Files
third_party_mesa3d/src/vulkan/gen8_pipeline.c
Kristian Høgsberg Kristensen cd4721c062 vk: Add SKL support
Signed-off-by: Kristian Høgsberg Kristensen <kristian.h.kristensen@intel.com>
2015-11-25 22:34:10 -08:00

742 lines
33 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "gen8_pack.h"
#include "gen9_pack.h"
static void
emit_vertex_input(struct anv_pipeline *pipeline,
const VkPipelineVertexInputStateCreateInfo *info)
{
const uint32_t num_dwords = 1 + info->attributeCount * 2;
uint32_t *p;
static_assert(ANV_GEN >= 8, "should be compiling this for gen < 8");
if (info->attributeCount > 0) {
p = anv_batch_emitn(&pipeline->batch, num_dwords,
GENX(3DSTATE_VERTEX_ELEMENTS));
}
for (uint32_t i = 0; i < info->attributeCount; i++) {
const VkVertexInputAttributeDescription *desc =
&info->pVertexAttributeDescriptions[i];
const struct anv_format *format = anv_format_for_vk_format(desc->format);
struct GENX(VERTEX_ELEMENT_STATE) element = {
.VertexBufferIndex = desc->binding,
.Valid = true,
.SourceElementFormat = format->surface_format,
.EdgeFlagEnable = false,
.SourceElementOffset = desc->offsetInBytes,
.Component0Control = VFCOMP_STORE_SRC,
.Component1Control = format->num_channels >= 2 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component2Control = format->num_channels >= 3 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
.Component3Control = format->num_channels >= 4 ? VFCOMP_STORE_SRC : VFCOMP_STORE_1_FP
};
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING),
.InstancingEnable = pipeline->instancing_enable[desc->binding],
.VertexElementIndex = i,
/* Vulkan so far doesn't have an instance divisor, so
* this is always 1 (ignored if not instancing). */
.InstanceDataStepRate = 1);
}
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS),
.VertexIDEnable = pipeline->vs_prog_data.uses_vertexid,
.VertexIDComponentNumber = 2,
.VertexIDElementOffset = info->bindingCount,
.InstanceIDEnable = pipeline->vs_prog_data.uses_instanceid,
.InstanceIDComponentNumber = 3,
.InstanceIDElementOffset = info->bindingCount);
}
static void
emit_ia_state(struct anv_pipeline *pipeline,
const VkPipelineInputAssemblyStateCreateInfo *info,
const struct anv_graphics_pipeline_create_info *extra)
{
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY),
.PrimitiveTopologyType = pipeline->topology);
}
static void
emit_rs_state(struct anv_pipeline *pipeline,
const VkPipelineRasterStateCreateInfo *info,
const struct anv_graphics_pipeline_create_info *extra)
{
static const uint32_t vk_to_gen_cullmode[] = {
[VK_CULL_MODE_NONE] = CULLMODE_NONE,
[VK_CULL_MODE_FRONT] = CULLMODE_FRONT,
[VK_CULL_MODE_BACK] = CULLMODE_BACK,
[VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
};
static const uint32_t vk_to_gen_fillmode[] = {
[VK_FILL_MODE_POINTS] = RASTER_POINT,
[VK_FILL_MODE_WIREFRAME] = RASTER_WIREFRAME,
[VK_FILL_MODE_SOLID] = RASTER_SOLID
};
static const uint32_t vk_to_gen_front_face[] = {
[VK_FRONT_FACE_CCW] = CounterClockwise,
[VK_FRONT_FACE_CW] = Clockwise
};
struct GENX(3DSTATE_SF) sf = {
GENX(3DSTATE_SF_header),
.ViewportTransformEnable = !(extra && extra->disable_viewport),
.TriangleStripListProvokingVertexSelect = 0,
.LineStripListProvokingVertexSelect = 0,
.TriangleFanProvokingVertexSelect = 0,
.PointWidthSource = pipeline->writes_point_size ? Vertex : State,
.PointWidth = 1.0,
};
/* FINISHME: VkBool32 rasterizerDiscardEnable; */
GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
struct GENX(3DSTATE_RASTER) raster = {
GENX(3DSTATE_RASTER_header),
.FrontWinding = vk_to_gen_front_face[info->frontFace],
.CullMode = vk_to_gen_cullmode[info->cullMode],
.FrontFaceFillMode = vk_to_gen_fillmode[info->fillMode],
.BackFaceFillMode = vk_to_gen_fillmode[info->fillMode],
.ScissorRectangleEnable = !(extra && extra->disable_scissor),
#if ANV_GEN == 8
.ViewportZClipTestEnable = info->depthClipEnable
#else
/* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
.ViewportZFarClipTestEnable = info->depthClipEnable,
.ViewportZNearClipTestEnable = info->depthClipEnable,
#endif
};
GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
}
static void
emit_cb_state(struct anv_pipeline *pipeline,
const VkPipelineColorBlendStateCreateInfo *info)
{
struct anv_device *device = pipeline->device;
static const uint32_t vk_to_gen_logic_op[] = {
[VK_LOGIC_OP_COPY] = LOGICOP_COPY,
[VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
[VK_LOGIC_OP_AND] = LOGICOP_AND,
[VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
[VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
[VK_LOGIC_OP_NOOP] = LOGICOP_NOOP,
[VK_LOGIC_OP_XOR] = LOGICOP_XOR,
[VK_LOGIC_OP_OR] = LOGICOP_OR,
[VK_LOGIC_OP_NOR] = LOGICOP_NOR,
[VK_LOGIC_OP_EQUIV] = LOGICOP_EQUIV,
[VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
[VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
[VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
[VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
[VK_LOGIC_OP_NAND] = LOGICOP_NAND,
[VK_LOGIC_OP_SET] = LOGICOP_SET,
};
static const uint32_t vk_to_gen_blend[] = {
[VK_BLEND_ZERO] = BLENDFACTOR_ZERO,
[VK_BLEND_ONE] = BLENDFACTOR_ONE,
[VK_BLEND_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
[VK_BLEND_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
[VK_BLEND_DEST_COLOR] = BLENDFACTOR_DST_COLOR,
[VK_BLEND_ONE_MINUS_DEST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
[VK_BLEND_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
[VK_BLEND_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
[VK_BLEND_DEST_ALPHA] = BLENDFACTOR_DST_ALPHA,
[VK_BLEND_ONE_MINUS_DEST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
[VK_BLEND_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
[VK_BLEND_ONE_MINUS_CONSTANT_COLOR] = BLENDFACTOR_INV_CONST_COLOR,
[VK_BLEND_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
[VK_BLEND_ONE_MINUS_CONSTANT_ALPHA] = BLENDFACTOR_INV_CONST_ALPHA,
[VK_BLEND_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
[VK_BLEND_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
[VK_BLEND_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
[VK_BLEND_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
[VK_BLEND_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
};
static const uint32_t vk_to_gen_blend_op[] = {
[VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
[VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
[VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
[VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
[VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
};
uint32_t num_dwords = GENX(BLEND_STATE_length);
pipeline->blend_state =
anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
struct GENX(BLEND_STATE) blend_state = {
.AlphaToCoverageEnable = info->alphaToCoverageEnable,
.AlphaToOneEnable = info->alphaToOneEnable,
};
for (uint32_t i = 0; i < info->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *a = &info->pAttachments[i];
if (a->srcBlendColor != a->srcBlendAlpha ||
a->destBlendColor != a->destBlendAlpha ||
a->blendOpColor != a->blendOpAlpha) {
blend_state.IndependentAlphaBlendEnable = true;
}
blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
.LogicOpEnable = info->logicOpEnable,
.LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
.ColorBufferBlendEnable = a->blendEnable,
.PreBlendSourceOnlyClampEnable = false,
.ColorClampRange = COLORCLAMP_RTFORMAT,
.PreBlendColorClampEnable = true,
.PostBlendColorClampEnable = true,
.SourceBlendFactor = vk_to_gen_blend[a->srcBlendColor],
.DestinationBlendFactor = vk_to_gen_blend[a->destBlendColor],
.ColorBlendFunction = vk_to_gen_blend_op[a->blendOpColor],
.SourceAlphaBlendFactor = vk_to_gen_blend[a->srcBlendAlpha],
.DestinationAlphaBlendFactor = vk_to_gen_blend[a->destBlendAlpha],
.AlphaBlendFunction = vk_to_gen_blend_op[a->blendOpAlpha],
.WriteDisableAlpha = !(a->channelWriteMask & VK_CHANNEL_A_BIT),
.WriteDisableRed = !(a->channelWriteMask & VK_CHANNEL_R_BIT),
.WriteDisableGreen = !(a->channelWriteMask & VK_CHANNEL_G_BIT),
.WriteDisableBlue = !(a->channelWriteMask & VK_CHANNEL_B_BIT),
};
/* Our hardware applies the blend factor prior to the blend function
* regardless of what function is used. Technically, this means the
* hardware can do MORE than GL or Vulkan specify. However, it also
* means that, for MIN and MAX, we have to stomp the blend factor to
* ONE to make it a no-op.
*/
if (a->blendOpColor == VK_BLEND_OP_MIN ||
a->blendOpColor == VK_BLEND_OP_MAX) {
blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
}
if (a->blendOpAlpha == VK_BLEND_OP_MIN ||
a->blendOpAlpha == VK_BLEND_OP_MAX) {
blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
}
}
GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS),
.BlendStatePointer = pipeline->blend_state.offset,
.BlendStatePointerValid = true);
}
static const uint32_t vk_to_gen_compare_op[] = {
[VK_COMPARE_OP_NEVER] = COMPAREFUNCTION_NEVER,
[VK_COMPARE_OP_LESS] = COMPAREFUNCTION_LESS,
[VK_COMPARE_OP_EQUAL] = COMPAREFUNCTION_EQUAL,
[VK_COMPARE_OP_LESS_EQUAL] = COMPAREFUNCTION_LEQUAL,
[VK_COMPARE_OP_GREATER] = COMPAREFUNCTION_GREATER,
[VK_COMPARE_OP_NOT_EQUAL] = COMPAREFUNCTION_NOTEQUAL,
[VK_COMPARE_OP_GREATER_EQUAL] = COMPAREFUNCTION_GEQUAL,
[VK_COMPARE_OP_ALWAYS] = COMPAREFUNCTION_ALWAYS,
};
static const uint32_t vk_to_gen_stencil_op[] = {
[VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
[VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
[VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
[VK_STENCIL_OP_INC_CLAMP] = STENCILOP_INCRSAT,
[VK_STENCIL_OP_DEC_CLAMP] = STENCILOP_DECRSAT,
[VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
[VK_STENCIL_OP_INC_WRAP] = STENCILOP_INCR,
[VK_STENCIL_OP_DEC_WRAP] = STENCILOP_DECR,
};
static void
emit_ds_state(struct anv_pipeline *pipeline,
const VkPipelineDepthStencilStateCreateInfo *info)
{
if (info == NULL) {
/* We're going to OR this together with the dynamic state. We need
* to make sure it's initialized to something useful.
*/
/* FIXME: gen9 wm_depth_stencil */
memset(pipeline->gen8.wm_depth_stencil, 0,
sizeof(pipeline->gen8.wm_depth_stencil));
return;
}
/* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
struct GENX(3DSTATE_WM_DEPTH_STENCIL) wm_depth_stencil = {
.DepthTestEnable = info->depthTestEnable,
.DepthBufferWriteEnable = info->depthWriteEnable,
.DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp],
.DoubleSidedStencilEnable = true,
.StencilTestEnable = info->stencilTestEnable,
.StencilFailOp = vk_to_gen_stencil_op[info->front.stencilFailOp],
.StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.stencilPassOp],
.StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.stencilDepthFailOp],
.StencilTestFunction = vk_to_gen_compare_op[info->front.stencilCompareOp],
.BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.stencilFailOp],
.BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.stencilPassOp],
.BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.stencilDepthFailOp],
.BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.stencilCompareOp],
};
GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, pipeline->gen8.wm_depth_stencil, &wm_depth_stencil);
}
VkResult
genX(graphics_pipeline_create)(
VkDevice _device,
const VkGraphicsPipelineCreateInfo* pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
VkPipeline* pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_pipeline *pipeline;
VkResult result;
uint32_t offset, length;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
pipeline = anv_device_alloc(device, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (pipeline == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
result = anv_pipeline_init(pipeline, device, pCreateInfo, extra);
if (result != VK_SUCCESS)
return result;
/* FIXME: The compiler dead-codes FS inputs when we don't have a VS, so we
* hard code this to num_attributes - 2. This is because the attributes
* include VUE header and position, which aren't counted as varying
* inputs. */
if (pipeline->vs_simd8 == NO_KERNEL) {
pipeline->wm_prog_data.num_varying_inputs =
pCreateInfo->pVertexInputState->attributeCount - 2;
}
assert(pCreateInfo->pVertexInputState);
emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
assert(pCreateInfo->pInputAssemblyState);
emit_ia_state(pipeline, pCreateInfo->pInputAssemblyState, extra);
assert(pCreateInfo->pRasterState);
emit_rs_state(pipeline, pCreateInfo->pRasterState, extra);
emit_ds_state(pipeline, pCreateInfo->pDepthStencilState);
emit_cb_state(pipeline, pCreateInfo->pColorBlendState);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS),
.StatisticsEnable = true);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), .Enable = false);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), .TEEnable = false);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), .FunctionEnable = false);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), .SOFunctionEnable = false);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS),
.ConstantBufferOffset = 0,
.ConstantBufferSize = 4);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_GS),
.ConstantBufferOffset = 4,
.ConstantBufferSize = 4);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS),
.ConstantBufferOffset = 8,
.ConstantBufferSize = 4);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM_CHROMAKEY),
.ChromaKeyKillEnable = false);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_AA_LINE_PARAMETERS));
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP),
.ClipEnable = true,
.ViewportXYClipTestEnable = !(extra && extra->disable_viewport),
.MinimumPointWidth = 0.125,
.MaximumPointWidth = 255.875);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM),
.StatisticsEnable = true,
.LineEndCapAntialiasingRegionWidth = _05pixels,
.LineAntialiasingRegionWidth = _10pixels,
.EarlyDepthStencilControl = NORMAL,
.ForceThreadDispatchEnable = NORMAL,
.PointRasterizationRule = RASTRULE_UPPER_RIGHT,
.BarycentricInterpolationMode =
pipeline->wm_prog_data.barycentric_interp_modes);
uint32_t samples = 1;
uint32_t log2_samples = __builtin_ffs(samples) - 1;
bool enable_sampling = samples > 1 ? true : false;
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE),
.PixelPositionOffsetEnable = enable_sampling,
.PixelLocation = CENTER,
.NumberofMultisamples = log2_samples);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK),
.SampleMask = 0xffff);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_VS),
.VSURBStartingAddress = pipeline->urb.vs_start,
.VSURBEntryAllocationSize = pipeline->urb.vs_size - 1,
.VSNumberofURBEntries = pipeline->urb.nr_vs_entries);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_GS),
.GSURBStartingAddress = pipeline->urb.gs_start,
.GSURBEntryAllocationSize = pipeline->urb.gs_size - 1,
.GSNumberofURBEntries = pipeline->urb.nr_gs_entries);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_HS),
.HSURBStartingAddress = pipeline->urb.vs_start,
.HSURBEntryAllocationSize = 0,
.HSNumberofURBEntries = 0);
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_DS),
.DSURBStartingAddress = pipeline->urb.vs_start,
.DSURBEntryAllocationSize = 0,
.DSNumberofURBEntries = 0);
const struct brw_gs_prog_data *gs_prog_data = &pipeline->gs_prog_data;
offset = 1;
length = (gs_prog_data->base.vue_map.num_slots + 1) / 2 - offset;
if (pipeline->gs_vec4 == NO_KERNEL)
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), .Enable = false);
else
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS),
.SingleProgramFlow = false,
.KernelStartPointer = pipeline->gs_vec4,
.VectorMaskEnable = Dmask,
.SamplerCount = 0,
.BindingTableEntryCount = 0,
.ExpectedVertexCount = pipeline->gs_vertex_count,
.ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_GEOMETRY],
.PerThreadScratchSpace = ffs(gs_prog_data->base.base.total_scratch / 2048),
.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1,
.OutputTopology = gs_prog_data->output_topology,
.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length,
.DispatchGRFStartRegisterForURBData =
gs_prog_data->base.base.dispatch_grf_start_reg,
.MaximumNumberofThreads = device->info.max_gs_threads / 2 - 1,
.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords,
.DispatchMode = gs_prog_data->base.dispatch_mode,
.StatisticsEnable = true,
.IncludePrimitiveID = gs_prog_data->include_primitive_id,
.ReorderMode = TRAILING,
.Enable = true,
.ControlDataFormat = gs_prog_data->control_data_format,
.StaticOutput = gs_prog_data->static_vertex_count >= 0,
.StaticOutputVertexCount =
gs_prog_data->static_vertex_count >= 0 ?
gs_prog_data->static_vertex_count : 0,
/* FIXME: mesa sets this based on ctx->Transform.ClipPlanesEnabled:
* UserClipDistanceClipTestEnableBitmask_3DSTATE_GS(v)
* UserClipDistanceCullTestEnableBitmask(v)
*/
.VertexURBEntryOutputReadOffset = offset,
.VertexURBEntryOutputLength = length);
const struct brw_vue_prog_data *vue_prog_data = &pipeline->vs_prog_data.base;
/* Skip the VUE header and position slots */
offset = 1;
length = (vue_prog_data->vue_map.num_slots + 1) / 2 - offset;
if (pipeline->vs_simd8 == NO_KERNEL || (extra && extra->disable_vs))
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS),
.FunctionEnable = false,
/* Even if VS is disabled, SBE still gets the amount of
* vertex data to read from this field. */
.VertexURBEntryOutputReadOffset = offset,
.VertexURBEntryOutputLength = length);
else
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS),
.KernelStartPointer = pipeline->vs_simd8,
.SingleVertexDispatch = Multiple,
.VectorMaskEnable = Dmask,
.SamplerCount = 0,
.BindingTableEntryCount =
vue_prog_data->base.binding_table.size_bytes / 4,
.ThreadDispatchPriority = Normal,
.FloatingPointMode = IEEE754,
.IllegalOpcodeExceptionEnable = false,
.AccessesUAV = false,
.SoftwareExceptionEnable = false,
.ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_VERTEX],
.PerThreadScratchSpace = ffs(vue_prog_data->base.total_scratch / 2048),
.DispatchGRFStartRegisterForURBData =
vue_prog_data->base.dispatch_grf_start_reg,
.VertexURBEntryReadLength = vue_prog_data->urb_read_length,
.VertexURBEntryReadOffset = 0,
.MaximumNumberofThreads = device->info.max_vs_threads - 1,
.StatisticsEnable = false,
.SIMD8DispatchEnable = true,
.VertexCacheDisable = false,
.FunctionEnable = true,
.VertexURBEntryOutputReadOffset = offset,
.VertexURBEntryOutputLength = length,
.UserClipDistanceClipTestEnableBitmask = 0,
.UserClipDistanceCullTestEnableBitmask = 0);
const struct brw_wm_prog_data *wm_prog_data = &pipeline->wm_prog_data;
/* TODO: We should clean this up. Among other things, this is mostly
* shared with other gens.
*/
const struct brw_vue_map *fs_input_map;
if (pipeline->gs_vec4 == NO_KERNEL)
fs_input_map = &vue_prog_data->vue_map;
else
fs_input_map = &gs_prog_data->base.vue_map;
struct GENX(3DSTATE_SBE_SWIZ) swiz = {
GENX(3DSTATE_SBE_SWIZ_header),
};
int max_source_attr = 0;
for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
int input_index = wm_prog_data->urb_setup[attr];
if (input_index < 0)
continue;
/* We have to subtract two slots to accout for the URB entry output
* read offset in the VS and GS stages.
*/
int source_attr = fs_input_map->varying_to_slot[attr] - 2;
max_source_attr = MAX2(max_source_attr, source_attr);
if (input_index >= 16)
continue;
swiz.Attribute[input_index].SourceAttribute = source_attr;
}
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE),
.AttributeSwizzleEnable = true,
.ForceVertexURBEntryReadLength = false,
.ForceVertexURBEntryReadOffset = false,
.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2),
.PointSpriteTextureCoordinateOrigin = UPPERLEFT,
.NumberofSFOutputAttributes =
wm_prog_data->num_varying_inputs,
#if ANV_GEN >= 9
.Attribute0ActiveComponentFormat = ACF_XYZW,
.Attribute1ActiveComponentFormat = ACF_XYZW,
.Attribute2ActiveComponentFormat = ACF_XYZW,
.Attribute3ActiveComponentFormat = ACF_XYZW,
.Attribute4ActiveComponentFormat = ACF_XYZW,
.Attribute5ActiveComponentFormat = ACF_XYZW,
.Attribute6ActiveComponentFormat = ACF_XYZW,
.Attribute7ActiveComponentFormat = ACF_XYZW,
.Attribute8ActiveComponentFormat = ACF_XYZW,
.Attribute9ActiveComponentFormat = ACF_XYZW,
.Attribute10ActiveComponentFormat = ACF_XYZW,
.Attribute11ActiveComponentFormat = ACF_XYZW,
.Attribute12ActiveComponentFormat = ACF_XYZW,
.Attribute13ActiveComponentFormat = ACF_XYZW,
.Attribute14ActiveComponentFormat = ACF_XYZW,
.Attribute15ActiveComponentFormat = ACF_XYZW,
/* wow, much field, very attribute */
.Attribute16ActiveComponentFormat = ACF_XYZW,
.Attribute17ActiveComponentFormat = ACF_XYZW,
.Attribute18ActiveComponentFormat = ACF_XYZW,
.Attribute19ActiveComponentFormat = ACF_XYZW,
.Attribute20ActiveComponentFormat = ACF_XYZW,
.Attribute21ActiveComponentFormat = ACF_XYZW,
.Attribute22ActiveComponentFormat = ACF_XYZW,
.Attribute23ActiveComponentFormat = ACF_XYZW,
.Attribute24ActiveComponentFormat = ACF_XYZW,
.Attribute25ActiveComponentFormat = ACF_XYZW,
.Attribute26ActiveComponentFormat = ACF_XYZW,
.Attribute27ActiveComponentFormat = ACF_XYZW,
.Attribute28ActiveComponentFormat = ACF_XYZW,
.Attribute29ActiveComponentFormat = ACF_XYZW,
.Attribute28ActiveComponentFormat = ACF_XYZW,
.Attribute29ActiveComponentFormat = ACF_XYZW,
.Attribute30ActiveComponentFormat = ACF_XYZW,
#endif
);
uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
GENX(3DSTATE_SBE_SWIZ_length));
GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
const int num_thread_bias = ANV_GEN == 8 ? 2 : 1;
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS),
.KernelStartPointer0 = pipeline->ps_ksp0,
.SingleProgramFlow = false,
.VectorMaskEnable = true,
.SamplerCount = 1,
.ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_FRAGMENT],
.PerThreadScratchSpace = ffs(wm_prog_data->base.total_scratch / 2048),
.MaximumNumberofThreadsPerPSD = 64 - num_thread_bias,
.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
POSOFFSET_SAMPLE: POSOFFSET_NONE,
.PushConstantEnable = wm_prog_data->base.nr_params > 0,
._8PixelDispatchEnable = pipeline->ps_simd8 != NO_KERNEL,
._16PixelDispatchEnable = pipeline->ps_simd16 != NO_KERNEL,
._32PixelDispatchEnable = false,
.DispatchGRFStartRegisterForConstantSetupData0 = pipeline->ps_grf_start0,
.DispatchGRFStartRegisterForConstantSetupData1 = 0,
.DispatchGRFStartRegisterForConstantSetupData2 = pipeline->ps_grf_start2,
.KernelStartPointer1 = 0,
.KernelStartPointer2 = pipeline->ps_ksp2);
bool per_sample_ps = false;
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA),
.PixelShaderValid = true,
.PixelShaderKillsPixel = wm_prog_data->uses_kill,
.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode,
.AttributeEnable = wm_prog_data->num_varying_inputs > 0,
.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask,
.PixelShaderIsPerSample = per_sample_ps,
#if ANV_GEN >= 9
.PixelShaderPullsBary = wm_prog_data->pulls_bary,
.InputCoverageMaskState = ICMS_NONE
#endif
);
*pPipeline = anv_pipeline_to_handle(pipeline);
return VK_SUCCESS;
}
VkResult genX(compute_pipeline_create)(
VkDevice _device,
const VkComputePipelineCreateInfo* pCreateInfo,
VkPipeline* pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_pipeline *pipeline;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
pipeline = anv_device_alloc(device, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (pipeline == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
pipeline->device = device;
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
pipeline->blend_state.map = NULL;
result = anv_reloc_list_init(&pipeline->batch_relocs, device);
if (result != VK_SUCCESS) {
anv_device_free(device, pipeline);
return result;
}
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
anv_state_stream_init(&pipeline->program_stream,
&device->instruction_block_pool);
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
pipeline->vs_simd8 = NO_KERNEL;
pipeline->vs_vec4 = NO_KERNEL;
pipeline->gs_vec4 = NO_KERNEL;
pipeline->active_stages = 0;
pipeline->total_scratch = 0;
assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE);
ANV_FROM_HANDLE(anv_shader, shader, pCreateInfo->stage.shader);
anv_pipeline_compile_cs(pipeline, pCreateInfo, shader);
pipeline->use_repclear = false;
const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data;
anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE),
.ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_COMPUTE],
.PerThreadScratchSpace = ffs(cs_prog_data->base.total_scratch / 2048),
.ScratchSpaceBasePointerHigh = 0,
.StackSize = 0,
.MaximumNumberofThreads = device->info.max_cs_threads - 1,
.NumberofURBEntries = 2,
.ResetGatewayTimer = true,
#if ANV_GEN == 8
.BypassGatewayControl = true,
#endif
.URBEntryAllocationSize = 2,
.CURBEAllocationSize = 0);
struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
uint32_t group_size = prog_data->local_size[0] *
prog_data->local_size[1] * prog_data->local_size[2];
pipeline->cs_thread_width_max = DIV_ROUND_UP(group_size, prog_data->simd_size);
uint32_t remainder = group_size & (prog_data->simd_size - 1);
if (remainder > 0)
pipeline->cs_right_mask = ~0u >> (32 - remainder);
else
pipeline->cs_right_mask = ~0u >> (32 - prog_data->simd_size);
*pPipeline = anv_pipeline_to_handle(pipeline);
return VK_SUCCESS;
}