
Reviewed-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
1703 lines
61 KiB
C
1703 lines
61 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include "util/mesa-sha1.h"
|
|
#include "util/os_time.h"
|
|
#include "common/gen_l3_config.h"
|
|
#include "anv_private.h"
|
|
#include "compiler/brw_nir.h"
|
|
#include "anv_nir.h"
|
|
#include "nir/nir_xfb_info.h"
|
|
#include "spirv/nir_spirv.h"
|
|
#include "vk_util.h"
|
|
|
|
/* Needed for SWIZZLE macros */
|
|
#include "program/prog_instruction.h"
|
|
|
|
// Shader functions
|
|
|
|
VkResult anv_CreateShaderModule(
|
|
VkDevice _device,
|
|
const VkShaderModuleCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkShaderModule* pShaderModule)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_shader_module *module;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
|
|
assert(pCreateInfo->flags == 0);
|
|
|
|
module = vk_alloc2(&device->alloc, pAllocator,
|
|
sizeof(*module) + pCreateInfo->codeSize, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (module == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
module->size = pCreateInfo->codeSize;
|
|
memcpy(module->data, pCreateInfo->pCode, module->size);
|
|
|
|
_mesa_sha1_compute(module->data, module->size, module->sha1);
|
|
|
|
*pShaderModule = anv_shader_module_to_handle(module);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyShaderModule(
|
|
VkDevice _device,
|
|
VkShaderModule _module,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_shader_module, module, _module);
|
|
|
|
if (!module)
|
|
return;
|
|
|
|
vk_free2(&device->alloc, pAllocator, module);
|
|
}
|
|
|
|
#define SPIR_V_MAGIC_NUMBER 0x07230203
|
|
|
|
static const uint64_t stage_to_debug[] = {
|
|
[MESA_SHADER_VERTEX] = DEBUG_VS,
|
|
[MESA_SHADER_TESS_CTRL] = DEBUG_TCS,
|
|
[MESA_SHADER_TESS_EVAL] = DEBUG_TES,
|
|
[MESA_SHADER_GEOMETRY] = DEBUG_GS,
|
|
[MESA_SHADER_FRAGMENT] = DEBUG_WM,
|
|
[MESA_SHADER_COMPUTE] = DEBUG_CS,
|
|
};
|
|
|
|
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
|
|
* we can't do that yet because we don't have the ability to copy nir.
|
|
*/
|
|
static nir_shader *
|
|
anv_shader_compile_to_nir(struct anv_device *device,
|
|
void *mem_ctx,
|
|
const struct anv_shader_module *module,
|
|
const char *entrypoint_name,
|
|
gl_shader_stage stage,
|
|
const VkSpecializationInfo *spec_info)
|
|
{
|
|
const struct anv_physical_device *pdevice =
|
|
&device->instance->physicalDevice;
|
|
const struct brw_compiler *compiler = pdevice->compiler;
|
|
const nir_shader_compiler_options *nir_options =
|
|
compiler->glsl_compiler_options[stage].NirOptions;
|
|
|
|
uint32_t *spirv = (uint32_t *) module->data;
|
|
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
|
|
assert(module->size % 4 == 0);
|
|
|
|
uint32_t num_spec_entries = 0;
|
|
struct nir_spirv_specialization *spec_entries = NULL;
|
|
if (spec_info && spec_info->mapEntryCount > 0) {
|
|
num_spec_entries = spec_info->mapEntryCount;
|
|
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
|
|
for (uint32_t i = 0; i < num_spec_entries; i++) {
|
|
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
|
|
const void *data = spec_info->pData + entry.offset;
|
|
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
|
|
|
|
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
|
|
if (spec_info->dataSize == 8)
|
|
spec_entries[i].data64 = *(const uint64_t *)data;
|
|
else
|
|
spec_entries[i].data32 = *(const uint32_t *)data;
|
|
}
|
|
}
|
|
|
|
struct spirv_to_nir_options spirv_options = {
|
|
.lower_workgroup_access_to_offsets = true,
|
|
.caps = {
|
|
.derivative_group = true,
|
|
.device_group = true,
|
|
.draw_parameters = true,
|
|
.float64 = pdevice->info.gen >= 8,
|
|
.geometry_streams = true,
|
|
.image_write_without_format = true,
|
|
.int16 = pdevice->info.gen >= 8,
|
|
.int64 = pdevice->info.gen >= 8,
|
|
.min_lod = true,
|
|
.multiview = true,
|
|
.physical_storage_buffer_address = pdevice->info.gen >= 8 &&
|
|
pdevice->use_softpin,
|
|
.post_depth_coverage = pdevice->info.gen >= 9,
|
|
.shader_viewport_index_layer = true,
|
|
.stencil_export = pdevice->info.gen >= 9,
|
|
.storage_8bit = pdevice->info.gen >= 8,
|
|
.storage_16bit = pdevice->info.gen >= 8,
|
|
.subgroup_arithmetic = true,
|
|
.subgroup_basic = true,
|
|
.subgroup_ballot = true,
|
|
.subgroup_quad = true,
|
|
.subgroup_shuffle = true,
|
|
.subgroup_vote = true,
|
|
.tessellation = true,
|
|
.transform_feedback = pdevice->info.gen >= 8,
|
|
.variable_pointers = true,
|
|
},
|
|
.ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
|
|
.ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2),
|
|
.phys_ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1),
|
|
.push_const_ptr_type = glsl_uint_type(),
|
|
.shared_ptr_type = glsl_uint_type(),
|
|
};
|
|
|
|
nir_function *entry_point =
|
|
spirv_to_nir(spirv, module->size / 4,
|
|
spec_entries, num_spec_entries,
|
|
stage, entrypoint_name, &spirv_options, nir_options);
|
|
nir_shader *nir = entry_point->shader;
|
|
assert(nir->info.stage == stage);
|
|
nir_validate_shader(nir, "after spirv_to_nir");
|
|
ralloc_steal(mem_ctx, nir);
|
|
|
|
free(spec_entries);
|
|
|
|
if (unlikely(INTEL_DEBUG & stage_to_debug[stage])) {
|
|
fprintf(stderr, "NIR (from SPIR-V) for %s shader:\n",
|
|
gl_shader_stage_name(stage));
|
|
nir_print_shader(nir, stderr);
|
|
}
|
|
|
|
/* We have to lower away local constant initializers right before we
|
|
* inline functions. That way they get properly initialized at the top
|
|
* of the function and not at the top of its caller.
|
|
*/
|
|
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp);
|
|
NIR_PASS_V(nir, nir_lower_returns);
|
|
NIR_PASS_V(nir, nir_inline_functions);
|
|
NIR_PASS_V(nir, nir_opt_deref);
|
|
|
|
/* Pick off the single entrypoint that we want */
|
|
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
|
|
if (func != entry_point)
|
|
exec_node_remove(&func->node);
|
|
}
|
|
assert(exec_list_length(&nir->functions) == 1);
|
|
|
|
/* Now that we've deleted all but the main function, we can go ahead and
|
|
* lower the rest of the constant initializers. We do this here so that
|
|
* nir_remove_dead_variables and split_per_member_structs below see the
|
|
* corresponding stores.
|
|
*/
|
|
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
|
|
|
|
/* Split member structs. We do this before lower_io_to_temporaries so that
|
|
* it doesn't lower system values to temporaries by accident.
|
|
*/
|
|
NIR_PASS_V(nir, nir_split_var_copies);
|
|
NIR_PASS_V(nir, nir_split_per_member_structs);
|
|
|
|
NIR_PASS_V(nir, nir_remove_dead_variables,
|
|
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
|
|
|
|
NIR_PASS_V(nir, nir_lower_explicit_io, nir_var_mem_global,
|
|
nir_address_format_64bit_global);
|
|
|
|
NIR_PASS_V(nir, nir_propagate_invariant);
|
|
NIR_PASS_V(nir, nir_lower_io_to_temporaries,
|
|
entry_point->impl, true, false);
|
|
|
|
NIR_PASS_V(nir, nir_lower_frexp);
|
|
|
|
/* Vulkan uses the separate-shader linking model */
|
|
nir->info.separate_shader = true;
|
|
|
|
nir = brw_preprocess_nir(compiler, nir, NULL);
|
|
|
|
return nir;
|
|
}
|
|
|
|
void anv_DestroyPipeline(
|
|
VkDevice _device,
|
|
VkPipeline _pipeline,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
|
|
|
|
if (!pipeline)
|
|
return;
|
|
|
|
anv_reloc_list_finish(&pipeline->batch_relocs,
|
|
pAllocator ? pAllocator : &device->alloc);
|
|
if (pipeline->blend_state.map)
|
|
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
|
|
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
if (pipeline->shaders[s])
|
|
anv_shader_bin_unref(device, pipeline->shaders[s]);
|
|
}
|
|
|
|
vk_free2(&device->alloc, pAllocator, pipeline);
|
|
}
|
|
|
|
static const uint32_t vk_to_gen_primitive_type[] = {
|
|
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
|
|
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
|
|
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
|
|
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
|
|
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
|
|
};
|
|
|
|
static void
|
|
populate_sampler_prog_key(const struct gen_device_info *devinfo,
|
|
struct brw_sampler_prog_key_data *key)
|
|
{
|
|
/* Almost all multisampled textures are compressed. The only time when we
|
|
* don't compress a multisampled texture is for 16x MSAA with a surface
|
|
* width greater than 8k which is a bit of an edge case. Since the sampler
|
|
* just ignores the MCS parameter to ld2ms when MCS is disabled, it's safe
|
|
* to tell the compiler to always assume compression.
|
|
*/
|
|
key->compressed_multisample_layout_mask = ~0;
|
|
|
|
/* SkyLake added support for 16x MSAA. With this came a new message for
|
|
* reading from a 16x MSAA surface with compression. The new message was
|
|
* needed because now the MCS data is 64 bits instead of 32 or lower as is
|
|
* the case for 8x, 4x, and 2x. The key->msaa_16 bit-field controls which
|
|
* message we use. Fortunately, the 16x message works for 8x, 4x, and 2x
|
|
* so we can just use it unconditionally. This may not be quite as
|
|
* efficient but it saves us from recompiling.
|
|
*/
|
|
if (devinfo->gen >= 9)
|
|
key->msaa_16 = ~0;
|
|
|
|
/* XXX: Handle texture swizzle on HSW- */
|
|
for (int i = 0; i < MAX_SAMPLERS; i++) {
|
|
/* Assume color sampler, no swizzling. (Works for BDW+) */
|
|
key->swizzles[i] = SWIZZLE_XYZW;
|
|
}
|
|
}
|
|
|
|
static void
|
|
populate_vs_prog_key(const struct gen_device_info *devinfo,
|
|
struct brw_vs_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
|
|
/* XXX: Handle vertex input work-arounds */
|
|
|
|
/* XXX: Handle sampler_prog_key */
|
|
}
|
|
|
|
static void
|
|
populate_tcs_prog_key(const struct gen_device_info *devinfo,
|
|
unsigned input_vertices,
|
|
struct brw_tcs_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
|
|
key->input_vertices = input_vertices;
|
|
}
|
|
|
|
static void
|
|
populate_tes_prog_key(const struct gen_device_info *devinfo,
|
|
struct brw_tes_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
}
|
|
|
|
static void
|
|
populate_gs_prog_key(const struct gen_device_info *devinfo,
|
|
struct brw_gs_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
}
|
|
|
|
static void
|
|
populate_wm_prog_key(const struct gen_device_info *devinfo,
|
|
const struct anv_subpass *subpass,
|
|
const VkPipelineMultisampleStateCreateInfo *ms_info,
|
|
struct brw_wm_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
|
|
/* We set this to 0 here and set to the actual value before we call
|
|
* brw_compile_fs.
|
|
*/
|
|
key->input_slots_valid = 0;
|
|
|
|
/* Vulkan doesn't specify a default */
|
|
key->high_quality_derivatives = false;
|
|
|
|
/* XXX Vulkan doesn't appear to specify */
|
|
key->clamp_fragment_color = false;
|
|
|
|
assert(subpass->color_count <= MAX_RTS);
|
|
for (uint32_t i = 0; i < subpass->color_count; i++) {
|
|
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
|
|
key->color_outputs_valid |= (1 << i);
|
|
}
|
|
|
|
key->nr_color_regions = util_bitcount(key->color_outputs_valid);
|
|
|
|
/* To reduce possible shader recompilations we would need to know if
|
|
* there is a SampleMask output variable to compute if we should emit
|
|
* code to workaround the issue that hardware disables alpha to coverage
|
|
* when there is SampleMask output.
|
|
*/
|
|
key->alpha_to_coverage = ms_info && ms_info->alphaToCoverageEnable;
|
|
|
|
/* Vulkan doesn't support fixed-function alpha test */
|
|
key->alpha_test_replicate_alpha = false;
|
|
|
|
if (ms_info) {
|
|
/* We should probably pull this out of the shader, but it's fairly
|
|
* harmless to compute it and then let dead-code take care of it.
|
|
*/
|
|
if (ms_info->rasterizationSamples > 1) {
|
|
key->persample_interp =
|
|
(ms_info->minSampleShading * ms_info->rasterizationSamples) > 1;
|
|
key->multisample_fbo = true;
|
|
}
|
|
|
|
key->frag_coord_adds_sample_pos = ms_info->sampleShadingEnable;
|
|
}
|
|
}
|
|
|
|
static void
|
|
populate_cs_prog_key(const struct gen_device_info *devinfo,
|
|
struct brw_cs_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
}
|
|
|
|
struct anv_pipeline_stage {
|
|
gl_shader_stage stage;
|
|
|
|
const struct anv_shader_module *module;
|
|
const char *entrypoint;
|
|
const VkSpecializationInfo *spec_info;
|
|
|
|
unsigned char shader_sha1[20];
|
|
|
|
union brw_any_prog_key key;
|
|
|
|
struct {
|
|
gl_shader_stage stage;
|
|
unsigned char sha1[20];
|
|
} cache_key;
|
|
|
|
nir_shader *nir;
|
|
|
|
struct anv_pipeline_binding surface_to_descriptor[256];
|
|
struct anv_pipeline_binding sampler_to_descriptor[256];
|
|
struct anv_pipeline_bind_map bind_map;
|
|
|
|
union brw_any_prog_data prog_data;
|
|
|
|
VkPipelineCreationFeedbackEXT feedback;
|
|
};
|
|
|
|
static void
|
|
anv_pipeline_hash_shader(const struct anv_shader_module *module,
|
|
const char *entrypoint,
|
|
gl_shader_stage stage,
|
|
const VkSpecializationInfo *spec_info,
|
|
unsigned char *sha1_out)
|
|
{
|
|
struct mesa_sha1 ctx;
|
|
_mesa_sha1_init(&ctx);
|
|
|
|
_mesa_sha1_update(&ctx, module->sha1, sizeof(module->sha1));
|
|
_mesa_sha1_update(&ctx, entrypoint, strlen(entrypoint));
|
|
_mesa_sha1_update(&ctx, &stage, sizeof(stage));
|
|
if (spec_info) {
|
|
_mesa_sha1_update(&ctx, spec_info->pMapEntries,
|
|
spec_info->mapEntryCount *
|
|
sizeof(*spec_info->pMapEntries));
|
|
_mesa_sha1_update(&ctx, spec_info->pData,
|
|
spec_info->dataSize);
|
|
}
|
|
|
|
_mesa_sha1_final(&ctx, sha1_out);
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_hash_graphics(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_layout *layout,
|
|
struct anv_pipeline_stage *stages,
|
|
unsigned char *sha1_out)
|
|
{
|
|
struct mesa_sha1 ctx;
|
|
_mesa_sha1_init(&ctx);
|
|
|
|
_mesa_sha1_update(&ctx, &pipeline->subpass->view_mask,
|
|
sizeof(pipeline->subpass->view_mask));
|
|
|
|
if (layout)
|
|
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
|
|
|
|
const bool rba = pipeline->device->robust_buffer_access;
|
|
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
|
|
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
if (stages[s].entrypoint) {
|
|
_mesa_sha1_update(&ctx, stages[s].shader_sha1,
|
|
sizeof(stages[s].shader_sha1));
|
|
_mesa_sha1_update(&ctx, &stages[s].key, brw_prog_key_size(s));
|
|
}
|
|
}
|
|
|
|
_mesa_sha1_final(&ctx, sha1_out);
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_hash_compute(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_layout *layout,
|
|
struct anv_pipeline_stage *stage,
|
|
unsigned char *sha1_out)
|
|
{
|
|
struct mesa_sha1 ctx;
|
|
_mesa_sha1_init(&ctx);
|
|
|
|
if (layout)
|
|
_mesa_sha1_update(&ctx, layout->sha1, sizeof(layout->sha1));
|
|
|
|
const bool rba = pipeline->device->robust_buffer_access;
|
|
_mesa_sha1_update(&ctx, &rba, sizeof(rba));
|
|
|
|
_mesa_sha1_update(&ctx, stage->shader_sha1,
|
|
sizeof(stage->shader_sha1));
|
|
_mesa_sha1_update(&ctx, &stage->key.cs, sizeof(stage->key.cs));
|
|
|
|
_mesa_sha1_final(&ctx, sha1_out);
|
|
}
|
|
|
|
static nir_shader *
|
|
anv_pipeline_stage_get_nir(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_cache *cache,
|
|
void *mem_ctx,
|
|
struct anv_pipeline_stage *stage)
|
|
{
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
const nir_shader_compiler_options *nir_options =
|
|
compiler->glsl_compiler_options[stage->stage].NirOptions;
|
|
nir_shader *nir;
|
|
|
|
nir = anv_device_search_for_nir(pipeline->device, cache,
|
|
nir_options,
|
|
stage->shader_sha1,
|
|
mem_ctx);
|
|
if (nir) {
|
|
assert(nir->info.stage == stage->stage);
|
|
return nir;
|
|
}
|
|
|
|
nir = anv_shader_compile_to_nir(pipeline->device,
|
|
mem_ctx,
|
|
stage->module,
|
|
stage->entrypoint,
|
|
stage->stage,
|
|
stage->spec_info);
|
|
if (nir) {
|
|
anv_device_upload_nir(pipeline->device, cache, nir, stage->shader_sha1);
|
|
return nir;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_lower_nir(struct anv_pipeline *pipeline,
|
|
void *mem_ctx,
|
|
struct anv_pipeline_stage *stage,
|
|
struct anv_pipeline_layout *layout)
|
|
{
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
|
|
struct brw_stage_prog_data *prog_data = &stage->prog_data.base;
|
|
nir_shader *nir = stage->nir;
|
|
|
|
if (nir->info.stage == MESA_SHADER_FRAGMENT) {
|
|
NIR_PASS_V(nir, nir_lower_wpos_center, pipeline->sample_shading_enable);
|
|
NIR_PASS_V(nir, anv_nir_lower_input_attachments);
|
|
}
|
|
|
|
NIR_PASS_V(nir, anv_nir_lower_ycbcr_textures, layout);
|
|
|
|
NIR_PASS_V(nir, anv_nir_lower_push_constants);
|
|
|
|
if (nir->info.stage != MESA_SHADER_COMPUTE)
|
|
NIR_PASS_V(nir, anv_nir_lower_multiview, pipeline->subpass->view_mask);
|
|
|
|
if (nir->info.stage == MESA_SHADER_COMPUTE)
|
|
prog_data->total_shared = nir->num_shared;
|
|
|
|
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
|
|
|
|
if (nir->num_uniforms > 0) {
|
|
assert(prog_data->nr_params == 0);
|
|
|
|
/* If the shader uses any push constants at all, we'll just give
|
|
* them the maximum possible number
|
|
*/
|
|
assert(nir->num_uniforms <= MAX_PUSH_CONSTANTS_SIZE);
|
|
nir->num_uniforms = MAX_PUSH_CONSTANTS_SIZE;
|
|
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
|
|
prog_data->param = ralloc_array(mem_ctx, uint32_t, prog_data->nr_params);
|
|
|
|
/* We now set the param values to be offsets into a
|
|
* anv_push_constant_data structure. Since the compiler doesn't
|
|
* actually dereference any of the gl_constant_value pointers in the
|
|
* params array, it doesn't really matter what we put here.
|
|
*/
|
|
struct anv_push_constants *null_data = NULL;
|
|
/* Fill out the push constants section of the param array */
|
|
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++) {
|
|
prog_data->param[i] = ANV_PARAM_PUSH(
|
|
(uintptr_t)&null_data->client_data[i * sizeof(float)]);
|
|
}
|
|
}
|
|
|
|
if (nir->info.num_ssbos > 0 || nir->info.num_images > 0)
|
|
pipeline->needs_data_cache = true;
|
|
|
|
NIR_PASS_V(nir, brw_nir_lower_image_load_store, compiler->devinfo);
|
|
|
|
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
|
|
if (layout) {
|
|
anv_nir_apply_pipeline_layout(&pipeline->device->instance->physicalDevice,
|
|
pipeline->device->robust_buffer_access,
|
|
layout, nir, prog_data,
|
|
&stage->bind_map);
|
|
|
|
NIR_PASS_V(nir, nir_lower_explicit_io,
|
|
nir_var_mem_ubo | nir_var_mem_ssbo,
|
|
nir_address_format_32bit_index_offset);
|
|
|
|
NIR_PASS_V(nir, nir_opt_constant_folding);
|
|
}
|
|
|
|
if (nir->info.stage != MESA_SHADER_COMPUTE)
|
|
brw_nir_analyze_ubo_ranges(compiler, nir, NULL, prog_data->ubo_ranges);
|
|
|
|
assert(nir->num_uniforms == prog_data->nr_params * 4);
|
|
|
|
stage->nir = nir;
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_link_vs(const struct brw_compiler *compiler,
|
|
struct anv_pipeline_stage *vs_stage,
|
|
struct anv_pipeline_stage *next_stage)
|
|
{
|
|
if (next_stage)
|
|
brw_nir_link_shaders(compiler, &vs_stage->nir, &next_stage->nir);
|
|
}
|
|
|
|
static const unsigned *
|
|
anv_pipeline_compile_vs(const struct brw_compiler *compiler,
|
|
void *mem_ctx,
|
|
struct anv_device *device,
|
|
struct anv_pipeline_stage *vs_stage)
|
|
{
|
|
brw_compute_vue_map(compiler->devinfo,
|
|
&vs_stage->prog_data.vs.base.vue_map,
|
|
vs_stage->nir->info.outputs_written,
|
|
vs_stage->nir->info.separate_shader);
|
|
|
|
return brw_compile_vs(compiler, device, mem_ctx, &vs_stage->key.vs,
|
|
&vs_stage->prog_data.vs, vs_stage->nir, -1, NULL);
|
|
}
|
|
|
|
static void
|
|
merge_tess_info(struct shader_info *tes_info,
|
|
const struct shader_info *tcs_info)
|
|
{
|
|
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
|
|
*
|
|
* "PointMode. Controls generation of points rather than triangles
|
|
* or lines. This functionality defaults to disabled, and is
|
|
* enabled if either shader stage includes the execution mode.
|
|
*
|
|
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
|
|
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
|
|
* and OutputVertices, it says:
|
|
*
|
|
* "One mode must be set in at least one of the tessellation
|
|
* shader stages."
|
|
*
|
|
* So, the fields can be set in either the TCS or TES, but they must
|
|
* agree if set in both. Our backend looks at TES, so bitwise-or in
|
|
* the values from the TCS.
|
|
*/
|
|
assert(tcs_info->tess.tcs_vertices_out == 0 ||
|
|
tes_info->tess.tcs_vertices_out == 0 ||
|
|
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
|
|
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
|
|
|
|
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
|
|
tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
|
|
tcs_info->tess.spacing == tes_info->tess.spacing);
|
|
tes_info->tess.spacing |= tcs_info->tess.spacing;
|
|
|
|
assert(tcs_info->tess.primitive_mode == 0 ||
|
|
tes_info->tess.primitive_mode == 0 ||
|
|
tcs_info->tess.primitive_mode == tes_info->tess.primitive_mode);
|
|
tes_info->tess.primitive_mode |= tcs_info->tess.primitive_mode;
|
|
tes_info->tess.ccw |= tcs_info->tess.ccw;
|
|
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_link_tcs(const struct brw_compiler *compiler,
|
|
struct anv_pipeline_stage *tcs_stage,
|
|
struct anv_pipeline_stage *tes_stage)
|
|
{
|
|
assert(tes_stage && tes_stage->stage == MESA_SHADER_TESS_EVAL);
|
|
|
|
brw_nir_link_shaders(compiler, &tcs_stage->nir, &tes_stage->nir);
|
|
|
|
nir_lower_patch_vertices(tes_stage->nir,
|
|
tcs_stage->nir->info.tess.tcs_vertices_out,
|
|
NULL);
|
|
|
|
/* Copy TCS info into the TES info */
|
|
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
|
|
|
|
/* Whacking the key after cache lookup is a bit sketchy, but all of
|
|
* this comes from the SPIR-V, which is part of the hash used for the
|
|
* pipeline cache. So it should be safe.
|
|
*/
|
|
tcs_stage->key.tcs.tes_primitive_mode =
|
|
tes_stage->nir->info.tess.primitive_mode;
|
|
tcs_stage->key.tcs.quads_workaround =
|
|
compiler->devinfo->gen < 9 &&
|
|
tes_stage->nir->info.tess.primitive_mode == 7 /* GL_QUADS */ &&
|
|
tes_stage->nir->info.tess.spacing == TESS_SPACING_EQUAL;
|
|
}
|
|
|
|
static const unsigned *
|
|
anv_pipeline_compile_tcs(const struct brw_compiler *compiler,
|
|
void *mem_ctx,
|
|
struct anv_device *device,
|
|
struct anv_pipeline_stage *tcs_stage,
|
|
struct anv_pipeline_stage *prev_stage)
|
|
{
|
|
tcs_stage->key.tcs.outputs_written =
|
|
tcs_stage->nir->info.outputs_written;
|
|
tcs_stage->key.tcs.patch_outputs_written =
|
|
tcs_stage->nir->info.patch_outputs_written;
|
|
|
|
return brw_compile_tcs(compiler, device, mem_ctx, &tcs_stage->key.tcs,
|
|
&tcs_stage->prog_data.tcs, tcs_stage->nir,
|
|
-1, NULL);
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_link_tes(const struct brw_compiler *compiler,
|
|
struct anv_pipeline_stage *tes_stage,
|
|
struct anv_pipeline_stage *next_stage)
|
|
{
|
|
if (next_stage)
|
|
brw_nir_link_shaders(compiler, &tes_stage->nir, &next_stage->nir);
|
|
}
|
|
|
|
static const unsigned *
|
|
anv_pipeline_compile_tes(const struct brw_compiler *compiler,
|
|
void *mem_ctx,
|
|
struct anv_device *device,
|
|
struct anv_pipeline_stage *tes_stage,
|
|
struct anv_pipeline_stage *tcs_stage)
|
|
{
|
|
tes_stage->key.tes.inputs_read =
|
|
tcs_stage->nir->info.outputs_written;
|
|
tes_stage->key.tes.patch_inputs_read =
|
|
tcs_stage->nir->info.patch_outputs_written;
|
|
|
|
return brw_compile_tes(compiler, device, mem_ctx, &tes_stage->key.tes,
|
|
&tcs_stage->prog_data.tcs.base.vue_map,
|
|
&tes_stage->prog_data.tes, tes_stage->nir,
|
|
NULL, -1, NULL);
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_link_gs(const struct brw_compiler *compiler,
|
|
struct anv_pipeline_stage *gs_stage,
|
|
struct anv_pipeline_stage *next_stage)
|
|
{
|
|
if (next_stage)
|
|
brw_nir_link_shaders(compiler, &gs_stage->nir, &next_stage->nir);
|
|
}
|
|
|
|
static const unsigned *
|
|
anv_pipeline_compile_gs(const struct brw_compiler *compiler,
|
|
void *mem_ctx,
|
|
struct anv_device *device,
|
|
struct anv_pipeline_stage *gs_stage,
|
|
struct anv_pipeline_stage *prev_stage)
|
|
{
|
|
brw_compute_vue_map(compiler->devinfo,
|
|
&gs_stage->prog_data.gs.base.vue_map,
|
|
gs_stage->nir->info.outputs_written,
|
|
gs_stage->nir->info.separate_shader);
|
|
|
|
return brw_compile_gs(compiler, device, mem_ctx, &gs_stage->key.gs,
|
|
&gs_stage->prog_data.gs, gs_stage->nir,
|
|
NULL, -1, NULL);
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_link_fs(const struct brw_compiler *compiler,
|
|
struct anv_pipeline_stage *stage)
|
|
{
|
|
unsigned num_rts = 0;
|
|
const int max_rt = FRAG_RESULT_DATA7 - FRAG_RESULT_DATA0 + 1;
|
|
struct anv_pipeline_binding rt_bindings[max_rt];
|
|
nir_function_impl *impl = nir_shader_get_entrypoint(stage->nir);
|
|
int rt_to_bindings[max_rt];
|
|
memset(rt_to_bindings, -1, sizeof(rt_to_bindings));
|
|
bool rt_used[max_rt];
|
|
memset(rt_used, 0, sizeof(rt_used));
|
|
|
|
/* Flag used render targets */
|
|
nir_foreach_variable_safe(var, &stage->nir->outputs) {
|
|
if (var->data.location < FRAG_RESULT_DATA0)
|
|
continue;
|
|
|
|
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
|
|
/* Unused or out-of-bounds */
|
|
if (rt >= MAX_RTS || !(stage->key.wm.color_outputs_valid & (1 << rt)))
|
|
continue;
|
|
|
|
const unsigned array_len =
|
|
glsl_type_is_array(var->type) ? glsl_get_length(var->type) : 1;
|
|
assert(rt + array_len <= max_rt);
|
|
|
|
for (unsigned i = 0; i < array_len; i++)
|
|
rt_used[rt + i] = true;
|
|
}
|
|
|
|
/* Set new, compacted, location */
|
|
for (unsigned i = 0; i < max_rt; i++) {
|
|
if (!rt_used[i])
|
|
continue;
|
|
|
|
rt_to_bindings[i] = num_rts;
|
|
rt_bindings[rt_to_bindings[i]] = (struct anv_pipeline_binding) {
|
|
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
|
|
.binding = 0,
|
|
.index = i,
|
|
};
|
|
num_rts++;
|
|
}
|
|
|
|
bool deleted_output = false;
|
|
nir_foreach_variable_safe(var, &stage->nir->outputs) {
|
|
if (var->data.location < FRAG_RESULT_DATA0)
|
|
continue;
|
|
|
|
const unsigned rt = var->data.location - FRAG_RESULT_DATA0;
|
|
if (rt >= MAX_RTS ||
|
|
!(stage->key.wm.color_outputs_valid & (1 << rt))) {
|
|
/* Unused or out-of-bounds, throw it away */
|
|
deleted_output = true;
|
|
var->data.mode = nir_var_function_temp;
|
|
exec_node_remove(&var->node);
|
|
exec_list_push_tail(&impl->locals, &var->node);
|
|
continue;
|
|
}
|
|
|
|
/* Give it the new location */
|
|
assert(rt_to_bindings[rt] != -1);
|
|
var->data.location = rt_to_bindings[rt] + FRAG_RESULT_DATA0;
|
|
}
|
|
|
|
if (deleted_output)
|
|
nir_fixup_deref_modes(stage->nir);
|
|
|
|
if (num_rts == 0) {
|
|
/* If we have no render targets, we need a null render target */
|
|
rt_bindings[0] = (struct anv_pipeline_binding) {
|
|
.set = ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS,
|
|
.binding = 0,
|
|
.index = UINT32_MAX,
|
|
};
|
|
num_rts = 1;
|
|
}
|
|
|
|
/* Now that we've determined the actual number of render targets, adjust
|
|
* the key accordingly.
|
|
*/
|
|
stage->key.wm.nr_color_regions = num_rts;
|
|
stage->key.wm.color_outputs_valid = (1 << num_rts) - 1;
|
|
|
|
assert(num_rts <= max_rt);
|
|
assert(stage->bind_map.surface_count == 0);
|
|
typed_memcpy(stage->bind_map.surface_to_descriptor,
|
|
rt_bindings, num_rts);
|
|
stage->bind_map.surface_count += num_rts;
|
|
}
|
|
|
|
static const unsigned *
|
|
anv_pipeline_compile_fs(const struct brw_compiler *compiler,
|
|
void *mem_ctx,
|
|
struct anv_device *device,
|
|
struct anv_pipeline_stage *fs_stage,
|
|
struct anv_pipeline_stage *prev_stage)
|
|
{
|
|
/* TODO: we could set this to 0 based on the information in nir_shader, but
|
|
* we need this before we call spirv_to_nir.
|
|
*/
|
|
assert(prev_stage);
|
|
fs_stage->key.wm.input_slots_valid =
|
|
prev_stage->prog_data.vue.vue_map.slots_valid;
|
|
|
|
const unsigned *code =
|
|
brw_compile_fs(compiler, device, mem_ctx, &fs_stage->key.wm,
|
|
&fs_stage->prog_data.wm, fs_stage->nir,
|
|
NULL, -1, -1, -1, true, false, NULL, NULL);
|
|
|
|
if (fs_stage->key.wm.nr_color_regions == 0 &&
|
|
!fs_stage->prog_data.wm.has_side_effects &&
|
|
!fs_stage->prog_data.wm.uses_kill &&
|
|
fs_stage->prog_data.wm.computed_depth_mode == BRW_PSCDEPTH_OFF &&
|
|
!fs_stage->prog_data.wm.computed_stencil) {
|
|
/* This fragment shader has no outputs and no side effects. Go ahead
|
|
* and return the code pointer so we don't accidentally think the
|
|
* compile failed but zero out prog_data which will set program_size to
|
|
* zero and disable the stage.
|
|
*/
|
|
memset(&fs_stage->prog_data, 0, sizeof(fs_stage->prog_data));
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
static VkResult
|
|
anv_pipeline_compile_graphics(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_cache *cache,
|
|
const VkGraphicsPipelineCreateInfo *info)
|
|
{
|
|
VkPipelineCreationFeedbackEXT pipeline_feedback = {
|
|
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
|
|
};
|
|
int64_t pipeline_start = os_time_get_nano();
|
|
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
struct anv_pipeline_stage stages[MESA_SHADER_STAGES] = {};
|
|
|
|
pipeline->active_stages = 0;
|
|
|
|
VkResult result;
|
|
for (uint32_t i = 0; i < info->stageCount; i++) {
|
|
const VkPipelineShaderStageCreateInfo *sinfo = &info->pStages[i];
|
|
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
|
|
|
|
pipeline->active_stages |= sinfo->stage;
|
|
|
|
int64_t stage_start = os_time_get_nano();
|
|
|
|
stages[stage].stage = stage;
|
|
stages[stage].module = anv_shader_module_from_handle(sinfo->module);
|
|
stages[stage].entrypoint = sinfo->pName;
|
|
stages[stage].spec_info = sinfo->pSpecializationInfo;
|
|
anv_pipeline_hash_shader(stages[stage].module,
|
|
stages[stage].entrypoint,
|
|
stage,
|
|
stages[stage].spec_info,
|
|
stages[stage].shader_sha1);
|
|
|
|
const struct gen_device_info *devinfo = &pipeline->device->info;
|
|
switch (stage) {
|
|
case MESA_SHADER_VERTEX:
|
|
populate_vs_prog_key(devinfo, &stages[stage].key.vs);
|
|
break;
|
|
case MESA_SHADER_TESS_CTRL:
|
|
populate_tcs_prog_key(devinfo,
|
|
info->pTessellationState->patchControlPoints,
|
|
&stages[stage].key.tcs);
|
|
break;
|
|
case MESA_SHADER_TESS_EVAL:
|
|
populate_tes_prog_key(devinfo, &stages[stage].key.tes);
|
|
break;
|
|
case MESA_SHADER_GEOMETRY:
|
|
populate_gs_prog_key(devinfo, &stages[stage].key.gs);
|
|
break;
|
|
case MESA_SHADER_FRAGMENT:
|
|
populate_wm_prog_key(devinfo, pipeline->subpass,
|
|
info->pMultisampleState,
|
|
&stages[stage].key.wm);
|
|
break;
|
|
default:
|
|
unreachable("Invalid graphics shader stage");
|
|
}
|
|
|
|
stages[stage].feedback.duration += os_time_get_nano() - stage_start;
|
|
stages[stage].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT;
|
|
}
|
|
|
|
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)
|
|
pipeline->active_stages |= VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
|
|
|
|
assert(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT);
|
|
|
|
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
|
|
|
|
unsigned char sha1[20];
|
|
anv_pipeline_hash_graphics(pipeline, layout, stages, sha1);
|
|
|
|
unsigned found = 0;
|
|
unsigned cache_hits = 0;
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
if (!stages[s].entrypoint)
|
|
continue;
|
|
|
|
int64_t stage_start = os_time_get_nano();
|
|
|
|
stages[s].cache_key.stage = s;
|
|
memcpy(stages[s].cache_key.sha1, sha1, sizeof(sha1));
|
|
|
|
bool cache_hit;
|
|
struct anv_shader_bin *bin =
|
|
anv_device_search_for_kernel(pipeline->device, cache,
|
|
&stages[s].cache_key,
|
|
sizeof(stages[s].cache_key), &cache_hit);
|
|
if (bin) {
|
|
found++;
|
|
pipeline->shaders[s] = bin;
|
|
}
|
|
|
|
if (cache_hit) {
|
|
cache_hits++;
|
|
stages[s].feedback.flags |=
|
|
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
|
|
}
|
|
stages[s].feedback.duration += os_time_get_nano() - stage_start;
|
|
}
|
|
|
|
if (found == __builtin_popcount(pipeline->active_stages)) {
|
|
if (cache_hits == found) {
|
|
pipeline_feedback.flags |=
|
|
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
|
|
}
|
|
/* We found all our shaders in the cache. We're done. */
|
|
goto done;
|
|
} else if (found > 0) {
|
|
/* We found some but not all of our shaders. This shouldn't happen
|
|
* most of the time but it can if we have a partially populated
|
|
* pipeline cache.
|
|
*/
|
|
assert(found < __builtin_popcount(pipeline->active_stages));
|
|
|
|
vk_debug_report(&pipeline->device->instance->debug_report_callbacks,
|
|
VK_DEBUG_REPORT_WARNING_BIT_EXT |
|
|
VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT,
|
|
VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT,
|
|
(uint64_t)(uintptr_t)cache,
|
|
0, 0, "anv",
|
|
"Found a partial pipeline in the cache. This is "
|
|
"most likely caused by an incomplete pipeline cache "
|
|
"import or export");
|
|
|
|
/* We're going to have to recompile anyway, so just throw away our
|
|
* references to the shaders in the cache. We'll get them out of the
|
|
* cache again as part of the compilation process.
|
|
*/
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
stages[s].feedback.flags = 0;
|
|
if (pipeline->shaders[s]) {
|
|
anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
|
|
pipeline->shaders[s] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void *pipeline_ctx = ralloc_context(NULL);
|
|
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
if (!stages[s].entrypoint)
|
|
continue;
|
|
|
|
int64_t stage_start = os_time_get_nano();
|
|
|
|
assert(stages[s].stage == s);
|
|
assert(pipeline->shaders[s] == NULL);
|
|
|
|
stages[s].bind_map = (struct anv_pipeline_bind_map) {
|
|
.surface_to_descriptor = stages[s].surface_to_descriptor,
|
|
.sampler_to_descriptor = stages[s].sampler_to_descriptor
|
|
};
|
|
|
|
stages[s].nir = anv_pipeline_stage_get_nir(pipeline, cache,
|
|
pipeline_ctx,
|
|
&stages[s]);
|
|
if (stages[s].nir == NULL) {
|
|
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail;
|
|
}
|
|
|
|
stages[s].feedback.duration += os_time_get_nano() - stage_start;
|
|
}
|
|
|
|
/* Walk backwards to link */
|
|
struct anv_pipeline_stage *next_stage = NULL;
|
|
for (int s = MESA_SHADER_STAGES - 1; s >= 0; s--) {
|
|
if (!stages[s].entrypoint)
|
|
continue;
|
|
|
|
switch (s) {
|
|
case MESA_SHADER_VERTEX:
|
|
anv_pipeline_link_vs(compiler, &stages[s], next_stage);
|
|
break;
|
|
case MESA_SHADER_TESS_CTRL:
|
|
anv_pipeline_link_tcs(compiler, &stages[s], next_stage);
|
|
break;
|
|
case MESA_SHADER_TESS_EVAL:
|
|
anv_pipeline_link_tes(compiler, &stages[s], next_stage);
|
|
break;
|
|
case MESA_SHADER_GEOMETRY:
|
|
anv_pipeline_link_gs(compiler, &stages[s], next_stage);
|
|
break;
|
|
case MESA_SHADER_FRAGMENT:
|
|
anv_pipeline_link_fs(compiler, &stages[s]);
|
|
break;
|
|
default:
|
|
unreachable("Invalid graphics shader stage");
|
|
}
|
|
|
|
next_stage = &stages[s];
|
|
}
|
|
|
|
struct anv_pipeline_stage *prev_stage = NULL;
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
if (!stages[s].entrypoint)
|
|
continue;
|
|
|
|
int64_t stage_start = os_time_get_nano();
|
|
|
|
void *stage_ctx = ralloc_context(NULL);
|
|
|
|
nir_xfb_info *xfb_info = NULL;
|
|
if (s == MESA_SHADER_VERTEX ||
|
|
s == MESA_SHADER_TESS_EVAL ||
|
|
s == MESA_SHADER_GEOMETRY)
|
|
xfb_info = nir_gather_xfb_info(stages[s].nir, stage_ctx);
|
|
|
|
anv_pipeline_lower_nir(pipeline, stage_ctx, &stages[s], layout);
|
|
|
|
const unsigned *code;
|
|
switch (s) {
|
|
case MESA_SHADER_VERTEX:
|
|
code = anv_pipeline_compile_vs(compiler, stage_ctx, pipeline->device,
|
|
&stages[s]);
|
|
break;
|
|
case MESA_SHADER_TESS_CTRL:
|
|
code = anv_pipeline_compile_tcs(compiler, stage_ctx, pipeline->device,
|
|
&stages[s], prev_stage);
|
|
break;
|
|
case MESA_SHADER_TESS_EVAL:
|
|
code = anv_pipeline_compile_tes(compiler, stage_ctx, pipeline->device,
|
|
&stages[s], prev_stage);
|
|
break;
|
|
case MESA_SHADER_GEOMETRY:
|
|
code = anv_pipeline_compile_gs(compiler, stage_ctx, pipeline->device,
|
|
&stages[s], prev_stage);
|
|
break;
|
|
case MESA_SHADER_FRAGMENT:
|
|
code = anv_pipeline_compile_fs(compiler, stage_ctx, pipeline->device,
|
|
&stages[s], prev_stage);
|
|
break;
|
|
default:
|
|
unreachable("Invalid graphics shader stage");
|
|
}
|
|
if (code == NULL) {
|
|
ralloc_free(stage_ctx);
|
|
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail;
|
|
}
|
|
|
|
struct anv_shader_bin *bin =
|
|
anv_device_upload_kernel(pipeline->device, cache,
|
|
&stages[s].cache_key,
|
|
sizeof(stages[s].cache_key),
|
|
code, stages[s].prog_data.base.program_size,
|
|
stages[s].nir->constant_data,
|
|
stages[s].nir->constant_data_size,
|
|
&stages[s].prog_data.base,
|
|
brw_prog_data_size(s),
|
|
xfb_info, &stages[s].bind_map);
|
|
if (!bin) {
|
|
ralloc_free(stage_ctx);
|
|
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail;
|
|
}
|
|
|
|
pipeline->shaders[s] = bin;
|
|
ralloc_free(stage_ctx);
|
|
|
|
stages[s].feedback.duration += os_time_get_nano() - stage_start;
|
|
|
|
prev_stage = &stages[s];
|
|
}
|
|
|
|
ralloc_free(pipeline_ctx);
|
|
|
|
done:
|
|
|
|
if (pipeline->shaders[MESA_SHADER_FRAGMENT] &&
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT]->prog_data->program_size == 0) {
|
|
/* This can happen if we decided to implicitly disable the fragment
|
|
* shader. See anv_pipeline_compile_fs().
|
|
*/
|
|
anv_shader_bin_unref(pipeline->device,
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT]);
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT] = NULL;
|
|
pipeline->active_stages &= ~VK_SHADER_STAGE_FRAGMENT_BIT;
|
|
}
|
|
|
|
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
|
|
|
|
const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
|
|
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
|
|
if (create_feedback) {
|
|
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
|
|
|
|
assert(info->stageCount == create_feedback->pipelineStageCreationFeedbackCount);
|
|
for (uint32_t i = 0; i < info->stageCount; i++) {
|
|
gl_shader_stage s = vk_to_mesa_shader_stage(info->pStages[i].stage);
|
|
create_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
ralloc_free(pipeline_ctx);
|
|
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
if (pipeline->shaders[s])
|
|
anv_shader_bin_unref(pipeline->device, pipeline->shaders[s]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult
|
|
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_cache *cache,
|
|
const VkComputePipelineCreateInfo *info,
|
|
const struct anv_shader_module *module,
|
|
const char *entrypoint,
|
|
const VkSpecializationInfo *spec_info)
|
|
{
|
|
VkPipelineCreationFeedbackEXT pipeline_feedback = {
|
|
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
|
|
};
|
|
int64_t pipeline_start = os_time_get_nano();
|
|
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
|
|
struct anv_pipeline_stage stage = {
|
|
.stage = MESA_SHADER_COMPUTE,
|
|
.module = module,
|
|
.entrypoint = entrypoint,
|
|
.spec_info = spec_info,
|
|
.cache_key = {
|
|
.stage = MESA_SHADER_COMPUTE,
|
|
},
|
|
.feedback = {
|
|
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT_EXT,
|
|
},
|
|
};
|
|
anv_pipeline_hash_shader(stage.module,
|
|
stage.entrypoint,
|
|
MESA_SHADER_COMPUTE,
|
|
stage.spec_info,
|
|
stage.shader_sha1);
|
|
|
|
struct anv_shader_bin *bin = NULL;
|
|
|
|
populate_cs_prog_key(&pipeline->device->info, &stage.key.cs);
|
|
|
|
ANV_FROM_HANDLE(anv_pipeline_layout, layout, info->layout);
|
|
|
|
anv_pipeline_hash_compute(pipeline, layout, &stage, stage.cache_key.sha1);
|
|
bool cache_hit;
|
|
bin = anv_device_search_for_kernel(pipeline->device, cache, &stage.cache_key,
|
|
sizeof(stage.cache_key), &cache_hit);
|
|
|
|
if (bin == NULL) {
|
|
int64_t stage_start = os_time_get_nano();
|
|
|
|
stage.bind_map = (struct anv_pipeline_bind_map) {
|
|
.surface_to_descriptor = stage.surface_to_descriptor,
|
|
.sampler_to_descriptor = stage.sampler_to_descriptor
|
|
};
|
|
|
|
/* Set up a binding for the gl_NumWorkGroups */
|
|
stage.bind_map.surface_count = 1;
|
|
stage.bind_map.surface_to_descriptor[0] = (struct anv_pipeline_binding) {
|
|
.set = ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS,
|
|
};
|
|
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
stage.nir = anv_pipeline_stage_get_nir(pipeline, cache, mem_ctx, &stage);
|
|
if (stage.nir == NULL) {
|
|
ralloc_free(mem_ctx);
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
anv_pipeline_lower_nir(pipeline, mem_ctx, &stage, layout);
|
|
|
|
NIR_PASS_V(stage.nir, anv_nir_add_base_work_group_id,
|
|
&stage.prog_data.cs);
|
|
|
|
const unsigned *shader_code =
|
|
brw_compile_cs(compiler, pipeline->device, mem_ctx, &stage.key.cs,
|
|
&stage.prog_data.cs, stage.nir, -1, NULL);
|
|
if (shader_code == NULL) {
|
|
ralloc_free(mem_ctx);
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
const unsigned code_size = stage.prog_data.base.program_size;
|
|
bin = anv_device_upload_kernel(pipeline->device, cache,
|
|
&stage.cache_key, sizeof(stage.cache_key),
|
|
shader_code, code_size,
|
|
stage.nir->constant_data,
|
|
stage.nir->constant_data_size,
|
|
&stage.prog_data.base,
|
|
sizeof(stage.prog_data.cs),
|
|
NULL, &stage.bind_map);
|
|
if (!bin) {
|
|
ralloc_free(mem_ctx);
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
ralloc_free(mem_ctx);
|
|
|
|
stage.feedback.duration = os_time_get_nano() - stage_start;
|
|
}
|
|
|
|
if (cache_hit) {
|
|
stage.feedback.flags |=
|
|
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
|
|
pipeline_feedback.flags |=
|
|
VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT_EXT;
|
|
}
|
|
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
|
|
|
|
const VkPipelineCreationFeedbackCreateInfoEXT *create_feedback =
|
|
vk_find_struct_const(info->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO_EXT);
|
|
if (create_feedback) {
|
|
*create_feedback->pPipelineCreationFeedback = pipeline_feedback;
|
|
|
|
assert(create_feedback->pipelineStageCreationFeedbackCount == 1);
|
|
create_feedback->pPipelineStageCreationFeedbacks[0] = stage.feedback;
|
|
}
|
|
|
|
pipeline->active_stages = VK_SHADER_STAGE_COMPUTE_BIT;
|
|
pipeline->shaders[MESA_SHADER_COMPUTE] = bin;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* Copy pipeline state not marked as dynamic.
|
|
* Dynamic state is pipeline state which hasn't been provided at pipeline
|
|
* creation time, but is dynamically provided afterwards using various
|
|
* vkCmdSet* functions.
|
|
*
|
|
* The set of state considered "non_dynamic" is determined by the pieces of
|
|
* state that have their corresponding VkDynamicState enums omitted from
|
|
* VkPipelineDynamicStateCreateInfo::pDynamicStates.
|
|
*
|
|
* @param[out] pipeline Destination non_dynamic state.
|
|
* @param[in] pCreateInfo Source of non_dynamic state to be copied.
|
|
*/
|
|
static void
|
|
copy_non_dynamic_state(struct anv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo)
|
|
{
|
|
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
|
|
struct anv_subpass *subpass = pipeline->subpass;
|
|
|
|
pipeline->dynamic_state = default_dynamic_state;
|
|
|
|
if (pCreateInfo->pDynamicState) {
|
|
/* Remove all of the states that are marked as dynamic */
|
|
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
|
|
for (uint32_t s = 0; s < count; s++)
|
|
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
|
|
}
|
|
|
|
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
|
|
|
|
/* Section 9.2 of the Vulkan 1.0.15 spec says:
|
|
*
|
|
* pViewportState is [...] NULL if the pipeline
|
|
* has rasterization disabled.
|
|
*/
|
|
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
|
|
assert(pCreateInfo->pViewportState);
|
|
|
|
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
|
|
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
|
|
typed_memcpy(dynamic->viewport.viewports,
|
|
pCreateInfo->pViewportState->pViewports,
|
|
pCreateInfo->pViewportState->viewportCount);
|
|
}
|
|
|
|
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
|
|
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
|
|
typed_memcpy(dynamic->scissor.scissors,
|
|
pCreateInfo->pViewportState->pScissors,
|
|
pCreateInfo->pViewportState->scissorCount);
|
|
}
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
|
|
assert(pCreateInfo->pRasterizationState);
|
|
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
|
|
assert(pCreateInfo->pRasterizationState);
|
|
dynamic->depth_bias.bias =
|
|
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
|
|
dynamic->depth_bias.clamp =
|
|
pCreateInfo->pRasterizationState->depthBiasClamp;
|
|
dynamic->depth_bias.slope =
|
|
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
|
|
}
|
|
|
|
/* Section 9.2 of the Vulkan 1.0.15 spec says:
|
|
*
|
|
* pColorBlendState is [...] NULL if the pipeline has rasterization
|
|
* disabled or if the subpass of the render pass the pipeline is
|
|
* created against does not use any color attachments.
|
|
*/
|
|
bool uses_color_att = false;
|
|
for (unsigned i = 0; i < subpass->color_count; ++i) {
|
|
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
|
|
uses_color_att = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (uses_color_att &&
|
|
!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
|
|
assert(pCreateInfo->pColorBlendState);
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
|
|
typed_memcpy(dynamic->blend_constants,
|
|
pCreateInfo->pColorBlendState->blendConstants, 4);
|
|
}
|
|
|
|
/* If there is no depthstencil attachment, then don't read
|
|
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
|
|
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
|
|
* no need to override the depthstencil defaults in
|
|
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
|
|
*
|
|
* Section 9.2 of the Vulkan 1.0.15 spec says:
|
|
*
|
|
* pDepthStencilState is [...] NULL if the pipeline has rasterization
|
|
* disabled or if the subpass of the render pass the pipeline is created
|
|
* against does not use a depth/stencil attachment.
|
|
*/
|
|
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
|
|
subpass->depth_stencil_attachment) {
|
|
assert(pCreateInfo->pDepthStencilState);
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
|
|
dynamic->depth_bounds.min =
|
|
pCreateInfo->pDepthStencilState->minDepthBounds;
|
|
dynamic->depth_bounds.max =
|
|
pCreateInfo->pDepthStencilState->maxDepthBounds;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
|
|
dynamic->stencil_compare_mask.front =
|
|
pCreateInfo->pDepthStencilState->front.compareMask;
|
|
dynamic->stencil_compare_mask.back =
|
|
pCreateInfo->pDepthStencilState->back.compareMask;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
|
|
dynamic->stencil_write_mask.front =
|
|
pCreateInfo->pDepthStencilState->front.writeMask;
|
|
dynamic->stencil_write_mask.back =
|
|
pCreateInfo->pDepthStencilState->back.writeMask;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
|
|
dynamic->stencil_reference.front =
|
|
pCreateInfo->pDepthStencilState->front.reference;
|
|
dynamic->stencil_reference.back =
|
|
pCreateInfo->pDepthStencilState->back.reference;
|
|
}
|
|
}
|
|
|
|
pipeline->dynamic_state_mask = states;
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
|
|
{
|
|
#ifdef DEBUG
|
|
struct anv_render_pass *renderpass = NULL;
|
|
struct anv_subpass *subpass = NULL;
|
|
|
|
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
|
|
* present. See the Vulkan 1.0.28 spec, Section 9.2 Graphics Pipelines.
|
|
*/
|
|
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
|
|
|
|
renderpass = anv_render_pass_from_handle(info->renderPass);
|
|
assert(renderpass);
|
|
|
|
assert(info->subpass < renderpass->subpass_count);
|
|
subpass = &renderpass->subpasses[info->subpass];
|
|
|
|
assert(info->stageCount >= 1);
|
|
assert(info->pVertexInputState);
|
|
assert(info->pInputAssemblyState);
|
|
assert(info->pRasterizationState);
|
|
if (!info->pRasterizationState->rasterizerDiscardEnable) {
|
|
assert(info->pViewportState);
|
|
assert(info->pMultisampleState);
|
|
|
|
if (subpass && subpass->depth_stencil_attachment)
|
|
assert(info->pDepthStencilState);
|
|
|
|
if (subpass && subpass->color_count > 0) {
|
|
bool all_color_unused = true;
|
|
for (int i = 0; i < subpass->color_count; i++) {
|
|
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED)
|
|
all_color_unused = false;
|
|
}
|
|
/* pColorBlendState is ignored if the pipeline has rasterization
|
|
* disabled or if the subpass of the render pass the pipeline is
|
|
* created against does not use any color attachments.
|
|
*/
|
|
assert(info->pColorBlendState || all_color_unused);
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < info->stageCount; ++i) {
|
|
switch (info->pStages[i].stage) {
|
|
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
|
|
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
|
|
assert(info->pTessellationState);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Calculate the desired L3 partitioning based on the current state of the
|
|
* pipeline. For now this simply returns the conservative defaults calculated
|
|
* by get_default_l3_weights(), but we could probably do better by gathering
|
|
* more statistics from the pipeline state (e.g. guess of expected URB usage
|
|
* and bound surfaces), or by using feed-back from performance counters.
|
|
*/
|
|
void
|
|
anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm)
|
|
{
|
|
const struct gen_device_info *devinfo = &pipeline->device->info;
|
|
|
|
const struct gen_l3_weights w =
|
|
gen_get_default_l3_weights(devinfo, pipeline->needs_data_cache, needs_slm);
|
|
|
|
pipeline->urb.l3_config = gen_get_l3_config(devinfo, w);
|
|
pipeline->urb.total_size =
|
|
gen_get_l3_config_urb_size(devinfo, pipeline->urb.l3_config);
|
|
}
|
|
|
|
VkResult
|
|
anv_pipeline_init(struct anv_pipeline *pipeline,
|
|
struct anv_device *device,
|
|
struct anv_pipeline_cache *cache,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo,
|
|
const VkAllocationCallbacks *alloc)
|
|
{
|
|
VkResult result;
|
|
|
|
anv_pipeline_validate_create_info(pCreateInfo);
|
|
|
|
if (alloc == NULL)
|
|
alloc = &device->alloc;
|
|
|
|
pipeline->device = device;
|
|
|
|
ANV_FROM_HANDLE(anv_render_pass, render_pass, pCreateInfo->renderPass);
|
|
assert(pCreateInfo->subpass < render_pass->subpass_count);
|
|
pipeline->subpass = &render_pass->subpasses[pCreateInfo->subpass];
|
|
|
|
result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
pipeline->batch.alloc = alloc;
|
|
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
|
|
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
|
|
pipeline->batch.relocs = &pipeline->batch_relocs;
|
|
pipeline->batch.status = VK_SUCCESS;
|
|
|
|
copy_non_dynamic_state(pipeline, pCreateInfo);
|
|
pipeline->depth_clamp_enable = pCreateInfo->pRasterizationState &&
|
|
pCreateInfo->pRasterizationState->depthClampEnable;
|
|
|
|
/* Previously we enabled depth clipping when !depthClampEnable.
|
|
* DepthClipStateCreateInfo now makes depth clipping explicit so if the
|
|
* clipping info is available, use its enable value to determine clipping,
|
|
* otherwise fallback to the previous !depthClampEnable logic.
|
|
*/
|
|
const VkPipelineRasterizationDepthClipStateCreateInfoEXT *clip_info =
|
|
vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
|
|
PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT);
|
|
pipeline->depth_clip_enable = clip_info ? clip_info->depthClipEnable : !pipeline->depth_clamp_enable;
|
|
|
|
pipeline->sample_shading_enable = pCreateInfo->pMultisampleState &&
|
|
pCreateInfo->pMultisampleState->sampleShadingEnable;
|
|
|
|
pipeline->needs_data_cache = false;
|
|
|
|
/* When we free the pipeline, we detect stages based on the NULL status
|
|
* of various prog_data pointers. Make them NULL by default.
|
|
*/
|
|
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
|
|
|
|
result = anv_pipeline_compile_graphics(pipeline, cache, pCreateInfo);
|
|
if (result != VK_SUCCESS) {
|
|
anv_reloc_list_finish(&pipeline->batch_relocs, alloc);
|
|
return result;
|
|
}
|
|
|
|
assert(pipeline->shaders[MESA_SHADER_VERTEX]);
|
|
|
|
anv_pipeline_setup_l3_config(pipeline, false);
|
|
|
|
const VkPipelineVertexInputStateCreateInfo *vi_info =
|
|
pCreateInfo->pVertexInputState;
|
|
|
|
const uint64_t inputs_read = get_vs_prog_data(pipeline)->inputs_read;
|
|
|
|
pipeline->vb_used = 0;
|
|
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
|
|
const VkVertexInputAttributeDescription *desc =
|
|
&vi_info->pVertexAttributeDescriptions[i];
|
|
|
|
if (inputs_read & (1ull << (VERT_ATTRIB_GENERIC0 + desc->location)))
|
|
pipeline->vb_used |= 1 << desc->binding;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
|
|
const VkVertexInputBindingDescription *desc =
|
|
&vi_info->pVertexBindingDescriptions[i];
|
|
|
|
pipeline->vb[desc->binding].stride = desc->stride;
|
|
|
|
/* Step rate is programmed per vertex element (attribute), not
|
|
* binding. Set up a map of which bindings step per instance, for
|
|
* reference by vertex element setup. */
|
|
switch (desc->inputRate) {
|
|
default:
|
|
case VK_VERTEX_INPUT_RATE_VERTEX:
|
|
pipeline->vb[desc->binding].instanced = false;
|
|
break;
|
|
case VK_VERTEX_INPUT_RATE_INSTANCE:
|
|
pipeline->vb[desc->binding].instanced = true;
|
|
break;
|
|
}
|
|
|
|
pipeline->vb[desc->binding].instance_divisor = 1;
|
|
}
|
|
|
|
const VkPipelineVertexInputDivisorStateCreateInfoEXT *vi_div_state =
|
|
vk_find_struct_const(vi_info->pNext,
|
|
PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT);
|
|
if (vi_div_state) {
|
|
for (uint32_t i = 0; i < vi_div_state->vertexBindingDivisorCount; i++) {
|
|
const VkVertexInputBindingDivisorDescriptionEXT *desc =
|
|
&vi_div_state->pVertexBindingDivisors[i];
|
|
|
|
pipeline->vb[desc->binding].instance_divisor = desc->divisor;
|
|
}
|
|
}
|
|
|
|
/* Our implementation of VK_KHR_multiview uses instancing to draw the
|
|
* different views. If the client asks for instancing, we need to multiply
|
|
* the instance divisor by the number of views ensure that we repeat the
|
|
* client's per-instance data once for each view.
|
|
*/
|
|
if (pipeline->subpass->view_mask) {
|
|
const uint32_t view_count = anv_subpass_view_count(pipeline->subpass);
|
|
for (uint32_t vb = 0; vb < MAX_VBS; vb++) {
|
|
if (pipeline->vb[vb].instanced)
|
|
pipeline->vb[vb].instance_divisor *= view_count;
|
|
}
|
|
}
|
|
|
|
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
|
|
pCreateInfo->pInputAssemblyState;
|
|
const VkPipelineTessellationStateCreateInfo *tess_info =
|
|
pCreateInfo->pTessellationState;
|
|
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
|
|
|
|
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
|
|
pipeline->topology = _3DPRIM_PATCHLIST(tess_info->patchControlPoints);
|
|
else
|
|
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
|
|
|
|
return VK_SUCCESS;
|
|
}
|