
Signed-off-by: Alyssa Rosenzweig <alyssa@rosenzweig.io> Reviewed-by: Faith Ekstrand <faith.ekstrand@collabora.com> Reviewed-by: Marek Olšák <marek.olsak@amd.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/24432>
3039 lines
106 KiB
C
3039 lines
106 KiB
C
/*
|
|
* Copyright (c) 2014 Scott Mansell
|
|
* Copyright © 2014 Broadcom
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include "util/format/u_format.h"
|
|
#include "util/crc32.h"
|
|
#include "util/u_helpers.h"
|
|
#include "util/u_math.h"
|
|
#include "util/u_memory.h"
|
|
#include "util/ralloc.h"
|
|
#include "util/hash_table.h"
|
|
#include "tgsi/tgsi_dump.h"
|
|
#include "compiler/nir/nir.h"
|
|
#include "compiler/nir/nir_builder.h"
|
|
#include "compiler/nir_types.h"
|
|
#include "nir/tgsi_to_nir.h"
|
|
#include "vc4_context.h"
|
|
#include "vc4_qpu.h"
|
|
#include "vc4_qir.h"
|
|
|
|
static struct qreg
|
|
ntq_get_src(struct vc4_compile *c, nir_src src, int i);
|
|
static void
|
|
ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
|
|
|
|
static struct vc4_compiled_shader *
|
|
vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
|
|
struct vc4_key *key);
|
|
|
|
static int
|
|
type_size(const struct glsl_type *type, bool bindless)
|
|
{
|
|
return glsl_count_attribute_slots(type, false);
|
|
}
|
|
|
|
static void
|
|
resize_qreg_array(struct vc4_compile *c,
|
|
struct qreg **regs,
|
|
uint32_t *size,
|
|
uint32_t decl_size)
|
|
{
|
|
if (*size >= decl_size)
|
|
return;
|
|
|
|
uint32_t old_size = *size;
|
|
*size = MAX2(*size * 2, decl_size);
|
|
*regs = reralloc(c, *regs, struct qreg, *size);
|
|
if (!*regs) {
|
|
fprintf(stderr, "Malloc failure\n");
|
|
abort();
|
|
}
|
|
|
|
for (uint32_t i = old_size; i < *size; i++)
|
|
(*regs)[i] = c->undef;
|
|
}
|
|
|
|
static void
|
|
ntq_emit_thrsw(struct vc4_compile *c)
|
|
{
|
|
if (!c->fs_threaded)
|
|
return;
|
|
|
|
/* Always thread switch after each texture operation for now.
|
|
*
|
|
* We could do better by batching a bunch of texture fetches up and
|
|
* then doing one thread switch and collecting all their results
|
|
* afterward.
|
|
*/
|
|
qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
|
|
c->undef, c->undef));
|
|
c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
|
|
}
|
|
|
|
static struct qreg
|
|
indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
|
|
{
|
|
struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
|
|
|
|
/* Clamp to [0, array size). Note that MIN/MAX are signed. */
|
|
uint32_t range = nir_intrinsic_range(intr);
|
|
indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
|
|
indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
|
|
qir_uniform_ui(c, range - 4));
|
|
|
|
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
|
|
indirect_offset,
|
|
qir_uniform(c, QUNIFORM_UBO0_ADDR,
|
|
nir_intrinsic_base(intr)));
|
|
|
|
c->num_texture_samples++;
|
|
|
|
ntq_emit_thrsw(c);
|
|
|
|
return qir_TEX_RESULT(c);
|
|
}
|
|
|
|
static struct qreg
|
|
vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
|
|
{
|
|
ASSERTED int buffer_index = nir_src_as_uint(intr->src[0]);
|
|
assert(buffer_index == 1);
|
|
assert(c->stage == QSTAGE_FRAG);
|
|
|
|
struct qreg offset = ntq_get_src(c, intr->src[1], 0);
|
|
|
|
/* Clamp to [0, array size). Note that MIN/MAX are signed. */
|
|
offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
|
|
offset = qir_MIN_NOIMM(c, offset,
|
|
qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
|
|
|
|
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
|
|
offset,
|
|
qir_uniform(c, QUNIFORM_UBO1_ADDR, 0));
|
|
|
|
c->num_texture_samples++;
|
|
|
|
ntq_emit_thrsw(c);
|
|
|
|
return qir_TEX_RESULT(c);
|
|
}
|
|
|
|
nir_ssa_def *
|
|
vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
|
|
{
|
|
switch (swiz) {
|
|
default:
|
|
case PIPE_SWIZZLE_NONE:
|
|
fprintf(stderr, "warning: unknown swizzle\n");
|
|
FALLTHROUGH;
|
|
case PIPE_SWIZZLE_0:
|
|
return nir_imm_float(b, 0.0);
|
|
case PIPE_SWIZZLE_1:
|
|
return nir_imm_float(b, 1.0);
|
|
case PIPE_SWIZZLE_X:
|
|
case PIPE_SWIZZLE_Y:
|
|
case PIPE_SWIZZLE_Z:
|
|
case PIPE_SWIZZLE_W:
|
|
return srcs[swiz];
|
|
}
|
|
}
|
|
|
|
static struct qreg *
|
|
ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
|
|
{
|
|
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
|
|
def->num_components);
|
|
_mesa_hash_table_insert(c->def_ht, def, qregs);
|
|
return qregs;
|
|
}
|
|
|
|
/**
|
|
* This function is responsible for getting QIR results into the associated
|
|
* storage for a NIR instruction.
|
|
*
|
|
* If it's a NIR SSA def, then we just set the associated hash table entry to
|
|
* the new result.
|
|
*
|
|
* If it's a NIR reg, then we need to update the existing qreg assigned to the
|
|
* NIR destination with the incoming value. To do that without introducing
|
|
* new MOVs, we require that the incoming qreg either be a uniform, or be
|
|
* SSA-defined by the previous QIR instruction in the block and rewritable by
|
|
* this function. That lets us sneak ahead and insert the SF flag beforehand
|
|
* (knowing that the previous instruction doesn't depend on flags) and rewrite
|
|
* its destination to be the NIR reg's destination
|
|
*/
|
|
static void
|
|
ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
|
|
struct qreg result)
|
|
{
|
|
struct qinst *last_inst = NULL;
|
|
if (!list_is_empty(&c->cur_block->instructions))
|
|
last_inst = (struct qinst *)c->cur_block->instructions.prev;
|
|
|
|
assert(result.file == QFILE_UNIF ||
|
|
(result.file == QFILE_TEMP &&
|
|
last_inst && last_inst == c->defs[result.index]));
|
|
|
|
assert(dest->is_ssa);
|
|
nir_intrinsic_instr *store = nir_store_reg_for_def(&dest->ssa);
|
|
if (store == NULL) {
|
|
assert(chan < dest->ssa.num_components);
|
|
|
|
struct qreg *qregs;
|
|
struct hash_entry *entry =
|
|
_mesa_hash_table_search(c->def_ht, &dest->ssa);
|
|
|
|
if (entry)
|
|
qregs = entry->data;
|
|
else
|
|
qregs = ntq_init_ssa_def(c, &dest->ssa);
|
|
|
|
qregs[chan] = result;
|
|
} else {
|
|
nir_ssa_def *reg = store->src[1].ssa;
|
|
ASSERTED nir_intrinsic_instr *decl = nir_reg_get_decl(reg);
|
|
assert(nir_intrinsic_base(store) == 0);
|
|
assert(nir_intrinsic_num_array_elems(decl) == 0);
|
|
struct hash_entry *entry =
|
|
_mesa_hash_table_search(c->def_ht, reg);
|
|
struct qreg *qregs = entry->data;
|
|
|
|
/* Insert a MOV if the source wasn't an SSA def in the
|
|
* previous instruction.
|
|
*/
|
|
if (result.file == QFILE_UNIF) {
|
|
result = qir_MOV(c, result);
|
|
last_inst = c->defs[result.index];
|
|
}
|
|
|
|
/* We know they're both temps, so just rewrite index. */
|
|
c->defs[last_inst->dst.index] = NULL;
|
|
last_inst->dst.index = qregs[chan].index;
|
|
|
|
/* If we're in control flow, then make this update of the reg
|
|
* conditional on the execution mask.
|
|
*/
|
|
if (c->execute.file != QFILE_NULL) {
|
|
last_inst->dst.index = qregs[chan].index;
|
|
|
|
/* Set the flags to the current exec mask. To insert
|
|
* the SF, we temporarily remove our SSA instruction.
|
|
*/
|
|
list_del(&last_inst->link);
|
|
qir_SF(c, c->execute);
|
|
list_addtail(&last_inst->link,
|
|
&c->cur_block->instructions);
|
|
|
|
last_inst->cond = QPU_COND_ZS;
|
|
last_inst->cond_is_exec_mask = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_get_src(struct vc4_compile *c, nir_src src, int i)
|
|
{
|
|
struct hash_entry *entry;
|
|
|
|
assert(src.is_ssa);
|
|
nir_intrinsic_instr *load = nir_load_reg_for_def(src.ssa);
|
|
if (load == NULL) {
|
|
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
|
|
assert(i < src.ssa->num_components);
|
|
} else {
|
|
nir_ssa_def *reg = load->src[0].ssa;
|
|
ASSERTED nir_intrinsic_instr *decl = nir_reg_get_decl(reg);
|
|
assert(nir_intrinsic_base(load) == 0);
|
|
assert(nir_intrinsic_num_array_elems(decl) == 0);
|
|
entry = _mesa_hash_table_search(c->def_ht, reg);
|
|
assert(i < nir_intrinsic_num_components(decl));
|
|
}
|
|
|
|
struct qreg *qregs = entry->data;
|
|
return qregs[i];
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
|
|
unsigned src)
|
|
{
|
|
struct qreg r = ntq_get_src(c, instr->src[src].src,
|
|
instr->src[src].swizzle[0]);
|
|
|
|
assert(!instr->src[src].abs);
|
|
assert(!instr->src[src].negate);
|
|
|
|
return r;
|
|
};
|
|
|
|
static inline struct qreg
|
|
qir_SAT(struct vc4_compile *c, struct qreg val)
|
|
{
|
|
return qir_FMAX(c,
|
|
qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
|
|
qir_uniform_f(c, 0.0));
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_rcp(struct vc4_compile *c, struct qreg x)
|
|
{
|
|
struct qreg r = qir_RCP(c, x);
|
|
|
|
/* Apply a Newton-Raphson step to improve the accuracy. */
|
|
r = qir_FMUL(c, r, qir_FSUB(c,
|
|
qir_uniform_f(c, 2.0),
|
|
qir_FMUL(c, x, r)));
|
|
|
|
return r;
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_rsq(struct vc4_compile *c, struct qreg x)
|
|
{
|
|
struct qreg r = qir_RSQ(c, x);
|
|
|
|
/* Apply a Newton-Raphson step to improve the accuracy. */
|
|
r = qir_FMUL(c, r, qir_FSUB(c,
|
|
qir_uniform_f(c, 1.5),
|
|
qir_FMUL(c,
|
|
qir_uniform_f(c, 0.5),
|
|
qir_FMUL(c, x,
|
|
qir_FMUL(c, r, r)))));
|
|
|
|
return r;
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
|
|
{
|
|
struct qreg src0_hi = qir_SHR(c, src0,
|
|
qir_uniform_ui(c, 24));
|
|
struct qreg src1_hi = qir_SHR(c, src1,
|
|
qir_uniform_ui(c, 24));
|
|
|
|
struct qreg hilo = qir_MUL24(c, src0_hi, src1);
|
|
struct qreg lohi = qir_MUL24(c, src0, src1_hi);
|
|
struct qreg lolo = qir_MUL24(c, src0, src1);
|
|
|
|
return qir_ADD(c, lolo, qir_SHL(c,
|
|
qir_ADD(c, hilo, lohi),
|
|
qir_uniform_ui(c, 24)));
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
|
|
qir_uniform_ui(c, 8)));
|
|
return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
|
|
}
|
|
|
|
/**
|
|
* Emits a lowered TXF_MS from an MSAA texture.
|
|
*
|
|
* The addressing math has been lowered in NIR, and now we just need to read
|
|
* it like a UBO.
|
|
*/
|
|
static void
|
|
ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
|
|
{
|
|
uint32_t tile_width = 32;
|
|
uint32_t tile_height = 32;
|
|
uint32_t tile_size = (tile_height * tile_width *
|
|
VC4_MAX_SAMPLES * sizeof(uint32_t));
|
|
|
|
unsigned unit = instr->texture_index;
|
|
uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
|
|
uint32_t w_tiles = w / tile_width;
|
|
uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
|
|
uint32_t h_tiles = h / tile_height;
|
|
uint32_t size = w_tiles * h_tiles * tile_size;
|
|
|
|
struct qreg addr;
|
|
assert(instr->num_srcs == 1);
|
|
assert(instr->src[0].src_type == nir_tex_src_coord);
|
|
addr = ntq_get_src(c, instr->src[0].src, 0);
|
|
|
|
/* Perform the clamping required by kernel validation. */
|
|
addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
|
|
addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
|
|
|
|
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
|
|
addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
|
|
|
|
ntq_emit_thrsw(c);
|
|
|
|
struct qreg tex = qir_TEX_RESULT(c);
|
|
c->num_texture_samples++;
|
|
|
|
enum pipe_format format = c->key->tex[unit].format;
|
|
if (util_format_is_depth_or_stencil(format)) {
|
|
struct qreg scaled = ntq_scale_depth_texture(c, tex);
|
|
for (int i = 0; i < 4; i++)
|
|
ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
|
|
} else {
|
|
for (int i = 0; i < 4; i++)
|
|
ntq_store_dest(c, &instr->dest, i,
|
|
qir_UNPACK_8_F(c, tex, i));
|
|
}
|
|
}
|
|
|
|
static void
|
|
ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
|
|
{
|
|
struct qreg s, t, r, lod, compare;
|
|
bool is_txb = false, is_txl = false;
|
|
unsigned unit = instr->texture_index;
|
|
|
|
if (instr->op == nir_texop_txf) {
|
|
ntq_emit_txf(c, instr);
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0; i < instr->num_srcs; i++) {
|
|
switch (instr->src[i].src_type) {
|
|
case nir_tex_src_coord:
|
|
s = ntq_get_src(c, instr->src[i].src, 0);
|
|
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
|
|
t = qir_uniform_f(c, 0.5);
|
|
else
|
|
t = ntq_get_src(c, instr->src[i].src, 1);
|
|
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
|
|
r = ntq_get_src(c, instr->src[i].src, 2);
|
|
break;
|
|
case nir_tex_src_bias:
|
|
lod = ntq_get_src(c, instr->src[i].src, 0);
|
|
is_txb = true;
|
|
break;
|
|
case nir_tex_src_lod:
|
|
lod = ntq_get_src(c, instr->src[i].src, 0);
|
|
is_txl = true;
|
|
break;
|
|
case nir_tex_src_comparator:
|
|
compare = ntq_get_src(c, instr->src[i].src, 0);
|
|
break;
|
|
default:
|
|
unreachable("unknown texture source");
|
|
}
|
|
}
|
|
|
|
if (c->stage != QSTAGE_FRAG && !is_txl) {
|
|
/* From the GLSL 1.20 spec:
|
|
*
|
|
* "If it is mip-mapped and running on the vertex shader,
|
|
* then the base texture is used."
|
|
*/
|
|
is_txl = true;
|
|
lod = qir_uniform_ui(c, 0);
|
|
}
|
|
|
|
if (c->key->tex[unit].force_first_level) {
|
|
lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
|
|
is_txl = true;
|
|
is_txb = false;
|
|
}
|
|
|
|
struct qreg texture_u[] = {
|
|
qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
|
|
qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
|
|
qir_uniform(c, QUNIFORM_CONSTANT, 0),
|
|
qir_uniform(c, QUNIFORM_CONSTANT, 0),
|
|
};
|
|
uint32_t next_texture_u = 0;
|
|
|
|
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
|
|
texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
|
|
unit | (is_txl << 16));
|
|
}
|
|
|
|
struct qinst *tmu;
|
|
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
|
|
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
|
|
tmu->src[qir_get_tex_uniform_src(tmu)] =
|
|
texture_u[next_texture_u++];
|
|
} else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
|
|
c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
|
|
c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
|
|
c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
|
|
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
|
|
qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
|
|
unit));
|
|
tmu->src[qir_get_tex_uniform_src(tmu)] =
|
|
texture_u[next_texture_u++];
|
|
}
|
|
|
|
if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
|
|
s = qir_SAT(c, s);
|
|
}
|
|
|
|
if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
|
|
t = qir_SAT(c, t);
|
|
}
|
|
|
|
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
|
|
tmu->src[qir_get_tex_uniform_src(tmu)] =
|
|
texture_u[next_texture_u++];
|
|
|
|
if (is_txl || is_txb) {
|
|
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
|
|
tmu->src[qir_get_tex_uniform_src(tmu)] =
|
|
texture_u[next_texture_u++];
|
|
}
|
|
|
|
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
|
|
tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
|
|
|
|
c->num_texture_samples++;
|
|
|
|
ntq_emit_thrsw(c);
|
|
|
|
struct qreg tex = qir_TEX_RESULT(c);
|
|
|
|
enum pipe_format format = c->key->tex[unit].format;
|
|
|
|
if (util_format_is_depth_or_stencil(format)) {
|
|
struct qreg normalized = ntq_scale_depth_texture(c, tex);
|
|
struct qreg depth_output;
|
|
|
|
struct qreg u0 = qir_uniform_f(c, 0.0f);
|
|
struct qreg u1 = qir_uniform_f(c, 1.0f);
|
|
if (c->key->tex[unit].compare_mode) {
|
|
/* From the GL_ARB_shadow spec:
|
|
*
|
|
* "Let Dt (D subscript t) be the depth texture
|
|
* value, in the range [0, 1]. Let R be the
|
|
* interpolated texture coordinate clamped to the
|
|
* range [0, 1]."
|
|
*/
|
|
compare = qir_SAT(c, compare);
|
|
|
|
switch (c->key->tex[unit].compare_func) {
|
|
case PIPE_FUNC_NEVER:
|
|
depth_output = qir_uniform_f(c, 0.0f);
|
|
break;
|
|
case PIPE_FUNC_ALWAYS:
|
|
depth_output = u1;
|
|
break;
|
|
case PIPE_FUNC_EQUAL:
|
|
qir_SF(c, qir_FSUB(c, compare, normalized));
|
|
depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
|
|
break;
|
|
case PIPE_FUNC_NOTEQUAL:
|
|
qir_SF(c, qir_FSUB(c, compare, normalized));
|
|
depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
|
|
break;
|
|
case PIPE_FUNC_GREATER:
|
|
qir_SF(c, qir_FSUB(c, compare, normalized));
|
|
depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
|
|
break;
|
|
case PIPE_FUNC_GEQUAL:
|
|
qir_SF(c, qir_FSUB(c, normalized, compare));
|
|
depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
|
|
break;
|
|
case PIPE_FUNC_LESS:
|
|
qir_SF(c, qir_FSUB(c, compare, normalized));
|
|
depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
|
|
break;
|
|
case PIPE_FUNC_LEQUAL:
|
|
qir_SF(c, qir_FSUB(c, normalized, compare));
|
|
depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
|
|
break;
|
|
}
|
|
} else {
|
|
depth_output = normalized;
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
ntq_store_dest(c, &instr->dest, i,
|
|
qir_MOV(c, depth_output));
|
|
} else {
|
|
for (int i = 0; i < 4; i++)
|
|
ntq_store_dest(c, &instr->dest, i,
|
|
qir_UNPACK_8_F(c, tex, i));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Computes x - floor(x), which is tricky because our FTOI truncates (rounds
|
|
* to zero).
|
|
*/
|
|
static struct qreg
|
|
ntq_ffract(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
|
|
struct qreg diff = qir_FSUB(c, src, trunc);
|
|
qir_SF(c, diff);
|
|
|
|
qir_FADD_dest(c, diff,
|
|
diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
|
|
|
|
return qir_MOV(c, diff);
|
|
}
|
|
|
|
/**
|
|
* Computes floor(x), which is tricky because our FTOI truncates (rounds to
|
|
* zero).
|
|
*/
|
|
static struct qreg
|
|
ntq_ffloor(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
|
|
|
|
/* This will be < 0 if we truncated and the truncation was of a value
|
|
* that was < 0 in the first place.
|
|
*/
|
|
qir_SF(c, qir_FSUB(c, src, result));
|
|
|
|
struct qinst *sub = qir_FSUB_dest(c, result,
|
|
result, qir_uniform_f(c, 1.0));
|
|
sub->cond = QPU_COND_NS;
|
|
|
|
return qir_MOV(c, result);
|
|
}
|
|
|
|
/**
|
|
* Computes ceil(x), which is tricky because our FTOI truncates (rounds to
|
|
* zero).
|
|
*/
|
|
static struct qreg
|
|
ntq_fceil(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
|
|
|
|
/* This will be < 0 if we truncated and the truncation was of a value
|
|
* that was > 0 in the first place.
|
|
*/
|
|
qir_SF(c, qir_FSUB(c, result, src));
|
|
|
|
qir_FADD_dest(c, result,
|
|
result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
|
|
|
|
return qir_MOV(c, result);
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x)
|
|
{
|
|
/* Since we're using a Taylor approximation, we want to have a small
|
|
* number of coefficients and take advantage of sin/cos repeating
|
|
* every 2pi. We keep our x as close to 0 as we can, since the series
|
|
* will be less accurate as |x| increases. (Also, be careful of
|
|
* shifting the input x value to be tricky with sin/cos relations,
|
|
* because getting accurate values for x==0 is very important for SDL
|
|
* rendering)
|
|
*/
|
|
struct qreg scaled_x =
|
|
qir_FMUL(c, x,
|
|
qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
|
|
/* Note: FTOI truncates toward 0. */
|
|
struct qreg x_frac = qir_FSUB(c, scaled_x,
|
|
qir_ITOF(c, qir_FTOI(c, scaled_x)));
|
|
/* Map [0.5, 1] to [-0.5, 0] */
|
|
qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5)));
|
|
qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC;
|
|
/* Map [-1, -0.5] to [0, 0.5] */
|
|
qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5)));
|
|
qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
|
|
|
|
return x_frac;
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_fsin(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
float coeff[] = {
|
|
2.0 * M_PI,
|
|
-pow(2.0 * M_PI, 3) / (3 * 2 * 1),
|
|
pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
|
|
-pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
|
|
pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
|
|
};
|
|
|
|
struct qreg x = ntq_shrink_sincos_input_range(c, src);
|
|
struct qreg x2 = qir_FMUL(c, x, x);
|
|
struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
|
|
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
|
|
x = qir_FMUL(c, x, x2);
|
|
sum = qir_FADD(c,
|
|
sum,
|
|
qir_FMUL(c,
|
|
x,
|
|
qir_uniform_f(c, coeff[i])));
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_fcos(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
float coeff[] = {
|
|
1.0f,
|
|
-pow(2.0 * M_PI, 2) / (2 * 1),
|
|
pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
|
|
-pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
|
|
pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
|
|
-pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
|
|
};
|
|
|
|
struct qreg x_frac = ntq_shrink_sincos_input_range(c, src);
|
|
struct qreg sum = qir_uniform_f(c, coeff[0]);
|
|
struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
|
|
struct qreg x = x2; /* Current x^2, x^4, or x^6 */
|
|
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
|
|
if (i != 1)
|
|
x = qir_FMUL(c, x, x2);
|
|
|
|
sum = qir_FADD(c, qir_FMUL(c,
|
|
x,
|
|
qir_uniform_f(c, coeff[i])),
|
|
sum);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_fsign(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
struct qreg t = qir_get_temp(c);
|
|
|
|
qir_SF(c, src);
|
|
qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
|
|
qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
|
|
qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
|
|
return qir_MOV(c, t);
|
|
}
|
|
|
|
static void
|
|
emit_vertex_input(struct vc4_compile *c, int attr)
|
|
{
|
|
enum pipe_format format = c->vs_key->attr_formats[attr];
|
|
uint32_t attr_size = util_format_get_blocksize(format);
|
|
|
|
c->vattr_sizes[attr] = align(attr_size, 4);
|
|
for (int i = 0; i < align(attr_size, 4) / 4; i++) {
|
|
c->inputs[attr * 4 + i] =
|
|
qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
|
|
c->num_inputs++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_fragcoord_input(struct vc4_compile *c, int attr)
|
|
{
|
|
c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
|
|
c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
|
|
c->inputs[attr * 4 + 2] =
|
|
qir_FMUL(c,
|
|
qir_ITOF(c, qir_FRAG_Z(c)),
|
|
qir_uniform_f(c, 1.0 / 0xffffff));
|
|
c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
|
|
}
|
|
|
|
static struct qreg
|
|
emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
|
|
uint8_t swizzle)
|
|
{
|
|
uint32_t i = c->num_input_slots++;
|
|
struct qreg vary = {
|
|
QFILE_VARY,
|
|
i
|
|
};
|
|
|
|
if (c->num_input_slots >= c->input_slots_array_size) {
|
|
c->input_slots_array_size =
|
|
MAX2(4, c->input_slots_array_size * 2);
|
|
|
|
c->input_slots = reralloc(c, c->input_slots,
|
|
struct vc4_varying_slot,
|
|
c->input_slots_array_size);
|
|
}
|
|
|
|
c->input_slots[i].slot = slot;
|
|
c->input_slots[i].swizzle = swizzle;
|
|
|
|
return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
|
|
}
|
|
|
|
static void
|
|
emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
|
|
{
|
|
for (int i = 0; i < 4; i++) {
|
|
c->inputs[attr * 4 + i] =
|
|
emit_fragment_varying(c, slot, i);
|
|
c->num_inputs++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
add_output(struct vc4_compile *c,
|
|
uint32_t decl_offset,
|
|
uint8_t slot,
|
|
uint8_t swizzle)
|
|
{
|
|
uint32_t old_array_size = c->outputs_array_size;
|
|
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
|
|
decl_offset + 1);
|
|
|
|
if (old_array_size != c->outputs_array_size) {
|
|
c->output_slots = reralloc(c,
|
|
c->output_slots,
|
|
struct vc4_varying_slot,
|
|
c->outputs_array_size);
|
|
}
|
|
|
|
c->output_slots[decl_offset].slot = slot;
|
|
c->output_slots[decl_offset].swizzle = swizzle;
|
|
}
|
|
|
|
static bool
|
|
ntq_src_is_only_ssa_def_user(nir_src *src)
|
|
{
|
|
return list_is_singular(&src->ssa->uses) &&
|
|
nir_load_reg_for_def(src->ssa) == NULL;
|
|
}
|
|
|
|
/**
|
|
* In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
|
|
* bit set.
|
|
*
|
|
* However, as an optimization, it tries to find the instructions generating
|
|
* the sources to be packed and just emit the pack flag there, if possible.
|
|
*/
|
|
static void
|
|
ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
|
|
{
|
|
struct qreg result = qir_get_temp(c);
|
|
struct nir_alu_instr *vec4 = NULL;
|
|
|
|
/* If packing from a vec4 op (as expected), identify it so that we can
|
|
* peek back at what generated its sources.
|
|
*/
|
|
assert(instr->src[0].src.is_ssa);
|
|
if (instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
|
|
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
|
|
nir_op_vec4) {
|
|
vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
|
|
}
|
|
|
|
/* If the pack is replicating the same channel 4 times, use the 8888
|
|
* pack flag. This is common for blending using the alpha
|
|
* channel.
|
|
*/
|
|
if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
|
|
instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
|
|
instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
|
|
struct qreg rep = ntq_get_src(c,
|
|
instr->src[0].src,
|
|
instr->src[0].swizzle[0]);
|
|
ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
int swiz = instr->src[0].swizzle[i];
|
|
struct qreg src;
|
|
if (vec4) {
|
|
src = ntq_get_src(c, vec4->src[swiz].src,
|
|
vec4->src[swiz].swizzle[0]);
|
|
} else {
|
|
src = ntq_get_src(c, instr->src[0].src, swiz);
|
|
}
|
|
|
|
if (vec4 &&
|
|
ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
|
|
src.file == QFILE_TEMP &&
|
|
c->defs[src.index] &&
|
|
qir_is_mul(c->defs[src.index]) &&
|
|
!c->defs[src.index]->dst.pack) {
|
|
struct qinst *rewrite = c->defs[src.index];
|
|
c->defs[src.index] = NULL;
|
|
rewrite->dst = result;
|
|
rewrite->dst.pack = QPU_PACK_MUL_8A + i;
|
|
continue;
|
|
}
|
|
|
|
qir_PACK_8_F(c, result, src, i);
|
|
}
|
|
|
|
ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
|
|
}
|
|
|
|
/** Handles sign-extended bitfield extracts for 16 bits. */
|
|
static struct qreg
|
|
ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
|
|
struct qreg bits)
|
|
{
|
|
assert(bits.file == QFILE_UNIF &&
|
|
c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
|
|
c->uniform_data[bits.index] == 16);
|
|
|
|
assert(offset.file == QFILE_UNIF &&
|
|
c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
|
|
int offset_bit = c->uniform_data[offset.index];
|
|
assert(offset_bit % 16 == 0);
|
|
|
|
return qir_UNPACK_16_I(c, base, offset_bit / 16);
|
|
}
|
|
|
|
/** Handles unsigned bitfield extracts for 8 bits. */
|
|
static struct qreg
|
|
ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
|
|
struct qreg bits)
|
|
{
|
|
assert(bits.file == QFILE_UNIF &&
|
|
c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
|
|
c->uniform_data[bits.index] == 8);
|
|
|
|
assert(offset.file == QFILE_UNIF &&
|
|
c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
|
|
int offset_bit = c->uniform_data[offset.index];
|
|
assert(offset_bit % 8 == 0);
|
|
|
|
return qir_UNPACK_8_I(c, base, offset_bit / 8);
|
|
}
|
|
|
|
/**
|
|
* If compare_instr is a valid comparison instruction, emits the
|
|
* compare_instr's comparison and returns the sel_instr's return value based
|
|
* on the compare_instr's result.
|
|
*/
|
|
static bool
|
|
ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
|
|
nir_alu_instr *compare_instr,
|
|
nir_alu_instr *sel_instr)
|
|
{
|
|
enum qpu_cond cond;
|
|
|
|
switch (compare_instr->op) {
|
|
case nir_op_feq32:
|
|
case nir_op_ieq32:
|
|
case nir_op_seq:
|
|
cond = QPU_COND_ZS;
|
|
break;
|
|
case nir_op_fneu32:
|
|
case nir_op_ine32:
|
|
case nir_op_sne:
|
|
cond = QPU_COND_ZC;
|
|
break;
|
|
case nir_op_fge32:
|
|
case nir_op_ige32:
|
|
case nir_op_uge32:
|
|
case nir_op_sge:
|
|
cond = QPU_COND_NC;
|
|
break;
|
|
case nir_op_flt32:
|
|
case nir_op_ilt32:
|
|
case nir_op_slt:
|
|
cond = QPU_COND_NS;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
|
|
struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
|
|
|
|
unsigned unsized_type =
|
|
nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
|
|
if (unsized_type == nir_type_float)
|
|
qir_SF(c, qir_FSUB(c, src0, src1));
|
|
else
|
|
qir_SF(c, qir_SUB(c, src0, src1));
|
|
|
|
switch (sel_instr->op) {
|
|
case nir_op_seq:
|
|
case nir_op_sne:
|
|
case nir_op_sge:
|
|
case nir_op_slt:
|
|
*dest = qir_SEL(c, cond,
|
|
qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
|
|
break;
|
|
|
|
case nir_op_b32csel:
|
|
*dest = qir_SEL(c, cond,
|
|
ntq_get_alu_src(c, sel_instr, 1),
|
|
ntq_get_alu_src(c, sel_instr, 2));
|
|
break;
|
|
|
|
default:
|
|
*dest = qir_SEL(c, cond,
|
|
qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
|
|
break;
|
|
}
|
|
|
|
/* Make the temporary for nir_store_dest(). */
|
|
*dest = qir_MOV(c, *dest);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Attempts to fold a comparison generating a boolean result into the
|
|
* condition code for selecting between two values, instead of comparing the
|
|
* boolean result against 0 to generate the condition code.
|
|
*/
|
|
static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
|
|
struct qreg *src)
|
|
{
|
|
assert(instr->src[0].src.is_ssa);
|
|
if (nir_load_reg_for_def(instr->src[0].src.ssa))
|
|
goto out;
|
|
if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
|
|
goto out;
|
|
nir_alu_instr *compare =
|
|
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
|
|
if (!compare)
|
|
goto out;
|
|
|
|
struct qreg dest;
|
|
if (ntq_emit_comparison(c, &dest, compare, instr))
|
|
return dest;
|
|
|
|
out:
|
|
qir_SF(c, src[0]);
|
|
return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_fddx(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
/* Make sure that we have a bare temp to use for MUL rotation, so it
|
|
* can be allocated to an accumulator.
|
|
*/
|
|
if (src.pack || src.file != QFILE_TEMP)
|
|
src = qir_MOV(c, src);
|
|
|
|
struct qreg from_left = qir_ROT_MUL(c, src, 1);
|
|
struct qreg from_right = qir_ROT_MUL(c, src, 15);
|
|
|
|
/* Distinguish left/right pixels of the quad. */
|
|
qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
|
|
qir_uniform_ui(c, 1)));
|
|
|
|
return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
|
|
qir_FSUB(c, from_right, src),
|
|
qir_FSUB(c, src, from_left)));
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_fddy(struct vc4_compile *c, struct qreg src)
|
|
{
|
|
if (src.pack || src.file != QFILE_TEMP)
|
|
src = qir_MOV(c, src);
|
|
|
|
struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
|
|
struct qreg from_top = qir_ROT_MUL(c, src, 14);
|
|
|
|
/* Distinguish top/bottom pixels of the quad. */
|
|
qir_SF(c, qir_AND(c,
|
|
qir_reg(QFILE_QPU_ELEMENT, 0),
|
|
qir_uniform_ui(c, 2)));
|
|
|
|
return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
|
|
qir_FSUB(c, from_top, src),
|
|
qir_FSUB(c, src, from_bottom)));
|
|
}
|
|
|
|
static struct qreg
|
|
ntq_emit_cond_to_int(struct vc4_compile *c, enum qpu_cond cond)
|
|
{
|
|
return qir_MOV(c, qir_SEL(c, cond,
|
|
qir_uniform_ui(c, 1),
|
|
qir_uniform_ui(c, 0)));
|
|
}
|
|
|
|
static void
|
|
ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
|
|
{
|
|
/* Vectors are special in that they have non-scalarized writemasks,
|
|
* and just take the first swizzle channel for each argument in order
|
|
* into each writemask channel.
|
|
*/
|
|
if (instr->op == nir_op_vec2 ||
|
|
instr->op == nir_op_vec3 ||
|
|
instr->op == nir_op_vec4) {
|
|
struct qreg srcs[4];
|
|
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
|
|
srcs[i] = ntq_get_src(c, instr->src[i].src,
|
|
instr->src[i].swizzle[0]);
|
|
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
|
|
ntq_store_dest(c, &instr->dest.dest, i,
|
|
qir_MOV(c, srcs[i]));
|
|
return;
|
|
}
|
|
|
|
if (instr->op == nir_op_pack_unorm_4x8) {
|
|
ntq_emit_pack_unorm_4x8(c, instr);
|
|
return;
|
|
}
|
|
|
|
if (instr->op == nir_op_unpack_unorm_4x8) {
|
|
struct qreg src = ntq_get_src(c, instr->src[0].src,
|
|
instr->src[0].swizzle[0]);
|
|
unsigned count = nir_dest_num_components(instr->dest.dest);
|
|
for (int i = 0; i < count; i++) {
|
|
ntq_store_dest(c, &instr->dest.dest, i,
|
|
qir_UNPACK_8_F(c, src, i));
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* General case: We can just grab the one used channel per src. */
|
|
struct qreg src[nir_op_infos[instr->op].num_inputs];
|
|
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
|
|
src[i] = ntq_get_alu_src(c, instr, i);
|
|
}
|
|
|
|
struct qreg result;
|
|
|
|
switch (instr->op) {
|
|
case nir_op_mov:
|
|
result = qir_MOV(c, src[0]);
|
|
break;
|
|
case nir_op_fmul:
|
|
result = qir_FMUL(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_fadd:
|
|
result = qir_FADD(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_fsub:
|
|
result = qir_FSUB(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_fmin:
|
|
result = qir_FMIN(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_fmax:
|
|
result = qir_FMAX(c, src[0], src[1]);
|
|
break;
|
|
|
|
case nir_op_f2i32:
|
|
case nir_op_f2u32:
|
|
result = qir_FTOI(c, src[0]);
|
|
break;
|
|
case nir_op_i2f32:
|
|
case nir_op_u2f32:
|
|
result = qir_ITOF(c, src[0]);
|
|
break;
|
|
case nir_op_b2f32:
|
|
result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
|
|
break;
|
|
case nir_op_b2i32:
|
|
result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
|
|
break;
|
|
|
|
case nir_op_iadd:
|
|
result = qir_ADD(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_ushr:
|
|
result = qir_SHR(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_isub:
|
|
result = qir_SUB(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_ishr:
|
|
result = qir_ASR(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_ishl:
|
|
result = qir_SHL(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_imin:
|
|
result = qir_MIN(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_imax:
|
|
result = qir_MAX(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_iand:
|
|
result = qir_AND(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_ior:
|
|
result = qir_OR(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_ixor:
|
|
result = qir_XOR(c, src[0], src[1]);
|
|
break;
|
|
case nir_op_inot:
|
|
result = qir_NOT(c, src[0]);
|
|
break;
|
|
|
|
case nir_op_imul:
|
|
result = ntq_umul(c, src[0], src[1]);
|
|
break;
|
|
|
|
case nir_op_seq:
|
|
case nir_op_sne:
|
|
case nir_op_sge:
|
|
case nir_op_slt:
|
|
case nir_op_feq32:
|
|
case nir_op_fneu32:
|
|
case nir_op_fge32:
|
|
case nir_op_flt32:
|
|
case nir_op_ieq32:
|
|
case nir_op_ine32:
|
|
case nir_op_ige32:
|
|
case nir_op_uge32:
|
|
case nir_op_ilt32:
|
|
if (!ntq_emit_comparison(c, &result, instr, instr)) {
|
|
fprintf(stderr, "Bad comparison instruction\n");
|
|
}
|
|
break;
|
|
|
|
case nir_op_b32csel:
|
|
result = ntq_emit_bcsel(c, instr, src);
|
|
break;
|
|
case nir_op_fcsel:
|
|
qir_SF(c, src[0]);
|
|
result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
|
|
break;
|
|
|
|
case nir_op_frcp:
|
|
result = ntq_rcp(c, src[0]);
|
|
break;
|
|
case nir_op_frsq:
|
|
result = ntq_rsq(c, src[0]);
|
|
break;
|
|
case nir_op_fexp2:
|
|
result = qir_EXP2(c, src[0]);
|
|
break;
|
|
case nir_op_flog2:
|
|
result = qir_LOG2(c, src[0]);
|
|
break;
|
|
|
|
case nir_op_ftrunc:
|
|
result = qir_ITOF(c, qir_FTOI(c, src[0]));
|
|
break;
|
|
case nir_op_fceil:
|
|
result = ntq_fceil(c, src[0]);
|
|
break;
|
|
case nir_op_ffract:
|
|
result = ntq_ffract(c, src[0]);
|
|
break;
|
|
case nir_op_ffloor:
|
|
result = ntq_ffloor(c, src[0]);
|
|
break;
|
|
|
|
case nir_op_fsin:
|
|
result = ntq_fsin(c, src[0]);
|
|
break;
|
|
case nir_op_fcos:
|
|
result = ntq_fcos(c, src[0]);
|
|
break;
|
|
|
|
case nir_op_fsign:
|
|
result = ntq_fsign(c, src[0]);
|
|
break;
|
|
|
|
case nir_op_fabs:
|
|
result = qir_FMAXABS(c, src[0], src[0]);
|
|
break;
|
|
case nir_op_iabs:
|
|
result = qir_MAX(c, src[0],
|
|
qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
|
|
break;
|
|
|
|
case nir_op_ibitfield_extract:
|
|
result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
|
|
break;
|
|
|
|
case nir_op_ubitfield_extract:
|
|
result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
|
|
break;
|
|
|
|
case nir_op_usadd_4x8_vc4:
|
|
result = qir_V8ADDS(c, src[0], src[1]);
|
|
break;
|
|
|
|
case nir_op_ussub_4x8_vc4:
|
|
result = qir_V8SUBS(c, src[0], src[1]);
|
|
break;
|
|
|
|
case nir_op_umin_4x8_vc4:
|
|
result = qir_V8MIN(c, src[0], src[1]);
|
|
break;
|
|
|
|
case nir_op_umax_4x8_vc4:
|
|
result = qir_V8MAX(c, src[0], src[1]);
|
|
break;
|
|
|
|
case nir_op_umul_unorm_4x8_vc4:
|
|
result = qir_V8MULD(c, src[0], src[1]);
|
|
break;
|
|
|
|
case nir_op_fddx:
|
|
case nir_op_fddx_coarse:
|
|
case nir_op_fddx_fine:
|
|
result = ntq_fddx(c, src[0]);
|
|
break;
|
|
|
|
case nir_op_fddy:
|
|
case nir_op_fddy_coarse:
|
|
case nir_op_fddy_fine:
|
|
result = ntq_fddy(c, src[0]);
|
|
break;
|
|
|
|
case nir_op_uadd_carry:
|
|
qir_SF(c, qir_ADD(c, src[0], src[1]));
|
|
result = ntq_emit_cond_to_int(c, QPU_COND_CS);
|
|
break;
|
|
|
|
case nir_op_usub_borrow:
|
|
qir_SF(c, qir_SUB(c, src[0], src[1]));
|
|
result = ntq_emit_cond_to_int(c, QPU_COND_CS);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "unknown NIR ALU inst: ");
|
|
nir_print_instr(&instr->instr, stderr);
|
|
fprintf(stderr, "\n");
|
|
abort();
|
|
}
|
|
|
|
ntq_store_dest(c, &instr->dest.dest, 0, result);
|
|
}
|
|
|
|
static void
|
|
emit_frag_end(struct vc4_compile *c)
|
|
{
|
|
struct qreg color;
|
|
if (c->output_color_index != -1) {
|
|
color = c->outputs[c->output_color_index];
|
|
} else {
|
|
color = qir_uniform_ui(c, 0);
|
|
}
|
|
|
|
uint32_t discard_cond = QPU_COND_ALWAYS;
|
|
if (c->s->info.fs.uses_discard) {
|
|
qir_SF(c, c->discard);
|
|
discard_cond = QPU_COND_ZS;
|
|
}
|
|
|
|
if (c->fs_key->stencil_enabled) {
|
|
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
|
|
qir_uniform(c, QUNIFORM_STENCIL, 0));
|
|
if (c->fs_key->stencil_twoside) {
|
|
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
|
|
qir_uniform(c, QUNIFORM_STENCIL, 1));
|
|
}
|
|
if (c->fs_key->stencil_full_writemasks) {
|
|
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
|
|
qir_uniform(c, QUNIFORM_STENCIL, 2));
|
|
}
|
|
}
|
|
|
|
if (c->output_sample_mask_index != -1) {
|
|
qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
|
|
}
|
|
|
|
if (c->fs_key->depth_enabled) {
|
|
if (c->output_position_index != -1) {
|
|
qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
|
|
qir_FMUL(c,
|
|
c->outputs[c->output_position_index],
|
|
qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
|
|
} else {
|
|
qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
|
|
qir_FRAG_Z(c))->cond = discard_cond;
|
|
}
|
|
}
|
|
|
|
if (!c->msaa_per_sample_output) {
|
|
qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
|
|
color)->cond = discard_cond;
|
|
} else {
|
|
for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
|
|
qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
|
|
c->sample_colors[i])->cond = discard_cond;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
|
|
{
|
|
struct qreg packed = qir_get_temp(c);
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
struct qreg scale =
|
|
qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
|
|
|
|
struct qreg packed_chan = packed;
|
|
packed_chan.pack = QPU_PACK_A_16A + i;
|
|
|
|
qir_FTOI_dest(c, packed_chan,
|
|
qir_FMUL(c,
|
|
qir_FMUL(c,
|
|
c->outputs[c->output_position_index + i],
|
|
scale),
|
|
rcp_w));
|
|
}
|
|
|
|
qir_VPM_WRITE(c, packed);
|
|
}
|
|
|
|
static void
|
|
emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
|
|
{
|
|
struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
|
|
struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
|
|
|
|
qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
|
|
c->outputs[c->output_position_index + 2],
|
|
zscale),
|
|
rcp_w),
|
|
zoffset));
|
|
}
|
|
|
|
static void
|
|
emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
|
|
{
|
|
qir_VPM_WRITE(c, rcp_w);
|
|
}
|
|
|
|
static void
|
|
emit_point_size_write(struct vc4_compile *c)
|
|
{
|
|
struct qreg point_size;
|
|
|
|
if (c->output_point_size_index != -1)
|
|
point_size = c->outputs[c->output_point_size_index];
|
|
else
|
|
point_size = qir_uniform_f(c, 1.0);
|
|
|
|
qir_VPM_WRITE(c, point_size);
|
|
}
|
|
|
|
/**
|
|
* Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
|
|
*
|
|
* The simulator insists that there be at least one vertex attribute, so
|
|
* vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
|
|
* insists that all vertex attributes loaded get read by the VS/CS, so we have
|
|
* to consume it here.
|
|
*/
|
|
static void
|
|
emit_stub_vpm_read(struct vc4_compile *c)
|
|
{
|
|
if (c->num_inputs)
|
|
return;
|
|
|
|
c->vattr_sizes[0] = 4;
|
|
(void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
|
|
c->num_inputs++;
|
|
}
|
|
|
|
static void
|
|
emit_vert_end(struct vc4_compile *c,
|
|
struct vc4_varying_slot *fs_inputs,
|
|
uint32_t num_fs_inputs)
|
|
{
|
|
struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
|
|
|
|
emit_stub_vpm_read(c);
|
|
|
|
emit_scaled_viewport_write(c, rcp_w);
|
|
emit_zs_write(c, rcp_w);
|
|
emit_rcp_wc_write(c, rcp_w);
|
|
if (c->vs_key->per_vertex_point_size)
|
|
emit_point_size_write(c);
|
|
|
|
for (int i = 0; i < num_fs_inputs; i++) {
|
|
struct vc4_varying_slot *input = &fs_inputs[i];
|
|
int j;
|
|
|
|
for (j = 0; j < c->num_outputs; j++) {
|
|
struct vc4_varying_slot *output =
|
|
&c->output_slots[j];
|
|
|
|
if (input->slot == output->slot &&
|
|
input->swizzle == output->swizzle) {
|
|
qir_VPM_WRITE(c, c->outputs[j]);
|
|
break;
|
|
}
|
|
}
|
|
/* Emit padding if we didn't find a declared VS output for
|
|
* this FS input.
|
|
*/
|
|
if (j == c->num_outputs)
|
|
qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_coord_end(struct vc4_compile *c)
|
|
{
|
|
struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
|
|
|
|
emit_stub_vpm_read(c);
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
|
|
|
|
emit_scaled_viewport_write(c, rcp_w);
|
|
emit_zs_write(c, rcp_w);
|
|
emit_rcp_wc_write(c, rcp_w);
|
|
if (c->vs_key->per_vertex_point_size)
|
|
emit_point_size_write(c);
|
|
}
|
|
|
|
static void
|
|
vc4_optimize_nir(struct nir_shader *s)
|
|
{
|
|
bool progress;
|
|
unsigned lower_flrp =
|
|
(s->options->lower_flrp16 ? 16 : 0) |
|
|
(s->options->lower_flrp32 ? 32 : 0) |
|
|
(s->options->lower_flrp64 ? 64 : 0);
|
|
|
|
do {
|
|
progress = false;
|
|
|
|
NIR_PASS_V(s, nir_lower_vars_to_ssa);
|
|
NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
|
|
NIR_PASS(progress, s, nir_lower_phis_to_scalar, false);
|
|
NIR_PASS(progress, s, nir_copy_prop);
|
|
NIR_PASS(progress, s, nir_opt_remove_phis);
|
|
NIR_PASS(progress, s, nir_opt_dce);
|
|
NIR_PASS(progress, s, nir_opt_dead_cf);
|
|
NIR_PASS(progress, s, nir_opt_cse);
|
|
NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
|
|
NIR_PASS(progress, s, nir_opt_algebraic);
|
|
NIR_PASS(progress, s, nir_opt_constant_folding);
|
|
if (lower_flrp != 0) {
|
|
bool lower_flrp_progress = false;
|
|
|
|
NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
|
|
lower_flrp,
|
|
false /* always_precise */);
|
|
if (lower_flrp_progress) {
|
|
NIR_PASS(progress, s, nir_opt_constant_folding);
|
|
progress = true;
|
|
}
|
|
|
|
/* Nothing should rematerialize any flrps, so we only
|
|
* need to do this lowering once.
|
|
*/
|
|
lower_flrp = 0;
|
|
}
|
|
|
|
NIR_PASS(progress, s, nir_opt_undef);
|
|
NIR_PASS(progress, s, nir_opt_loop_unroll);
|
|
} while (progress);
|
|
}
|
|
|
|
static int
|
|
driver_location_compare(const void *in_a, const void *in_b)
|
|
{
|
|
const nir_variable *const *a = in_a;
|
|
const nir_variable *const *b = in_b;
|
|
|
|
return (*a)->data.driver_location - (*b)->data.driver_location;
|
|
}
|
|
|
|
static void
|
|
ntq_setup_inputs(struct vc4_compile *c)
|
|
{
|
|
unsigned num_entries = 0;
|
|
nir_foreach_shader_in_variable(var, c->s)
|
|
num_entries++;
|
|
|
|
nir_variable *vars[num_entries];
|
|
|
|
unsigned i = 0;
|
|
nir_foreach_shader_in_variable(var, c->s)
|
|
vars[i++] = var;
|
|
|
|
/* Sort the variables so that we emit the input setup in
|
|
* driver_location order. This is required for VPM reads, whose data
|
|
* is fetched into the VPM in driver_location (TGSI register index)
|
|
* order.
|
|
*/
|
|
qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
|
|
|
|
for (unsigned i = 0; i < num_entries; i++) {
|
|
nir_variable *var = vars[i];
|
|
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
|
|
unsigned loc = var->data.driver_location;
|
|
|
|
assert(array_len == 1);
|
|
(void)array_len;
|
|
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
|
|
(loc + 1) * 4);
|
|
|
|
if (c->stage == QSTAGE_FRAG) {
|
|
if (var->data.location == VARYING_SLOT_POS) {
|
|
emit_fragcoord_input(c, loc);
|
|
} else if (util_varying_is_point_coord(var->data.location,
|
|
c->fs_key->point_sprite_mask)) {
|
|
c->inputs[loc * 4 + 0] = c->point_x;
|
|
c->inputs[loc * 4 + 1] = c->point_y;
|
|
} else {
|
|
emit_fragment_input(c, loc, var->data.location);
|
|
}
|
|
} else {
|
|
emit_vertex_input(c, loc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ntq_setup_outputs(struct vc4_compile *c)
|
|
{
|
|
nir_foreach_shader_out_variable(var, c->s) {
|
|
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
|
|
unsigned loc = var->data.driver_location * 4;
|
|
|
|
assert(array_len == 1);
|
|
(void)array_len;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
add_output(c, loc + i, var->data.location, i);
|
|
|
|
if (c->stage == QSTAGE_FRAG) {
|
|
switch (var->data.location) {
|
|
case FRAG_RESULT_COLOR:
|
|
case FRAG_RESULT_DATA0:
|
|
c->output_color_index = loc;
|
|
break;
|
|
case FRAG_RESULT_DEPTH:
|
|
c->output_position_index = loc;
|
|
break;
|
|
case FRAG_RESULT_SAMPLE_MASK:
|
|
c->output_sample_mask_index = loc;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (var->data.location) {
|
|
case VARYING_SLOT_POS:
|
|
c->output_position_index = loc;
|
|
break;
|
|
case VARYING_SLOT_PSIZ:
|
|
c->output_point_size_index = loc;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets up the mapping from nir_register to struct qreg *.
|
|
*
|
|
* Each nir_register gets a struct qreg per 32-bit component being stored.
|
|
*/
|
|
static void
|
|
ntq_setup_registers(struct vc4_compile *c, nir_function_impl *impl)
|
|
{
|
|
nir_foreach_reg_decl(decl, impl) {
|
|
unsigned num_components = nir_intrinsic_num_components(decl);
|
|
unsigned array_len = nir_intrinsic_num_array_elems(decl);
|
|
array_len = MAX2(array_len, 1);
|
|
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
|
|
array_len * num_components);
|
|
|
|
nir_ssa_def *nir_reg = &decl->dest.ssa;
|
|
_mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
|
|
|
|
for (int i = 0; i < array_len * num_components; i++)
|
|
qregs[i] = qir_get_temp(c);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
|
|
{
|
|
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
|
|
for (int i = 0; i < instr->def.num_components; i++)
|
|
qregs[i] = qir_uniform_ui(c, instr->value[i].u32);
|
|
|
|
_mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
|
|
}
|
|
|
|
static void
|
|
ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
|
|
{
|
|
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
|
|
|
|
/* QIR needs there to be *some* value, so pick 0 (same as for
|
|
* ntq_setup_registers().
|
|
*/
|
|
for (int i = 0; i < instr->def.num_components; i++)
|
|
qregs[i] = qir_uniform_ui(c, 0);
|
|
}
|
|
|
|
static void
|
|
ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
|
|
{
|
|
assert(nir_src_as_uint(instr->src[0]) == 0);
|
|
|
|
/* Reads of the per-sample color need to be done in
|
|
* order.
|
|
*/
|
|
int sample_index = (nir_intrinsic_base(instr) -
|
|
VC4_NIR_TLB_COLOR_READ_INPUT);
|
|
for (int i = 0; i <= sample_index; i++) {
|
|
if (c->color_reads[i].file == QFILE_NULL) {
|
|
c->color_reads[i] =
|
|
qir_TLB_COLOR_READ(c);
|
|
}
|
|
}
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_MOV(c, c->color_reads[sample_index]));
|
|
}
|
|
|
|
static void
|
|
ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
|
|
{
|
|
assert(instr->num_components == 1);
|
|
assert(nir_src_is_const(instr->src[0]) &&
|
|
"vc4 doesn't support indirect inputs");
|
|
|
|
if (c->stage == QSTAGE_FRAG &&
|
|
nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
|
|
ntq_emit_color_read(c, instr);
|
|
return;
|
|
}
|
|
|
|
uint32_t offset = nir_intrinsic_base(instr) +
|
|
nir_src_as_uint(instr->src[0]);
|
|
int comp = nir_intrinsic_component(instr);
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_MOV(c, c->inputs[offset * 4 + comp]));
|
|
}
|
|
|
|
static void
|
|
ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
|
|
{
|
|
unsigned offset;
|
|
|
|
switch (instr->intrinsic) {
|
|
case nir_intrinsic_decl_reg:
|
|
case nir_intrinsic_load_reg:
|
|
case nir_intrinsic_store_reg:
|
|
break; /* Ignore these */
|
|
|
|
case nir_intrinsic_load_uniform:
|
|
assert(instr->num_components == 1);
|
|
if (nir_src_is_const(instr->src[0])) {
|
|
offset = nir_intrinsic_base(instr) +
|
|
nir_src_as_uint(instr->src[0]);
|
|
assert(offset % 4 == 0);
|
|
/* We need dwords */
|
|
offset = offset / 4;
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_uniform(c, QUNIFORM_UNIFORM,
|
|
offset));
|
|
} else {
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
indirect_uniform_load(c, instr));
|
|
}
|
|
break;
|
|
|
|
case nir_intrinsic_load_ubo:
|
|
assert(instr->num_components == 1);
|
|
ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
|
|
break;
|
|
|
|
case nir_intrinsic_load_user_clip_plane:
|
|
for (int i = 0; i < nir_intrinsic_dest_components(instr); i++) {
|
|
ntq_store_dest(c, &instr->dest, i,
|
|
qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
|
|
nir_intrinsic_ucp_id(instr) *
|
|
4 + i));
|
|
}
|
|
break;
|
|
|
|
case nir_intrinsic_load_blend_const_color_r_float:
|
|
case nir_intrinsic_load_blend_const_color_g_float:
|
|
case nir_intrinsic_load_blend_const_color_b_float:
|
|
case nir_intrinsic_load_blend_const_color_a_float:
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
|
|
(instr->intrinsic -
|
|
nir_intrinsic_load_blend_const_color_r_float),
|
|
0));
|
|
break;
|
|
|
|
case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
|
|
0));
|
|
break;
|
|
|
|
case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
|
|
0));
|
|
break;
|
|
|
|
case nir_intrinsic_load_sample_mask_in:
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
|
|
break;
|
|
|
|
case nir_intrinsic_load_front_face:
|
|
/* The register contains 0 (front) or 1 (back), and we need to
|
|
* turn it into a NIR bool where true means front.
|
|
*/
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_ADD(c,
|
|
qir_uniform_ui(c, -1),
|
|
qir_reg(QFILE_FRAG_REV_FLAG, 0)));
|
|
break;
|
|
|
|
case nir_intrinsic_load_input:
|
|
ntq_emit_load_input(c, instr);
|
|
break;
|
|
|
|
case nir_intrinsic_store_output:
|
|
assert(nir_src_is_const(instr->src[1]) &&
|
|
"vc4 doesn't support indirect outputs");
|
|
offset = nir_intrinsic_base(instr) +
|
|
nir_src_as_uint(instr->src[1]);
|
|
|
|
/* MSAA color outputs are the only case where we have an
|
|
* output that's not lowered to being a store of a single 32
|
|
* bit value.
|
|
*/
|
|
if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
|
|
assert(offset == c->output_color_index);
|
|
for (int i = 0; i < 4; i++) {
|
|
c->sample_colors[i] =
|
|
qir_MOV(c, ntq_get_src(c, instr->src[0],
|
|
i));
|
|
}
|
|
} else {
|
|
offset = offset * 4 + nir_intrinsic_component(instr);
|
|
assert(instr->num_components == 1);
|
|
c->outputs[offset] =
|
|
qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
|
|
c->num_outputs = MAX2(c->num_outputs, offset + 1);
|
|
}
|
|
break;
|
|
|
|
case nir_intrinsic_discard:
|
|
if (c->execute.file != QFILE_NULL) {
|
|
qir_SF(c, c->execute);
|
|
qir_MOV_cond(c, QPU_COND_ZS, c->discard,
|
|
qir_uniform_ui(c, ~0));
|
|
} else {
|
|
qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
|
|
}
|
|
break;
|
|
|
|
case nir_intrinsic_discard_if: {
|
|
/* true (~0) if we're discarding */
|
|
struct qreg cond = ntq_get_src(c, instr->src[0], 0);
|
|
|
|
if (c->execute.file != QFILE_NULL) {
|
|
/* execute == 0 means the channel is active. Invert
|
|
* the condition so that we can use zero as "executing
|
|
* and discarding."
|
|
*/
|
|
qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
|
|
qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
|
|
} else {
|
|
qir_OR_dest(c, c->discard, c->discard,
|
|
ntq_get_src(c, instr->src[0], 0));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case nir_intrinsic_load_texture_scale: {
|
|
assert(nir_src_is_const(instr->src[0]));
|
|
int sampler = nir_src_as_int(instr->src[0]);
|
|
|
|
ntq_store_dest(c, &instr->dest, 0,
|
|
qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, sampler));
|
|
ntq_store_dest(c, &instr->dest, 1,
|
|
qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, sampler));
|
|
break;
|
|
}
|
|
|
|
default:
|
|
fprintf(stderr, "Unknown intrinsic: ");
|
|
nir_print_instr(&instr->instr, stderr);
|
|
fprintf(stderr, "\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Clears (activates) the execute flags for any channels whose jump target
|
|
* matches this block.
|
|
*/
|
|
static void
|
|
ntq_activate_execute_for_block(struct vc4_compile *c)
|
|
{
|
|
qir_SF(c, qir_SUB(c,
|
|
c->execute,
|
|
qir_uniform_ui(c, c->cur_block->index)));
|
|
qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
|
|
}
|
|
|
|
static void
|
|
ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
|
|
{
|
|
if (!c->vc4->screen->has_control_flow) {
|
|
fprintf(stderr,
|
|
"IF statement support requires updated kernel.\n");
|
|
return;
|
|
}
|
|
|
|
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
|
|
bool empty_else_block =
|
|
(nir_else_block == nir_if_last_else_block(if_stmt) &&
|
|
exec_list_is_empty(&nir_else_block->instr_list));
|
|
|
|
struct qblock *then_block = qir_new_block(c);
|
|
struct qblock *after_block = qir_new_block(c);
|
|
struct qblock *else_block;
|
|
if (empty_else_block)
|
|
else_block = after_block;
|
|
else
|
|
else_block = qir_new_block(c);
|
|
|
|
bool was_top_level = false;
|
|
if (c->execute.file == QFILE_NULL) {
|
|
c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
|
|
was_top_level = true;
|
|
}
|
|
|
|
/* Set ZS for executing (execute == 0) and jumping (if->condition ==
|
|
* 0) channels, and then update execute flags for those to point to
|
|
* the ELSE block.
|
|
*/
|
|
qir_SF(c, qir_OR(c,
|
|
c->execute,
|
|
ntq_get_src(c, if_stmt->condition, 0)));
|
|
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
|
|
qir_uniform_ui(c, else_block->index));
|
|
|
|
/* Jump to ELSE if nothing is active for THEN, otherwise fall
|
|
* through.
|
|
*/
|
|
qir_SF(c, c->execute);
|
|
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
|
|
qir_link_blocks(c->cur_block, else_block);
|
|
qir_link_blocks(c->cur_block, then_block);
|
|
|
|
/* Process the THEN block. */
|
|
qir_set_emit_block(c, then_block);
|
|
ntq_emit_cf_list(c, &if_stmt->then_list);
|
|
|
|
if (!empty_else_block) {
|
|
/* Handle the end of the THEN block. First, all currently
|
|
* active channels update their execute flags to point to
|
|
* ENDIF
|
|
*/
|
|
qir_SF(c, c->execute);
|
|
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
|
|
qir_uniform_ui(c, after_block->index));
|
|
|
|
/* If everything points at ENDIF, then jump there immediately. */
|
|
qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
|
|
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
|
|
qir_link_blocks(c->cur_block, after_block);
|
|
qir_link_blocks(c->cur_block, else_block);
|
|
|
|
qir_set_emit_block(c, else_block);
|
|
ntq_activate_execute_for_block(c);
|
|
ntq_emit_cf_list(c, &if_stmt->else_list);
|
|
}
|
|
|
|
qir_link_blocks(c->cur_block, after_block);
|
|
|
|
qir_set_emit_block(c, after_block);
|
|
if (was_top_level) {
|
|
c->execute = c->undef;
|
|
c->last_top_block = c->cur_block;
|
|
} else {
|
|
ntq_activate_execute_for_block(c);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
|
|
{
|
|
struct qblock *jump_block;
|
|
switch (jump->type) {
|
|
case nir_jump_break:
|
|
jump_block = c->loop_break_block;
|
|
break;
|
|
case nir_jump_continue:
|
|
jump_block = c->loop_cont_block;
|
|
break;
|
|
default:
|
|
unreachable("Unsupported jump type\n");
|
|
}
|
|
|
|
qir_SF(c, c->execute);
|
|
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
|
|
qir_uniform_ui(c, jump_block->index));
|
|
|
|
/* Jump to the destination block if everyone has taken the jump. */
|
|
qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
|
|
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
|
|
struct qblock *new_block = qir_new_block(c);
|
|
qir_link_blocks(c->cur_block, jump_block);
|
|
qir_link_blocks(c->cur_block, new_block);
|
|
qir_set_emit_block(c, new_block);
|
|
}
|
|
|
|
static void
|
|
ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
|
|
{
|
|
switch (instr->type) {
|
|
case nir_instr_type_alu:
|
|
ntq_emit_alu(c, nir_instr_as_alu(instr));
|
|
break;
|
|
|
|
case nir_instr_type_intrinsic:
|
|
ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
|
|
break;
|
|
|
|
case nir_instr_type_load_const:
|
|
ntq_emit_load_const(c, nir_instr_as_load_const(instr));
|
|
break;
|
|
|
|
case nir_instr_type_ssa_undef:
|
|
ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
|
|
break;
|
|
|
|
case nir_instr_type_tex:
|
|
ntq_emit_tex(c, nir_instr_as_tex(instr));
|
|
break;
|
|
|
|
case nir_instr_type_jump:
|
|
ntq_emit_jump(c, nir_instr_as_jump(instr));
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "Unknown NIR instr type: ");
|
|
nir_print_instr(instr, stderr);
|
|
fprintf(stderr, "\n");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void
|
|
ntq_emit_block(struct vc4_compile *c, nir_block *block)
|
|
{
|
|
nir_foreach_instr(instr, block) {
|
|
ntq_emit_instr(c, instr);
|
|
}
|
|
}
|
|
|
|
static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
|
|
|
|
static void
|
|
ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
|
|
{
|
|
assert(!nir_loop_has_continue_construct(loop));
|
|
if (!c->vc4->screen->has_control_flow) {
|
|
fprintf(stderr,
|
|
"loop support requires updated kernel.\n");
|
|
ntq_emit_cf_list(c, &loop->body);
|
|
return;
|
|
}
|
|
|
|
bool was_top_level = false;
|
|
if (c->execute.file == QFILE_NULL) {
|
|
c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
|
|
was_top_level = true;
|
|
}
|
|
|
|
struct qblock *save_loop_cont_block = c->loop_cont_block;
|
|
struct qblock *save_loop_break_block = c->loop_break_block;
|
|
|
|
c->loop_cont_block = qir_new_block(c);
|
|
c->loop_break_block = qir_new_block(c);
|
|
|
|
qir_link_blocks(c->cur_block, c->loop_cont_block);
|
|
qir_set_emit_block(c, c->loop_cont_block);
|
|
ntq_activate_execute_for_block(c);
|
|
|
|
ntq_emit_cf_list(c, &loop->body);
|
|
|
|
/* If anything had explicitly continued, or is here at the end of the
|
|
* loop, then we need to loop again. SF updates are masked by the
|
|
* instruction's condition, so we can do the OR of the two conditions
|
|
* within SF.
|
|
*/
|
|
qir_SF(c, c->execute);
|
|
struct qinst *cont_check =
|
|
qir_SUB_dest(c,
|
|
c->undef,
|
|
c->execute,
|
|
qir_uniform_ui(c, c->loop_cont_block->index));
|
|
cont_check->cond = QPU_COND_ZC;
|
|
cont_check->sf = true;
|
|
|
|
qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
|
|
qir_link_blocks(c->cur_block, c->loop_cont_block);
|
|
qir_link_blocks(c->cur_block, c->loop_break_block);
|
|
|
|
qir_set_emit_block(c, c->loop_break_block);
|
|
if (was_top_level) {
|
|
c->execute = c->undef;
|
|
c->last_top_block = c->cur_block;
|
|
} else {
|
|
ntq_activate_execute_for_block(c);
|
|
}
|
|
|
|
c->loop_break_block = save_loop_break_block;
|
|
c->loop_cont_block = save_loop_cont_block;
|
|
}
|
|
|
|
static void
|
|
ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
|
|
{
|
|
fprintf(stderr, "FUNCTIONS not handled.\n");
|
|
abort();
|
|
}
|
|
|
|
static void
|
|
ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
|
|
{
|
|
foreach_list_typed(nir_cf_node, node, node, list) {
|
|
switch (node->type) {
|
|
case nir_cf_node_block:
|
|
ntq_emit_block(c, nir_cf_node_as_block(node));
|
|
break;
|
|
|
|
case nir_cf_node_if:
|
|
ntq_emit_if(c, nir_cf_node_as_if(node));
|
|
break;
|
|
|
|
case nir_cf_node_loop:
|
|
ntq_emit_loop(c, nir_cf_node_as_loop(node));
|
|
break;
|
|
|
|
case nir_cf_node_function:
|
|
ntq_emit_function(c, nir_cf_node_as_function(node));
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "Unknown NIR node type\n");
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
|
|
{
|
|
ntq_setup_registers(c, impl);
|
|
ntq_emit_cf_list(c, &impl->body);
|
|
}
|
|
|
|
static void
|
|
nir_to_qir(struct vc4_compile *c)
|
|
{
|
|
if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
|
|
c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
|
|
|
|
ntq_setup_inputs(c);
|
|
ntq_setup_outputs(c);
|
|
|
|
/* Find the main function and emit the body. */
|
|
nir_foreach_function(function, c->s) {
|
|
assert(strcmp(function->name, "main") == 0);
|
|
assert(function->impl);
|
|
ntq_emit_impl(c, function->impl);
|
|
}
|
|
}
|
|
|
|
static const nir_shader_compiler_options nir_options = {
|
|
.lower_all_io_to_temps = true,
|
|
.lower_extract_byte = true,
|
|
.lower_extract_word = true,
|
|
.lower_insert_byte = true,
|
|
.lower_insert_word = true,
|
|
.lower_fdiv = true,
|
|
.lower_ffma16 = true,
|
|
.lower_ffma32 = true,
|
|
.lower_ffma64 = true,
|
|
.lower_flrp32 = true,
|
|
.lower_fmod = true,
|
|
.lower_fpow = true,
|
|
.lower_fsat = true,
|
|
.lower_fsqrt = true,
|
|
.lower_ldexp = true,
|
|
.lower_fneg = true,
|
|
.lower_ineg = true,
|
|
.lower_ldexp = true,
|
|
.lower_rotate = true,
|
|
.lower_to_scalar = true,
|
|
.lower_umax = true,
|
|
.lower_umin = true,
|
|
.lower_isign = true,
|
|
.has_fsub = true,
|
|
.has_isub = true,
|
|
.has_texture_scaling = true,
|
|
.lower_mul_high = true,
|
|
.max_unroll_iterations = 32,
|
|
.force_indirect_unrolling = (nir_var_shader_in | nir_var_shader_out | nir_var_function_temp),
|
|
};
|
|
|
|
const void *
|
|
vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
|
|
enum pipe_shader_ir ir,
|
|
enum pipe_shader_type shader)
|
|
{
|
|
return &nir_options;
|
|
}
|
|
|
|
static int
|
|
count_nir_instrs(nir_shader *nir)
|
|
{
|
|
int count = 0;
|
|
nir_foreach_function_impl(impl, nir) {
|
|
nir_foreach_block(block, impl) {
|
|
nir_foreach_instr(instr, block)
|
|
count++;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static struct vc4_compile *
|
|
vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
|
|
struct vc4_key *key, bool fs_threaded)
|
|
{
|
|
struct vc4_compile *c = qir_compile_init();
|
|
|
|
c->vc4 = vc4;
|
|
c->stage = stage;
|
|
c->shader_state = &key->shader_state->base;
|
|
c->program_id = key->shader_state->program_id;
|
|
c->variant_id =
|
|
p_atomic_inc_return(&key->shader_state->compiled_variant_count);
|
|
c->fs_threaded = fs_threaded;
|
|
|
|
c->key = key;
|
|
switch (stage) {
|
|
case QSTAGE_FRAG:
|
|
c->fs_key = (struct vc4_fs_key *)key;
|
|
if (c->fs_key->is_points) {
|
|
c->point_x = emit_fragment_varying(c, ~0, 0);
|
|
c->point_y = emit_fragment_varying(c, ~0, 0);
|
|
} else if (c->fs_key->is_lines) {
|
|
c->line_x = emit_fragment_varying(c, ~0, 0);
|
|
}
|
|
break;
|
|
case QSTAGE_VERT:
|
|
c->vs_key = (struct vc4_vs_key *)key;
|
|
break;
|
|
case QSTAGE_COORD:
|
|
c->vs_key = (struct vc4_vs_key *)key;
|
|
break;
|
|
}
|
|
|
|
c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
|
|
|
|
if (stage == QSTAGE_FRAG) {
|
|
NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
|
|
}
|
|
|
|
struct nir_lower_tex_options tex_options = {
|
|
.lower_txp = ~0,
|
|
|
|
/* Apply swizzles to all samplers. */
|
|
.swizzle_result = ~0,
|
|
.lower_invalid_implicit_lod = true,
|
|
};
|
|
|
|
/* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
|
|
* The format swizzling applies before sRGB decode, and
|
|
* ARB_texture_swizzle is the last thing before returning the sample.
|
|
*/
|
|
for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
|
|
enum pipe_format format = c->key->tex[i].format;
|
|
|
|
if (!format)
|
|
continue;
|
|
|
|
const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
|
|
|
|
for (int j = 0; j < 4; j++) {
|
|
uint8_t arb_swiz = c->key->tex[i].swizzle[j];
|
|
|
|
if (arb_swiz <= 3) {
|
|
tex_options.swizzles[i][j] =
|
|
format_swizzle[arb_swiz];
|
|
} else {
|
|
tex_options.swizzles[i][j] = arb_swiz;
|
|
}
|
|
}
|
|
|
|
if (util_format_is_srgb(format))
|
|
tex_options.lower_srgb |= (1 << i);
|
|
}
|
|
|
|
NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
|
|
|
|
if (c->key->ucp_enables) {
|
|
if (stage == QSTAGE_FRAG) {
|
|
NIR_PASS_V(c->s, nir_lower_clip_fs,
|
|
c->key->ucp_enables, false);
|
|
} else {
|
|
NIR_PASS_V(c->s, nir_lower_clip_vs,
|
|
c->key->ucp_enables, false, false, NULL);
|
|
NIR_PASS_V(c->s, nir_lower_io_to_scalar,
|
|
nir_var_shader_out);
|
|
}
|
|
}
|
|
|
|
/* FS input scalarizing must happen after nir_lower_two_sided_color,
|
|
* which only handles a vec4 at a time. Similarly, VS output
|
|
* scalarizing must happen after nir_lower_clip_vs.
|
|
*/
|
|
if (c->stage == QSTAGE_FRAG)
|
|
NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
|
|
else
|
|
NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
|
|
|
|
NIR_PASS_V(c->s, vc4_nir_lower_io, c);
|
|
NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
|
|
nir_lower_idiv_options idiv_options = {
|
|
.allow_fp16 = true,
|
|
};
|
|
NIR_PASS_V(c->s, nir_lower_idiv, &idiv_options);
|
|
NIR_PASS(_, c->s, nir_lower_alu);
|
|
|
|
vc4_optimize_nir(c->s);
|
|
|
|
/* Do late algebraic optimization to turn add(a, neg(b)) back into
|
|
* subs, then the mandatory cleanup after algebraic. Note that it may
|
|
* produce fnegs, and if so then we need to keep running to squash
|
|
* fneg(fneg(a)).
|
|
*/
|
|
bool more_late_algebraic = true;
|
|
while (more_late_algebraic) {
|
|
more_late_algebraic = false;
|
|
NIR_PASS(more_late_algebraic, c->s, nir_opt_algebraic_late);
|
|
NIR_PASS_V(c->s, nir_opt_constant_folding);
|
|
NIR_PASS_V(c->s, nir_copy_prop);
|
|
NIR_PASS_V(c->s, nir_opt_dce);
|
|
NIR_PASS_V(c->s, nir_opt_cse);
|
|
}
|
|
|
|
NIR_PASS_V(c->s, nir_lower_bool_to_int32);
|
|
|
|
NIR_PASS_V(c->s, nir_convert_from_ssa, true);
|
|
NIR_PASS_V(c->s, nir_trivialize_registers);
|
|
|
|
if (VC4_DBG(NIR)) {
|
|
fprintf(stderr, "%s prog %d/%d NIR:\n",
|
|
qir_get_stage_name(c->stage),
|
|
c->program_id, c->variant_id);
|
|
nir_print_shader(c->s, stderr);
|
|
}
|
|
|
|
nir_to_qir(c);
|
|
|
|
switch (stage) {
|
|
case QSTAGE_FRAG:
|
|
/* FS threading requires that the thread execute
|
|
* QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
|
|
* (with no other THRSW afterwards, obviously). If we didn't
|
|
* fetch a texture at a top level block, this wouldn't be
|
|
* true.
|
|
*/
|
|
if (c->fs_threaded && !c->last_thrsw_at_top_level) {
|
|
c->failed = true;
|
|
return c;
|
|
}
|
|
|
|
emit_frag_end(c);
|
|
break;
|
|
case QSTAGE_VERT:
|
|
emit_vert_end(c,
|
|
c->vs_key->fs_inputs->input_slots,
|
|
c->vs_key->fs_inputs->num_inputs);
|
|
break;
|
|
case QSTAGE_COORD:
|
|
emit_coord_end(c);
|
|
break;
|
|
}
|
|
|
|
if (VC4_DBG(QIR)) {
|
|
fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
|
|
qir_get_stage_name(c->stage),
|
|
c->program_id, c->variant_id);
|
|
qir_dump(c);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
qir_optimize(c);
|
|
qir_lower_uniforms(c);
|
|
|
|
qir_schedule_instructions(c);
|
|
qir_emit_uniform_stream_resets(c);
|
|
|
|
if (VC4_DBG(QIR)) {
|
|
fprintf(stderr, "%s prog %d/%d QIR:\n",
|
|
qir_get_stage_name(c->stage),
|
|
c->program_id, c->variant_id);
|
|
qir_dump(c);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
qir_reorder_uniforms(c);
|
|
vc4_generate_code(vc4, c);
|
|
|
|
ralloc_free(c->s);
|
|
|
|
return c;
|
|
}
|
|
|
|
static void
|
|
vc4_setup_shared_precompile_key(struct vc4_uncompiled_shader *uncompiled,
|
|
struct vc4_key *key)
|
|
{
|
|
nir_shader *s = uncompiled->base.ir.nir;
|
|
|
|
for (int i = 0; i < s->info.num_textures; i++) {
|
|
key->tex[i].format = PIPE_FORMAT_R8G8B8A8_UNORM;
|
|
key->tex[i].swizzle[0] = PIPE_SWIZZLE_X;
|
|
key->tex[i].swizzle[1] = PIPE_SWIZZLE_Y;
|
|
key->tex[i].swizzle[2] = PIPE_SWIZZLE_Z;
|
|
key->tex[i].swizzle[3] = PIPE_SWIZZLE_W;
|
|
}
|
|
}
|
|
|
|
static inline struct vc4_varying_slot
|
|
vc4_slot_from_slot_and_component(uint8_t slot, uint8_t component)
|
|
{
|
|
assume(slot < 255 / 4);
|
|
return (struct vc4_varying_slot){ (slot << 2) + component };
|
|
}
|
|
|
|
static void
|
|
precompile_all_fs_inputs(nir_shader *s,
|
|
struct vc4_fs_inputs *fs_inputs)
|
|
{
|
|
/* Assume all VS outputs will actually be used by the FS and output
|
|
* them (the two sides have to match exactly) */
|
|
nir_foreach_shader_out_variable(var, s) {
|
|
const int array_len = MAX2(glsl_get_length(var->type), 1);
|
|
for (int j = 0; j < array_len; j++) {
|
|
const int slot = var->data.location + j;
|
|
const int num_components =
|
|
glsl_get_components(var->type);
|
|
for (int i = 0; i < num_components; i++) {
|
|
const int swiz = var->data.location_frac + i;
|
|
fs_inputs->input_slots[fs_inputs->num_inputs++] =
|
|
vc4_slot_from_slot_and_component(slot,
|
|
swiz);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Precompiles a shader variant at shader state creation time if
|
|
* VC4_DEBUG=shaderdb is set.
|
|
*/
|
|
static void
|
|
vc4_shader_precompile(struct vc4_context *vc4,
|
|
struct vc4_uncompiled_shader *so)
|
|
{
|
|
nir_shader *s = so->base.ir.nir;
|
|
|
|
if (s->info.stage == MESA_SHADER_FRAGMENT) {
|
|
struct vc4_fs_key key = {
|
|
.base.shader_state = so,
|
|
.depth_enabled = true,
|
|
.logicop_func = PIPE_LOGICOP_COPY,
|
|
.color_format = PIPE_FORMAT_R8G8B8A8_UNORM,
|
|
.blend = {
|
|
.blend_enable = false,
|
|
.colormask = PIPE_MASK_RGBA,
|
|
},
|
|
};
|
|
|
|
vc4_setup_shared_precompile_key(so, &key.base);
|
|
vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key.base);
|
|
} else {
|
|
assert(s->info.stage == MESA_SHADER_VERTEX);
|
|
struct vc4_varying_slot input_slots[64] = {};
|
|
struct vc4_fs_inputs fs_inputs = {
|
|
.input_slots = input_slots,
|
|
.num_inputs = 0,
|
|
};
|
|
struct vc4_vs_key key = {
|
|
.base.shader_state = so,
|
|
.fs_inputs = &fs_inputs,
|
|
};
|
|
|
|
vc4_setup_shared_precompile_key(so, &key.base);
|
|
precompile_all_fs_inputs(s, &fs_inputs);
|
|
vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key.base);
|
|
|
|
/* Compile VS bin shader: only position (XXX: include TF) */
|
|
key.is_coord = true;
|
|
fs_inputs.num_inputs = 0;
|
|
precompile_all_fs_inputs(s, &fs_inputs);
|
|
for (int i = 0; i < 4; i++) {
|
|
fs_inputs.input_slots[fs_inputs.num_inputs++] =
|
|
vc4_slot_from_slot_and_component(VARYING_SLOT_POS,
|
|
i);
|
|
}
|
|
vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key.base);
|
|
}
|
|
}
|
|
|
|
static void *
|
|
vc4_shader_state_create(struct pipe_context *pctx,
|
|
const struct pipe_shader_state *cso)
|
|
{
|
|
struct vc4_context *vc4 = vc4_context(pctx);
|
|
struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
|
|
if (!so)
|
|
return NULL;
|
|
|
|
so->program_id = vc4->next_uncompiled_program_id++;
|
|
|
|
nir_shader *s;
|
|
|
|
if (cso->type == PIPE_SHADER_IR_NIR) {
|
|
/* The backend takes ownership of the NIR shader on state
|
|
* creation.
|
|
*/
|
|
s = cso->ir.nir;
|
|
} else {
|
|
assert(cso->type == PIPE_SHADER_IR_TGSI);
|
|
|
|
if (VC4_DBG(TGSI)) {
|
|
fprintf(stderr, "prog %d TGSI:\n",
|
|
so->program_id);
|
|
tgsi_dump(cso->tokens, 0);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
s = tgsi_to_nir(cso->tokens, pctx->screen, false);
|
|
}
|
|
|
|
if (s->info.stage == MESA_SHADER_VERTEX)
|
|
NIR_PASS_V(s, nir_lower_point_size, 1.0f, 0.0f);
|
|
|
|
NIR_PASS_V(s, nir_lower_io,
|
|
nir_var_shader_in | nir_var_shader_out | nir_var_uniform,
|
|
type_size, (nir_lower_io_options)0);
|
|
|
|
NIR_PASS_V(s, nir_normalize_cubemap_coords);
|
|
|
|
NIR_PASS_V(s, nir_lower_load_const_to_scalar);
|
|
|
|
vc4_optimize_nir(s);
|
|
|
|
NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
|
|
|
|
/* Garbage collect dead instructions */
|
|
nir_sweep(s);
|
|
|
|
so->base.type = PIPE_SHADER_IR_NIR;
|
|
so->base.ir.nir = s;
|
|
|
|
if (VC4_DBG(NIR)) {
|
|
fprintf(stderr, "%s prog %d NIR:\n",
|
|
gl_shader_stage_name(s->info.stage),
|
|
so->program_id);
|
|
nir_print_shader(s, stderr);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
if (VC4_DBG(SHADERDB)) {
|
|
vc4_shader_precompile(vc4, so);
|
|
}
|
|
|
|
return so;
|
|
}
|
|
|
|
static void
|
|
copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
|
|
struct vc4_compile *c)
|
|
{
|
|
int count = c->num_uniforms;
|
|
struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
|
|
|
|
uinfo->count = count;
|
|
uinfo->data = ralloc_array(shader, uint32_t, count);
|
|
memcpy(uinfo->data, c->uniform_data,
|
|
count * sizeof(*uinfo->data));
|
|
uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
|
|
memcpy(uinfo->contents, c->uniform_contents,
|
|
count * sizeof(*uinfo->contents));
|
|
uinfo->num_texture_samples = c->num_texture_samples;
|
|
|
|
vc4_set_shader_uniform_dirty_flags(shader);
|
|
}
|
|
|
|
static void
|
|
vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
|
|
struct vc4_compiled_shader *shader)
|
|
{
|
|
struct vc4_fs_inputs inputs;
|
|
|
|
memset(&inputs, 0, sizeof(inputs));
|
|
inputs.input_slots = ralloc_array(shader,
|
|
struct vc4_varying_slot,
|
|
c->num_input_slots);
|
|
|
|
bool input_live[c->num_input_slots];
|
|
|
|
memset(input_live, 0, sizeof(input_live));
|
|
qir_for_each_inst_inorder(inst, c) {
|
|
for (int i = 0; i < qir_get_nsrc(inst); i++) {
|
|
if (inst->src[i].file == QFILE_VARY)
|
|
input_live[inst->src[i].index] = true;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < c->num_input_slots; i++) {
|
|
struct vc4_varying_slot *slot = &c->input_slots[i];
|
|
|
|
if (!input_live[i])
|
|
continue;
|
|
|
|
/* Skip non-VS-output inputs. */
|
|
if (slot->slot == (uint8_t)~0)
|
|
continue;
|
|
|
|
if (slot->slot == VARYING_SLOT_COL0 ||
|
|
slot->slot == VARYING_SLOT_COL1 ||
|
|
slot->slot == VARYING_SLOT_BFC0 ||
|
|
slot->slot == VARYING_SLOT_BFC1) {
|
|
shader->color_inputs |= (1 << inputs.num_inputs);
|
|
}
|
|
|
|
inputs.input_slots[inputs.num_inputs] = *slot;
|
|
inputs.num_inputs++;
|
|
}
|
|
shader->num_inputs = inputs.num_inputs;
|
|
|
|
/* Add our set of inputs to the set of all inputs seen. This way, we
|
|
* can have a single pointer that identifies an FS inputs set,
|
|
* allowing VS to avoid recompiling when the FS is recompiled (or a
|
|
* new one is bound using separate shader objects) but the inputs
|
|
* don't change.
|
|
*/
|
|
struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
|
|
if (entry) {
|
|
shader->fs_inputs = entry->key;
|
|
ralloc_free(inputs.input_slots);
|
|
} else {
|
|
struct vc4_fs_inputs *alloc_inputs;
|
|
|
|
alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
|
|
memcpy(alloc_inputs, &inputs, sizeof(inputs));
|
|
ralloc_steal(alloc_inputs, inputs.input_slots);
|
|
_mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
|
|
|
|
shader->fs_inputs = alloc_inputs;
|
|
}
|
|
}
|
|
|
|
static struct vc4_compiled_shader *
|
|
vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
|
|
struct vc4_key *key)
|
|
{
|
|
struct hash_table *ht;
|
|
uint32_t key_size;
|
|
bool try_threading;
|
|
|
|
if (stage == QSTAGE_FRAG) {
|
|
ht = vc4->fs_cache;
|
|
key_size = sizeof(struct vc4_fs_key);
|
|
try_threading = vc4->screen->has_threaded_fs;
|
|
} else {
|
|
ht = vc4->vs_cache;
|
|
key_size = sizeof(struct vc4_vs_key);
|
|
try_threading = false;
|
|
}
|
|
|
|
struct vc4_compiled_shader *shader;
|
|
struct hash_entry *entry = _mesa_hash_table_search(ht, key);
|
|
if (entry)
|
|
return entry->data;
|
|
|
|
struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
|
|
/* If the FS failed to compile threaded, fall back to single threaded. */
|
|
if (try_threading && c->failed) {
|
|
qir_compile_destroy(c);
|
|
c = vc4_shader_ntq(vc4, stage, key, false);
|
|
}
|
|
|
|
shader = rzalloc(NULL, struct vc4_compiled_shader);
|
|
|
|
shader->program_id = vc4->next_compiled_program_id++;
|
|
if (stage == QSTAGE_FRAG) {
|
|
vc4_setup_compiled_fs_inputs(vc4, c, shader);
|
|
|
|
/* Note: the temporary clone in c->s has been freed. */
|
|
nir_shader *orig_shader = key->shader_state->base.ir.nir;
|
|
if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
|
|
shader->disable_early_z = true;
|
|
} else {
|
|
shader->num_inputs = c->num_inputs;
|
|
|
|
shader->vattr_offsets[0] = 0;
|
|
for (int i = 0; i < 8; i++) {
|
|
shader->vattr_offsets[i + 1] =
|
|
shader->vattr_offsets[i] + c->vattr_sizes[i];
|
|
|
|
if (c->vattr_sizes[i])
|
|
shader->vattrs_live |= (1 << i);
|
|
}
|
|
}
|
|
|
|
shader->failed = c->failed;
|
|
if (c->failed) {
|
|
shader->failed = true;
|
|
} else {
|
|
copy_uniform_state_to_shader(shader, c);
|
|
shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
|
|
c->qpu_inst_count *
|
|
sizeof(uint64_t));
|
|
}
|
|
|
|
shader->fs_threaded = c->fs_threaded;
|
|
|
|
qir_compile_destroy(c);
|
|
|
|
struct vc4_key *dup_key;
|
|
dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
|
|
memcpy(dup_key, key, key_size);
|
|
_mesa_hash_table_insert(ht, dup_key, shader);
|
|
|
|
return shader;
|
|
}
|
|
|
|
static void
|
|
vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
|
|
struct vc4_texture_stateobj *texstate)
|
|
{
|
|
for (int i = 0; i < texstate->num_textures; i++) {
|
|
struct pipe_sampler_view *sampler = texstate->textures[i];
|
|
struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
|
|
struct pipe_sampler_state *sampler_state =
|
|
texstate->samplers[i];
|
|
|
|
if (!sampler)
|
|
continue;
|
|
|
|
key->tex[i].format = sampler->format;
|
|
key->tex[i].swizzle[0] = sampler->swizzle_r;
|
|
key->tex[i].swizzle[1] = sampler->swizzle_g;
|
|
key->tex[i].swizzle[2] = sampler->swizzle_b;
|
|
key->tex[i].swizzle[3] = sampler->swizzle_a;
|
|
|
|
if (sampler->texture->nr_samples > 1) {
|
|
key->tex[i].msaa_width = sampler->texture->width0;
|
|
key->tex[i].msaa_height = sampler->texture->height0;
|
|
} else if (sampler){
|
|
key->tex[i].compare_mode = sampler_state->compare_mode;
|
|
key->tex[i].compare_func = sampler_state->compare_func;
|
|
key->tex[i].wrap_s = sampler_state->wrap_s;
|
|
key->tex[i].wrap_t = sampler_state->wrap_t;
|
|
key->tex[i].force_first_level =
|
|
vc4_sampler->force_first_level;
|
|
}
|
|
}
|
|
|
|
key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
|
|
}
|
|
|
|
static void
|
|
vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
|
|
{
|
|
struct vc4_job *job = vc4->job;
|
|
struct vc4_fs_key local_key;
|
|
struct vc4_fs_key *key = &local_key;
|
|
|
|
if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
|
|
VC4_DIRTY_BLEND |
|
|
VC4_DIRTY_FRAMEBUFFER |
|
|
VC4_DIRTY_ZSA |
|
|
VC4_DIRTY_RASTERIZER |
|
|
VC4_DIRTY_SAMPLE_MASK |
|
|
VC4_DIRTY_FRAGTEX |
|
|
VC4_DIRTY_UNCOMPILED_FS |
|
|
VC4_DIRTY_UBO_1_SIZE))) {
|
|
return;
|
|
}
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
|
|
key->base.shader_state = vc4->prog.bind_fs;
|
|
key->is_points = (prim_mode == MESA_PRIM_POINTS);
|
|
key->is_lines = (prim_mode >= MESA_PRIM_LINES &&
|
|
prim_mode <= MESA_PRIM_LINE_STRIP);
|
|
key->blend = vc4->blend->rt[0];
|
|
if (vc4->blend->logicop_enable) {
|
|
key->logicop_func = vc4->blend->logicop_func;
|
|
} else {
|
|
key->logicop_func = PIPE_LOGICOP_COPY;
|
|
}
|
|
if (job->msaa) {
|
|
key->msaa = vc4->rasterizer->base.multisample;
|
|
key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
|
|
key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
|
|
key->sample_alpha_to_one = vc4->blend->alpha_to_one;
|
|
}
|
|
|
|
if (vc4->framebuffer.cbufs[0])
|
|
key->color_format = vc4->framebuffer.cbufs[0]->format;
|
|
|
|
key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
|
|
key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
|
|
key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
|
|
key->depth_enabled = (vc4->zsa->base.depth_enabled ||
|
|
key->stencil_enabled);
|
|
|
|
if (key->is_points) {
|
|
key->point_sprite_mask =
|
|
vc4->rasterizer->base.sprite_coord_enable;
|
|
key->point_coord_upper_left =
|
|
(vc4->rasterizer->base.sprite_coord_mode ==
|
|
PIPE_SPRITE_COORD_UPPER_LEFT);
|
|
}
|
|
|
|
key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
|
|
|
|
struct vc4_compiled_shader *old_fs = vc4->prog.fs;
|
|
vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
|
|
if (vc4->prog.fs == old_fs)
|
|
return;
|
|
|
|
vc4->dirty |= VC4_DIRTY_COMPILED_FS;
|
|
|
|
if (vc4->rasterizer->base.flatshade &&
|
|
(!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
|
|
vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
|
|
}
|
|
|
|
if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
|
|
vc4->dirty |= VC4_DIRTY_FS_INPUTS;
|
|
}
|
|
|
|
static void
|
|
vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
|
|
{
|
|
struct vc4_vs_key local_key;
|
|
struct vc4_vs_key *key = &local_key;
|
|
|
|
if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
|
|
VC4_DIRTY_RASTERIZER |
|
|
VC4_DIRTY_VERTTEX |
|
|
VC4_DIRTY_VTXSTATE |
|
|
VC4_DIRTY_UNCOMPILED_VS |
|
|
VC4_DIRTY_FS_INPUTS))) {
|
|
return;
|
|
}
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
|
|
key->base.shader_state = vc4->prog.bind_vs;
|
|
key->fs_inputs = vc4->prog.fs->fs_inputs;
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
|
|
key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
|
|
|
|
key->per_vertex_point_size =
|
|
(prim_mode == MESA_PRIM_POINTS &&
|
|
vc4->rasterizer->base.point_size_per_vertex);
|
|
|
|
struct vc4_compiled_shader *vs =
|
|
vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
|
|
if (vs != vc4->prog.vs) {
|
|
vc4->prog.vs = vs;
|
|
vc4->dirty |= VC4_DIRTY_COMPILED_VS;
|
|
}
|
|
|
|
key->is_coord = true;
|
|
/* Coord shaders don't care what the FS inputs are. */
|
|
key->fs_inputs = NULL;
|
|
struct vc4_compiled_shader *cs =
|
|
vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
|
|
if (cs != vc4->prog.cs) {
|
|
vc4->prog.cs = cs;
|
|
vc4->dirty |= VC4_DIRTY_COMPILED_CS;
|
|
}
|
|
}
|
|
|
|
bool
|
|
vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
|
|
{
|
|
vc4_update_compiled_fs(vc4, prim_mode);
|
|
vc4_update_compiled_vs(vc4, prim_mode);
|
|
|
|
return !(vc4->prog.cs->failed ||
|
|
vc4->prog.vs->failed ||
|
|
vc4->prog.fs->failed);
|
|
}
|
|
|
|
static uint32_t
|
|
fs_cache_hash(const void *key)
|
|
{
|
|
return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
|
|
}
|
|
|
|
static uint32_t
|
|
vs_cache_hash(const void *key)
|
|
{
|
|
return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
|
|
}
|
|
|
|
static bool
|
|
fs_cache_compare(const void *key1, const void *key2)
|
|
{
|
|
return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
|
|
}
|
|
|
|
static bool
|
|
vs_cache_compare(const void *key1, const void *key2)
|
|
{
|
|
return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
|
|
}
|
|
|
|
static uint32_t
|
|
fs_inputs_hash(const void *key)
|
|
{
|
|
const struct vc4_fs_inputs *inputs = key;
|
|
|
|
return _mesa_hash_data(inputs->input_slots,
|
|
sizeof(*inputs->input_slots) *
|
|
inputs->num_inputs);
|
|
}
|
|
|
|
static bool
|
|
fs_inputs_compare(const void *key1, const void *key2)
|
|
{
|
|
const struct vc4_fs_inputs *inputs1 = key1;
|
|
const struct vc4_fs_inputs *inputs2 = key2;
|
|
|
|
return (inputs1->num_inputs == inputs2->num_inputs &&
|
|
memcmp(inputs1->input_slots,
|
|
inputs2->input_slots,
|
|
sizeof(*inputs1->input_slots) *
|
|
inputs1->num_inputs) == 0);
|
|
}
|
|
|
|
static void
|
|
delete_from_cache_if_matches(struct hash_table *ht,
|
|
struct vc4_compiled_shader **last_compile,
|
|
struct hash_entry *entry,
|
|
struct vc4_uncompiled_shader *so)
|
|
{
|
|
const struct vc4_key *key = entry->key;
|
|
|
|
if (key->shader_state == so) {
|
|
struct vc4_compiled_shader *shader = entry->data;
|
|
_mesa_hash_table_remove(ht, entry);
|
|
vc4_bo_unreference(&shader->bo);
|
|
|
|
if (shader == *last_compile)
|
|
*last_compile = NULL;
|
|
|
|
ralloc_free(shader);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
|
|
{
|
|
struct vc4_context *vc4 = vc4_context(pctx);
|
|
struct vc4_uncompiled_shader *so = hwcso;
|
|
|
|
hash_table_foreach(vc4->fs_cache, entry) {
|
|
delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
|
|
entry, so);
|
|
}
|
|
hash_table_foreach(vc4->vs_cache, entry) {
|
|
delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
|
|
entry, so);
|
|
}
|
|
|
|
ralloc_free(so->base.ir.nir);
|
|
free(so);
|
|
}
|
|
|
|
static void
|
|
vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
|
|
{
|
|
struct vc4_context *vc4 = vc4_context(pctx);
|
|
vc4->prog.bind_fs = hwcso;
|
|
vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
|
|
}
|
|
|
|
static void
|
|
vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
|
|
{
|
|
struct vc4_context *vc4 = vc4_context(pctx);
|
|
vc4->prog.bind_vs = hwcso;
|
|
vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
|
|
}
|
|
|
|
void
|
|
vc4_program_init(struct pipe_context *pctx)
|
|
{
|
|
struct vc4_context *vc4 = vc4_context(pctx);
|
|
|
|
pctx->create_vs_state = vc4_shader_state_create;
|
|
pctx->delete_vs_state = vc4_shader_state_delete;
|
|
|
|
pctx->create_fs_state = vc4_shader_state_create;
|
|
pctx->delete_fs_state = vc4_shader_state_delete;
|
|
|
|
pctx->bind_fs_state = vc4_fp_state_bind;
|
|
pctx->bind_vs_state = vc4_vp_state_bind;
|
|
|
|
vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
|
|
fs_cache_compare);
|
|
vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
|
|
vs_cache_compare);
|
|
vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
|
|
fs_inputs_compare);
|
|
}
|
|
|
|
void
|
|
vc4_program_fini(struct pipe_context *pctx)
|
|
{
|
|
struct vc4_context *vc4 = vc4_context(pctx);
|
|
|
|
hash_table_foreach(vc4->fs_cache, entry) {
|
|
struct vc4_compiled_shader *shader = entry->data;
|
|
vc4_bo_unreference(&shader->bo);
|
|
ralloc_free(shader);
|
|
_mesa_hash_table_remove(vc4->fs_cache, entry);
|
|
}
|
|
|
|
hash_table_foreach(vc4->vs_cache, entry) {
|
|
struct vc4_compiled_shader *shader = entry->data;
|
|
vc4_bo_unreference(&shader->bo);
|
|
ralloc_free(shader);
|
|
_mesa_hash_table_remove(vc4->vs_cache, entry);
|
|
}
|
|
}
|