
Parameterize build_asin() on the fit coefficients so the implementation can be shared while still using different polynomials for asin and acos. Also switch back to implementing acos in terms of asin -- The improvement obtained from cancelling out the pi/2 terms was negligible compared to the approximation error.
673 lines
24 KiB
C
673 lines
24 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Jason Ekstrand (jason@jlekstrand.net)
|
|
*
|
|
*/
|
|
|
|
#include "vtn_private.h"
|
|
#include "GLSL.std.450.h"
|
|
|
|
#define M_PIf ((float) M_PI)
|
|
#define M_PI_2f ((float) M_PI_2)
|
|
#define M_PI_4f ((float) M_PI_4)
|
|
|
|
static nir_ssa_def *
|
|
build_mat2_det(nir_builder *b, nir_ssa_def *col[2])
|
|
{
|
|
unsigned swiz[4] = {1, 0, 0, 0};
|
|
nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2, true));
|
|
return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1));
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
build_mat3_det(nir_builder *b, nir_ssa_def *col[3])
|
|
{
|
|
unsigned yzx[4] = {1, 2, 0, 0};
|
|
unsigned zxy[4] = {2, 0, 1, 0};
|
|
|
|
nir_ssa_def *prod0 =
|
|
nir_fmul(b, col[0],
|
|
nir_fmul(b, nir_swizzle(b, col[1], yzx, 3, true),
|
|
nir_swizzle(b, col[2], zxy, 3, true)));
|
|
nir_ssa_def *prod1 =
|
|
nir_fmul(b, col[0],
|
|
nir_fmul(b, nir_swizzle(b, col[1], zxy, 3, true),
|
|
nir_swizzle(b, col[2], yzx, 3, true)));
|
|
|
|
nir_ssa_def *diff = nir_fsub(b, prod0, prod1);
|
|
|
|
return nir_fadd(b, nir_channel(b, diff, 0),
|
|
nir_fadd(b, nir_channel(b, diff, 1),
|
|
nir_channel(b, diff, 2)));
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
build_mat4_det(nir_builder *b, nir_ssa_def **col)
|
|
{
|
|
nir_ssa_def *subdet[4];
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
unsigned swiz[3];
|
|
for (unsigned j = 0, k = 0; j < 3; j++, k++) {
|
|
if (k == i)
|
|
k++; /* skip column */
|
|
swiz[j] = k;
|
|
}
|
|
|
|
nir_ssa_def *subcol[3];
|
|
subcol[0] = nir_swizzle(b, col[1], swiz, 3, true);
|
|
subcol[1] = nir_swizzle(b, col[2], swiz, 3, true);
|
|
subcol[2] = nir_swizzle(b, col[3], swiz, 3, true);
|
|
|
|
subdet[i] = build_mat3_det(b, subcol);
|
|
}
|
|
|
|
nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4));
|
|
|
|
return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0),
|
|
nir_channel(b, prod, 1)),
|
|
nir_fsub(b, nir_channel(b, prod, 2),
|
|
nir_channel(b, prod, 3)));
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src)
|
|
{
|
|
unsigned size = glsl_get_vector_elements(src->type);
|
|
|
|
nir_ssa_def *cols[4];
|
|
for (unsigned i = 0; i < size; i++)
|
|
cols[i] = src->elems[i]->def;
|
|
|
|
switch(size) {
|
|
case 2: return build_mat2_det(&b->nb, cols);
|
|
case 3: return build_mat3_det(&b->nb, cols);
|
|
case 4: return build_mat4_det(&b->nb, cols);
|
|
default:
|
|
unreachable("Invalid matrix size");
|
|
}
|
|
}
|
|
|
|
/* Computes the determinate of the submatrix given by taking src and
|
|
* removing the specified row and column.
|
|
*/
|
|
static nir_ssa_def *
|
|
build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src,
|
|
unsigned size, unsigned row, unsigned col)
|
|
{
|
|
assert(row < size && col < size);
|
|
if (size == 2) {
|
|
return nir_channel(b, src->elems[1 - col]->def, 1 - row);
|
|
} else {
|
|
/* Swizzle to get all but the specified row */
|
|
unsigned swiz[3];
|
|
for (unsigned j = 0; j < 4; j++)
|
|
swiz[j - (j > row)] = j;
|
|
|
|
/* Grab all but the specified column */
|
|
nir_ssa_def *subcol[3];
|
|
for (unsigned j = 0; j < size; j++) {
|
|
if (j != col) {
|
|
subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def,
|
|
swiz, size - 1, true);
|
|
}
|
|
}
|
|
|
|
if (size == 3) {
|
|
return build_mat2_det(b, subcol);
|
|
} else {
|
|
assert(size == 4);
|
|
return build_mat3_det(b, subcol);
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct vtn_ssa_value *
|
|
matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src)
|
|
{
|
|
nir_ssa_def *adj_col[4];
|
|
unsigned size = glsl_get_vector_elements(src->type);
|
|
|
|
/* Build up an adjugate matrix */
|
|
for (unsigned c = 0; c < size; c++) {
|
|
nir_ssa_def *elem[4];
|
|
for (unsigned r = 0; r < size; r++) {
|
|
elem[r] = build_mat_subdet(&b->nb, src, size, c, r);
|
|
|
|
if ((r + c) % 2)
|
|
elem[r] = nir_fneg(&b->nb, elem[r]);
|
|
}
|
|
|
|
adj_col[c] = nir_vec(&b->nb, elem, size);
|
|
}
|
|
|
|
nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src));
|
|
|
|
struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type);
|
|
for (unsigned i = 0; i < size; i++)
|
|
val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv);
|
|
|
|
return val;
|
|
}
|
|
|
|
static nir_ssa_def*
|
|
build_length(nir_builder *b, nir_ssa_def *vec)
|
|
{
|
|
switch (vec->num_components) {
|
|
case 1: return nir_fsqrt(b, nir_fmul(b, vec, vec));
|
|
case 2: return nir_fsqrt(b, nir_fdot2(b, vec, vec));
|
|
case 3: return nir_fsqrt(b, nir_fdot3(b, vec, vec));
|
|
case 4: return nir_fsqrt(b, nir_fdot4(b, vec, vec));
|
|
default:
|
|
unreachable("Invalid number of components");
|
|
}
|
|
}
|
|
|
|
static inline nir_ssa_def *
|
|
build_fclamp(nir_builder *b,
|
|
nir_ssa_def *x, nir_ssa_def *min_val, nir_ssa_def *max_val)
|
|
{
|
|
return nir_fmin(b, nir_fmax(b, x, min_val), max_val);
|
|
}
|
|
|
|
/**
|
|
* Return e^x.
|
|
*/
|
|
static nir_ssa_def *
|
|
build_exp(nir_builder *b, nir_ssa_def *x)
|
|
{
|
|
return nir_fexp2(b, nir_fmul(b, x, nir_imm_float(b, M_LOG2E)));
|
|
}
|
|
|
|
/**
|
|
* Return ln(x) - the natural logarithm of x.
|
|
*/
|
|
static nir_ssa_def *
|
|
build_log(nir_builder *b, nir_ssa_def *x)
|
|
{
|
|
return nir_fmul(b, nir_flog2(b, x), nir_imm_float(b, 1.0 / M_LOG2E));
|
|
}
|
|
|
|
/**
|
|
* Approximate asin(x) by the formula:
|
|
* asin~(x) = sign(x) * (pi/2 - sqrt(1 - |x|) * (pi/2 + |x|(pi/4 - 1 + |x|(p0 + |x|p1))))
|
|
*
|
|
* which is correct to first order at x=0 and x=±1 regardless of the p
|
|
* coefficients but can be made second-order correct at both ends by selecting
|
|
* the fit coefficients appropriately. Different p coefficients can be used
|
|
* in the asin and acos implementation to minimize some relative error metric
|
|
* in each case.
|
|
*/
|
|
static nir_ssa_def *
|
|
build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1)
|
|
{
|
|
nir_ssa_def *abs_x = nir_fabs(b, x);
|
|
return nir_fmul(b, nir_fsign(b, x),
|
|
nir_fsub(b, nir_imm_float(b, M_PI_2f),
|
|
nir_fmul(b, nir_fsqrt(b, nir_fsub(b, nir_imm_float(b, 1.0f), abs_x)),
|
|
nir_fadd(b, nir_imm_float(b, M_PI_2f),
|
|
nir_fmul(b, abs_x,
|
|
nir_fadd(b, nir_imm_float(b, M_PI_4f - 1.0f),
|
|
nir_fmul(b, abs_x,
|
|
nir_fadd(b, nir_imm_float(b, p0),
|
|
nir_fmul(b, abs_x,
|
|
nir_imm_float(b, p1))))))))));
|
|
}
|
|
|
|
/**
|
|
* Compute xs[0] + xs[1] + xs[2] + ... using fadd.
|
|
*/
|
|
static nir_ssa_def *
|
|
build_fsum(nir_builder *b, nir_ssa_def **xs, int terms)
|
|
{
|
|
nir_ssa_def *accum = xs[0];
|
|
|
|
for (int i = 1; i < terms; i++)
|
|
accum = nir_fadd(b, accum, xs[i]);
|
|
|
|
return accum;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
build_atan(nir_builder *b, nir_ssa_def *y_over_x)
|
|
{
|
|
nir_ssa_def *abs_y_over_x = nir_fabs(b, y_over_x);
|
|
nir_ssa_def *one = nir_imm_float(b, 1.0f);
|
|
|
|
/*
|
|
* range-reduction, first step:
|
|
*
|
|
* / y_over_x if |y_over_x| <= 1.0;
|
|
* x = <
|
|
* \ 1.0 / y_over_x otherwise
|
|
*/
|
|
nir_ssa_def *x = nir_fdiv(b, nir_fmin(b, abs_y_over_x, one),
|
|
nir_fmax(b, abs_y_over_x, one));
|
|
|
|
/*
|
|
* approximate atan by evaluating polynomial:
|
|
*
|
|
* x * 0.9999793128310355 - x^3 * 0.3326756418091246 +
|
|
* x^5 * 0.1938924977115610 - x^7 * 0.1173503194786851 +
|
|
* x^9 * 0.0536813784310406 - x^11 * 0.0121323213173444
|
|
*/
|
|
nir_ssa_def *x_2 = nir_fmul(b, x, x);
|
|
nir_ssa_def *x_3 = nir_fmul(b, x_2, x);
|
|
nir_ssa_def *x_5 = nir_fmul(b, x_3, x_2);
|
|
nir_ssa_def *x_7 = nir_fmul(b, x_5, x_2);
|
|
nir_ssa_def *x_9 = nir_fmul(b, x_7, x_2);
|
|
nir_ssa_def *x_11 = nir_fmul(b, x_9, x_2);
|
|
|
|
nir_ssa_def *polynomial_terms[] = {
|
|
nir_fmul(b, x, nir_imm_float(b, 0.9999793128310355f)),
|
|
nir_fmul(b, x_3, nir_imm_float(b, -0.3326756418091246f)),
|
|
nir_fmul(b, x_5, nir_imm_float(b, 0.1938924977115610f)),
|
|
nir_fmul(b, x_7, nir_imm_float(b, -0.1173503194786851f)),
|
|
nir_fmul(b, x_9, nir_imm_float(b, 0.0536813784310406f)),
|
|
nir_fmul(b, x_11, nir_imm_float(b, -0.0121323213173444f)),
|
|
};
|
|
|
|
nir_ssa_def *tmp =
|
|
build_fsum(b, polynomial_terms, ARRAY_SIZE(polynomial_terms));
|
|
|
|
/* range-reduction fixup */
|
|
tmp = nir_fadd(b, tmp,
|
|
nir_fmul(b,
|
|
nir_b2f(b, nir_flt(b, one, abs_y_over_x)),
|
|
nir_fadd(b, nir_fmul(b, tmp,
|
|
nir_imm_float(b, -2.0f)),
|
|
nir_imm_float(b, M_PI_2f))));
|
|
|
|
/* sign fixup */
|
|
return nir_fmul(b, tmp, nir_fsign(b, y_over_x));
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
build_atan2(nir_builder *b, nir_ssa_def *y, nir_ssa_def *x)
|
|
{
|
|
nir_ssa_def *zero = nir_imm_float(b, 0.0f);
|
|
|
|
/* If |x| >= 1.0e-8 * |y|: */
|
|
nir_ssa_def *condition =
|
|
nir_fge(b, nir_fabs(b, x),
|
|
nir_fmul(b, nir_imm_float(b, 1.0e-8f), nir_fabs(b, y)));
|
|
|
|
/* Then...call atan(y/x) and fix it up: */
|
|
nir_ssa_def *atan1 = build_atan(b, nir_fdiv(b, y, x));
|
|
nir_ssa_def *r_then =
|
|
nir_bcsel(b, nir_flt(b, x, zero),
|
|
nir_fadd(b, atan1,
|
|
nir_bcsel(b, nir_fge(b, y, zero),
|
|
nir_imm_float(b, M_PIf),
|
|
nir_imm_float(b, -M_PIf))),
|
|
atan1);
|
|
|
|
/* Else... */
|
|
nir_ssa_def *r_else =
|
|
nir_fmul(b, nir_fsign(b, y), nir_imm_float(b, M_PI_2f));
|
|
|
|
return nir_bcsel(b, condition, r_then, r_else);
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
build_frexp(nir_builder *b, nir_ssa_def *x, nir_ssa_def **exponent)
|
|
{
|
|
nir_ssa_def *abs_x = nir_fabs(b, x);
|
|
nir_ssa_def *zero = nir_imm_float(b, 0.0f);
|
|
|
|
/* Single-precision floating-point values are stored as
|
|
* 1 sign bit;
|
|
* 8 exponent bits;
|
|
* 23 mantissa bits.
|
|
*
|
|
* An exponent shift of 23 will shift the mantissa out, leaving only the
|
|
* exponent and sign bit (which itself may be zero, if the absolute value
|
|
* was taken before the bitcast and shift.
|
|
*/
|
|
nir_ssa_def *exponent_shift = nir_imm_int(b, 23);
|
|
nir_ssa_def *exponent_bias = nir_imm_int(b, -126);
|
|
|
|
nir_ssa_def *sign_mantissa_mask = nir_imm_int(b, 0x807fffffu);
|
|
|
|
/* Exponent of floating-point values in the range [0.5, 1.0). */
|
|
nir_ssa_def *exponent_value = nir_imm_int(b, 0x3f000000u);
|
|
|
|
nir_ssa_def *is_not_zero = nir_fne(b, abs_x, zero);
|
|
|
|
*exponent =
|
|
nir_iadd(b, nir_ushr(b, abs_x, exponent_shift),
|
|
nir_bcsel(b, is_not_zero, exponent_bias, zero));
|
|
|
|
return nir_ior(b, nir_iand(b, x, sign_mantissa_mask),
|
|
nir_bcsel(b, is_not_zero, exponent_value, zero));
|
|
}
|
|
|
|
static void
|
|
handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint,
|
|
const uint32_t *w, unsigned count)
|
|
{
|
|
struct nir_builder *nb = &b->nb;
|
|
const struct glsl_type *dest_type =
|
|
vtn_value(b, w[1], vtn_value_type_type)->type->type;
|
|
|
|
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
|
|
val->ssa = vtn_create_ssa_value(b, dest_type);
|
|
|
|
/* Collect the various SSA sources */
|
|
unsigned num_inputs = count - 5;
|
|
nir_ssa_def *src[3];
|
|
for (unsigned i = 0; i < num_inputs; i++)
|
|
src[i] = vtn_ssa_value(b, w[i + 5])->def;
|
|
|
|
nir_op op;
|
|
switch (entrypoint) {
|
|
case GLSLstd450Round: op = nir_op_fround_even; break; /* TODO */
|
|
case GLSLstd450RoundEven: op = nir_op_fround_even; break;
|
|
case GLSLstd450Trunc: op = nir_op_ftrunc; break;
|
|
case GLSLstd450FAbs: op = nir_op_fabs; break;
|
|
case GLSLstd450SAbs: op = nir_op_iabs; break;
|
|
case GLSLstd450FSign: op = nir_op_fsign; break;
|
|
case GLSLstd450SSign: op = nir_op_isign; break;
|
|
case GLSLstd450Floor: op = nir_op_ffloor; break;
|
|
case GLSLstd450Ceil: op = nir_op_fceil; break;
|
|
case GLSLstd450Fract: op = nir_op_ffract; break;
|
|
case GLSLstd450Radians:
|
|
val->ssa->def = nir_fmul(nb, src[0], nir_imm_float(nb, 0.01745329251));
|
|
return;
|
|
case GLSLstd450Degrees:
|
|
val->ssa->def = nir_fmul(nb, src[0], nir_imm_float(nb, 57.2957795131));
|
|
return;
|
|
case GLSLstd450Sin: op = nir_op_fsin; break;
|
|
case GLSLstd450Cos: op = nir_op_fcos; break;
|
|
case GLSLstd450Tan:
|
|
val->ssa->def = nir_fdiv(nb, nir_fsin(nb, src[0]),
|
|
nir_fcos(nb, src[0]));
|
|
return;
|
|
case GLSLstd450Pow: op = nir_op_fpow; break;
|
|
case GLSLstd450Exp2: op = nir_op_fexp2; break;
|
|
case GLSLstd450Log2: op = nir_op_flog2; break;
|
|
case GLSLstd450Sqrt: op = nir_op_fsqrt; break;
|
|
case GLSLstd450InverseSqrt: op = nir_op_frsq; break;
|
|
|
|
case GLSLstd450Modf: {
|
|
nir_ssa_def *sign = nir_fsign(nb, src[0]);
|
|
nir_ssa_def *abs = nir_fabs(nb, src[0]);
|
|
val->ssa->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
|
|
nir_store_deref_var(nb, vtn_nir_deref(b, w[6]),
|
|
nir_fmul(nb, sign, nir_ffloor(nb, abs)), 0xf);
|
|
return;
|
|
}
|
|
|
|
case GLSLstd450ModfStruct: {
|
|
nir_ssa_def *sign = nir_fsign(nb, src[0]);
|
|
nir_ssa_def *abs = nir_fabs(nb, src[0]);
|
|
assert(glsl_type_is_struct(val->ssa->type));
|
|
val->ssa->elems[0]->def = nir_fmul(nb, sign, nir_ffract(nb, abs));
|
|
val->ssa->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs));
|
|
return;
|
|
}
|
|
|
|
case GLSLstd450FMin: op = nir_op_fmin; break;
|
|
case GLSLstd450UMin: op = nir_op_umin; break;
|
|
case GLSLstd450SMin: op = nir_op_imin; break;
|
|
case GLSLstd450FMax: op = nir_op_fmax; break;
|
|
case GLSLstd450UMax: op = nir_op_umax; break;
|
|
case GLSLstd450SMax: op = nir_op_imax; break;
|
|
case GLSLstd450FMix: op = nir_op_flrp; break;
|
|
case GLSLstd450Step:
|
|
val->ssa->def = nir_sge(nb, src[1], src[0]);
|
|
return;
|
|
|
|
case GLSLstd450Fma: op = nir_op_ffma; break;
|
|
case GLSLstd450Ldexp: op = nir_op_ldexp; break;
|
|
|
|
/* Packing/Unpacking functions */
|
|
case GLSLstd450PackSnorm4x8: op = nir_op_pack_snorm_4x8; break;
|
|
case GLSLstd450PackUnorm4x8: op = nir_op_pack_unorm_4x8; break;
|
|
case GLSLstd450PackSnorm2x16: op = nir_op_pack_snorm_2x16; break;
|
|
case GLSLstd450PackUnorm2x16: op = nir_op_pack_unorm_2x16; break;
|
|
case GLSLstd450PackHalf2x16: op = nir_op_pack_half_2x16; break;
|
|
case GLSLstd450UnpackSnorm4x8: op = nir_op_unpack_snorm_4x8; break;
|
|
case GLSLstd450UnpackUnorm4x8: op = nir_op_unpack_unorm_4x8; break;
|
|
case GLSLstd450UnpackSnorm2x16: op = nir_op_unpack_snorm_2x16; break;
|
|
case GLSLstd450UnpackUnorm2x16: op = nir_op_unpack_unorm_2x16; break;
|
|
case GLSLstd450UnpackHalf2x16: op = nir_op_unpack_half_2x16; break;
|
|
|
|
case GLSLstd450Length:
|
|
val->ssa->def = build_length(nb, src[0]);
|
|
return;
|
|
case GLSLstd450Distance:
|
|
val->ssa->def = build_length(nb, nir_fsub(nb, src[0], src[1]));
|
|
return;
|
|
case GLSLstd450Normalize:
|
|
val->ssa->def = nir_fdiv(nb, src[0], build_length(nb, src[0]));
|
|
return;
|
|
|
|
case GLSLstd450Exp:
|
|
val->ssa->def = build_exp(nb, src[0]);
|
|
return;
|
|
|
|
case GLSLstd450Log:
|
|
val->ssa->def = build_log(nb, src[0]);
|
|
return;
|
|
|
|
case GLSLstd450FClamp:
|
|
val->ssa->def = build_fclamp(nb, src[0], src[1], src[2]);
|
|
return;
|
|
case GLSLstd450UClamp:
|
|
val->ssa->def = nir_umin(nb, nir_umax(nb, src[0], src[1]), src[2]);
|
|
return;
|
|
case GLSLstd450SClamp:
|
|
val->ssa->def = nir_imin(nb, nir_imax(nb, src[0], src[1]), src[2]);
|
|
return;
|
|
|
|
case GLSLstd450Cross: {
|
|
unsigned yzx[4] = { 1, 2, 0, 0 };
|
|
unsigned zxy[4] = { 2, 0, 1, 0 };
|
|
val->ssa->def =
|
|
nir_fsub(nb, nir_fmul(nb, nir_swizzle(nb, src[0], yzx, 3, true),
|
|
nir_swizzle(nb, src[1], zxy, 3, true)),
|
|
nir_fmul(nb, nir_swizzle(nb, src[0], zxy, 3, true),
|
|
nir_swizzle(nb, src[1], yzx, 3, true)));
|
|
return;
|
|
}
|
|
|
|
case GLSLstd450SmoothStep: {
|
|
/* t = clamp((x - edge0) / (edge1 - edge0), 0, 1) */
|
|
nir_ssa_def *t =
|
|
build_fclamp(nb, nir_fdiv(nb, nir_fsub(nb, src[2], src[0]),
|
|
nir_fsub(nb, src[1], src[0])),
|
|
nir_imm_float(nb, 0.0), nir_imm_float(nb, 1.0));
|
|
/* result = t * t * (3 - 2 * t) */
|
|
val->ssa->def =
|
|
nir_fmul(nb, t, nir_fmul(nb, t,
|
|
nir_fsub(nb, nir_imm_float(nb, 3.0),
|
|
nir_fmul(nb, nir_imm_float(nb, 2.0), t))));
|
|
return;
|
|
}
|
|
|
|
case GLSLstd450FaceForward:
|
|
val->ssa->def =
|
|
nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]),
|
|
nir_imm_float(nb, 0.0)),
|
|
src[0], nir_fneg(nb, src[0]));
|
|
return;
|
|
|
|
case GLSLstd450Reflect:
|
|
/* I - 2 * dot(N, I) * N */
|
|
val->ssa->def =
|
|
nir_fsub(nb, src[0], nir_fmul(nb, nir_imm_float(nb, 2.0),
|
|
nir_fmul(nb, nir_fdot(nb, src[0], src[1]),
|
|
src[1])));
|
|
return;
|
|
|
|
case GLSLstd450Refract: {
|
|
nir_ssa_def *I = src[0];
|
|
nir_ssa_def *N = src[1];
|
|
nir_ssa_def *eta = src[2];
|
|
nir_ssa_def *n_dot_i = nir_fdot(nb, N, I);
|
|
nir_ssa_def *one = nir_imm_float(nb, 1.0);
|
|
nir_ssa_def *zero = nir_imm_float(nb, 0.0);
|
|
/* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */
|
|
nir_ssa_def *k =
|
|
nir_fsub(nb, one, nir_fmul(nb, eta, nir_fmul(nb, eta,
|
|
nir_fsub(nb, one, nir_fmul(nb, n_dot_i, n_dot_i)))));
|
|
nir_ssa_def *result =
|
|
nir_fsub(nb, nir_fmul(nb, eta, I),
|
|
nir_fmul(nb, nir_fadd(nb, nir_fmul(nb, eta, n_dot_i),
|
|
nir_fsqrt(nb, k)), N));
|
|
/* XXX: bcsel, or if statement? */
|
|
val->ssa->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result);
|
|
return;
|
|
}
|
|
|
|
case GLSLstd450Sinh:
|
|
/* 0.5 * (e^x - e^(-x)) */
|
|
val->ssa->def =
|
|
nir_fmul(nb, nir_imm_float(nb, 0.5f),
|
|
nir_fsub(nb, build_exp(nb, src[0]),
|
|
build_exp(nb, nir_fneg(nb, src[0]))));
|
|
return;
|
|
|
|
case GLSLstd450Cosh:
|
|
/* 0.5 * (e^x + e^(-x)) */
|
|
val->ssa->def =
|
|
nir_fmul(nb, nir_imm_float(nb, 0.5f),
|
|
nir_fadd(nb, build_exp(nb, src[0]),
|
|
build_exp(nb, nir_fneg(nb, src[0]))));
|
|
return;
|
|
|
|
case GLSLstd450Tanh:
|
|
/* (0.5 * (e^x - e^(-x))) / (0.5 * (e^x + e^(-x))) */
|
|
val->ssa->def =
|
|
nir_fdiv(nb, nir_fmul(nb, nir_imm_float(nb, 0.5f),
|
|
nir_fsub(nb, build_exp(nb, src[0]),
|
|
build_exp(nb, nir_fneg(nb, src[0])))),
|
|
nir_fmul(nb, nir_imm_float(nb, 0.5f),
|
|
nir_fadd(nb, build_exp(nb, src[0]),
|
|
build_exp(nb, nir_fneg(nb, src[0])))));
|
|
return;
|
|
|
|
case GLSLstd450Asinh:
|
|
val->ssa->def = nir_fmul(nb, nir_fsign(nb, src[0]),
|
|
build_log(nb, nir_fadd(nb, nir_fabs(nb, src[0]),
|
|
nir_fsqrt(nb, nir_fadd(nb, nir_fmul(nb, src[0], src[0]),
|
|
nir_imm_float(nb, 1.0f))))));
|
|
return;
|
|
case GLSLstd450Acosh:
|
|
val->ssa->def = build_log(nb, nir_fadd(nb, src[0],
|
|
nir_fsqrt(nb, nir_fsub(nb, nir_fmul(nb, src[0], src[0]),
|
|
nir_imm_float(nb, 1.0f)))));
|
|
return;
|
|
case GLSLstd450Atanh: {
|
|
nir_ssa_def *one = nir_imm_float(nb, 1.0);
|
|
val->ssa->def = nir_fmul(nb, nir_imm_float(nb, 0.5f),
|
|
build_log(nb, nir_fdiv(nb, nir_fadd(nb, one, src[0]),
|
|
nir_fsub(nb, one, src[0]))));
|
|
return;
|
|
}
|
|
|
|
case GLSLstd450FindILsb: op = nir_op_find_lsb; break;
|
|
case GLSLstd450FindSMsb: op = nir_op_ifind_msb; break;
|
|
case GLSLstd450FindUMsb: op = nir_op_ufind_msb; break;
|
|
|
|
case GLSLstd450Asin:
|
|
val->ssa->def = build_asin(nb, src[0], 0.086566724, -0.03102955);
|
|
return;
|
|
|
|
case GLSLstd450Acos:
|
|
val->ssa->def = nir_fsub(nb, nir_imm_float(nb, M_PI_2f),
|
|
build_asin(nb, src[0], 0.08132463, -0.02363318));
|
|
return;
|
|
|
|
case GLSLstd450Atan:
|
|
val->ssa->def = build_atan(nb, src[0]);
|
|
return;
|
|
|
|
case GLSLstd450Atan2:
|
|
val->ssa->def = build_atan2(nb, src[0], src[1]);
|
|
return;
|
|
|
|
case GLSLstd450Frexp: {
|
|
nir_ssa_def *exponent;
|
|
val->ssa->def = build_frexp(nb, src[0], &exponent);
|
|
nir_store_deref_var(nb, vtn_nir_deref(b, w[6]), exponent, 0xf);
|
|
return;
|
|
}
|
|
|
|
case GLSLstd450FrexpStruct: {
|
|
assert(glsl_type_is_struct(val->ssa->type));
|
|
val->ssa->elems[0]->def = build_frexp(nb, src[0],
|
|
&val->ssa->elems[1]->def);
|
|
return;
|
|
}
|
|
|
|
case GLSLstd450PackDouble2x32:
|
|
case GLSLstd450UnpackDouble2x32:
|
|
default:
|
|
unreachable("Unhandled opcode");
|
|
}
|
|
|
|
nir_alu_instr *instr = nir_alu_instr_create(b->shader, op);
|
|
nir_ssa_dest_init(&instr->instr, &instr->dest.dest,
|
|
glsl_get_vector_elements(val->ssa->type), val->name);
|
|
instr->dest.write_mask = (1 << instr->dest.dest.ssa.num_components) - 1;
|
|
val->ssa->def = &instr->dest.dest.ssa;
|
|
|
|
for (unsigned i = 0; i < nir_op_infos[op].num_inputs; i++)
|
|
instr->src[i].src = nir_src_for_ssa(src[i]);
|
|
|
|
nir_builder_instr_insert(nb, &instr->instr);
|
|
}
|
|
|
|
bool
|
|
vtn_handle_glsl450_instruction(struct vtn_builder *b, uint32_t ext_opcode,
|
|
const uint32_t *w, unsigned count)
|
|
{
|
|
switch ((enum GLSLstd450)ext_opcode) {
|
|
case GLSLstd450Determinant: {
|
|
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
|
|
val->ssa = rzalloc(b, struct vtn_ssa_value);
|
|
val->ssa->type = vtn_value(b, w[1], vtn_value_type_type)->type->type;
|
|
val->ssa->def = build_mat_det(b, vtn_ssa_value(b, w[5]));
|
|
break;
|
|
}
|
|
|
|
case GLSLstd450MatrixInverse: {
|
|
struct vtn_value *val = vtn_push_value(b, w[2], vtn_value_type_ssa);
|
|
val->ssa = matrix_inverse(b, vtn_ssa_value(b, w[5]));
|
|
break;
|
|
}
|
|
|
|
case GLSLstd450InterpolateAtCentroid:
|
|
case GLSLstd450InterpolateAtSample:
|
|
case GLSLstd450InterpolateAtOffset:
|
|
unreachable("Unhandled opcode");
|
|
|
|
default:
|
|
handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count);
|
|
}
|
|
|
|
return true;
|
|
}
|