipelineCreateFlags2KHR create_flags = pipeline->base.create_flags;
if (state->rp)
create_flags |= state->pipeline_flags;
return (create_flags & VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR) != 0;
}
static void
radv_pipeline_init_multisample_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct vk_graphics_pipeline_state *state)
{
struct radv_multisample_state *ms = &pipeline->ms;
/* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
*
* "Sample shading is enabled for a graphics pipeline:
*
* - If the interface of the fragment shader entry point of the
* graphics pipeline includes an input variable decorated
* with SampleId or SamplePosition. In this case
* minSampleShadingFactor takes the value 1.0.
* - Else if the sampleShadingEnable member of the
* VkPipelineMultisampleStateCreateInfo structure specified
* when creating the graphics pipeline is set to VK_TRUE. In
* this case minSampleShadingFactor takes the value of
* VkPipelineMultisampleStateCreateInfo::minSampleShading.
*
* Otherwise, sample shading is considered disabled."
*/
if (state->ms && state->ms->sample_shading_enable) {
ms->sample_shading_enable = true;
ms->min_sample_shading = state->ms->min_sample_shading;
}
}
static uint32_t
radv_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim)
{
switch (prim) {
case TESS_PRIMITIVE_TRIANGLES:
case TESS_PRIMITIVE_QUADS:
return V_028A6C_TRISTRIP;
case TESS_PRIMITIVE_ISOLINES:
return V_028A6C_LINESTRIP;
default:
assert(0);
return 0;
}
}
static uint32_t
radv_conv_gl_prim_to_gs_out(unsigned gl_prim)
{
switch (gl_prim) {
case MESA_PRIM_POINTS:
return V_028A6C_POINTLIST;
case MESA_PRIM_LINES:
case MESA_PRIM_LINE_STRIP:
case MESA_PRIM_LINES_ADJACENCY:
return V_028A6C_LINESTRIP;
case MESA_PRIM_TRIANGLES:
case MESA_PRIM_TRIANGLE_STRIP_ADJACENCY:
case MESA_PRIM_TRIANGLE_STRIP:
case MESA_PRIM_QUADS:
return V_028A6C_TRISTRIP;
default:
assert(0);
return 0;
}
}
static uint64_t
radv_dynamic_state_mask(VkDynamicState state)
{
switch (state) {
case VK_DYNAMIC_STATE_VIEWPORT:
case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT:
return RADV_DYNAMIC_VIEWPORT;
case VK_DYNAMIC_STATE_SCISSOR:
case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT:
return RADV_DYNAMIC_SCISSOR;
case VK_DYNAMIC_STATE_LINE_WIDTH:
return RADV_DYNAMIC_LINE_WIDTH;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
return RADV_DYNAMIC_DEPTH_BIAS;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
return RADV_DYNAMIC_BLEND_CONSTANTS;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
return RADV_DYNAMIC_DEPTH_BOUNDS;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
return RADV_DYNAMIC_STENCIL_WRITE_MASK;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
return RADV_DYNAMIC_STENCIL_REFERENCE;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
return RADV_DYNAMIC_SAMPLE_LOCATIONS;
case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
return RADV_DYNAMIC_LINE_STIPPLE;
case VK_DYNAMIC_STATE_CULL_MODE:
return RADV_DYNAMIC_CULL_MODE;
case VK_DYNAMIC_STATE_FRONT_FACE:
return RADV_DYNAMIC_FRONT_FACE;
case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY:
return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE:
return RADV_DYNAMIC_DEPTH_TEST_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE:
return RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP:
return RADV_DYNAMIC_DEPTH_COMPARE_OP;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE:
return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE:
return RADV_DYNAMIC_STENCIL_TEST_ENABLE;
case VK_DYNAMIC_STATE_STENCIL_OP:
return RADV_DYNAMIC_STENCIL_OP;
case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE:
return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE;
case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR:
return RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT:
return RADV_DYNAMIC_PATCH_CONTROL_POINTS;
case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE:
return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE:
return RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
case VK_DYNAMIC_STATE_LOGIC_OP_EXT:
return RADV_DYNAMIC_LOGIC_OP;
case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE:
return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
case VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT:
return RADV_DYNAMIC_COLOR_WRITE_ENABLE;
case VK_DYNAMIC_STATE_VERTEX_INPUT_EXT:
return RADV_DYNAMIC_VERTEX_INPUT;
case VK_DYNAMIC_STATE_POLYGON_MODE_EXT:
return RADV_DYNAMIC_POLYGON_MODE;
case VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT:
return RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
case VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT:
return RADV_DYNAMIC_LOGIC_OP_ENABLE;
case VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT:
return RADV_DYNAMIC_LINE_STIPPLE_ENABLE;
case VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT:
return RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE;
case VK_DYNAMIC_STATE_SAMPLE_MASK_EXT:
return RADV_DYNAMIC_SAMPLE_MASK;
case VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT:
return RADV_DYNAMIC_DEPTH_CLIP_ENABLE;
case VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT:
return RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
case VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT:
return RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE;
case VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT:
return RADV_DYNAMIC_PROVOKING_VERTEX_MODE;
case VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT:
return RADV_DYNAMIC_DEPTH_CLAMP_ENABLE;
case VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT:
return RADV_DYNAMIC_COLOR_WRITE_MASK;
case VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT:
return RADV_DYNAMIC_COLOR_BLEND_ENABLE;
case VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT:
return RADV_DYNAMIC_RASTERIZATION_SAMPLES;
case VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT:
return RADV_DYNAMIC_LINE_RASTERIZATION_MODE;
case VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT:
return RADV_DYNAMIC_COLOR_BLEND_EQUATION;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE_MODE;
case VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT:
return RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT:
return RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE;
default:
unreachable("Unhandled dynamic state");
}
}
#define RADV_DYNAMIC_CB_STATES \
(RADV_DYNAMIC_LOGIC_OP_ENABLE | RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_COLOR_WRITE_ENABLE | \
RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION | \
RADV_DYNAMIC_BLEND_CONSTANTS)
static bool
radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline *pipeline, const struct vk_color_blend_state *cb)
{
/* If we don't know then we have to assume that blend may be enabled. cb may also be NULL in this
* case.
*/
if (pipeline->dynamic_states & (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK))
return true;
/* If we have the blend enable state, then cb being NULL indicates no attachments are written. */
if (cb) {
for (uint32_t i = 0; i < cb->attachment_count; i++) {
if (cb->attachments[i].write_mask && cb->attachments[i].blend_enable)
return true;
}
}
return false;
}
static uint64_t
radv_pipeline_needed_dynamic_state(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
bool has_color_att = radv_pipeline_has_color_attachments(state->rp);
bool raster_enabled =
!state->rs->rasterizer_discard_enable || (pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
uint64_t states = RADV_DYNAMIC_ALL;
if (device->physical_device->rad_info.gfx_level < GFX10_3)
states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
/* Disable dynamic states that are useless to mesh shading. */
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
if (!raster_enabled)
return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
}
/* Disable dynamic states that are useless when rasterization is disabled. */
if (!raster_enabled) {
states = RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE |
RADV_DYNAMIC_VERTEX_INPUT;
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT)
states |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
return states;
}
if (!state->rs->depth_bias.enable && !(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE))
states &= ~RADV_DYNAMIC_DEPTH_BIAS;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) &&
(!state->ds || !state->ds->depth.bounds_test.enable))
states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) &&
(!state->ds || !state->ds->stencil.test_enable))
states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK | RADV_DYNAMIC_STENCIL_REFERENCE |
RADV_DYNAMIC_STENCIL_OP);
if (!(pipeline->dynamic_states & RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE) && !state->dr->rectangle_count)
states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE) &&
(!state->ms || !state->ms->sample_locations_enable))
states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
if (!has_color_att || !radv_pipeline_is_blend_enabled(pipeline, state->cb))
states &= ~RADV_DYNAMIC_BLEND_CONSTANTS;
if (!(pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT))
states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
return states;
}
static struct radv_ia_multi_vgt_param_helpers
radv_compute_ia_multi_vgt_param(const struct radv_device *device, struct radv_shader *const *shaders)
{
const struct radv_physical_device *pdevice = device->physical_device;
struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
ia_multi_vgt_param.ia_switch_on_eoi = false;
if (shaders[MESA_SHADER_FRAGMENT] && shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (shaders[MESA_SHADER_GEOMETRY] && shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (shaders[MESA_SHADER_TESS_CTRL]) {
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id ||
radv_get_shader(shaders, MESA_SHADER_TESS_EVAL)->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
}
ia_multi_vgt_param.partial_vs_wave = false;
if (shaders[MESA_SHADER_TESS_CTRL]) {
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((pdevice->rad_info.family == CHIP_TAHITI || pdevice->rad_info.family == CHIP_PITCAIRN ||
pdevice->rad_info.family == CHIP_BONAIRE) &&
shaders[MESA_SHADER_GEOMETRY])
ia_multi_vgt_param.partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
if (pdevice->rad_info.has_distributed_tess) {
if (shaders[MESA_SHADER_GEOMETRY]) {
if (pdevice->rad_info.gfx_level <= GFX8)
ia_multi_vgt_param.partial_es_wave = true;
} else {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
}
if (shaders[MESA_SHADER_GEOMETRY]) {
/* On these chips there is the possibility of a hang if the
* pipeline uses a GS and partial_vs_wave is not set.
*
* This mostly does not hit 4-SE chips, as those typically set
* ia_switch_on_eoi and then partial_vs_wave is set for pipelines
* with GS due to another workaround.
*
* Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
*/
if (pdevice->rad_info.family == CHIP_TONGA || pdevice->rad_info.family == CHIP_FIJI ||
pdevice->rad_info.family == CHIP_POLARIS10 || pdevice->rad_info.family == CHIP_POLARIS11 ||
pdevice->rad_info.family == CHIP_POLARIS12 || pdevice->rad_info.family == CHIP_VEGAM) {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
ia_multi_vgt_param.base =
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(pdevice->rad_info.gfx_level == GFX8 ? 2 : 0) |
S_030960_EN_INST_OPT_BASIC(pdevice->rad_info.gfx_level >= GFX9) |
S_030960_EN_INST_OPT_ADV(pdevice->rad_info.gfx_level >= GFX9);
return ia_multi_vgt_param;
}
static uint32_t
radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *vi, uint32_t attrib_binding)
{
for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *input_binding = &vi->pVertexBindingDescriptions[i];
if (input_binding->binding == attrib_binding)
return input_binding->stride;
}
return 0;
}
#define ALL_GRAPHICS_LIB_FLAGS \
(VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT)
static VkGraphicsPipelineLibraryFlagBitsEXT
shader_stage_to_pipeline_library_flags(VkShaderStageFlagBits stage)
{
assert(util_bitcount(stage) == 1);
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
case VK_SHADER_STAGE_TASK_BIT_EXT:
case VK_SHADER_STAGE_MESH_BIT_EXT:
return VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT;
default:
unreachable("Invalid shader stage");
}
}
static VkResult
radv_pipeline_import_graphics_info(struct radv_device *device, struct radv_graphics_pipeline *pipeline,
struct vk_graphics_pipeline_state *state, struct radv_pipeline_layout *layout,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
{
RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
VkResult result;
/* Mark all states declared dynamic at pipeline creation. */
if (pCreateInfo->pDynamicState) {
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++) {
pipeline->dynamic_states |= radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
}
}
/* Mark all active stages at pipeline creation. */
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
/* Ignore shader stages that don't need to be imported. */
if (!(shader_stage_to_pipeline_library_flags(sinfo->stage) & lib_flags))
continue;
pipeline->active_stages |= sinfo->stage;
}
result = vk_graphics_pipeline_state_fill(&device->vk, state, pCreateInfo, NULL, 0, NULL, NULL,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, &pipeline->state_data);
if (result != VK_SUCCESS)
return result;
if (pipeline->active_stages & VK_SHADER_STAGE_MESH_BIT_EXT) {
pipeline->last_vgt_api_stage = MESA_SHADER_MESH;
} else {
pipeline->last_vgt_api_stage = util_last_bit(pipeline->active_stages & BITFIELD_MASK(MESA_SHADER_FRAGMENT)) - 1;
}
if (lib_flags == ALL_GRAPHICS_LIB_FLAGS) {
radv_pipeline_layout_finish(device, layout);
radv_pipeline_layout_init(device, layout, false /* independent_sets */);
}
if (pipeline_layout) {
/* As explained in the specification, the application can provide a non
* compatible pipeline layout when doing optimized linking :
*
* "However, in the specific case that a final link is being
* performed between stages and
* `VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT` is specified,
* the application can override the pipeline layout with one that is
* compatible with that union but does not have the
* `VK_PIPELINE_LAYOUT_CREATE_INDEPENDENT_SETS_BIT_EXT` flag set,
* allowing a more optimal pipeline layout to be used when
* generating the final pipeline."
*
* In that case discard whatever was imported before.
*/
if (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT &&
!pipeline_layout->independent_sets) {
radv_pipeline_layout_finish(device, layout);
radv_pipeline_layout_init(device, layout, false /* independent_sets */);
} else {
/* Otherwise if we include a layout that had independent_sets,
* propagate that property.
*/
layout->independent_sets |= pipeline_layout->independent_sets;
}
for (uint32_t s = 0; s < pipeline_layout->num_sets; s++) {
if (pipeline_layout->set[s].layout == NULL)
continue;
radv_pipeline_layout_add_set(layout, s, pipeline_layout->set[s].layout);
}
layout->push_constant_size = pipeline_layout->push_constant_size;
}
return result;
}
static void
radv_graphics_pipeline_import_lib(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
struct vk_graphics_pipeline_state *state, struct radv_pipeline_layout *layout,
struct radv_graphics_lib_pipeline *lib, bool link_optimize)
{
bool import_binaries = false;
/* There should be no common blocks between a lib we import and the current
* pipeline we're building.
*/
assert((pipeline->active_stages & lib->base.active_stages) == 0);
pipeline->dynamic_states |= lib->base.dynamic_states;
pipeline->active_stages |= lib->base.active_stages;
vk_graphics_pipeline_state_merge(state, &lib->graphics_state);
/* Import binaries when LTO is disabled and when the library doesn't retain any shaders. */
if (!link_optimize && !pipeline->retain_shaders) {
import_binaries = true;
}
if (import_binaries) {
/* Import the compiled shaders. */
for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) {
if (!lib->base.base.shaders[s])
continue;
pipeline->base.shaders[s] = radv_shader_ref(lib->base.base.shaders[s]);
}
/* Import the GS copy shader if present. */
if (lib->base.base.gs_copy_shader) {
assert(!pipeline->base.gs_copy_shader);
pipeline->base.gs_copy_shader = radv_shader_ref(lib->base.base.gs_copy_shader);
}
}
/* Import the pipeline layout. */
struct radv_pipeline_layout *lib_layout = &lib->layout;
for (uint32_t s = 0; s < lib_layout->num_sets; s++) {
if (!lib_layout->set[s].layout)
continue;
radv_pipeline_layout_add_set(layout, s, lib_layout->set[s].layout);
}
layout->independent_sets = lib_layout->independent_sets;
layout->push_constant_size = MAX2(layout->push_constant_size, lib_layout->push_constant_size);
}
static void
radv_pipeline_init_input_assembly_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline)
{
pipeline->ia_multi_vgt_param = radv_compute_ia_multi_vgt_param(device, pipeline->base.shaders);
}
static bool
radv_pipeline_uses_ds_feedback_loop(const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
VkPipelineCreateFlags2KHR create_flags = pipeline->base.create_flags;
if (state->rp)
create_flags |= state->pipeline_flags;
return (create_flags & VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT) != 0;
}
static void
radv_pipeline_init_dynamic_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
uint64_t needed_states = radv_pipeline_needed_dynamic_state(device, pipeline, state);
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
uint64_t states = needed_states;
/* Initialize non-zero values for default dynamic state. */
dynamic->vk.rs.line.width = 1.0f;
dynamic->vk.fsr.fragment_size.width = 1u;
dynamic->vk.fsr.fragment_size.height = 1u;
dynamic->vk.ds.depth.bounds_test.max = 1.0f;
dynamic->vk.ds.stencil.front.compare_mask = ~0;
dynamic->vk.ds.stencil.front.write_mask = ~0;
dynamic->vk.ds.stencil.back.compare_mask = ~0;
dynamic->vk.ds.stencil.back.write_mask = ~0;
dynamic->vk.ms.rasterization_samples = VK_SAMPLE_COUNT_1_BIT;
pipeline->needed_dynamic_state = needed_states;
states &= ~pipeline->dynamic_states;
/* Input assembly. */
if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) {
dynamic->vk.ia.primitive_topology = radv_translate_prim(state->ia->primitive_topology);
}
if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) {
dynamic->vk.ia.primitive_restart_enable = state->ia->primitive_restart_enable;
}
/* Tessellation. */
if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS) {
dynamic->vk.ts.patch_control_points = state->ts->patch_control_points;
}
if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN) {
dynamic->vk.ts.domain_origin = state->ts->domain_origin;
}
/* Viewport. */
if (needed_states & RADV_DYNAMIC_VIEWPORT) {
dynamic->vk.vp.viewport_count = state->vp->viewport_count;
if (states & RADV_DYNAMIC_VIEWPORT) {
typed_memcpy(dynamic->vk.vp.viewports, state->vp->viewports, state->vp->viewport_count);
for (unsigned i = 0; i < dynamic->vk.vp.viewport_count; i++)
radv_get_viewport_xform(&dynamic->vk.vp.viewports[i], dynamic->hw_vp.xform[i].scale,
dynamic->hw_vp.xform[i].translate);
}
}
if (needed_states & RADV_DYNAMIC_SCISSOR) {
dynamic->vk.vp.scissor_count = state->vp->scissor_count;
if (states & RADV_DYNAMIC_SCISSOR) {
typed_memcpy(dynamic->vk.vp.scissors, state->vp->scissors, state->vp->scissor_count);
}
}
if (states & RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE) {
dynamic->vk.vp.depth_clip_negative_one_to_one = state->vp->depth_clip_negative_one_to_one;
}
/* Discard rectangles. */
if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
dynamic->vk.dr.rectangle_count = state->dr->rectangle_count;
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
typed_memcpy(dynamic->vk.dr.rectangles, state->dr->rectangles, state->dr->rectangle_count);
}
}
/* Rasterization. */
if (states & RADV_DYNAMIC_LINE_WIDTH) {
dynamic->vk.rs.line.width = state->rs->line.width;
}
if (states & RADV_DYNAMIC_DEPTH_BIAS) {
dynamic->vk.rs.depth_bias.constant = state->rs->depth_bias.constant;
dynamic->vk.rs.depth_bias.clamp = state->rs->depth_bias.clamp;
dynamic->vk.rs.depth_bias.slope = state->rs->depth_bias.slope;
dynamic->vk.rs.depth_bias.representation = state->rs->depth_bias.representation;
}
if (states & RADV_DYNAMIC_CULL_MODE) {
dynamic->vk.rs.cull_mode = state->rs->cull_mode;
}
if (states & RADV_DYNAMIC_FRONT_FACE) {
dynamic->vk.rs.front_face = state->rs->front_face;
}
if (states & RADV_DYNAMIC_LINE_STIPPLE) {
dynamic->vk.rs.line.stipple.factor = state->rs->line.stipple.factor;
dynamic->vk.rs.line.stipple.pattern = state->rs->line.stipple.pattern;
}
if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) {
dynamic->vk.rs.depth_bias.enable = state->rs->depth_bias.enable;
}
if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) {
dynamic->vk.rs.rasterizer_discard_enable = state->rs->rasterizer_discard_enable;
}
if (states & RADV_DYNAMIC_POLYGON_MODE) {
dynamic->vk.rs.polygon_mode = radv_translate_fill(state->rs->polygon_mode);
}
if (states & RADV_DYNAMIC_LINE_STIPPLE_ENABLE) {
dynamic->vk.rs.line.stipple.enable = state->rs->line.stipple.enable;
}
if (states & RADV_DYNAMIC_DEPTH_CLIP_ENABLE) {
dynamic->vk.rs.depth_clip_enable = state->rs->depth_clip_enable;
}
if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE) {
dynamic->vk.rs.conservative_mode = state->rs->conservative_mode;
}
if (states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) {
dynamic->vk.rs.provoking_vertex = state->rs->provoking_vertex;
}
if (states & RADV_DYNAMIC_DEPTH_CLAMP_ENABLE) {
dynamic->vk.rs.depth_clamp_enable = state->rs->depth_clamp_enable;
}
if (states & RADV_DYNAMIC_LINE_RASTERIZATION_MODE) {
dynamic->vk.rs.line.mode = state->rs->line.mode;
}
/* Fragment shading rate. */
if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) {
dynamic->vk.fsr = *state->fsr;
}
/* Multisample. */
if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) {
dynamic->vk.ms.alpha_to_coverage_enable = state->ms->alpha_to_coverage_enable;
}
if (states & RADV_DYNAMIC_SAMPLE_MASK) {
dynamic->vk.ms.sample_mask = state->ms->sample_mask & 0xffff;
}
if (states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) {
dynamic->vk.ms.rasterization_samples = state->ms->rasterization_samples;
}
if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE) {
dynamic->vk.ms.sample_locations_enable = state->ms->sample_locations_enable;
}
if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
unsigned count = state->ms->sample_locations->per_pixel * state->ms->sample_locations->grid_size.width *
state->ms->sample_locations->grid_size.height;
dynamic->sample_location.per_pixel = state->ms->sample_locations->per_pixel;
dynamic->sample_location.grid_size = state->ms->sample_locations->grid_size;
dynamic->sample_location.count = count;
typed_memcpy(&dynamic->sample_location.locations[0], state->ms->sample_locations->locations, count);
}
/* Depth stencil. */
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* radv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (needed_states && radv_pipeline_has_ds_attachments(state->rp)) {
if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
dynamic->vk.ds.depth.bounds_test.min = state->ds->depth.bounds_test.min;
dynamic->vk.ds.depth.bounds_test.max = state->ds->depth.bounds_test.max;
}
if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
dynamic->vk.ds.stencil.front.compare_mask = state->ds->stencil.front.compare_mask;
dynamic->vk.ds.stencil.back.compare_mask = state->ds->stencil.back.compare_mask;
}
if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
dynamic->vk.ds.stencil.front.write_mask = state->ds->stencil.front.write_mask;
dynamic->vk.ds.stencil.back.write_mask = state->ds->stencil.back.write_mask;
}
if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
dynamic->vk.ds.stencil.front.reference = state->ds->stencil.front.reference;
dynamic->vk.ds.stencil.back.reference = state->ds->stencil.back.reference;
}
if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) {
dynamic->vk.ds.depth.test_enable = state->ds->depth.test_enable;
}
if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) {
dynamic->vk.ds.depth.write_enable = state->ds->depth.write_enable;
}
if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) {
dynamic->vk.ds.depth.compare_op = state->ds->depth.compare_op;
}
if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
dynamic->vk.ds.depth.bounds_test.enable = state->ds->depth.bounds_test.enable;
}
if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) {
dynamic->vk.ds.stencil.test_enable = state->ds->stencil.test_enable;
}
if (states & RADV_DYNAMIC_STENCIL_OP) {
dynamic->vk.ds.stencil.front.op.compare = state->ds->stencil.front.op.compare;
dynamic->vk.ds.stencil.front.op.fail = state->ds->stencil.front.op.fail;
dynamic->vk.ds.stencil.front.op.pass = state->ds->stencil.front.op.pass;
dynamic->vk.ds.stencil.front.op.depth_fail = state->ds->stencil.front.op.depth_fail;
dynamic->vk.ds.stencil.back.op.compare = state->ds->stencil.back.op.compare;
dynamic->vk.ds.stencil.back.op.fail = state->ds->stencil.back.op.fail;
dynamic->vk.ds.stencil.back.op.pass = state->ds->stencil.back.op.pass;
dynamic->vk.ds.stencil.back.op.depth_fail = state->ds->stencil.back.op.depth_fail;
}
}
/* Color blend. */
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
if (states & RADV_DYNAMIC_BLEND_CONSTANTS) {
typed_memcpy(dynamic->vk.cb.blend_constants, state->cb->blend_constants, 4);
}
if (radv_pipeline_has_color_attachments(state->rp)) {
if (states & RADV_DYNAMIC_LOGIC_OP) {
if ((pipeline->dynamic_states & RADV_DYNAMIC_LOGIC_OP_ENABLE) || state->cb->logic_op_enable) {
dynamic->vk.cb.logic_op = radv_translate_blend_logic_op(state->cb->logic_op);
}
}
if (states & RADV_DYNAMIC_COLOR_WRITE_ENABLE) {
dynamic->vk.cb.color_write_enables = state->cb->color_write_enables;
}
if (states & RADV_DYNAMIC_LOGIC_OP_ENABLE) {
dynamic->vk.cb.logic_op_enable = state->cb->logic_op_enable;
}
if (states & RADV_DYNAMIC_COLOR_WRITE_MASK) {
for (unsigned i = 0; i < state->cb->attachment_count; i++) {
dynamic->vk.cb.attachments[i].write_mask = state->cb->attachments[i].write_mask;
}
}
if (states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) {
for (unsigned i = 0; i < state->cb->attachment_count; i++) {
dynamic->vk.cb.attachments[i].blend_enable = state->cb->attachments[i].blend_enable;
}
}
if (states & RADV_DYNAMIC_COLOR_BLEND_EQUATION) {
for (unsigned i = 0; i < state->cb->attachment_count; i++) {
const struct vk_color_blend_attachment_state *att = &state->cb->attachments[i];
dynamic->vk.cb.attachments[i].src_color_blend_factor = att->src_color_blend_factor;
dynamic->vk.cb.attachments[i].dst_color_blend_factor = att->dst_color_blend_factor;
dynamic->vk.cb.attachments[i].color_blend_op = att->color_blend_op;
dynamic->vk.cb.attachments[i].src_alpha_blend_factor = att->src_alpha_blend_factor;
dynamic->vk.cb.attachments[i].dst_alpha_blend_factor = att->dst_alpha_blend_factor;
dynamic->vk.cb.attachments[i].alpha_blend_op = att->alpha_blend_op;
}
}
}
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE) {
dynamic->vk.dr.enable = state->dr->rectangle_count > 0;
}
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE_MODE) {
dynamic->vk.dr.mode = state->dr->mode;
}
if (states & RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE) {
bool uses_ds_feedback_loop = radv_pipeline_uses_ds_feedback_loop(pipeline, state);
dynamic->feedback_loop_aspects =
uses_ds_feedback_loop ? (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) : VK_IMAGE_ASPECT_NONE;
}
pipeline->dynamic_state.mask = states;
}
static void
gfx10_emit_ge_pc_alloc(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level, uint32_t oversub_pc_lines)
{
radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC,
S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1));
}
struct radv_shader *
radv_get_shader(struct radv_shader *const *shaders, gl_shader_stage stage)
{
if (stage == MESA_SHADER_VERTEX) {
if (shaders[MESA_SHADER_VERTEX])
return shaders[MESA_SHADER_VERTEX];
if (shaders[MESA_SHADER_TESS_CTRL])
return shaders[MESA_SHADER_TESS_CTRL];
if (shaders[MESA_SHADER_GEOMETRY])
return shaders[MESA_SHADER_GEOMETRY];
} else if (stage == MESA_SHADER_TESS_EVAL) {
if (!shaders[MESA_SHADER_TESS_CTRL])
return NULL;
if (shaders[MESA_SHADER_TESS_EVAL])
return shaders[MESA_SHADER_TESS_EVAL];
if (shaders[MESA_SHADER_GEOMETRY])
return shaders[MESA_SHADER_GEOMETRY];
}
return shaders[stage];
}
static const struct radv_shader *
radv_get_last_vgt_shader(const struct radv_graphics_pipeline *pipeline)
{
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
if (radv_pipeline_has_ngg(pipeline))
return pipeline->base.shaders[MESA_SHADER_GEOMETRY];
else
return pipeline->base.gs_copy_shader;
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
return pipeline->base.shaders[MESA_SHADER_TESS_EVAL];
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
return pipeline->base.shaders[MESA_SHADER_MESH];
else
return pipeline->base.shaders[MESA_SHADER_VERTEX];
}
static const struct radv_vs_output_info *
get_vs_output_info(const struct radv_graphics_pipeline *pipeline)
{
return &radv_get_last_vgt_shader(pipeline)->info.outinfo;
}
static bool
radv_should_export_multiview(const struct radv_shader_stage *stage, const struct radv_pipeline_key *pipeline_key)
{
/* Export the layer in the last VGT stage if multiview is used. When the next stage is unknown
* (with graphics pipeline library), the layer is exported unconditionally.
*/
return pipeline_key->has_multiview_view_index &&
(stage->info.next_stage == MESA_SHADER_FRAGMENT ||
!(pipeline_key->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT)) &&
!(stage->nir->info.outputs_written & VARYING_BIT_LAYER);
}
static void
radv_remove_point_size(const struct radv_pipeline_key *pipeline_key, nir_shader *producer, nir_shader *consumer)
{
if ((consumer->info.inputs_read & VARYING_BIT_PSIZ) || !(producer->info.outputs_written & VARYING_BIT_PSIZ))
return;
/* Do not remove PSIZ if the shader uses XFB because it might be stored. */
if (producer->xfb_info)
return;
/* Do not remove PSIZ if the rasterization primitive uses points. */
if (consumer->info.stage == MESA_SHADER_FRAGMENT &&
((producer->info.stage == MESA_SHADER_TESS_EVAL && producer->info.tess.point_mode) ||
(producer->info.stage == MESA_SHADER_GEOMETRY && producer->info.gs.output_primitive == MESA_PRIM_POINTS) ||
(producer->info.stage == MESA_SHADER_MESH && producer->info.mesh.primitive_type == MESA_PRIM_POINTS)))
return;
nir_variable *var = nir_find_variable_with_location(producer, nir_var_shader_out, VARYING_SLOT_PSIZ);
assert(var);
/* Change PSIZ to a global variable which allows it to be DCE'd. */
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
producer->info.outputs_written &= ~VARYING_BIT_PSIZ;
NIR_PASS_V(producer, nir_fixup_deref_modes);
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, producer, nir_opt_dce);
}
static void
radv_remove_color_exports(const struct radv_pipeline_key *pipeline_key, nir_shader *nir)
{
bool fixup_derefs = false;
/* Do not remove color exports when a PS epilog is used because the format isn't known and the color write mask can
* be dynamic. */
if (pipeline_key->ps.has_epilog)
return;
nir_foreach_shader_out_variable (var, nir) {
int idx = var->data.location;
idx -= FRAG_RESULT_DATA0;
if (idx < 0)
continue;
unsigned col_format = (pipeline_key->ps.epilog.spi_shader_col_format >> (4 * idx)) & 0xf;
if (col_format == V_028714_SPI_SHADER_ZERO) {
/* Remove the color export if it's unused or in presence of holes. */
nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location);
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
fixup_derefs = true;
}
}
if (fixup_derefs) {
NIR_PASS_V(nir, nir_fixup_deref_modes);
NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, nir, nir_opt_dce);
}
}
static void
merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
tes_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
/* Copy the merged info back to the TCS */
tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out;
tcs_info->tess._primitive_mode = tes_info->tess._primitive_mode;
}
static void
radv_link_shaders(const struct radv_device *device, nir_shader *producer, nir_shader *consumer,
const struct radv_pipeline_key *pipeline_key)
{
const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
bool progress;
if (consumer->info.stage == MESA_SHADER_FRAGMENT) {
/* Lower the viewport index to zero when the last vertex stage doesn't export it. */
if ((consumer->info.inputs_read & VARYING_BIT_VIEWPORT) &&
!(producer->info.outputs_written & VARYING_BIT_VIEWPORT)) {
NIR_PASS(_, consumer, radv_nir_lower_viewport_to_zero);
}
/* Lower the view index to map on the layer. */
NIR_PASS(_, consumer, radv_nir_lower_view_index, producer->info.stage == MESA_SHADER_MESH);
}
if (pipeline_key->optimisations_disabled)
return;
if (consumer->info.stage == MESA_SHADER_FRAGMENT && producer->info.has_transform_feedback_varyings) {
nir_link_xfb_varyings(producer, consumer);
}
unsigned array_deref_of_vec_options =
nir_lower_direct_array_deref_of_vec_load | nir_lower_indirect_array_deref_of_vec_load |
nir_lower_direct_array_deref_of_vec_store | nir_lower_indirect_array_deref_of_vec_store;
NIR_PASS(progress, producer, nir_lower_array_deref_of_vec, nir_var_shader_out, array_deref_of_vec_options);
NIR_PASS(progress, consumer, nir_lower_array_deref_of_vec, nir_var_shader_in, array_deref_of_vec_options);
nir_lower_io_arrays_to_elements(producer, consumer);
nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
radv_nir_lower_io_to_scalar_early(producer, nir_var_shader_out);
radv_nir_lower_io_to_scalar_early(consumer, nir_var_shader_in);
/* Remove PSIZ from shaders when it's not needed.
* This is typically produced by translation layers like Zink or D9VK.
*/
if (pipeline_key->enable_remove_point_size)
radv_remove_point_size(pipeline_key, producer, consumer);
if (nir_link_opt_varyings(producer, consumer)) {
nir_validate_shader(producer, "after nir_link_opt_varyings");
nir_validate_shader(consumer, "after nir_link_opt_varyings");
NIR_PASS(_, consumer, nir_opt_constant_folding);
NIR_PASS(_, consumer, nir_opt_algebraic);
NIR_PASS(_, consumer, nir_opt_dce);
}
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
progress = nir_remove_unused_varyings(producer, consumer);
nir_compact_varyings(producer, consumer, true);
/* nir_compact_varyings changes deleted varyings into shader_temp.
* We need to remove these otherwise we risk them being lowered to scratch.
* This can especially happen to arrayed outputs.
*/
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
nir_validate_shader(producer, "after nir_compact_varyings");
nir_validate_shader(consumer, "after nir_compact_varyings");
if (producer->info.stage == MESA_SHADER_MESH) {
/* nir_compact_varyings can change the location of per-vertex and per-primitive outputs */
nir_shader_gather_info(producer, nir_shader_get_entrypoint(producer));
}
const bool has_geom_or_tess =
consumer->info.stage == MESA_SHADER_GEOMETRY || consumer->info.stage == MESA_SHADER_TESS_CTRL;
const bool merged_gs = consumer->info.stage == MESA_SHADER_GEOMETRY && gfx_level >= GFX9;
if (producer->info.stage == MESA_SHADER_TESS_CTRL || producer->info.stage == MESA_SHADER_MESH ||
(producer->info.stage == MESA_SHADER_VERTEX && has_geom_or_tess) ||
(producer->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) {
NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out);
if (producer->info.stage == MESA_SHADER_TESS_CTRL)
NIR_PASS(_, producer, nir_vectorize_tess_levels);
NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out);
}
if (consumer->info.stage == MESA_SHADER_GEOMETRY || consumer->info.stage == MESA_SHADER_TESS_CTRL ||
consumer->info.stage == MESA_SHADER_TESS_EVAL) {
NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in);
}
if (progress) {
progress = false;
NIR_PASS(progress, producer, nir_lower_global_vars_to_local);
if (progress) {
ac_nir_lower_indirect_derefs(producer, gfx_level);
/* remove dead writes, which can remove input loads */
NIR_PASS(_, producer, nir_lower_vars_to_ssa);
NIR_PASS(_, producer, nir_opt_dce);
}
progress = false;
NIR_PASS(progress, consumer, nir_lower_global_vars_to_local);
if (progress) {
ac_nir_lower_indirect_derefs(consumer, gfx_level);
}
}
}
static const gl_shader_stage graphics_shader_order[] = {
MESA_SHADER_VERTEX, MESA_SHADER_TESS_CTRL, MESA_SHADER_TESS_EVAL, MESA_SHADER_GEOMETRY,
MESA_SHADER_TASK, MESA_SHADER_MESH,
MESA_SHADER_FRAGMENT,
};
static void
radv_link_vs(const struct radv_device *device, struct radv_shader_stage *vs_stage, struct radv_shader_stage *next_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(vs_stage->nir->info.stage == MESA_SHADER_VERTEX);
if (radv_should_export_multiview(vs_stage, pipeline_key)) {
NIR_PASS(_, vs_stage->nir, radv_nir_export_multiview);
}
if (next_stage) {
assert(next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL ||
next_stage->nir->info.stage == MESA_SHADER_GEOMETRY ||
next_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_link_shaders(device, vs_stage->nir, next_stage->nir, pipeline_key);
}
nir_foreach_shader_in_variable (var, vs_stage->nir) {
var->data.driver_location = var->data.location;
}
if (next_stage && next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL) {
nir_linked_io_var_info vs2tcs = nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir);
vs_stage->info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars;
vs_stage->info.outputs_linked = true;
next_stage->info.tcs.num_linked_inputs = vs2tcs.num_linked_io_vars;
next_stage->info.inputs_linked = true;
} else if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) {
nir_linked_io_var_info vs2gs = nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir);
vs_stage->info.vs.num_linked_outputs = vs2gs.num_linked_io_vars;
vs_stage->info.outputs_linked = true;
next_stage->info.gs.num_linked_inputs = vs2gs.num_linked_io_vars;
next_stage->info.inputs_linked = true;
} else {
nir_foreach_shader_out_variable (var, vs_stage->nir) {
var->data.driver_location = var->data.location;
}
}
}
static void
radv_link_tcs(const struct radv_device *device, struct radv_shader_stage *tcs_stage,
struct radv_shader_stage *tes_stage, const struct radv_pipeline_key *pipeline_key)
{
if (!tes_stage)
return;
assert(tcs_stage->nir->info.stage == MESA_SHADER_TESS_CTRL);
assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL);
radv_link_shaders(device, tcs_stage->nir, tes_stage->nir, pipeline_key);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
nir_linked_io_var_info tcs2tes = nir_assign_linked_io_var_locations(tcs_stage->nir, tes_stage->nir);
tcs_stage->info.tcs.num_linked_outputs = tcs2tes.num_linked_io_vars;
tcs_stage->info.tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars;
tcs_stage->info.outputs_linked = true;
tes_stage->info.tes.num_linked_inputs = tcs2tes.num_linked_io_vars;
tes_stage->info.inputs_linked = true;
}
static void
radv_link_tes(const struct radv_device *device, struct radv_shader_stage *tes_stage,
struct radv_shader_stage *next_stage, const struct radv_pipeline_key *pipeline_key)
{
assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL);
if (radv_should_export_multiview(tes_stage, pipeline_key)) {
NIR_PASS(_, tes_stage->nir, radv_nir_export_multiview);
}
if (next_stage) {
assert(next_stage->nir->info.stage == MESA_SHADER_GEOMETRY ||
next_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_link_shaders(device, tes_stage->nir, next_stage->nir, pipeline_key);
}
if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) {
nir_linked_io_var_info tes2gs = nir_assign_linked_io_var_locations(tes_stage->nir, next_stage->nir);
tes_stage->info.tes.num_linked_outputs = tes2gs.num_linked_io_vars;
tes_stage->info.outputs_linked = true;
next_stage->info.gs.num_linked_inputs = tes2gs.num_linked_io_vars;
next_stage->info.inputs_linked = true;
} else {
nir_foreach_shader_out_variable (var, tes_stage->nir) {
var->data.driver_location = var->data.location;
}
}
}
static void
radv_link_gs(const struct radv_device *device, struct radv_shader_stage *gs_stage, struct radv_shader_stage *fs_stage,
const struct radv_pipeline_key *pipeline_key)
{
assert(gs_stage->nir->info.stage == MESA_SHADER_GEOMETRY);
if (radv_should_export_multiview(gs_stage, pipeline_key)) {
NIR_PASS(_, gs_stage->nir, radv_nir_export_multiview);
}
if (fs_stage) {
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_link_shaders(device, gs_stage->nir, fs_stage->nir, pipeline_key);
}
nir_foreach_shader_out_variable (var, gs_stage->nir) {
var->data.driver_location = var->data.location;
}
}
static void
radv_link_task(const struct radv_device *device, struct radv_shader_stage *task_stage,
struct radv_shader_stage *mesh_stage, const struct radv_pipeline_key *pipeline_key)
{
assert(task_stage->nir->info.stage == MESA_SHADER_TASK);
assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH);
/* Linking task and mesh shaders shouldn't do anything for now but keep it for consistency. */
radv_link_shaders(device, task_stage->nir, mesh_stage->nir, pipeline_key);
}
static void
radv_link_mesh(const struct radv_device *device, struct radv_shader_stage *mesh_stage,
struct radv_shader_stage *fs_stage, const struct radv_pipeline_key *pipeline_key)
{
assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH);
if (fs_stage) {
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
nir_foreach_shader_in_variable (var, fs_stage->nir) {
/* These variables are per-primitive when used with a mesh shader. */
if (var->data.location == VARYING_SLOT_PRIMITIVE_ID || var->data.location == VARYING_SLOT_VIEWPORT ||
var->data.location == VARYING_SLOT_LAYER) {
var->data.per_primitive = true;
}
}
radv_link_shaders(device, mesh_stage->nir, fs_stage->nir, pipeline_key);
}
/* ac_nir_lower_ngg ignores driver locations for mesh shaders, but set them to all zero just to
* be on the safe side.
*/
nir_foreach_shader_out_variable (var, mesh_stage->nir) {
var->data.driver_location = 0;
}
}
static void
radv_link_fs(struct radv_shader_stage *fs_stage, const struct radv_pipeline_key *pipeline_key)
{
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_remove_color_exports(pipeline_key, fs_stage->nir);
nir_foreach_shader_out_variable (var, fs_stage->nir) {
var->data.driver_location = var->data.location + var->data.index;
}
}
static bool
radv_pipeline_needs_noop_fs(struct radv_graphics_pipeline *pipeline, const struct radv_pipeline_key *pipeline_key)
{
if (pipeline->base.type == RADV_PIPELINE_GRAPHICS &&
!(radv_pipeline_to_graphics(&pipeline->base)->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT))
return true;
if (pipeline->base.type == RADV_PIPELINE_GRAPHICS_LIB &&
(pipeline_key->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
!(radv_pipeline_to_graphics_lib(&pipeline->base)->base.active_stages & VK_SHADER_STAGE_FRAGMENT_BIT))
return true;
return false;
}
static void
radv_remove_varyings(nir_shader *nir)
{
/* We can't demote mesh outputs to nir_var_shader_temp yet, because
* they don't support array derefs of vectors.
*/
if (nir->info.stage == MESA_SHADER_MESH)
return;
bool fixup_derefs = false;
nir_foreach_shader_out_variable (var, nir) {
if (var->data.always_active_io)
continue;
if (var->data.location < VARYING_SLOT_VAR0)
continue;
nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location);
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
fixup_derefs = true;
}
if (fixup_derefs) {
NIR_PASS_V(nir, nir_fixup_deref_modes);
NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, nir, nir_opt_dce);
}
}
static void
radv_graphics_shaders_link(const struct radv_device *device, const struct radv_pipeline_key *pipeline_key,
struct radv_shader_stage *stages)
{
/* Walk backwards to link */
struct radv_shader_stage *next_stage = NULL;
for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].nir)
continue;
switch (s) {
case MESA_SHADER_VERTEX:
radv_link_vs(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_TESS_CTRL:
radv_link_tcs(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_TESS_EVAL:
radv_link_tes(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_GEOMETRY:
radv_link_gs(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_TASK:
radv_link_task(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_MESH:
radv_link_mesh(device, &stages[s], next_stage, pipeline_key);
break;
case MESA_SHADER_FRAGMENT:
radv_link_fs(&stages[s], pipeline_key);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = &stages[s];
}
}
struct radv_ps_epilog_key
radv_generate_ps_epilog_key(const struct radv_device *device, const struct radv_ps_epilog_state *state)
{
unsigned col_format = 0, is_int8 = 0, is_int10 = 0, is_float32 = 0, z_format = 0;
struct radv_ps_epilog_key key;
memset(&key, 0, sizeof(key));
for (unsigned i = 0; i < state->color_attachment_count; ++i) {
unsigned cf;
VkFormat fmt = state->color_attachment_formats[i];
if (fmt == VK_FORMAT_UNDEFINED || !(state->color_write_mask & (0xfu << (i * 4)))) {
cf = V_028714_SPI_SHADER_ZERO;
} else {
bool blend_enable = state->color_blend_enable & (0xfu << (i * 4));
cf = radv_choose_spi_color_format(device, fmt, blend_enable, state->need_src_alpha & (1 << i));
if (format_is_int8(fmt))
is_int8 |= 1 << i;
if (format_is_int10(fmt))
is_int10 |= 1 << i;
if (format_is_float32(fmt))
is_float32 |= 1 << i;
}
col_format |= cf << (4 * i);
}
if (!(col_format & 0xf) && state->need_src_alpha & (1 << 0)) {
/* When a subpass doesn't have any color attachments, write the alpha channel of MRT0 when
* alpha coverage is enabled because the depth attachment needs it.
*/
col_format |= V_028714_SPI_SHADER_32_AR;
}
/* The output for dual source blending should have the same format as the first output. */
if (state->mrt0_is_dual_src) {
assert(!(col_format >> 4));
col_format |= (col_format & 0xf) << 4;
}
if (state->alpha_to_coverage_via_mrtz)
z_format = ac_get_spi_shader_z_format(state->export_depth, state->export_stencil, state->export_sample_mask,
state->alpha_to_coverage_via_mrtz);
key.spi_shader_col_format = col_format;
key.color_is_int8 = device->physical_device->rad_info.gfx_level < GFX8 ? is_int8 : 0;
key.color_is_int10 = device->physical_device->rad_info.gfx_level < GFX8 ? is_int10 : 0;
key.enable_mrt_output_nan_fixup = device->instance->drirc.enable_mrt_output_nan_fixup ? is_float32 : 0;
key.colors_written = state->colors_written;
key.mrt0_is_dual_src = state->mrt0_is_dual_src;
key.export_depth = state->export_depth;
key.export_stencil = state->export_stencil;
key.export_sample_mask = state->export_sample_mask;
key.alpha_to_coverage_via_mrtz = state->alpha_to_coverage_via_mrtz;
key.spi_shader_z_format = z_format;
return key;
}
static struct radv_ps_epilog_key
radv_pipeline_generate_ps_epilog_key(const struct radv_device *device, const struct vk_graphics_pipeline_state *state)
{
struct radv_ps_epilog_state ps_epilog = {0};
if (state->ms && state->ms->alpha_to_coverage_enable)
ps_epilog.need_src_alpha |= 0x1;
if (state->cb) {
for (uint32_t i = 0; i < state->cb->attachment_count; i++) {
VkBlendOp eqRGB = state->cb->attachments[i].color_blend_op;
VkBlendFactor srcRGB = state->cb->attachments[i].src_color_blend_factor;
VkBlendFactor dstRGB = state->cb->attachments[i].dst_color_blend_factor;
/* Ignore other blend targets if dual-source blending is enabled to prevent wrong
* behaviour.
*/
if (i > 0 && ps_epilog.mrt0_is_dual_src)
continue;
ps_epilog.color_write_mask |= (unsigned)state->cb->attachments[i].write_mask << (4 * i);
if (!((ps_epilog.color_write_mask >> (i * 4)) & 0xf))
continue;
if (state->cb->attachments[i].blend_enable)
ps_epilog.color_blend_enable |= 0xfu << (i * 4);
if (!((ps_epilog.color_blend_enable >> (i * 4)) & 0xf))
continue;
if (i == 0 && radv_can_enable_dual_src(&state->cb->attachments[i])) {
ps_epilog.mrt0_is_dual_src = true;
}
if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
srcRGB = VK_BLEND_FACTOR_ONE;
dstRGB = VK_BLEND_FACTOR_ONE;
}
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
ps_epilog.need_src_alpha |= 1 << i;
}
}
if (state->rp) {
ps_epilog.color_attachment_count = state->rp->color_attachment_count;
for (uint32_t i = 0; i < ps_epilog.color_attachment_count; i++) {
ps_epilog.color_attachment_formats[i] = state->rp->color_attachment_formats[i];
}
}
return radv_generate_ps_epilog_key(device, &ps_epilog);
}
static struct radv_pipeline_key
radv_generate_graphics_pipeline_key(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct vk_graphics_pipeline_state *state,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
{
const struct radv_physical_device *pdevice = device->physical_device;
struct radv_pipeline_key key = radv_generate_pipeline_key(device, pCreateInfo->pStages, pCreateInfo->stageCount,
pipeline->base.create_flags, pCreateInfo->pNext);
key.shader_version = device->instance->drirc.override_graphics_shader_version;
key.lib_flags = lib_flags;
key.has_multiview_view_index = state->rp ? !!state->rp->view_mask : 0;
if (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT) {
key.vs.has_prolog = true;
}
/* Compile the pre-rasterization stages only when the vertex input interface is missing. */
if ((lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT) &&
!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT)) {
key.vs.has_prolog = true;
}
/* Vertex input state */
if (state->vi) {
u_foreach_bit (i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format);
key.vs.vertex_attribute_formats[i] = format;
key.vs.vertex_attribute_bindings[i] = binding;
key.vs.vertex_attribute_offsets[i] = offset;
key.vs.instance_rate_divisors[i] = state->vi->bindings[binding].divisor;
/* vertex_attribute_strides is only needed to workaround GFX6/7 offset>=stride checks. */
if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE) &&
pdevice->rad_info.gfx_level < GFX8) {
/* From the Vulkan spec 1.2.157:
*
* "If the bound pipeline state object was created with the
* VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE dynamic state enabled then pStrides[i]
* specifies the distance in bytes between two consecutive elements within the
* corresponding buffer. In this case the VkVertexInputBindingDescription::stride state
* from the pipeline state object is ignored."
*
* Make sure the vertex attribute stride is zero to avoid computing a wrong offset if
* it's initialized to something else than zero.
*/
key.vs.vertex_attribute_strides[i] = state->vi->bindings[binding].stride;
}
if (state->vi->bindings[binding].input_rate) {
key.vs.instance_rate_inputs |= 1u << i;
}
const struct ac_vtx_format_info *vtx_info =
ac_get_vtx_format_info(pdevice->rad_info.gfx_level, pdevice->rad_info.family, format);
unsigned attrib_align = vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size;
/* If offset is misaligned, then the buffer offset must be too. Just skip updating
* vertex_binding_align in this case.
*/
if (offset % attrib_align == 0) {
key.vs.vertex_binding_align[binding] = MAX2(key.vs.vertex_binding_align[binding], attrib_align);
}
}
}
if (state->ts)
key.tcs.tess_input_vertices = state->ts->patch_control_points;
if (state->ms) {
key.ps.sample_shading_enable = state->ms->sample_shading_enable;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) && state->ms->rasterization_samples > 1) {
key.ps.num_samples = state->ms->rasterization_samples;
}
}
if (device->physical_device->rad_info.gfx_level >= GFX11 && state->ms) {
key.ps.alpha_to_coverage_via_mrtz = state->ms->alpha_to_coverage_enable;
}
if (state->ia) {
key.vs.topology = radv_translate_prim(state->ia->primitive_topology);
}
if (pipeline->base.type == RADV_PIPELINE_GRAPHICS_LIB &&
(!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT) ||
!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT))) {
key.unknown_rast_prim = true;
}
if (device->physical_device->rad_info.gfx_level >= GFX10 && state->rs) {
key.vs.provoking_vtx_last = state->rs->provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
}
key.ps.force_vrs_enabled = device->force_vrs_enabled && !radv_is_static_vrs_enabled(pipeline, state);
if ((radv_is_vrs_enabled(pipeline, state) || key.ps.force_vrs_enabled) &&
(device->physical_device->rad_info.family == CHIP_NAVI21 ||
device->physical_device->rad_info.family == CHIP_NAVI22 ||
device->physical_device->rad_info.family == CHIP_VANGOGH))
key.adjust_frag_coord_z = true;
if (radv_pipeline_needs_ps_epilog(pipeline, lib_flags))
key.ps.has_epilog = true;
key.ps.epilog = radv_pipeline_generate_ps_epilog_key(device, state);
if (device->physical_device->rad_info.gfx_level >= GFX11) {
/* On GFX11, alpha to coverage is exported via MRTZ when depth/stencil/samplemask are also
* exported. Though, when a PS epilog is needed and the MS state is NULL (with dynamic
* rendering), it's not possible to know the info at compile time and MRTZ needs to be
* exported in the epilog.
*/
key.ps.exports_mrtz_via_epilog =
key.ps.has_epilog && (!state->ms || (pipeline->dynamic_states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE));
}
key.dynamic_patch_control_points = !!(pipeline->dynamic_states & RADV_DYNAMIC_PATCH_CONTROL_POINTS);
key.dynamic_rasterization_samples = !!(pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) ||
(!!(pipeline->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && !state->ms);
if (device->physical_device->use_ngg) {
VkShaderStageFlags ngg_stage;
if (pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
ngg_stage = VK_SHADER_STAGE_GEOMETRY_BIT;
} else if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
ngg_stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else {
ngg_stage = VK_SHADER_STAGE_VERTEX_BIT;
}
key.dynamic_provoking_vtx_mode =
!!(pipeline->dynamic_states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) &&
(ngg_stage == VK_SHADER_STAGE_VERTEX_BIT || ngg_stage == VK_SHADER_STAGE_GEOMETRY_BIT);
}
if (!(pipeline->dynamic_states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) && state->ia &&
state->ia->primitive_topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST &&
!(pipeline->dynamic_states & RADV_DYNAMIC_POLYGON_MODE) && state->rs &&
state->rs->polygon_mode != VK_POLYGON_MODE_POINT) {
key.enable_remove_point_size = true;
}
if (device->smooth_lines) {
/* For GPL, when the fragment shader is compiled without any pre-rasterization information,
* ensure the line rasterization mode is considered dynamic because we can't know if it's
* going to draw lines or not.
*/
if (pipeline->dynamic_states & RADV_DYNAMIC_LINE_RASTERIZATION_MODE ||
((lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT))) {
key.dynamic_line_rast_mode = true;
} else {
key.ps.line_smooth_enabled =
state->rs && state->rs->line.mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT;
}
}
return key;
}
static void
radv_fill_shader_info_ngg(struct radv_device *device, struct radv_shader_stage *stages,
VkShaderStageFlagBits active_nir_stages)
{
if (device->cache_key.use_ngg) {
if (stages[MESA_SHADER_TESS_CTRL].nir) {
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = true;
} else if (stages[MESA_SHADER_VERTEX].nir) {
stages[MESA_SHADER_VERTEX].info.is_ngg = true;
} else if (stages[MESA_SHADER_MESH].nir) {
stages[MESA_SHADER_MESH].info.is_ngg = true;
}
if (device->physical_device->rad_info.gfx_level < GFX11 && stages[MESA_SHADER_TESS_CTRL].nir &&
stages[MESA_SHADER_GEOMETRY].nir &&
stages[MESA_SHADER_GEOMETRY].nir->info.gs.invocations *
stages[MESA_SHADER_GEOMETRY].nir->info.gs.vertices_out >
256) {
/* Fallback to the legacy path if tessellation is
* enabled with extreme geometry because
* EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
* might hang.
*/
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
}
struct radv_shader_stage *last_vgt_stage = NULL;
radv_foreach_stage(i, active_nir_stages)
{
if (radv_is_last_vgt_stage(&stages[i])) {
last_vgt_stage = &stages[i];
}
}
bool uses_xfb = last_vgt_stage && last_vgt_stage->nir->xfb_info;
if (!device->physical_device->use_ngg_streamout && uses_xfb) {
/* GFX11+ requires NGG. */
assert(device->physical_device->rad_info.gfx_level < GFX11);
if (stages[MESA_SHADER_TESS_CTRL].nir)
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
else
stages[MESA_SHADER_VERTEX].info.is_ngg = false;
}
if (stages[MESA_SHADER_GEOMETRY].nir) {
if (stages[MESA_SHADER_TESS_CTRL].nir)
stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[MESA_SHADER_TESS_EVAL].info.is_ngg;
else
stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[MESA_SHADER_VERTEX].info.is_ngg;
}
}
}
static bool
radv_consider_force_vrs(const struct radv_pipeline_key *pipeline_key, const struct radv_shader_stage *last_vgt_stage,
const struct radv_shader_stage *fs_stage)
{
if (!pipeline_key->ps.force_vrs_enabled)
return false;
/* Mesh shaders aren't considered. */
if (last_vgt_stage->info.stage == MESA_SHADER_MESH)
return false;
if (last_vgt_stage->nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE))
return false;
/* VRS has no effect if there is no pixel shader. */
if (last_vgt_stage->info.next_stage == MESA_SHADER_NONE)
return false;
/* Do not enable if the PS uses gl_FragCoord because it breaks postprocessing in some games, or with Primitive
* Ordered Pixel Shading (regardless of whether per-pixel data is addressed with gl_FragCoord or a custom
* interpolator) as that'd result in races between adjacent primitives with no common fine pixels.
*/
nir_shader *fs_shader = fs_stage->nir;
if (fs_shader && (BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
fs_shader->info.fs.sample_interlock_ordered || fs_shader->info.fs.sample_interlock_unordered ||
fs_shader->info.fs.pixel_interlock_ordered || fs_shader->info.fs.pixel_interlock_unordered)) {
return false;
}
return true;
}
static gl_shader_stage
radv_get_next_stage(gl_shader_stage stage, VkShaderStageFlagBits active_nir_stages)
{
switch (stage) {
case MESA_SHADER_VERTEX:
if (active_nir_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
return MESA_SHADER_TESS_CTRL;
} else if (active_nir_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
return MESA_SHADER_GEOMETRY;
} else if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
return MESA_SHADER_FRAGMENT;
} else {
return MESA_SHADER_NONE;
}
case MESA_SHADER_TESS_CTRL:
return MESA_SHADER_TESS_EVAL;
case MESA_SHADER_TESS_EVAL:
if (active_nir_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
return MESA_SHADER_GEOMETRY;
} else if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
return MESA_SHADER_FRAGMENT;
} else {
return MESA_SHADER_NONE;
}
case MESA_SHADER_GEOMETRY:
case MESA_SHADER_MESH:
if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
return MESA_SHADER_FRAGMENT;
} else {
return MESA_SHADER_NONE;
}
case MESA_SHADER_TASK:
return MESA_SHADER_MESH;
case MESA_SHADER_FRAGMENT:
return MESA_SHADER_NONE;
default:
unreachable("invalid graphics shader stage");
}
}
static void
radv_fill_shader_info(struct radv_device *device, const enum radv_pipeline_type pipeline_type,
const struct radv_pipeline_key *pipeline_key, struct radv_shader_stage *stages,
VkShaderStageFlagBits active_nir_stages)
{
radv_foreach_stage(i, active_nir_stages)
{
bool consider_force_vrs = false;
if (radv_is_last_vgt_stage(&stages[i])) {
consider_force_vrs = radv_consider_force_vrs(pipeline_key, &stages[i], &stages[MESA_SHADER_FRAGMENT]);
}
radv_nir_shader_info_pass(device, stages[i].nir, &stages[i].layout, pipeline_key, pipeline_type,
consider_force_vrs, &stages[i].info);
}
radv_nir_shader_info_link(device, pipeline_key, stages);
}
static void
radv_declare_pipeline_args(struct radv_device *device, struct radv_shader_stage *stages,
const struct radv_pipeline_key *pipeline_key, VkShaderStageFlagBits active_nir_stages)
{
enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
if (gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) {
radv_declare_shader_args(device, pipeline_key, &stages[MESA_SHADER_TESS_CTRL].info, MESA_SHADER_TESS_CTRL,
MESA_SHADER_VERTEX, &stages[MESA_SHADER_TESS_CTRL].args);
stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].args.user_sgprs_locs;
stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask =
stages[MESA_SHADER_TESS_CTRL].args.ac.inline_push_const_mask;
stages[MESA_SHADER_VERTEX].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs;
stages[MESA_SHADER_VERTEX].info.inline_push_constant_mask =
stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask;
stages[MESA_SHADER_VERTEX].args = stages[MESA_SHADER_TESS_CTRL].args;
active_nir_stages &= ~(1 << MESA_SHADER_VERTEX);
active_nir_stages &= ~(1 << MESA_SHADER_TESS_CTRL);
}
if (gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) {
gl_shader_stage pre_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
radv_declare_shader_args(device, pipeline_key, &stages[MESA_SHADER_GEOMETRY].info, MESA_SHADER_GEOMETRY,
pre_stage, &stages[MESA_SHADER_GEOMETRY].args);
stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].args.user_sgprs_locs;
stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask =
stages[MESA_SHADER_GEOMETRY].args.ac.inline_push_const_mask;
stages[pre_stage].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs;
stages[pre_stage].info.inline_push_constant_mask = stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask;
stages[pre_stage].args = stages[MESA_SHADER_GEOMETRY].args;
active_nir_stages &= ~(1 << pre_stage);
active_nir_stages &= ~(1 << MESA_SHADER_GEOMETRY);
}
u_foreach_bit (i, active_nir_stages) {
radv_declare_shader_args(device, pipeline_key, &stages[i].info, i, MESA_SHADER_NONE, &stages[i].args);
stages[i].info.user_sgprs_locs = stages[i].args.user_sgprs_locs;
stages[i].info.inline_push_constant_mask = stages[i].args.ac.inline_push_const_mask;
}
}
static struct radv_shader *
radv_create_gs_copy_shader(struct radv_device *device, struct vk_pipeline_cache *cache,
struct radv_shader_stage *gs_stage, const struct radv_pipeline_key *pipeline_key,
bool keep_executable_info, bool keep_statistic_info,
struct radv_shader_binary **gs_copy_binary)
{
const struct radv_shader_info *gs_info = &gs_stage->info;
ac_nir_gs_output_info output_info = {
.streams = gs_info->gs.output_streams,
.usage_mask = gs_info->gs.output_usage_mask,
};
nir_shader *nir = ac_nir_create_gs_copy_shader(
gs_stage->nir, device->physical_device->rad_info.gfx_level,
gs_info->outinfo.clip_dist_mask | gs_info->outinfo.cull_dist_mask, gs_info->outinfo.vs_output_param_offset,
gs_info->outinfo.param_exports, false, false, false, gs_info->force_vrs_per_vertex, &output_info);
nir_validate_shader(nir, "after ac_nir_create_gs_copy_shader");
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
struct radv_shader_stage gs_copy_stage = {
.stage = MESA_SHADER_VERTEX,
.shader_sha1 = {0},
};
radv_nir_shader_info_init(gs_copy_stage.stage, MESA_SHADER_FRAGMENT, &gs_copy_stage.info);
radv_nir_shader_info_pass(device, nir, &gs_stage->layout, pipeline_key, RADV_PIPELINE_GRAPHICS, false,
&gs_copy_stage.info);
gs_copy_stage.info.wave_size = 64; /* Wave32 not supported. */
gs_copy_stage.info.workgroup_size = 64; /* HW VS: separate waves, no workgroups */
gs_copy_stage.info.so = gs_info->so;
gs_copy_stage.info.outinfo = gs_info->outinfo;
gs_copy_stage.info.force_vrs_per_vertex = gs_info->force_vrs_per_vertex;
gs_copy_stage.info.type = RADV_SHADER_TYPE_GS_COPY;
radv_declare_shader_args(device, pipeline_key, &gs_copy_stage.info, MESA_SHADER_VERTEX, MESA_SHADER_NONE,
&gs_copy_stage.args);
gs_copy_stage.info.user_sgprs_locs = gs_copy_stage.args.user_sgprs_locs;
gs_copy_stage.info.inline_push_constant_mask = gs_copy_stage.args.ac.inline_push_const_mask;
NIR_PASS_V(nir, ac_nir_lower_intrinsics_to_args, device->physical_device->rad_info.gfx_level, AC_HW_VERTEX_SHADER,
&gs_copy_stage.args.ac);
NIR_PASS_V(nir, radv_nir_lower_abi, device->physical_device->rad_info.gfx_level, &gs_copy_stage, pipeline_key,
device->physical_device->rad_info.address32_hi);
struct radv_pipeline_key key = {
.optimisations_disabled = pipeline_key->optimisations_disabled,
};
bool dump_shader = radv_can_dump_shader(device, nir, true);
*gs_copy_binary =
radv_shader_nir_to_asm(device, &gs_copy_stage, &nir, 1, &key, keep_executable_info, keep_statistic_info);
struct radv_shader *copy_shader =
radv_shader_create(device, cache, *gs_copy_binary, keep_executable_info || dump_shader);
if (copy_shader)
radv_shader_generate_debug_info(device, dump_shader, keep_executable_info, *gs_copy_binary, copy_shader, &nir, 1,
&gs_copy_stage.info);
return copy_shader;
}
static void
radv_graphics_shaders_nir_to_asm(struct radv_device *device, struct vk_pipeline_cache *cache,
struct radv_shader_stage *stages, const struct radv_pipeline_key *pipeline_key,
bool keep_executable_info, bool keep_statistic_info,
VkShaderStageFlagBits active_nir_stages, struct radv_shader **shaders,
struct radv_shader_binary **binaries, struct radv_shader **gs_copy_shader,
struct radv_shader_binary **gs_copy_binary)
{
for (int s = MESA_VULKAN_SHADER_STAGES - 1; s >= 0; s--) {
if (!(active_nir_stages & (1 << s)))
continue;
nir_shader *nir_shaders[2] = {stages[s].nir, NULL};
unsigned shader_count = 1;
/* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */
if (device->physical_device->rad_info.gfx_level >= GFX9 &&
(s == MESA_SHADER_TESS_CTRL || s == MESA_SHADER_GEOMETRY)) {
gl_shader_stage pre_stage;
if (s == MESA_SHADER_GEOMETRY && stages[MESA_SHADER_TESS_EVAL].nir) {
pre_stage = MESA_SHADER_TESS_EVAL;
} else {
pre_stage = MESA_SHADER_VERTEX;
}
nir_shaders[0] = stages[pre_stage].nir;
nir_shaders[1] = stages[s].nir;
shader_count = 2;
}
int64_t stage_start = os_time_get_nano();
bool dump_shader = radv_can_dump_shader(device, nir_shaders[0], false);
binaries[s] = radv_shader_nir_to_asm(device, &stages[s], nir_shaders, shader_count, pipeline_key,
keep_executable_info, keep_statistic_info);
shaders[s] = radv_shader_create(device, cache, binaries[s], keep_executable_info || dump_shader);
radv_shader_generate_debug_info(device, dump_shader, keep_executable_info, binaries[s], shaders[s], nir_shaders,
shader_count, &stages[s].info);
if (s == MESA_SHADER_GEOMETRY && !stages[s].info.is_ngg) {
*gs_copy_shader = radv_create_gs_copy_shader(device, cache, &stages[MESA_SHADER_GEOMETRY], pipeline_key,
keep_executable_info, keep_statistic_info, gs_copy_binary);
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
active_nir_stages &= ~(1 << nir_shaders[0]->info.stage);
if (nir_shaders[1])
active_nir_stages &= ~(1 << nir_shaders[1]->info.stage);
}
}
static void
radv_pipeline_retain_shaders(struct radv_retained_shaders *retained_shaders, struct radv_shader_stage *stages)
{
for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
/* Serialize the NIR shader to reduce memory pressure. */
struct blob blob;
blob_init(&blob);
nir_serialize(&blob, stages[s].nir, true);
blob_finish_get_buffer(&blob, &retained_shaders->stages[s].serialized_nir,
&retained_shaders->stages[s].serialized_nir_size);
memcpy(retained_shaders->stages[s].shader_sha1, stages[s].shader_sha1, sizeof(stages[s].shader_sha1));
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
}
static void
radv_pipeline_import_retained_shaders(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
struct radv_graphics_lib_pipeline *lib, struct radv_shader_stage *stages)
{
struct radv_retained_shaders *retained_shaders = &lib->retained_shaders;
/* Import the stages (SPIR-V only in case of cache hits). */
for (uint32_t i = 0; i < lib->stage_count; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &lib->stages[i];
gl_shader_stage s = vk_to_mesa_shader_stage(sinfo->stage);
/* Ignore graphics shader stages that don't need to be imported. */
if (!(shader_stage_to_pipeline_library_flags(sinfo->stage) & lib->lib_flags))
continue;
radv_pipeline_stage_init(sinfo, &lib->layout, &stages[s]);
}
/* Import the NIR shaders (after SPIRV->NIR). */
for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) {
if (!retained_shaders->stages[s].serialized_nir_size)
continue;
int64_t stage_start = os_time_get_nano();
/* Deserialize the NIR shader. */
const struct nir_shader_compiler_options *options = &device->physical_device->nir_options[s];
struct blob_reader blob_reader;
blob_reader_init(&blob_reader, retained_shaders->stages[s].serialized_nir,
retained_shaders->stages[s].serialized_nir_size);
stages[s].stage = s;
stages[s].nir = nir_deserialize(NULL, options, &blob_reader);
stages[s].entrypoint = nir_shader_get_entrypoint(stages[s].nir)->function->name;
memcpy(stages[s].shader_sha1, retained_shaders->stages[s].shader_sha1, sizeof(stages[s].shader_sha1));
radv_shader_layout_init(&lib->layout, s, &stages[s].layout);
stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
}
static void
radv_pipeline_load_retained_shaders(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo, struct radv_shader_stage *stages)
{
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
const bool link_optimize = (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
/* Nothing to load if no libs are imported. */
if (!libs_info)
return;
/* Nothing to load if fast-linking is enabled and if there is no retained shaders. */
if (!link_optimize && !pipeline->retain_shaders)
return;
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
radv_pipeline_import_retained_shaders(device, pipeline, gfx_pipeline_lib, stages);
}
}
static unsigned
radv_get_rasterization_prim(const struct radv_shader_stage *stages, const struct radv_pipeline_key *pipeline_key)
{
unsigned rast_prim;
if (pipeline_key->unknown_rast_prim)
return -1;
if (stages[MESA_SHADER_GEOMETRY].nir) {
rast_prim = radv_conv_gl_prim_to_gs_out(stages[MESA_SHADER_GEOMETRY].nir->info.gs.output_primitive);
} else if (stages[MESA_SHADER_TESS_EVAL].nir) {
if (stages[MESA_SHADER_TESS_EVAL].nir->info.tess.point_mode) {
rast_prim = V_028A6C_POINTLIST;
} else {
rast_prim = radv_conv_tess_prim_to_gs_out(stages[MESA_SHADER_TESS_EVAL].nir->info.tess._primitive_mode);
}
} else if (stages[MESA_SHADER_MESH].nir) {
rast_prim = radv_conv_gl_prim_to_gs_out(stages[MESA_SHADER_MESH].nir->info.mesh.primitive_type);
} else {
rast_prim = radv_conv_prim_to_gs_out(pipeline_key->vs.topology, false);
}
return rast_prim;
}
static bool
radv_skip_graphics_pipeline_compile(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags, bool fast_linking_enabled)
{
VkShaderStageFlagBits binary_stages = 0;
/* Do not skip when fast-linking isn't enabled. */
if (!fast_linking_enabled)
return false;
/* Determine which shader stages have been imported. */
if (pipeline->base.shaders[MESA_SHADER_MESH]) {
binary_stages |= VK_SHADER_STAGE_MESH_BIT_EXT;
if (pipeline->base.shaders[MESA_SHADER_TASK]) {
binary_stages |= VK_SHADER_STAGE_TASK_BIT_EXT;
}
} else {
for (uint32_t i = 0; i < MESA_SHADER_COMPUTE; i++) {
if (!pipeline->base.shaders[i])
continue;
binary_stages |= mesa_to_vk_shader_stage(i);
}
if (device->physical_device->rad_info.gfx_level >= GFX9) {
/* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */
if (binary_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
binary_stages |= VK_SHADER_STAGE_VERTEX_BIT;
}
if (binary_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
if (binary_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
binary_stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else {
binary_stages |= VK_SHADER_STAGE_VERTEX_BIT;
}
}
}
}
/* Only skip compilation when all binaries have been imported. */
return binary_stages == pipeline->active_stages;
}
static void
radv_graphics_shaders_compile(struct radv_device *device, struct vk_pipeline_cache *cache,
struct radv_shader_stage *stages, const struct radv_pipeline_key *pipeline_key,
bool keep_executable_info, bool keep_statistic_info, bool is_internal,
struct radv_retained_shaders *retained_shaders, bool noop_fs,
struct radv_shader **shaders, struct radv_shader_binary **binaries,
struct radv_shader **gs_copy_shader, struct radv_shader_binary **gs_copy_binary)
{
for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
/* NIR might already have been imported from a library. */
if (!stages[s].nir) {
stages[s].nir = radv_shader_spirv_to_nir(device, &stages[s], pipeline_key, is_internal);
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
if (retained_shaders) {
radv_pipeline_retain_shaders(retained_shaders, stages);
}
VkShaderStageFlagBits active_nir_stages = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].nir)
active_nir_stages |= mesa_to_vk_shader_stage(i);
}
bool optimize_conservatively = pipeline_key->optimisations_disabled;
if (!device->mesh_fast_launch_2 && stages[MESA_SHADER_MESH].nir &&
BITSET_TEST(stages[MESA_SHADER_MESH].nir->info.system_values_read, SYSTEM_VALUE_WORKGROUP_ID)) {
nir_shader *mesh = stages[MESA_SHADER_MESH].nir;
nir_shader *task = stages[MESA_SHADER_TASK].nir;
/* Mesh shaders only have a 1D "vertex index" which we use
* as "workgroup index" to emulate the 3D workgroup ID.
*/
nir_lower_compute_system_values_options o = {
.lower_workgroup_id_to_index = true,
.shortcut_1d_workgroup_id = true,
.num_workgroups[0] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[0] : 0,
.num_workgroups[1] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[1] : 0,
.num_workgroups[2] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[2] : 0,
};
NIR_PASS(_, mesh, nir_lower_compute_system_values, &o);
}
radv_foreach_stage(i, active_nir_stages)
{
gl_shader_stage next_stage = radv_get_next_stage(i, active_nir_stages);
radv_nir_shader_info_init(i, next_stage, &stages[i].info);
}
/* Determine if shaders uses NGG before linking because it's needed for some NIR pass. */
radv_fill_shader_info_ngg(device, stages, active_nir_stages);
if (stages[MESA_SHADER_GEOMETRY].nir) {
unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream;
if (stages[MESA_SHADER_GEOMETRY].info.is_ngg) {
nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives |
nir_lower_gs_intrinsics_count_vertices_per_primitive |
nir_lower_gs_intrinsics_overwrite_incomplete;
}
NIR_PASS(_, stages[MESA_SHADER_GEOMETRY].nir, nir_lower_gs_intrinsics, nir_gs_flags);
}
/* Remove all varyings when the fragment shader is a noop. */
if (noop_fs) {
radv_foreach_stage(i, active_nir_stages)
{
if (radv_is_last_vgt_stage(&stages[i])) {
radv_remove_varyings(stages[i].nir);
break;
}
}
}
radv_graphics_shaders_link(device, pipeline_key, stages);
if (stages[MESA_SHADER_FRAGMENT].nir) {
unsigned rast_prim = radv_get_rasterization_prim(stages, pipeline_key);
NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_nir_lower_fs_barycentric, pipeline_key, rast_prim);
}
radv_foreach_stage(i, active_nir_stages)
{
int64_t stage_start = os_time_get_nano();
radv_optimize_nir(stages[i].nir, optimize_conservatively);
/* Gather info again, information such as outputs_read can be out-of-date. */
nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir));
radv_nir_lower_io(device, stages[i].nir);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
if (stages[MESA_SHADER_FRAGMENT].nir) {
radv_nir_lower_poly_line_smooth(stages[MESA_SHADER_FRAGMENT].nir, pipeline_key);
}
radv_fill_shader_info(device, RADV_PIPELINE_GRAPHICS, pipeline_key, stages, active_nir_stages);
radv_declare_pipeline_args(device, stages, pipeline_key, active_nir_stages);
radv_foreach_stage(i, active_nir_stages)
{
int64_t stage_start = os_time_get_nano();
radv_postprocess_nir(device, pipeline_key, &stages[i]);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
if (radv_can_dump_shader(device, stages[i].nir, false))
nir_print_shader(stages[i].nir, stderr);
}
/* Compile NIR shaders to AMD assembly. */
radv_graphics_shaders_nir_to_asm(device, cache, stages, pipeline_key, keep_executable_info, keep_statistic_info,
active_nir_stages, shaders, binaries, gs_copy_shader, gs_copy_binary);
if (keep_executable_info) {
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
struct radv_shader *shader = shaders[i];
if (!shader)
continue;
if (!stages[i].spirv.size)
continue;
shader->spirv = malloc(stages[i].spirv.size);
memcpy(shader->spirv, stages[i].spirv.data, stages[i].spirv.size);
shader->spirv_size = stages[i].spirv.size;
}
}
}
static bool
radv_should_compute_pipeline_hash(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
bool fast_linking_enabled)
{
/* Skip computing the pipeline hash when GPL fast-linking is enabled because these shaders aren't
* supposed to be cached and computing the hash is costly. Though, make sure it's always computed
* when RGP is enabled, otherwise ISA isn't reported.
*/
return !fast_linking_enabled ||
((device->instance->vk.trace_mode & RADV_TRACE_MODE_RGP) && pipeline->base.type == RADV_PIPELINE_GRAPHICS);
}
static VkResult
radv_graphics_pipeline_compile(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo,
struct radv_pipeline_layout *pipeline_layout, struct radv_device *device,
struct vk_pipeline_cache *cache, const struct radv_pipeline_key *pipeline_key,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags, bool fast_linking_enabled)
{
struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL};
struct radv_shader_binary *gs_copy_binary = NULL;
unsigned char hash[20];
bool keep_executable_info = radv_pipeline_capture_shaders(device, pipeline->base.create_flags);
bool keep_statistic_info = radv_pipeline_capture_shader_stats(device, pipeline->base.create_flags);
struct radv_shader_stage stages[MESA_VULKAN_SHADER_STAGES];
const VkPipelineCreationFeedbackCreateInfo *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
bool skip_shaders_cache = false;
VkResult result = VK_SUCCESS;
const bool retain_shaders =
!!(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT);
struct radv_retained_shaders *retained_shaders = NULL;
int64_t pipeline_start = os_time_get_nano();
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
stages[i].entrypoint = NULL;
stages[i].nir = NULL;
stages[i].spirv.size = 0;
}
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
/* Ignore graphics shader stages that don't need to be imported. */
if (!(shader_stage_to_pipeline_library_flags(sinfo->stage) & lib_flags))
continue;
radv_pipeline_stage_init(sinfo, pipeline_layout, &stages[stage]);
}
radv_pipeline_load_retained_shaders(device, pipeline, pCreateInfo, stages);
if (radv_should_compute_pipeline_hash(device, pipeline, fast_linking_enabled)) {
radv_hash_shaders(device, hash, stages, MESA_VULKAN_SHADER_STAGES, pipeline_layout, pipeline_key);
pipeline->base.pipeline_hash = *(uint64_t *)hash;
}
/* Skip the shaders cache when any of the below are true:
* - fast-linking is enabled because it's useless to cache unoptimized pipelines
* - shaders are captured because it's for debugging purposes
* - graphics pipeline libraries are created with the RETAIN_LINK_TIME_OPTIMIZATION flag and
* module identifiers are used (ie. no SPIR-V provided).
*/
if (fast_linking_enabled || keep_executable_info) {
skip_shaders_cache = true;
} else if (retain_shaders) {
assert(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR);
for (uint32_t i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].entrypoint && !stages[i].spirv.size) {
skip_shaders_cache = true;
break;
}
}
}
bool found_in_application_cache = true;
if (!skip_shaders_cache &&
radv_pipeline_cache_search(device, cache, &pipeline->base, hash, &found_in_application_cache)) {
if (found_in_application_cache)
pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
if (retain_shaders) {
/* For graphics pipeline libraries created with the RETAIN_LINK_TIME_OPTIMIZATION flag, we
* need to retain the stage info because we can't know if the LTO pipelines will
* be find in the shaders cache.
*/
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(&pipeline->base);
gfx_pipeline_lib->stages = radv_copy_shader_stage_create_info(device, pCreateInfo->stageCount,
pCreateInfo->pStages, gfx_pipeline_lib->mem_ctx);
if (!gfx_pipeline_lib->stages)
return VK_ERROR_OUT_OF_HOST_MEMORY;
gfx_pipeline_lib->stage_count = pCreateInfo->stageCount;
}
result = VK_SUCCESS;
goto done;
}
if (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR)
return VK_PIPELINE_COMPILE_REQUIRED;
if (retain_shaders) {
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(&pipeline->base);
retained_shaders = &gfx_pipeline_lib->retained_shaders;
}
const bool noop_fs = radv_pipeline_needs_noop_fs(pipeline, pipeline_key);
radv_graphics_shaders_compile(device, cache, stages, pipeline_key, keep_executable_info, keep_statistic_info,
pipeline->base.is_internal, retained_shaders, noop_fs, pipeline->base.shaders,
binaries, &pipeline->base.gs_copy_shader, &gs_copy_binary);
if (!skip_shaders_cache) {
radv_pipeline_cache_insert(device, cache, &pipeline->base, hash);
}
free(gs_copy_binary);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
free(binaries[i]);
if (stages[i].nir) {
if (radv_can_dump_shader_stats(device, stages[i].nir) && pipeline->base.shaders[i]) {
radv_dump_shader_stats(device, &pipeline->base, pipeline->base.shaders[i], i, stderr);
}
}
}
done:
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
ralloc_free(stages[i].nir);
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
if (creation_feedback) {
*creation_feedback->pPipelineCreationFeedback = pipeline_feedback;
if (creation_feedback->pipelineStageCreationFeedbackCount > 0) {
uint32_t num_feedbacks = 0;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(pCreateInfo->pStages[i].stage);
creation_feedback->pPipelineStageCreationFeedbacks[num_feedbacks++] = stages[s].feedback;
}
/* Stages imported from graphics pipeline libraries are defined as additional entries in the
* order they were imported.
*/
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
if (libs_info) {
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
if (!gfx_pipeline_lib->base.active_stages)
continue;
radv_foreach_stage(s, gfx_pipeline_lib->base.active_stages)
{
creation_feedback->pPipelineStageCreationFeedbacks[num_feedbacks++] = stages[s].feedback;
}
}
}
assert(num_feedbacks == creation_feedback->pipelineStageCreationFeedbackCount);
}
}
return result;
}
static void
radv_pipeline_emit_blend_state(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend)
{
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
if (ps && ps->info.has_epilog)
return;
radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format);
radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask);
}
static void
radv_emit_vgt_gs_mode(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
const struct radv_shader *last_vgt_api_shader)
{
const struct radv_physical_device *pdevice = device->physical_device;
const struct radv_shader_info *info = &last_vgt_api_shader->info;
unsigned vgt_primitiveid_en = 0;
uint32_t vgt_gs_mode = 0;
if (info->is_ngg)
return;
if (info->stage == MESA_SHADER_GEOMETRY) {
vgt_gs_mode = ac_vgt_gs_mode(info->gs.vertices_out, pdevice->rad_info.gfx_level);
} else if (info->outinfo.export_prim_id || info->uses_prim_id) {
vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A);
vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1);
}
radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en);
radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode);
}
static void
radv_emit_hw_vs(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = device->physical_device;
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B124_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
const struct radv_vs_output_info *outinfo = &shader->info.outinfo;
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index ||
outinfo->writes_primitive_shading_rate;
unsigned spi_vs_out_config, nparams;
/* VS is required to export at least one param. */
nparams = MAX2(outinfo->param_exports, 1);
spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
if (pdevice->rad_info.gfx_level >= GFX10) {
spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0);
}
radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config);
radeon_set_context_reg(
ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE));
radeon_set_context_reg(
ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
(pdevice->rad_info.gfx_level >= GFX10_3 && outinfo->pos_exports > 1)) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask);
if (pdevice->rad_info.gfx_level <= GFX8)
radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF, outinfo->writes_viewport_index);
unsigned late_alloc_wave64, cu_mask;
ac_compute_late_alloc(&pdevice->rad_info, false, false, shader->config.scratch_bytes_per_wave > 0,
&late_alloc_wave64, &cu_mask);
if (pdevice->rad_info.gfx_level >= GFX7) {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3,
ac_apply_cu_en(S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F), C_00B118_CU_EN, 0, &pdevice->rad_info));
radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
}
if (pdevice->rad_info.gfx_level >= GFX10) {
uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0;
gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines);
}
}
static void
radv_emit_hw_es(struct radeon_cmdbuf *cs, const struct radv_shader *shader)
{
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B324_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
}
static void
radv_emit_hw_ls(struct radeon_cmdbuf *cs, const struct radv_shader *shader)
{
uint64_t va = radv_shader_get_va(shader);
radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
radeon_set_sh_reg(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, shader->config.rsrc1);
}
static void
radv_emit_hw_ngg(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_shader *es, const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = device->physical_device;
uint64_t va = radv_shader_get_va(shader);
gl_shader_stage es_type = shader->info.stage == MESA_SHADER_GEOMETRY ? shader->info.gs.es_type : shader->info.stage;
const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info;
radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
const struct radv_vs_output_info *outinfo = &shader->info.outinfo;
unsigned clip_dist_mask, cull_dist_mask, total_mask;
clip_dist_mask = outinfo->clip_dist_mask;
cull_dist_mask = outinfo->cull_dist_mask;
total_mask = clip_dist_mask | cull_dist_mask;
bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index ||
outinfo->writes_primitive_shading_rate;
bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id);
bool break_wave_at_eoi = false;
unsigned ge_cntl;
if (es_type == MESA_SHADER_TESS_EVAL) {
if (es_enable_prim_id || (shader->info.uses_prim_id))
break_wave_at_eoi = true;
}
bool no_pc_export = outinfo->param_exports == 0 && outinfo->prim_param_exports == 0;
unsigned num_params = MAX2(outinfo->param_exports, 1);
unsigned num_prim_params = outinfo->prim_param_exports;
radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG,
S_0286C4_VS_EXPORT_COUNT(num_params - 1) | S_0286C4_PRIM_EXPORT_COUNT(num_prim_params) |
S_0286C4_NO_PC_EXPORT(no_pc_export));
unsigned idx_format = V_028708_SPI_SHADER_1COMP;
if (outinfo->writes_layer_per_primitive || outinfo->writes_viewport_index_per_primitive ||
outinfo->writes_primitive_shading_rate_per_primitive)
idx_format = V_028708_SPI_SHADER_2COMP;
radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT, S_028708_IDX0_EXPORT_FORMAT(idx_format));
radeon_set_context_reg(
ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT,
S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) |
S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) |
S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE));
radeon_set_context_reg(
ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL,
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) |
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
(pdevice->rad_info.gfx_level >= GFX10_3 && outinfo->pos_exports > 1)) |
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask);
radeon_set_context_reg(
ctx_cs, R_028A84_VGT_PRIMITIVEID_EN,
S_028A84_PRIMITIVEID_EN(es_enable_prim_id) | S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id));
/* NGG specific registers. */
uint32_t gs_num_invocations = shader->info.stage == MESA_SHADER_GEOMETRY ? shader->info.gs.invocations : 1;
if (pdevice->rad_info.gfx_level < GFX11) {
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations));
}
radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts));
radeon_set_context_reg(
ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL,
S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) | S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */
radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) |
S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance));
if (pdevice->rad_info.gfx_level >= GFX11) {
ge_cntl = S_03096C_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) |
S_03096C_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) |
S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi) | S_03096C_PRIM_GRP_SIZE_GFX11(252);
} else {
ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(ngg_state->max_gsprims) |
S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts) | S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi);
}
/* Bug workaround for a possible hang with non-tessellation cases.
* Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0
*
* Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5
*/
if (pdevice->rad_info.gfx_level == GFX10 && es_type != MESA_SHADER_TESS_EVAL && ngg_state->hw_max_esverts != 256) {
ge_cntl &= C_03096C_VERT_GRP_SIZE;
if (ngg_state->hw_max_esverts > 5) {
ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5);
}
}
radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl);
unsigned late_alloc_wave64, cu_mask;
ac_compute_late_alloc(&pdevice->rad_info, true, shader->info.has_ngg_culling,
shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask);
radeon_set_sh_reg_idx(
pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
ac_apply_cu_en(S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdevice->rad_info));
if (pdevice->rad_info.gfx_level >= GFX11) {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
ac_apply_cu_en(S_00B204_CU_EN_GFX11(0x1) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
C_00B204_CU_EN_GFX11, 16, &pdevice->rad_info));
} else {
radeon_set_sh_reg_idx(
pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64),
C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info));
}
uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0;
if (shader->info.has_ngg_culling) {
unsigned oversub_factor = 2;
if (outinfo->param_exports > 4)
oversub_factor = 4;
else if (outinfo->param_exports > 2)
oversub_factor = 3;
oversub_pc_lines *= oversub_factor;
}
gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines);
}
static void
radv_emit_hw_hs(const struct radv_device *device, struct radeon_cmdbuf *cs, const struct radv_shader *shader)
{
const struct radv_physical_device *pdevice = device->physical_device;
uint64_t va = radv_shader_get_va(shader);
if (pdevice->rad_info.gfx_level >= GFX9) {
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
} else {
radeon_set_sh_reg(cs, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
}
radeon_set_sh_reg(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, shader->config.rsrc1);
} else {
radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B424_MEM_BASE(va >> 40));
radeon_emit(cs, shader->config.rsrc1);
radeon_emit(cs, shader->config.rsrc2);
}
}
static void
radv_emit_vertex_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_shader *vs)
{
if (vs->info.vs.as_ls)
radv_emit_hw_ls(cs, vs);
else if (vs->info.vs.as_es)
radv_emit_hw_es(cs, vs);
else if (vs->info.is_ngg)
radv_emit_hw_ngg(device, ctx_cs, cs, NULL, vs);
else
radv_emit_hw_vs(device, ctx_cs, cs, vs);
}
static void
radv_emit_tess_ctrl_shader(const struct radv_device *device, struct radeon_cmdbuf *cs, const struct radv_shader *tcs)
{
radv_emit_hw_hs(device, cs, tcs);
}
static void
radv_emit_tess_eval_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_shader *tes)
{
if (tes->info.is_ngg) {
radv_emit_hw_ngg(device, ctx_cs, cs, NULL, tes);
} else if (tes->info.tes.as_es) {
radv_emit_hw_es(cs, tes);
} else {
radv_emit_hw_vs(device, ctx_cs, cs, tes);
}
}
static void
radv_emit_hw_gs(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_shader *gs)
{
const struct radv_physical_device *pdevice = device->physical_device;
const struct radv_legacy_gs_info *gs_state = &gs->info.gs_ring_info;
unsigned gs_max_out_vertices;
const uint8_t *num_components;
uint8_t max_stream;
unsigned offset;
uint64_t va;
gs_max_out_vertices = gs->info.gs.vertices_out;
max_stream = gs->info.gs.max_stream;
num_components = gs->info.gs.num_stream_output_components;
offset = num_components[0] * gs_max_out_vertices;
radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3);
radeon_emit(ctx_cs, offset);
if (max_stream >= 1)
offset += num_components[1] * gs_max_out_vertices;
radeon_emit(ctx_cs, offset);
if (max_stream >= 2)
offset += num_components[2] * gs_max_out_vertices;
radeon_emit(ctx_cs, offset);
if (max_stream >= 3)
offset += num_components[3] * gs_max_out_vertices;
radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset);
radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4);
radeon_emit(ctx_cs, num_components[0]);
radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0);
radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0);
radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0);
uint32_t gs_num_invocations = gs->info.gs.invocations;
radeon_set_context_reg(ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT,
S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0));
if (pdevice->rad_info.gfx_level <= GFX8) {
/* GFX6-8: ESGS offchip ring buffer is allocated according to VGT_ESGS_RING_ITEMSIZE.
* GFX9+: Only used to set the GS input VGPRs, emulated in shaders.
*/
radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, gs_state->vgt_esgs_ring_itemsize);
}
va = radv_shader_get_va(gs);
if (pdevice->rad_info.gfx_level >= GFX9) {
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
} else {
radeon_set_sh_reg(cs, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
}
radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2);
radeon_emit(cs, gs->config.rsrc1);
radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size));
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl);
radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup);
} else {
radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B224_MEM_BASE(va >> 40));
radeon_emit(cs, gs->config.rsrc1);
radeon_emit(cs, gs->config.rsrc2);
}
radeon_set_sh_reg_idx(
pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3,
ac_apply_cu_en(S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdevice->rad_info));
if (pdevice->rad_info.gfx_level >= GFX10) {
radeon_set_sh_reg_idx(pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3,
ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0),
C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info));
}
}
static void
radv_emit_geometry_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_shader *gs, const struct radv_shader *es,
const struct radv_shader *gs_copy_shader)
{
if (gs->info.is_ngg) {
radv_emit_hw_ngg(device, ctx_cs, cs, es, gs);
} else {
radv_emit_hw_gs(device, ctx_cs, cs, gs);
radv_emit_hw_vs(device, ctx_cs, cs, gs_copy_shader);
}
radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out);
}
static void
radv_emit_mesh_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_shader *ms)
{
const struct radv_physical_device *pdevice = device->physical_device;
radv_emit_hw_ngg(device, ctx_cs, cs, NULL, ms);
radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT,
device->mesh_fast_launch_2 ? ms->info.ngg_info.max_out_verts : ms->info.workgroup_size);
radeon_set_uconfig_reg_idx(pdevice, ctx_cs, R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST);
if (device->mesh_fast_launch_2) {
radeon_set_sh_reg_seq(cs, R_00B2B0_SPI_SHADER_GS_MESHLET_DIM, 2);
radeon_emit(cs, S_00B2B0_MESHLET_NUM_THREAD_X(ms->info.cs.block_size[0] - 1) |
S_00B2B0_MESHLET_NUM_THREAD_Y(ms->info.cs.block_size[1] - 1) |
S_00B2B0_MESHLET_NUM_THREAD_Z(ms->info.cs.block_size[2] - 1) |
S_00B2B0_MESHLET_THREADGROUP_SIZE(ms->info.workgroup_size - 1));
radeon_emit(cs, S_00B2B4_MAX_EXP_VERTS(ms->info.ngg_info.max_out_verts) |
S_00B2B4_MAX_EXP_PRIMS(ms->info.ngg_info.prim_amp_factor));
}
}
static uint32_t
offset_to_ps_input(uint32_t offset, bool flat_shade, bool explicit, bool per_vertex, bool float16, bool per_prim_gfx11)
{
uint32_t ps_input_cntl;
if (offset <= AC_EXP_PARAM_OFFSET_31) {
ps_input_cntl = S_028644_OFFSET(offset) | S_028644_PRIM_ATTR(per_prim_gfx11);
if (flat_shade || explicit || per_vertex)
ps_input_cntl |= S_028644_FLAT_SHADE(1);
if (explicit || per_vertex) {
/* Force parameter cache to be read in passthrough
* mode.
*/
ps_input_cntl |= S_028644_OFFSET(1 << 5) | S_028644_ROTATE_PC_PTR(per_vertex);
}
if (float16) {
ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1);
}
} else {
/* The input is a DEFAULT_VAL constant. */
assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset);
}
return ps_input_cntl;
}
static void
single_slot_to_ps_input(const struct radv_vs_output_info *outinfo, unsigned slot, uint32_t *ps_input_cntl,
unsigned *ps_offset, bool skip_undef, bool use_default_0, bool flat_shade, bool per_prim_gfx11)
{
unsigned vs_offset = outinfo->vs_output_param_offset[slot];
if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
if (skip_undef)
return;
else if (use_default_0)
vs_offset = AC_EXP_PARAM_DEFAULT_VAL_0000;
else
unreachable("vs_offset should not be AC_EXP_PARAM_UNDEFINED.");
}
ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, false, false, false, per_prim_gfx11);
++(*ps_offset);
}
static void
input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps, uint32_t input_mask,
uint32_t *ps_input_cntl, unsigned *ps_offset, bool per_prim_gfx11)
{
u_foreach_bit (i, input_mask) {
unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i];
if (vs_offset == AC_EXP_PARAM_UNDEFINED) {
ps_input_cntl[*ps_offset] = S_028644_OFFSET(0x20);
++(*ps_offset);
continue;
}
bool flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << *ps_offset));
bool explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << *ps_offset));
bool per_vertex = !!(ps->info.ps.per_vertex_shaded_mask & (1u << *ps_offset));
bool float16 = !!(ps->info.ps.float16_shaded_mask & (1u << *ps_offset));
ps_input_cntl[*ps_offset] =
offset_to_ps_input(vs_offset, flat_shade, explicit, per_vertex, float16, per_prim_gfx11);
++(*ps_offset);
}
}
static void
radv_emit_ps_inputs(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
const struct radv_shader *last_vgt_shader, const struct radv_shader *ps)
{
const struct radv_vs_output_info *outinfo = &last_vgt_shader->info.outinfo;
bool mesh = last_vgt_shader->info.stage == MESA_SHADER_MESH;
bool gfx11plus = device->physical_device->rad_info.gfx_level >= GFX11;
uint32_t ps_input_cntl[32];
unsigned ps_offset = 0;
if (ps->info.ps.prim_id_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset, true, false, true, false);
if (ps->info.ps.layer_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset, false, true, true, false);
if (ps->info.ps.viewport_index_input && !mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset, false, true, true, false);
if (ps->info.ps.has_pcoord)
ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
if (ps->info.ps.num_input_clips_culls) {
single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST0, ps_input_cntl, &ps_offset, true, false, false, false);
if (ps->info.ps.num_input_clips_culls > 4)
single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST1, ps_input_cntl, &ps_offset, true, false, false,
false);
}
input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask, ps_input_cntl, &ps_offset, false);
/* Per-primitive PS inputs: the HW needs these to be last. */
if (ps->info.ps.prim_id_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset, true, false, false,
gfx11plus);
if (ps->info.ps.layer_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset, false, true, false, gfx11plus);
if (ps->info.ps.viewport_index_input && mesh)
single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset, false, true, false, gfx11plus);
input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask, ps_input_cntl, &ps_offset, gfx11plus);
if (ps_offset) {
radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset);
for (unsigned i = 0; i < ps_offset; i++) {
radeon_emit(ctx_cs, ps_input_cntl[i]);
}
}
}
static void
radv_emit_fragment_shader(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs,
const struct radv_shader *ps)
{
const struct radv_physical_device *pdevice = device->physical_device;
bool param_gen;
uint64_t va;
va = radv_shader_get_va(ps);
radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4);
radeon_emit(cs, va >> 8);
radeon_emit(cs, S_00B024_MEM_BASE(va >> 40));
radeon_emit(cs, ps->config.rsrc1);
radeon_emit(cs, ps->config.rsrc2);
radeon_set_context_reg_seq(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA, 2);
radeon_emit(ctx_cs, ps->config.spi_ps_input_ena);
radeon_emit(ctx_cs, ps->config.spi_ps_input_addr);
/* Workaround when there are no PS inputs but LDS is used. */
param_gen = pdevice->rad_info.gfx_level >= GFX11 && !ps->info.ps.num_interp && ps->config.lds_size;
radeon_set_context_reg(ctx_cs, R_0286D8_SPI_PS_IN_CONTROL,
S_0286D8_NUM_INTERP(ps->info.ps.num_interp) |
S_0286D8_NUM_PRIM_INTERP(ps->info.ps.num_prim_interp) |
S_0286D8_PS_W32_EN(ps->info.wave_size == 32) | S_0286D8_PARAM_GEN(param_gen));
radeon_set_context_reg(ctx_cs, R_028710_SPI_SHADER_Z_FORMAT,
ac_get_spi_shader_z_format(ps->info.ps.writes_z, ps->info.ps.writes_stencil,
ps->info.ps.writes_sample_mask, ps->info.ps.writes_mrt0_alpha));
if (pdevice->rad_info.gfx_level >= GFX9 && pdevice->rad_info.gfx_level < GFX11)
radeon_set_context_reg(ctx_cs, R_028C40_PA_SC_SHADER_CONTROL, S_028C40_LOAD_COLLISION_WAVEID(ps->info.ps.pops));
}
static void
radv_emit_vgt_vertex_reuse(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
const struct radv_shader *tes)
{
const struct radv_physical_device *pdevice = device->physical_device;
if (pdevice->rad_info.family < CHIP_POLARIS10 || pdevice->rad_info.gfx_level >= GFX10)
return;
unsigned vtx_reuse_depth = 30;
if (tes && tes->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) {
vtx_reuse_depth = 14;
}
radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth));
}
static struct radv_vgt_shader_key
radv_pipeline_generate_vgt_shader_key(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline)
{
uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
struct radv_vgt_shader_key key;
memset(&key, 0, sizeof(key));
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
hs_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
if (pipeline->base.shaders[MESA_SHADER_GEOMETRY]) {
vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.wave_size;
if (radv_pipeline_has_gs_copy_shader(&pipeline->base))
vs_size = pipeline->base.gs_copy_shader->info.wave_size;
} else if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL])
vs_size = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.wave_size;
else if (pipeline->base.shaders[MESA_SHADER_VERTEX])
vs_size = pipeline->base.shaders[MESA_SHADER_VERTEX]->info.wave_size;
else if (pipeline->base.shaders[MESA_SHADER_MESH])
vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_MESH]->info.wave_size;
if (radv_pipeline_has_ngg(pipeline)) {
assert(!radv_pipeline_has_gs_copy_shader(&pipeline->base));
gs_size = vs_size;
}
key.tess = radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL);
key.gs = radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY);
if (radv_pipeline_has_ngg(pipeline)) {
key.ngg = 1;
key.ngg_passthrough = radv_pipeline_has_ngg_passthrough(pipeline);
}
key.streamout = !!pipeline->streamout_shader;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
key.mesh = 1;
key.mesh_scratch_ring = pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring;
}
key.hs_wave32 = hs_size == 32;
key.vs_wave32 = vs_size == 32;
key.gs_wave32 = gs_size == 32;
return key;
}
static void
radv_emit_vgt_shader_config(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
const struct radv_vgt_shader_key *key)
{
const struct radv_physical_device *pdevice = device->physical_device;
uint32_t stages = 0;
if (key->tess) {
stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
if (key->gs)
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1);
else if (key->ngg)
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS);
else
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
} else if (key->gs) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1);
} else if (key->mesh) {
assert(!key->ngg_passthrough);
unsigned gs_fast_launch = device->mesh_fast_launch_2 ? 2 : 1;
stages |=
S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(gs_fast_launch) | S_028B54_NGG_WAVE_ID_EN(key->mesh_scratch_ring);
} else if (key->ngg) {
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL);
}
if (key->ngg) {
stages |= S_028B54_PRIMGEN_EN(1) | S_028B54_NGG_WAVE_ID_EN(key->streamout) |
S_028B54_PRIMGEN_PASSTHRU_EN(key->ngg_passthrough) |
S_028B54_PRIMGEN_PASSTHRU_NO_MSG(key->ngg_passthrough && pdevice->rad_info.family >= CHIP_NAVI23);
} else if (key->gs) {
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
}
if (pdevice->rad_info.gfx_level >= GFX9)
stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2);
if (pdevice->rad_info.gfx_level >= GFX10) {
stages |= S_028B54_HS_W32_EN(key->hs_wave32) | S_028B54_GS_W32_EN(key->gs_wave32) |
S_028B54_VS_W32_EN(pdevice->rad_info.gfx_level < GFX11 && key->vs_wave32);
/* Legacy GS only supports Wave64. Read it as an implication. */
assert(!(key->gs && !key->ngg) || !key->gs_wave32);
}
radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, stages);
}
static void
radv_emit_vgt_gs_out(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs, uint32_t vgt_gs_out_prim_type)
{
const struct radv_physical_device *pdevice = device->physical_device;
if (pdevice->rad_info.gfx_level >= GFX11) {
radeon_set_uconfig_reg(ctx_cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
} else {
radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type);
}
}
static void
gfx103_pipeline_emit_vgt_draw_payload_cntl(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline);
bool enable_vrs = radv_is_vrs_enabled(pipeline, state);
/* Enables the second channel of the primitive export instruction.
* This channel contains: VRS rate x, y, viewport and layer.
*/
bool enable_prim_payload =
outinfo && (outinfo->writes_viewport_index_per_primitive || outinfo->writes_layer_per_primitive ||
outinfo->writes_primitive_shading_rate_per_primitive);
radeon_set_context_reg(ctx_cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL,
S_028A98_EN_VRS_RATE(enable_vrs) | S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload));
}
static bool
gfx103_pipeline_vrs_coarse_shading(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
if (device->physical_device->rad_info.gfx_level != GFX10_3)
return false;
if (device->instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING)
return false;
if (ps && !ps->info.ps.allow_flat_shading)
return false;
return true;
}
static void
gfx103_pipeline_emit_vrs_state(const struct radv_device *device, struct radeon_cmdbuf *ctx_cs,
const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdevice = device->physical_device;
uint32_t mode = V_028064_SC_VRS_COMB_MODE_PASSTHRU;
uint8_t rate_x = 0, rate_y = 0;
bool enable_vrs = radv_is_vrs_enabled(pipeline, state);
if (!enable_vrs && gfx103_pipeline_vrs_coarse_shading(device, pipeline)) {
/* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver
* determined that it's safe to enable.
*/
mode = V_028064_SC_VRS_COMB_MODE_OVERRIDE;
rate_x = rate_y = 1;
} else if (pipeline->force_vrs_per_vertex) {
/* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if
* requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because
* in DX12 it's fully dynamic.
*/
radeon_set_context_reg(ctx_cs, R_028848_PA_CL_VRS_CNTL,
S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE) |
S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_SC_VRS_COMB_MODE_OVERRIDE));
/* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel
* granularity degrades quality too much. MIN allows sample shading but not coarse shading.
*/
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
mode = ps->info.ps.can_discard ? V_028064_SC_VRS_COMB_MODE_MIN : V_028064_SC_VRS_COMB_MODE_PASSTHRU;
}
if (pdevice->rad_info.gfx_level < GFX11) {
radeon_set_context_reg(ctx_cs, R_028064_DB_VRS_OVERRIDE_CNTL,
S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_028064_VRS_OVERRIDE_RATE_X(rate_x) |
S_028064_VRS_OVERRIDE_RATE_Y(rate_y));
}
}
static void
radv_pipeline_emit_pm4(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const struct radv_blend_state *blend, uint32_t vgt_gs_out_prim_type,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdevice = device->physical_device;
const struct radv_shader *last_vgt_shader = radv_get_last_vgt_shader(pipeline);
const struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
struct radeon_cmdbuf *ctx_cs = &pipeline->base.ctx_cs;
struct radeon_cmdbuf *cs = &pipeline->base.cs;
cs->reserved_dw = cs->max_dw = 64;
ctx_cs->reserved_dw = ctx_cs->max_dw = 256;
cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw));
ctx_cs->buf = cs->buf + cs->max_dw;
struct radv_vgt_shader_key vgt_shader_key = radv_pipeline_generate_vgt_shader_key(device, pipeline);
radv_pipeline_emit_blend_state(ctx_cs, pipeline, blend);
radv_emit_vgt_gs_mode(device, ctx_cs, pipeline->base.shaders[pipeline->last_vgt_api_stage]);
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX)) {
radv_emit_vertex_shader(device, ctx_cs, cs, pipeline->base.shaders[MESA_SHADER_VERTEX]);
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
radv_emit_mesh_shader(device, ctx_cs, cs, pipeline->base.shaders[MESA_SHADER_MESH]);
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
radv_emit_tess_ctrl_shader(device, cs, pipeline->base.shaders[MESA_SHADER_TESS_CTRL]);
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
radv_emit_tess_eval_shader(device, ctx_cs, cs, pipeline->base.shaders[MESA_SHADER_TESS_EVAL]);
}
if (pdevice->rad_info.gfx_level >= GFX10 && !radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) &&
!radv_pipeline_has_ngg(pipeline)) {
radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL,
S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) |
S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
}
}
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
const struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY];
const struct radv_shader *es = pipeline->base.shaders[gs->info.gs.es_type];
radv_emit_geometry_shader(device, ctx_cs, cs, gs, es, pipeline->base.gs_copy_shader);
}
if (ps) {
radv_emit_fragment_shader(device, ctx_cs, cs, ps);
radv_emit_ps_inputs(device, ctx_cs, last_vgt_shader, ps);
}
radv_emit_vgt_vertex_reuse(device, ctx_cs, radv_get_shader(pipeline->base.shaders, MESA_SHADER_TESS_EVAL));
radv_emit_vgt_shader_config(device, ctx_cs, &vgt_shader_key);
radv_emit_vgt_gs_out(device, ctx_cs, vgt_gs_out_prim_type);
if (pdevice->rad_info.gfx_level >= GFX10_3) {
gfx103_pipeline_emit_vgt_draw_payload_cntl(ctx_cs, pipeline, state);
gfx103_pipeline_emit_vrs_state(device, ctx_cs, pipeline, state);
}
pipeline->base.ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4);
assert(ctx_cs->cdw <= ctx_cs->max_dw);
assert(cs->cdw <= cs->max_dw);
}
static void
radv_pipeline_init_vertex_input_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdevice = device->physical_device;
const struct radv_shader_info *vs_info = &radv_get_shader(pipeline->base.shaders, MESA_SHADER_VERTEX)->info;
if (state->vi) {
u_foreach_bit (i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
VkFormat format = state->vi->attributes[i].format;
pipeline->attrib_ends[i] = offset + vk_format_get_blocksize(format);
pipeline->attrib_bindings[i] = binding;
if (state->vi->bindings[binding].stride) {
pipeline->attrib_index_offset[i] = offset / state->vi->bindings[binding].stride;
}
}
u_foreach_bit (i, state->vi->bindings_valid) {
pipeline->binding_stride[i] = state->vi->bindings[i].stride;
}
}
/* Prepare the VS input state for prologs created inside a library. */
if (vs_info->vs.has_prolog && !(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT)) {
const enum amd_gfx_level gfx_level = pdevice->rad_info.gfx_level;
const enum radeon_family family = pdevice->rad_info.family;
const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(gfx_level, family);
pipeline->vs_input_state.bindings_match_attrib = true;
u_foreach_bit (i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
pipeline->vs_input_state.attribute_mask |= BITFIELD_BIT(i);
pipeline->vs_input_state.bindings[i] = binding;
pipeline->vs_input_state.bindings_match_attrib &= binding == i;
if (state->vi->bindings[binding].input_rate) {
pipeline->vs_input_state.instance_rate_inputs |= BITFIELD_BIT(i);
pipeline->vs_input_state.divisors[i] = state->vi->bindings[binding].divisor;
if (state->vi->bindings[binding].divisor == 0) {
pipeline->vs_input_state.zero_divisors |= BITFIELD_BIT(i);
} else if (state->vi->bindings[binding].divisor > 1) {
pipeline->vs_input_state.nontrivial_divisors |= BITFIELD_BIT(i);
}
}
pipeline->vs_input_state.offsets[i] = offset;
enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format);
const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format];
pipeline->vs_input_state.formats[i] = format;
uint8_t align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1);
pipeline->vs_input_state.format_align_req_minus_1[i] = align_req_minus_1;
pipeline->vs_input_state.format_sizes[i] = vtx_info->element_size;
pipeline->vs_input_state.alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << i;
pipeline->vs_input_state.alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << i;
if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z) {
pipeline->vs_input_state.post_shuffle |= BITFIELD_BIT(i);
}
if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1))) {
pipeline->vs_input_state.nontrivial_formats |= BITFIELD_BIT(i);
}
}
}
}
static struct radv_shader *
radv_pipeline_get_streamout_shader(struct radv_graphics_pipeline *pipeline)
{
int i;
for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
struct radv_shader *shader = radv_get_shader(pipeline->base.shaders, i);
if (shader && shader->info.so.num_outputs > 0)
return shader;
}
return NULL;
}
static void
radv_pipeline_init_shader_stages_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline)
{
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
bool shader_exists = !!pipeline->base.shaders[i];
if (shader_exists || i < MESA_SHADER_COMPUTE) {
if (shader_exists)
pipeline->base.need_indirect_descriptor_sets |=
radv_shader_need_indirect_descriptor_sets(pipeline->base.shaders[i]);
}
}
gl_shader_stage first_stage =
radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : MESA_SHADER_VERTEX;
const struct radv_shader *shader = radv_get_shader(pipeline->base.shaders, first_stage);
const struct radv_userdata_info *loc = radv_get_user_sgpr(shader, AC_UD_VS_BASE_VERTEX_START_INSTANCE);
if (loc->sgpr_idx != -1) {
pipeline->vtx_base_sgpr = shader->info.user_data_0;
pipeline->vtx_base_sgpr += loc->sgpr_idx * 4;
pipeline->vtx_emit_num = loc->num_sgprs;
pipeline->uses_drawid = radv_get_shader(pipeline->base.shaders, first_stage)->info.vs.needs_draw_id;
pipeline->uses_baseinstance = radv_get_shader(pipeline->base.shaders, first_stage)->info.vs.needs_base_instance;
assert(first_stage != MESA_SHADER_MESH || !pipeline->uses_baseinstance);
}
}
static uint32_t
radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state)
{
uint32_t gs_out;
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
gs_out = radv_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) {
if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) {
gs_out = V_028A6C_POINTLIST;
} else {
gs_out =
radv_conv_tess_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes._primitive_mode);
}
} else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
gs_out = radv_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.output_prim);
} else {
gs_out = radv_conv_prim_to_gs_out(radv_translate_prim(state->ia->primitive_topology), false);
}
return gs_out;
}
static void
radv_pipeline_init_extra(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_create_info *extra, struct radv_blend_state *blend_state,
const struct vk_graphics_pipeline_state *state, uint32_t *vgt_gs_out_prim_type)
{
if (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR ||
extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS ||
extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX8 ||
extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 ||
extra->custom_blend_mode == V_028808_CB_RESOLVE) {
/* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four
* channels of MRT0.
*/
blend_state->cb_shader_mask = 0xf;
pipeline->custom_blend_mode = extra->custom_blend_mode;
}
if (extra->use_rectlist) {
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
dynamic->vk.ia.primitive_topology = V_008958_DI_PT_RECTLIST;
*vgt_gs_out_prim_type =
radv_conv_prim_to_gs_out(dynamic->vk.ia.primitive_topology, radv_pipeline_has_ngg(pipeline));
pipeline->rast_prim = *vgt_gs_out_prim_type;
}
if (radv_pipeline_has_ds_attachments(state->rp)) {
pipeline->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
pipeline->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
pipeline->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable);
pipeline->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable);
pipeline->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable);
}
}
static bool
radv_is_fast_linking_enabled(const struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
if (!libs_info)
return false;
return !(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT);
}
bool
radv_needs_null_export_workaround(const struct radv_device *device, const struct radv_shader *ps,
unsigned custom_blend_mode)
{
const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
if (!ps)
return false;
/* Ensure that some export memory is always allocated, for two reasons:
*
* 1) Correctness: The hardware ignores the EXEC mask if no export
* memory is allocated, so KILL and alpha test do not work correctly
* without this.
* 2) Performance: Every shader needs at least a NULL export, even when
* it writes no color/depth output. The NULL export instruction
* stalls without this setting.
*
* Don't add this to CB_SHADER_MASK.
*
* GFX10 supports pixel shaders without exports by setting both the
* color and Z formats to SPI_SHADER_ZERO. The hw will skip export
* instructions if any are present.
*
* GFX11 requires one color output, otherwise the DCC decompression does nothing.
*
* Primitive Ordered Pixel Shading also requires an export, otherwise interlocking doesn't work
* correctly before GFX11, and a hang happens on GFX11.
*/
return (gfx_level <= GFX9 || ps->info.ps.can_discard || ps->info.ps.pops ||
(custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 && gfx_level >= GFX11)) &&
!ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask;
}
static VkResult
radv_graphics_pipeline_init(struct radv_graphics_pipeline *pipeline, struct radv_device *device,
struct vk_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
VkGraphicsPipelineLibraryFlagBitsEXT needed_lib_flags = ALL_GRAPHICS_LIB_FLAGS;
bool fast_linking_enabled = radv_is_fast_linking_enabled(pipeline, pCreateInfo);
struct radv_pipeline_layout pipeline_layout;
struct vk_graphics_pipeline_state state = {0};
VkResult result = VK_SUCCESS;
pipeline->last_vgt_api_stage = MESA_SHADER_NONE;
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
radv_pipeline_layout_init(device, &pipeline_layout, false);
/* If we have libraries, import them first. */
if (libs_info) {
const bool link_optimize =
(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
assert(pipeline_lib->type == RADV_PIPELINE_GRAPHICS_LIB);
/* If we have link time optimization, all libraries must be created with
* VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT.
*/
assert(!link_optimize || gfx_pipeline_lib->base.retain_shaders);
radv_graphics_pipeline_import_lib(device, pipeline, &state, &pipeline_layout, gfx_pipeline_lib, link_optimize);
needed_lib_flags &= ~gfx_pipeline_lib->lib_flags;
}
}
/* Import graphics pipeline info that was not included in the libraries. */
result =
radv_pipeline_import_graphics_info(device, pipeline, &state, &pipeline_layout, pCreateInfo, needed_lib_flags);
if (result != VK_SUCCESS) {
radv_pipeline_layout_finish(device, &pipeline_layout);
return result;
}
if (radv_should_compute_pipeline_hash(device, pipeline, fast_linking_enabled))
radv_pipeline_layout_hash(&pipeline_layout);
if (!radv_skip_graphics_pipeline_compile(device, pipeline, needed_lib_flags, fast_linking_enabled)) {
struct radv_pipeline_key key =
radv_generate_graphics_pipeline_key(device, pipeline, pCreateInfo, &state, needed_lib_flags);
result = radv_graphics_pipeline_compile(pipeline, pCreateInfo, &pipeline_layout, device, cache, &key,
needed_lib_flags, fast_linking_enabled);
if (result != VK_SUCCESS) {
radv_pipeline_layout_finish(device, &pipeline_layout);
return result;
}
}
uint32_t vgt_gs_out_prim_type = radv_pipeline_init_vgt_gs_out(pipeline, &state);
radv_pipeline_init_multisample_state(device, pipeline, pCreateInfo, &state);
if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
radv_pipeline_init_input_assembly_state(device, pipeline);
radv_pipeline_init_dynamic_state(device, pipeline, &state, pCreateInfo);
struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, &state, needed_lib_flags);
/* Copy the non-compacted SPI_SHADER_COL_FORMAT which is used to emit RBPLUS state. */
pipeline->col_format_non_compacted = blend.spi_shader_col_format;
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
bool enable_mrt_compaction = ps && !ps->info.has_epilog && !ps->info.ps.mrt0_is_dual_src;
if (enable_mrt_compaction) {
blend.spi_shader_col_format = radv_compact_spi_shader_col_format(ps, blend.spi_shader_col_format);
/* In presence of MRT holes (ie. the FS exports MRT1 but not MRT0), the compiler will remap
* them, so that only MRT0 is exported and the driver will compact SPI_SHADER_COL_FORMAT to
* match what the FS actually exports. Though, to make sure the hw remapping works as
* expected, we should also clear color attachments without exports in CB_SHADER_MASK.
*/
blend.cb_shader_mask &= ps->info.ps.colors_written;
}
unsigned custom_blend_mode = extra ? extra->custom_blend_mode : 0;
if (radv_needs_null_export_workaround(device, ps, custom_blend_mode) && !blend.spi_shader_col_format) {
blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
pipeline->col_format_non_compacted = V_028714_SPI_SHADER_32_R;
}
if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
radv_pipeline_init_vertex_input_state(device, pipeline, &state);
radv_pipeline_init_shader_stages_state(device, pipeline);
/* Find the last vertex shader stage that eventually uses streamout. */
pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline);
pipeline->is_ngg = radv_pipeline_has_ngg(pipeline);
pipeline->has_ngg_culling =
pipeline->is_ngg && pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.has_ngg_culling;
pipeline->force_vrs_per_vertex = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.force_vrs_per_vertex;
pipeline->rast_prim = vgt_gs_out_prim_type;
pipeline->uses_out_of_order_rast = state.rs->rasterization_order_amd == VK_RASTERIZATION_ORDER_RELAXED_AMD;
pipeline->uses_vrs_attachment = radv_pipeline_uses_vrs_attachment(pipeline, &state);
pipeline->base.push_constant_size = pipeline_layout.push_constant_size;
pipeline->base.dynamic_offset_count = pipeline_layout.dynamic_offset_count;
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (pipeline->base.shaders[i]) {
pipeline->base.shader_upload_seq =
MAX2(pipeline->base.shader_upload_seq, pipeline->base.shaders[i]->upload_seq);
}
}
if (pipeline->base.gs_copy_shader) {
pipeline->base.shader_upload_seq =
MAX2(pipeline->base.shader_upload_seq, pipeline->base.gs_copy_shader->upload_seq);
}
if (extra) {
radv_pipeline_init_extra(pipeline, extra, &blend, &state, &vgt_gs_out_prim_type);
}
radv_pipeline_emit_pm4(device, pipeline, &blend, vgt_gs_out_prim_type, &state);
radv_pipeline_layout_finish(device, &pipeline_layout);
return result;
}
VkResult
radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
VK_FROM_HANDLE(vk_pipeline_cache, cache, _cache);
struct radv_graphics_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_GRAPHICS);
pipeline->base.create_flags = vk_graphics_pipeline_create_flags(pCreateInfo);
pipeline->base.is_internal = _cache == device->meta_state.cache;
result = radv_graphics_pipeline_init(pipeline, device, cache, pCreateInfo, extra);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(&pipeline->base);
radv_rmv_log_graphics_pipeline_create(device, &pipeline->base, pipeline->base.is_internal);
return VK_SUCCESS;
}
void
radv_destroy_graphics_pipeline(struct radv_device *device, struct radv_graphics_pipeline *pipeline)
{
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (pipeline->base.shaders[i])
radv_shader_unref(device, pipeline->base.shaders[i]);
}
if (pipeline->base.gs_copy_shader)
radv_shader_unref(device, pipeline->base.gs_copy_shader);
vk_free(&device->vk.alloc, pipeline->state_data);
}
static VkResult
radv_graphics_lib_pipeline_init(struct radv_graphics_lib_pipeline *pipeline, struct radv_device *device,
struct vk_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
VkResult result;
const VkGraphicsPipelineLibraryCreateInfoEXT *lib_info =
vk_find_struct_const(pCreateInfo->pNext, GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT);
VkGraphicsPipelineLibraryFlagBitsEXT needed_lib_flags = lib_info ? lib_info->flags : 0;
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
bool fast_linking_enabled = radv_is_fast_linking_enabled(&pipeline->base, pCreateInfo);
struct vk_graphics_pipeline_state *state = &pipeline->graphics_state;
struct radv_pipeline_layout *pipeline_layout = &pipeline->layout;
pipeline->base.last_vgt_api_stage = MESA_SHADER_NONE;
pipeline->base.retain_shaders =
(pipeline->base.base.create_flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0;
pipeline->lib_flags = needed_lib_flags;
radv_pipeline_layout_init(device, pipeline_layout, false);
/* If we have libraries, import them first. */
if (libs_info) {
const bool link_optimize =
(pipeline->base.base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
RADV_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
radv_graphics_pipeline_import_lib(device, &pipeline->base, state, pipeline_layout, gfx_pipeline_lib,
link_optimize);
pipeline->lib_flags |= gfx_pipeline_lib->lib_flags;
needed_lib_flags &= ~gfx_pipeline_lib->lib_flags;
}
}
result = radv_pipeline_import_graphics_info(device, &pipeline->base, state, pipeline_layout, pCreateInfo,
needed_lib_flags);
if (result != VK_SUCCESS)
return result;
if (radv_should_compute_pipeline_hash(device, &pipeline->base, fast_linking_enabled))
radv_pipeline_layout_hash(pipeline_layout);
struct radv_pipeline_key key =
radv_generate_graphics_pipeline_key(device, &pipeline->base, pCreateInfo, state, needed_lib_flags);
return radv_graphics_pipeline_compile(&pipeline->base, pCreateInfo, pipeline_layout, device, cache, &key,
needed_lib_flags, fast_linking_enabled);
}
static VkResult
radv_graphics_lib_pipeline_create(VkDevice _device, VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
{
VK_FROM_HANDLE(vk_pipeline_cache, cache, _cache);
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_graphics_lib_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_pipeline_init(device, &pipeline->base.base, RADV_PIPELINE_GRAPHICS_LIB);
pipeline->base.base.create_flags = vk_graphics_pipeline_create_flags(pCreateInfo);
pipeline->mem_ctx = ralloc_context(NULL);
result = radv_graphics_lib_pipeline_init(pipeline, device, cache, pCreateInfo);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base.base, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(&pipeline->base.base);
return VK_SUCCESS;
}
void
radv_destroy_graphics_lib_pipeline(struct radv_device *device, struct radv_graphics_lib_pipeline *pipeline)
{
struct radv_retained_shaders *retained_shaders = &pipeline->retained_shaders;
radv_pipeline_layout_finish(device, &pipeline->layout);
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
free(retained_shaders->stages[i].serialized_nir);
}
ralloc_free(pipeline->mem_ctx);
radv_destroy_graphics_pipeline(device, &pipeline->base);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
const VkPipelineCreateFlagBits2KHR create_flags = vk_graphics_pipeline_create_flags(&pCreateInfos[i]);
VkResult r;
if (create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) {
r = radv_graphics_lib_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]);
} else {
r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator, &pPipelines[i]);
}
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
if (create_flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
break;
}
}
for (; i < count; ++i)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}