Files
third_party_mesa3d/src/gallium/drivers/etnaviv/etnaviv_compiler_nir.c
Lucas Stach cca43e76e1 etnaviv: Update headers from rnndb
Update to rnndb commit 1b944df41e12.

Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Reviewed-by: Christian Gmeiner <cgmeiner@igalia.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/32922>
2025-01-08 13:55:26 +00:00

1433 lines
45 KiB
C

/*
* Copyright (c) 2012-2019 Etnaviv Project
* Copyright (c) 2019 Zodiac Inflight Innovations
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Jonathan Marek <jonathan@marek.ca>
* Wladimir J. van der Laan <laanwj@gmail.com>
*/
#include "etna_core_info.h"
#include "etnaviv_compiler.h"
#include "etnaviv_compiler_nir.h"
#include "etnaviv_asm.h"
#include "etnaviv_context.h"
#include "etnaviv_debug.h"
#include "etnaviv_nir.h"
#include "etnaviv_uniforms.h"
#include "etnaviv_util.h"
#include "nir.h"
#include <math.h>
#include "isa/enums.h"
#include "util/u_memory.h"
#include "util/register_allocate.h"
#include "compiler/nir/nir_builder.h"
#include "util/compiler.h"
#include "util/half_float.h"
static bool
etna_alu_to_scalar_filter_cb(const nir_instr *instr, const void *data)
{
const struct etna_core_info *info = data;
if (instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_frsq:
case nir_op_frcp:
case nir_op_flog2:
case nir_op_fexp2:
case nir_op_fsqrt:
case nir_op_fcos:
case nir_op_fsin:
case nir_op_fdiv:
case nir_op_imul:
return true;
/* TODO: can do better than alu_to_scalar for vector compares */
case nir_op_b32all_fequal2:
case nir_op_b32all_fequal3:
case nir_op_b32all_fequal4:
case nir_op_b32any_fnequal2:
case nir_op_b32any_fnequal3:
case nir_op_b32any_fnequal4:
case nir_op_b32all_iequal2:
case nir_op_b32all_iequal3:
case nir_op_b32all_iequal4:
case nir_op_b32any_inequal2:
case nir_op_b32any_inequal3:
case nir_op_b32any_inequal4:
return true;
case nir_op_fdot2:
if (!etna_core_has_feature(info, ETNA_FEATURE_HALTI2))
return true;
break;
default:
break;
}
return false;
}
static void
etna_emit_block_start(struct etna_compile *c, unsigned block)
{
c->block_ptr[block] = c->inst_ptr;
}
static void
etna_emit_output(struct etna_compile *c, nir_variable *var, struct etna_inst_src src)
{
struct etna_shader_io_file *sf = &c->variant->outfile;
if (is_fs(c)) {
switch (var->data.location) {
case FRAG_RESULT_DATA0:
case FRAG_RESULT_DATA1:
case FRAG_RESULT_DATA2:
case FRAG_RESULT_DATA3:
case FRAG_RESULT_DATA4:
case FRAG_RESULT_DATA5:
case FRAG_RESULT_DATA6:
case FRAG_RESULT_DATA7:
c->variant->ps_color_out_reg[var->data.location - FRAG_RESULT_DATA0] = src.reg;
break;
case FRAG_RESULT_DEPTH:
c->variant->ps_depth_out_reg = src.reg;
break;
default:
unreachable("Unsupported fs output");
}
return;
}
switch (var->data.location) {
case VARYING_SLOT_POS:
c->variant->vs_pos_out_reg = src.reg;
break;
case VARYING_SLOT_PSIZ:
c->variant->vs_pointsize_out_reg = src.reg;
break;
default:
assert(sf->num_reg < ETNA_NUM_INPUTS);
sf->reg[sf->num_reg].reg = src.reg;
sf->reg[sf->num_reg].slot = var->data.location;
sf->reg[sf->num_reg].num_components = glsl_get_components(var->type);
sf->num_reg++;
break;
}
}
#define OPT(nir, pass, ...) ({ \
bool this_progress = false; \
NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__); \
this_progress; \
})
static void
etna_optimize_loop(nir_shader *s)
{
bool progress;
do {
progress = false;
NIR_PASS_V(s, nir_lower_vars_to_ssa);
progress |= OPT(s, nir_opt_copy_prop_vars);
progress |= OPT(s, nir_opt_shrink_stores, true);
progress |= OPT(s, nir_opt_shrink_vectors, false);
progress |= OPT(s, nir_copy_prop);
progress |= OPT(s, nir_opt_dce);
progress |= OPT(s, nir_opt_cse);
progress |= OPT(s, nir_opt_peephole_select, 16, true, true);
progress |= OPT(s, nir_opt_intrinsics);
progress |= OPT(s, nir_opt_algebraic);
progress |= OPT(s, nir_opt_constant_folding);
progress |= OPT(s, nir_opt_dead_cf);
if (OPT(s, nir_opt_loop)) {
progress = true;
/* If nir_opt_loop makes progress, then we need to clean
* things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
* to make progress.
*/
OPT(s, nir_copy_prop);
OPT(s, nir_opt_dce);
}
progress |= OPT(s, nir_opt_loop_unroll);
progress |= OPT(s, nir_opt_if, nir_opt_if_optimize_phi_true_false);
progress |= OPT(s, nir_opt_remove_phis);
progress |= OPT(s, nir_opt_undef);
}
while (progress);
}
static int
etna_glsl_type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static void
copy_uniform_state_to_shader(struct etna_shader_variant *sobj, uint64_t *consts, unsigned count)
{
struct etna_shader_uniform_info *uinfo = &sobj->uniforms;
uinfo->count = count * 4;
uinfo->data = MALLOC(uinfo->count * sizeof(*uinfo->data));
uinfo->contents = MALLOC(uinfo->count * sizeof(*uinfo->contents));
for (unsigned i = 0; i < uinfo->count; i++) {
uinfo->data[i] = consts[i];
uinfo->contents[i] = consts[i] >> 32;
}
etna_set_shader_uniforms_dirty_flags(sobj);
}
#define ALU_SWIZ(s) INST_SWIZ((s)->swizzle[0], (s)->swizzle[1], (s)->swizzle[2], (s)->swizzle[3])
#define SRC_DISABLE ((hw_src){})
#define SRC_CONST(idx, s) ((hw_src){.use=1, .rgroup = ISA_REG_GROUP_UNIFORM_0, .reg=idx, .swiz=s})
#define SRC_REG(idx, s) ((hw_src){.use=1, .rgroup = ISA_REG_GROUP_TEMP, .reg=idx, .swiz=s})
typedef struct etna_inst_dst hw_dst;
typedef struct etna_inst_src hw_src;
static inline hw_src
src_swizzle(hw_src src, unsigned swizzle)
{
if (src.rgroup != ISA_REG_GROUP_IMMED)
src.swiz = inst_swiz_compose(src.swiz, swizzle);
return src;
}
/* constants are represented as 64-bit ints
* 32-bit for the value and 32-bit for the type (imm, uniform, etc)
*/
#define CONST_VAL(a, b) (nir_const_value) {.u64 = (uint64_t)(a) << 32 | (uint64_t)(b)}
#define CONST(x) CONST_VAL(ETNA_UNIFORM_CONSTANT, x)
#define UNIFORM(x) CONST_VAL(ETNA_UNIFORM_UNIFORM, x)
#define TEXSCALE(x, i) CONST_VAL(ETNA_UNIFORM_TEXRECT_SCALE_X + (i), x)
#define TEXSIZE(x, i) CONST_VAL(ETNA_UNIFORM_TEXTURE_WIDTH + (i), x)
static int
const_add(uint64_t *c, uint64_t value)
{
for (unsigned i = 0; i < 4; i++) {
if (c[i] == value || !c[i]) {
c[i] = value;
return i;
}
}
return -1;
}
static hw_src
const_src(struct etna_compile *c, nir_const_value *value, unsigned num_components)
{
/* use inline immediates if possible */
if (c->info->halti >= 2 && num_components == 1 &&
value[0].u64 >> 32 == ETNA_UNIFORM_CONSTANT) {
uint32_t bits = value[0].u32;
/* "float" - shifted by 12 */
if ((bits & 0xfff) == 0)
return etna_immediate_src(0, bits >> 12);
/* "unsigned" - raw 20 bit value */
if (bits < (1 << 20))
return etna_immediate_src(2, bits);
/* "signed" - sign extended 20-bit (sign included) value */
if (bits >= 0xfff80000)
return etna_immediate_src(1, bits);
}
unsigned i;
int swiz = -1;
for (i = 0; swiz < 0; i++) {
uint64_t *a = &c->consts[i*4];
uint64_t save[4];
memcpy(save, a, sizeof(save));
swiz = 0;
for (unsigned j = 0; j < num_components; j++) {
int c = const_add(a, value[j].u64);
if (c < 0) {
memcpy(a, save, sizeof(save));
swiz = -1;
break;
}
swiz |= c << j * 2;
}
}
assert(i <= ETNA_MAX_IMM / 4);
c->const_count = MAX2(c->const_count, i);
return SRC_CONST(i - 1, swiz);
}
/* how to swizzle when used as a src */
static const uint8_t
reg_swiz[NUM_REG_TYPES] = {
[REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_X] = SWIZZLE(X, X, X, X),
[REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(Y, Y, Y, Y),
[REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(Z, Z, Z, Z),
[REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, Z, X, Z),
[REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(Y, Z, Y, Z),
[REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(Y, Z, Y, Z),
[REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(W, W, W, W),
[REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, W, X, W),
[REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(Y, W, Y, W),
[REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, W, X),
[REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(Z, W, Z, W),
[REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(Z, W, Z, W),
[REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(Z, W, Z, W),
[REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Z, W, X),
[REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(Y, Z, W, X),
[REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(Y, Z, W, X),
};
/* how to swizzle when used as a dest */
static const uint8_t
reg_dst_swiz[NUM_REG_TYPES] = {
[REG_TYPE_VEC4] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_X] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_Y] = SWIZZLE(X, X, X, X),
[REG_TYPE_VIRT_VEC2_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC2T_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC2C_XY] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_Z] = SWIZZLE(X, X, X, X),
[REG_TYPE_VIRT_VEC2_XZ] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC2_YZ] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC2C_YZ] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC3_XYZ] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_VEC3C_XYZ] = INST_SWIZ_IDENTITY,
[REG_TYPE_VIRT_SCALAR_W] = SWIZZLE(X, X, X, X),
[REG_TYPE_VIRT_VEC2_XW] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC2_YW] = SWIZZLE(X, X, Y, Y),
[REG_TYPE_VIRT_VEC3_XYW] = SWIZZLE(X, Y, Z, Z),
[REG_TYPE_VIRT_VEC2_ZW] = SWIZZLE(X, X, X, Y),
[REG_TYPE_VIRT_VEC2T_ZW] = SWIZZLE(X, X, X, Y),
[REG_TYPE_VIRT_VEC2C_ZW] = SWIZZLE(X, X, X, Y),
[REG_TYPE_VIRT_VEC3_XZW] = SWIZZLE(X, Y, Y, Z),
[REG_TYPE_VIRT_VEC3_YZW] = SWIZZLE(X, X, Y, Z),
[REG_TYPE_VIRT_VEC3C_YZW] = SWIZZLE(X, X, Y, Z),
};
/* nir_src to allocated register */
static hw_src
ra_src(struct etna_compile *c, nir_src *src)
{
unsigned reg = ra_get_node_reg(c->g, c->live_map[src_index(c->impl, src)]);
return SRC_REG(reg_get_base(c, reg), reg_swiz[reg_get_type(reg)]);
}
static hw_src
get_src(struct etna_compile *c, nir_src *src)
{
nir_instr *instr = src->ssa->parent_instr;
if (instr->pass_flags & BYPASS_SRC) {
assert(instr->type == nir_instr_type_alu);
nir_alu_instr *alu = nir_instr_as_alu(instr);
assert(alu->op == nir_op_mov);
return src_swizzle(get_src(c, &alu->src[0].src), ALU_SWIZ(&alu->src[0]));
}
switch (instr->type) {
case nir_instr_type_load_const:
return const_src(c, nir_instr_as_load_const(instr)->value, src->ssa->num_components);
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_load_input:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_vertex_id:
case nir_intrinsic_load_uniform:
case nir_intrinsic_load_ubo:
case nir_intrinsic_load_reg:
case nir_intrinsic_ddx:
case nir_intrinsic_ddy:
return ra_src(c, src);
case nir_intrinsic_load_front_face:
return (hw_src) { .use = 1, .rgroup = ISA_REG_GROUP_INTERNAL };
case nir_intrinsic_load_frag_coord:
return SRC_REG(0, INST_SWIZ_IDENTITY);
case nir_intrinsic_load_texture_scale: {
int sampler = nir_src_as_int(intr->src[0]);
nir_const_value values[] = {
TEXSCALE(sampler, 0),
TEXSCALE(sampler, 1),
};
return src_swizzle(const_src(c, values, 2), SWIZZLE(X,Y,X,X));
}
case nir_intrinsic_load_texture_size_etna: {
int sampler = nir_src_as_int(intr->src[0]);
nir_const_value values[] = {
TEXSIZE(sampler, 0),
TEXSIZE(sampler, 1),
TEXSIZE(sampler, 2),
};
return src_swizzle(const_src(c, values, 3), SWIZZLE(X,Y,Z,X));
}
default:
compile_error(c, "Unhandled NIR intrinsic type: %s\n",
nir_intrinsic_infos[intr->intrinsic].name);
break;
}
} break;
case nir_instr_type_alu:
case nir_instr_type_tex:
return ra_src(c, src);
case nir_instr_type_undef: {
/* return zero to deal with broken Blur demo */
nir_const_value value = CONST(0);
return src_swizzle(const_src(c, &value, 1), SWIZZLE(X,X,X,X));
}
default:
compile_error(c, "Unhandled NIR instruction type: %d\n", instr->type);
break;
}
return SRC_DISABLE;
}
static bool
vec_dest_has_swizzle(nir_alu_instr *vec, nir_def *ssa)
{
for (unsigned i = 0; i < vec->def.num_components; i++) {
if (vec->src[i].src.ssa != ssa)
continue;
if (vec->src[i].swizzle[0] != i)
return true;
}
/* don't deal with possible bypassed vec/mov chain */
nir_foreach_use(use_src, ssa) {
nir_instr *instr = nir_src_parent_instr(use_src);
if (instr->type != nir_instr_type_alu)
continue;
nir_alu_instr *alu = nir_instr_as_alu(instr);
switch (alu->op) {
case nir_op_mov:
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
return true;
default:
break;
}
}
return false;
}
/* get allocated dest register for nir_def
* *p_swiz tells how the components need to be placed into register
*/
static hw_dst
ra_def(struct etna_compile *c, nir_def *def, unsigned *p_swiz)
{
unsigned swiz = INST_SWIZ_IDENTITY, mask = 0xf;
def = real_def(def, &swiz, &mask);
unsigned r = ra_get_node_reg(c->g, c->live_map[def_index(c->impl, def)]);
unsigned t = reg_get_type(r);
*p_swiz = inst_swiz_compose(swiz, reg_dst_swiz[t]);
return (hw_dst) {
.use = 1,
.reg = reg_get_base(c, r),
.write_mask = inst_write_mask_compose(mask, reg_writemask[t]),
};
}
static void
emit_alu(struct etna_compile *c, nir_alu_instr * alu)
{
const nir_op_info *info = &nir_op_infos[alu->op];
/* marked as dead instruction (vecN and other bypassed instr) */
if (is_dead_instruction(&alu->instr))
return;
assert(!(alu->op >= nir_op_vec2 && alu->op <= nir_op_vec4));
unsigned dst_swiz;
hw_dst dst = ra_def(c, &alu->def, &dst_swiz);
switch (alu->op) {
case nir_op_fdot2:
case nir_op_fdot3:
case nir_op_fdot4:
/* not per-component - don't compose dst_swiz */
dst_swiz = INST_SWIZ_IDENTITY;
break;
default:
break;
}
hw_src srcs[3] = {0};
for (int i = 0; i < info->num_inputs; i++) {
nir_alu_src *asrc = &alu->src[i];
hw_src src;
src = src_swizzle(get_src(c, &asrc->src), ALU_SWIZ(asrc));
src = src_swizzle(src, dst_swiz);
if (src.rgroup != ISA_REG_GROUP_IMMED) {
src.neg = is_src_mod_neg(&alu->instr, i) || (alu->op == nir_op_fneg);
src.abs = is_src_mod_abs(&alu->instr, i) || (alu->op == nir_op_fabs);
} else {
assert(alu->op != nir_op_fabs);
assert(!is_src_mod_abs(&alu->instr, i) && alu->op != nir_op_fabs);
if (src.imm_type > 0)
assert(!is_src_mod_neg(&alu->instr, i));
if (is_src_mod_neg(&alu->instr, i) && src.imm_type == 0)
src.imm_val ^= 0x80000;
}
srcs[i] = src;
}
etna_emit_alu(c, alu->op, dst, srcs, alu->op == nir_op_fsat);
}
static void
emit_tex(struct etna_compile *c, nir_tex_instr * tex)
{
unsigned dst_swiz;
hw_dst dst = ra_def(c, &tex->def, &dst_swiz);
nir_src *coord = NULL, *src1 = NULL, *src2 = NULL;
for (unsigned i = 0; i < tex->num_srcs; i++) {
switch (tex->src[i].src_type) {
case nir_tex_src_coord:
coord = &tex->src[i].src;
break;
case nir_tex_src_bias:
case nir_tex_src_lod:
case nir_tex_src_ddx:
assert(!src1);
src1 = &tex->src[i].src;
break;
case nir_tex_src_comparator:
case nir_tex_src_ddy:
src2 = &tex->src[i].src;
break;
default:
compile_error(c, "Unhandled NIR tex src type: %d\n",
tex->src[i].src_type);
break;
}
}
etna_emit_tex(c, tex->op, tex->sampler_index, dst_swiz, dst, get_src(c, coord),
src1 ? get_src(c, src1) : SRC_DISABLE,
src2 ? get_src(c, src2) : SRC_DISABLE);
}
static void
emit_intrinsic(struct etna_compile *c, nir_intrinsic_instr * intr)
{
switch (intr->intrinsic) {
case nir_intrinsic_store_deref:
etna_emit_output(c, nir_src_as_deref(intr->src[0])->var, get_src(c, &intr->src[1]));
break;
case nir_intrinsic_terminate_if:
etna_emit_discard(c, get_src(c, &intr->src[0]));
break;
case nir_intrinsic_terminate:
etna_emit_discard(c, SRC_DISABLE);
break;
case nir_intrinsic_ddx: {
unsigned dst_swiz;
struct etna_inst_dst dst = ra_def(c, &intr->def, &dst_swiz);
struct etna_inst_src src = get_src(c, &intr->src[0]);
src = src_swizzle(src, dst_swiz);
struct etna_inst inst = {
.dst = dst,
.opcode = ISA_OPC_DSX,
.cond = ISA_COND_TRUE,
.type = ISA_TYPE_F32,
.src[0] = src,
.src[1] = src,
};
emit_inst(c, &inst);
} break;
case nir_intrinsic_ddy: {
unsigned dst_swiz;
struct etna_inst_dst dst = ra_def(c, &intr->def, &dst_swiz);
struct etna_inst_src src = get_src(c, &intr->src[0]);
src = src_swizzle(src, dst_swiz);
struct etna_inst inst = {
.dst = dst,
.opcode = ISA_OPC_DSY,
.type = ISA_TYPE_F32,
.cond = ISA_COND_TRUE,
.src[0] = src,
.src[1] = src,
};
emit_inst(c, &inst);
} break;
case nir_intrinsic_load_uniform: {
unsigned dst_swiz;
struct etna_inst_dst dst = ra_def(c, &intr->def, &dst_swiz);
/* TODO: rework so extra MOV isn't required, load up to 4 addresses at once */
emit_inst(c, &(struct etna_inst) {
.opcode = ISA_OPC_MOVAR,
.dst.use = 1,
.dst.write_mask = ISA_WRMASK_X___,
.src[0] = get_src(c, &intr->src[0]),
});
emit_inst(c, &(struct etna_inst) {
.opcode = ISA_OPC_MOV,
.dst = dst,
.src[0] = {
.use = 1,
.rgroup = ISA_REG_GROUP_UNIFORM_0,
.reg = nir_intrinsic_base(intr),
.swiz = dst_swiz,
.amode = ISA_REG_ADDRESSING_MODE_AX,
},
});
} break;
case nir_intrinsic_load_ubo: {
/* TODO: if offset is of the form (x + C) then add C to the base instead */
unsigned idx = nir_src_as_const_value(intr->src[0])[0].u32;
unsigned dst_swiz;
emit_inst(c, &(struct etna_inst) {
.opcode = ISA_OPC_LOAD,
.type = ISA_TYPE_U32,
.dst = ra_def(c, &intr->def, &dst_swiz),
.src[0] = get_src(c, &intr->src[1]),
.src[1] = const_src(c, &CONST_VAL(ETNA_UNIFORM_UBO_ADDR, idx), 1),
});
} break;
case nir_intrinsic_load_front_face:
case nir_intrinsic_load_frag_coord:
break;
case nir_intrinsic_load_input:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_vertex_id:
case nir_intrinsic_load_texture_scale:
case nir_intrinsic_load_texture_size_etna:
case nir_intrinsic_decl_reg:
case nir_intrinsic_load_reg:
case nir_intrinsic_store_reg:
break;
default:
compile_error(c, "Unhandled NIR intrinsic type: %s\n",
nir_intrinsic_infos[intr->intrinsic].name);
}
}
static void
emit_instr(struct etna_compile *c, nir_instr * instr)
{
switch (instr->type) {
case nir_instr_type_alu:
emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_tex:
emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_intrinsic:
emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_jump:
assert(nir_instr_is_last(instr));
break;
case nir_instr_type_load_const:
case nir_instr_type_undef:
case nir_instr_type_deref:
break;
default:
compile_error(c, "Unhandled NIR instruction type: %d\n", instr->type);
break;
}
}
static void
emit_block(struct etna_compile *c, nir_block * block)
{
etna_emit_block_start(c, block->index);
nir_foreach_instr(instr, block)
emit_instr(c, instr);
/* succs->index < block->index is for the loop case */
nir_block *succs = block->successors[0];
if (nir_block_ends_in_jump(block) || succs->index < block->index)
etna_emit_jump(c, succs->index, SRC_DISABLE);
}
static void
emit_cf_list(struct etna_compile *c, struct exec_list *list);
static void
emit_if(struct etna_compile *c, nir_if * nif)
{
etna_emit_jump(c, nir_if_first_else_block(nif)->index, get_src(c, &nif->condition));
emit_cf_list(c, &nif->then_list);
/* jump at end of then_list to skip else_list
* not needed if then_list already ends with a jump or else_list is empty
*/
if (!nir_block_ends_in_jump(nir_if_last_then_block(nif)) &&
!nir_cf_list_is_empty_block(&nif->else_list))
etna_emit_jump(c, nir_if_last_then_block(nif)->successors[0]->index, SRC_DISABLE);
emit_cf_list(c, &nif->else_list);
}
static void
emit_cf_list(struct etna_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
assert(!nir_loop_has_continue_construct(nir_cf_node_as_loop(node)));
emit_cf_list(c, &nir_cf_node_as_loop(node)->body);
break;
default:
compile_error(c, "Unknown NIR node type\n");
break;
}
}
}
/* based on nir_lower_vec_to_movs */
static unsigned
insert_vec_mov(nir_alu_instr *vec, unsigned start_idx, nir_shader *shader)
{
assert(start_idx < nir_op_infos[vec->op].num_inputs);
unsigned write_mask = (1u << start_idx);
nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
nir_alu_src_copy(&mov->src[0], &vec->src[start_idx]);
mov->src[0].swizzle[0] = vec->src[start_idx].swizzle[0];
if (is_src_mod_neg(&vec->instr, start_idx))
set_src_mod_neg(&mov->instr, 0);
if (is_src_mod_abs(&vec->instr, start_idx))
set_src_mod_abs(&mov->instr, 0);
unsigned num_components = 1;
for (unsigned i = start_idx + 1; i < vec->def.num_components; i++) {
if (nir_srcs_equal(vec->src[i].src, vec->src[start_idx].src) &&
is_src_mod_neg(&vec->instr, i) == is_src_mod_neg(&vec->instr, start_idx) &&
is_src_mod_abs(&vec->instr, i) == is_src_mod_neg(&vec->instr, start_idx)) {
write_mask |= (1 << i);
mov->src[0].swizzle[num_components] = vec->src[i].swizzle[0];
num_components++;
}
}
nir_def_init(&mov->instr, &mov->def, num_components, 32);
/* replace vec srcs with inserted mov */
for (unsigned i = 0, j = 0; i < 4; i++) {
if (!(write_mask & (1 << i)))
continue;
nir_src_rewrite(&vec->src[i].src, &mov->def);
vec->src[i].swizzle[0] = j++;
}
nir_instr_insert_before(&vec->instr, &mov->instr);
return write_mask;
}
/*
* Get the nir_const_value from an alu src. Also look at
* the parent instruction as it could be a fabs/fneg.
*/
static nir_const_value *get_alu_cv(nir_alu_src *src)
{
nir_const_value *cv = nir_src_as_const_value(src->src);
if (!cv &&
(src->src.ssa->parent_instr->type == nir_instr_type_alu)) {
nir_alu_instr *parent = nir_instr_as_alu(src->src.ssa->parent_instr);
if ((parent->op == nir_op_fabs) ||
(parent->op == nir_op_fneg)) {
cv = nir_src_as_const_value(parent->src[0].src);
if (cv) {
/* Validate that we are only using ETNA_UNIFORM_CONSTANT const_values. */
for (unsigned i = 0; i < parent->def.num_components; i++) {
if (cv[i].u64 >> 32 != ETNA_UNIFORM_CONSTANT) {
cv = NULL;
break;
}
}
}
}
}
return cv;
}
/*
* for vecN instructions:
* -merge constant sources into a single src
* -insert movs (nir_lower_vec_to_movs equivalent)
* for non-vecN instructions:
* -try to merge constants as single constant
* -insert movs for multiple constants if required
*/
static void
lower_alu(struct etna_compile *c, nir_alu_instr *alu)
{
const nir_op_info *info = &nir_op_infos[alu->op];
nir_builder b = nir_builder_at(nir_before_instr(&alu->instr));
switch (alu->op) {
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
break;
default:
if (c->specs->has_no_oneconst_limit)
return;
nir_const_value value[4] = {};
uint8_t swizzle[4][4] = {};
unsigned swiz_max = 0, num_different_const_srcs = 0;
int first_const = -1;
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_const_value *cv = get_alu_cv(&alu->src[i]);
if (!cv)
continue;
unsigned num_components = info->input_sizes[i] ?: alu->def.num_components;
for (unsigned j = 0; j < num_components; j++) {
int idx = const_add(&value[0].u64, cv[alu->src[i].swizzle[j]].u64);
swizzle[i][j] = idx;
swiz_max = MAX2(swiz_max, (unsigned) idx);
}
if (first_const == -1)
first_const = i;
if (!nir_srcs_equal(alu->src[first_const].src, alu->src[i].src))
num_different_const_srcs++;
}
/* nothing to do */
if (num_different_const_srcs == 0)
return;
/* resolve with single combined const src */
if (swiz_max < 4) {
nir_def *def = nir_build_imm(&b, swiz_max + 1, 32, value);
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_const_value *cv = get_alu_cv(&alu->src[i]);
if (!cv)
continue;
nir_src_rewrite(&alu->src[i].src, def);
for (unsigned j = 0; j < 4; j++)
alu->src[i].swizzle[j] = swizzle[i][j];
}
return;
}
/* resolve with movs */
unsigned num_const = 0;
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_const_value *cv = get_alu_cv(&alu->src[i]);
if (!cv)
continue;
num_const++;
if (num_const == 1)
continue;
nir_def *mov = nir_mov(&b, alu->src[i].src.ssa);
nir_src_rewrite(&alu->src[i].src, mov);
}
return;
}
nir_const_value value[4];
unsigned num_components = 0;
for (unsigned i = 0; i < info->num_inputs; i++) {
nir_const_value *cv = get_alu_cv(&alu->src[i]);
if (cv)
value[num_components++] = cv[alu->src[i].swizzle[0]];
}
/* if there is more than one constant source to the vecN, combine them
* into a single load_const (removing the vecN completely if all components
* are constant)
*/
if (num_components > 1) {
nir_def *def = nir_build_imm(&b, num_components, 32, value);
if (num_components == info->num_inputs) {
nir_def_replace(&alu->def, def);
return;
}
for (unsigned i = 0, j = 0; i < info->num_inputs; i++) {
nir_const_value *cv = get_alu_cv(&alu->src[i]);
if (!cv)
continue;
nir_src_rewrite(&alu->src[i].src, def);
alu->src[i].swizzle[0] = j++;
}
}
unsigned finished_write_mask = 0;
for (unsigned i = 0; i < alu->def.num_components; i++) {
nir_def *ssa = alu->src[i].src.ssa;
/* check that vecN instruction is only user of this */
bool need_mov = false;
nir_foreach_use_including_if(use_src, ssa) {
if (nir_src_is_if(use_src) || nir_src_parent_instr(use_src) != &alu->instr)
need_mov = true;
}
nir_instr *instr = ssa->parent_instr;
switch (instr->type) {
case nir_instr_type_alu:
case nir_instr_type_tex:
break;
case nir_instr_type_intrinsic:
if (nir_instr_as_intrinsic(instr)->intrinsic == nir_intrinsic_load_input) {
need_mov = vec_dest_has_swizzle(alu, &nir_instr_as_intrinsic(instr)->def);
break;
}
FALLTHROUGH;
default:
need_mov = true;
}
if (need_mov && !(finished_write_mask & (1 << i)))
finished_write_mask |= insert_vec_mov(alu, i, c->nir);
}
}
static bool
emit_shader(struct etna_compile *c, unsigned *num_temps, unsigned *num_consts)
{
nir_shader *shader = c->nir;
c->impl = nir_shader_get_entrypoint(shader);
bool have_indirect_uniform = false;
unsigned indirect_max = 0;
nir_builder b = nir_builder_create(c->impl);
/* convert non-dynamic uniform loads to constants, etc */
nir_foreach_block(block, c->impl) {
nir_foreach_instr_safe(instr, block) {
switch(instr->type) {
case nir_instr_type_alu:
/* deals with vecN and const srcs */
lower_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_load_const: {
nir_load_const_instr *load_const = nir_instr_as_load_const(instr);
for (unsigned i = 0; i < load_const->def.num_components; i++)
load_const->value[i] = CONST(load_const->value[i].u32);
} break;
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
/* TODO: load_ubo can also become a constant in some cases
* (at the moment it can end up emitting a LOAD with two
* uniform sources, which could be a problem on HALTI2)
*/
if (intr->intrinsic != nir_intrinsic_load_uniform)
break;
nir_const_value *off = nir_src_as_const_value(intr->src[0]);
if (!off || off[0].u64 >> 32 != ETNA_UNIFORM_CONSTANT) {
have_indirect_uniform = true;
indirect_max = nir_intrinsic_base(intr) + nir_intrinsic_range(intr);
break;
}
unsigned base = nir_intrinsic_base(intr);
/* pre halti2 uniform offset will be float */
if (c->info->halti < 2)
base += (unsigned) off[0].f32;
else
base += off[0].u32;
nir_const_value value[4];
for (unsigned i = 0; i < intr->def.num_components; i++)
value[i] = UNIFORM(base * 4 + i);
b.cursor = nir_after_instr(instr);
nir_def *def = nir_build_imm(&b, intr->def.num_components, 32, value);
nir_def_rewrite_uses(&intr->def, def);
nir_instr_remove(instr);
} break;
default:
break;
}
}
}
/* TODO: only emit required indirect uniform ranges */
if (have_indirect_uniform) {
for (unsigned i = 0; i < indirect_max * 4; i++)
c->consts[i] = UNIFORM(i).u64;
c->const_count = indirect_max;
}
/* add mov for any store output using sysval/const and for depth stores from intrinsics */
nir_foreach_block(block, c->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
switch (intr->intrinsic) {
case nir_intrinsic_store_deref: {
nir_deref_instr *deref = nir_src_as_deref(intr->src[0]);
nir_src *src = &intr->src[1];
if (nir_src_is_const(*src) || is_sysval(src->ssa->parent_instr) ||
(shader->info.stage == MESA_SHADER_FRAGMENT &&
deref->var->data.location == FRAG_RESULT_DEPTH &&
src->ssa->parent_instr->type != nir_instr_type_alu)) {
b.cursor = nir_before_instr(instr);
nir_src_rewrite(src, nir_mov(&b, src->ssa));
}
} break;
default:
break;
}
}
}
/* call directly to avoid validation (load_const don't pass validation at this point) */
nir_convert_from_ssa(shader, true);
nir_trivialize_registers(shader);
etna_ra_assign(c, shader);
emit_cf_list(c, &nir_shader_get_entrypoint(shader)->body);
*num_temps = etna_ra_finish(c);
*num_consts = c->const_count;
return true;
}
static bool
etna_compile_check_limits(struct etna_shader_variant *v)
{
const struct etna_core_info *info = v->shader->info;
const struct etna_specs *specs = v->shader->specs;
int max_uniforms = (v->stage == MESA_SHADER_VERTEX)
? specs->max_vs_uniforms
: specs->max_ps_uniforms;
if (!specs->has_icache && v->needs_icache) {
DBG("Number of instructions (%d) exceeds maximum %d", v->code_size / 4,
specs->max_instructions);
return false;
}
if (v->num_temps > info->gpu.max_registers) {
DBG("Number of registers (%d) exceeds maximum %d", v->num_temps,
info->gpu.max_registers);
return false;
}
if (v->uniforms.count / 4 > max_uniforms) {
DBG("Number of uniforms (%d) exceeds maximum %d",
v->uniforms.count / 4, max_uniforms);
return false;
}
if (v->stage == MESA_SHADER_VERTEX) {
int num_outputs = v->vs_pointsize_out_reg >= 0 ? 2 : 1;
num_outputs += v->outfile.num_reg;
if (num_outputs > specs->max_vs_outputs) {
DBG("Number of VS outputs (%zu) exceeds maximum %d",
v->outfile.num_reg, specs->max_vs_outputs);
return false;
}
}
return true;
}
static void
fill_vs_mystery(struct etna_shader_variant *v)
{
const struct etna_core_info *info = v->shader->info;
v->input_count_unk8 = DIV_ROUND_UP(v->infile.num_reg + 4, 16); /* XXX what is this */
/* fill in "mystery meat" load balancing value. This value determines how
* work is scheduled between VS and PS
* in the unified shader architecture. More precisely, it is determined from
* the number of VS outputs, as well as chip-specific
* vertex output buffer size, vertex cache size, and the number of shader
* cores.
*
* XXX this is a conservative estimate, the "optimal" value is only known for
* sure at link time because some
* outputs may be unused and thus unmapped. Then again, in the general use
* case with GLSL the vertex and fragment
* shaders are linked already before submitting to Gallium, thus all outputs
* are used.
*
* note: TGSI compiler counts all outputs (including position and pointsize), here
* v->outfile.num_reg only counts varyings, +1 to compensate for the position output
* TODO: might have a problem that we don't count pointsize when it is used
*/
int half_out = v->outfile.num_reg / 2 + 1;
assert(half_out);
uint32_t b = ((20480 / (info->gpu.vertex_output_buffer_size -
2 * half_out * info->gpu.vertex_cache_size)) +
9) /
10;
uint32_t a = (b + 256 / (info->gpu.shader_core_count * half_out)) / 2;
v->vs_load_balancing = VIVS_VS_LOAD_BALANCING_A(MIN2(a, 255)) |
VIVS_VS_LOAD_BALANCING_B(MIN2(b, 255)) |
VIVS_VS_LOAD_BALANCING_C(0x3f) |
VIVS_VS_LOAD_BALANCING_D(0x0f);
}
bool
etna_compile_shader(struct etna_shader_variant *v)
{
if (unlikely(!v))
return false;
struct etna_compile *c = CALLOC_STRUCT(etna_compile);
if (!c)
return false;
c->variant = v;
c->info = v->shader->info;
c->specs = v->shader->specs;
c->nir = nir_shader_clone(NULL, v->shader->nir);
nir_shader *s = c->nir;
const struct etna_specs *specs = c->specs;
v->stage = s->info.stage;
v->uses_discard = s->info.fs.uses_discard;
v->num_loops = 0; /* TODO */
v->vs_id_in_reg = -1;
v->vs_pos_out_reg = -1;
v->vs_pointsize_out_reg = -1;
v->ps_depth_out_reg = -1;
if (s->info.stage == MESA_SHADER_FRAGMENT)
NIR_PASS_V(s, nir_lower_fragcolor, specs->num_rts);
/*
* Lower glTexCoord, fixes e.g. neverball point sprite (exit cylinder stars)
* and gl4es pointsprite.trace apitrace
*/
if (s->info.stage == MESA_SHADER_FRAGMENT && v->key.sprite_coord_enable) {
NIR_PASS_V(s, nir_lower_texcoord_replace, v->key.sprite_coord_enable,
false, v->key.sprite_coord_yinvert);
}
/*
* Remove any dead in variables before we iterate over them
*/
NIR_PASS_V(s, nir_remove_dead_variables, nir_var_shader_in, NULL);
/* setup input linking */
struct etna_shader_io_file *sf = &v->infile;
if (s->info.stage == MESA_SHADER_VERTEX) {
nir_foreach_shader_in_variable(var, s) {
unsigned idx = var->data.driver_location;
sf->reg[idx].reg = idx;
sf->reg[idx].slot = var->data.location;
sf->reg[idx].num_components = glsl_get_components(var->type);
sf->num_reg = MAX2(sf->num_reg, idx+1);
}
} else {
unsigned count = 0;
nir_foreach_shader_in_variable(var, s) {
unsigned idx = var->data.driver_location;
sf->reg[idx].reg = idx + 1;
sf->reg[idx].slot = var->data.location;
sf->reg[idx].num_components = glsl_get_components(var->type);
sf->num_reg = MAX2(sf->num_reg, idx+1);
count++;
}
assert(sf->num_reg == count);
}
NIR_PASS_V(s, nir_lower_io, nir_var_shader_in | nir_var_uniform, etna_glsl_type_size,
(nir_lower_io_options)0);
NIR_PASS_V(s, nir_lower_vars_to_ssa);
NIR_PASS_V(s, nir_lower_indirect_derefs, nir_var_all, UINT32_MAX);
NIR_PASS_V(s, etna_nir_lower_texture, &v->key);
NIR_PASS_V(s, nir_lower_alu_to_scalar, etna_alu_to_scalar_filter_cb, c->info);
if (c->info->halti >= 2) {
nir_lower_idiv_options idiv_options = {
.allow_fp16 = true,
};
NIR_PASS_V(s, nir_lower_idiv, &idiv_options);
}
NIR_PASS_V(s, nir_lower_alu);
etna_optimize_loop(s);
/* TODO: remove this extra run if nir_opt_peephole_select is able to handle ubo's. */
if (OPT(s, etna_nir_lower_ubo_to_uniform))
etna_optimize_loop(s);
NIR_PASS_V(s, etna_lower_io, v);
NIR_PASS_V(s, nir_lower_pack);
etna_optimize_loop(s);
if (v->shader->specs->vs_need_z_div)
NIR_PASS_V(s, nir_lower_clip_halfz);
/* lower pre-halti2 to float (halti0 has integers, but only scalar..) */
if (c->info->halti < 2) {
/* use opt_algebraic between int_to_float and boot_to_float because
* int_to_float emits ftrunc, and ftrunc lowering generates bool ops
*/
NIR_PASS_V(s, nir_lower_int_to_float);
NIR_PASS_V(s, nir_opt_algebraic);
NIR_PASS_V(s, nir_lower_bool_to_float, true);
} else {
NIR_PASS_V(s, nir_lower_bool_to_int32);
}
while( OPT(s, nir_opt_vectorize, NULL, NULL) );
NIR_PASS_V(s, nir_lower_alu_to_scalar, etna_alu_to_scalar_filter_cb, c->info);
NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp, NULL);
NIR_PASS_V(s, nir_opt_algebraic_late);
NIR_PASS_V(s, nir_move_vec_src_uses_to_dest, false);
NIR_PASS_V(s, nir_copy_prop);
/* need copy prop after uses_to_dest, and before src mods: see
* dEQP-GLES2.functional.shaders.random.all_features.fragment.95
*/
NIR_PASS_V(s, nir_opt_dce);
NIR_PASS_V(s, nir_opt_cse);
NIR_PASS_V(s, nir_lower_bool_to_bitsize);
NIR_PASS_V(s, etna_lower_alu, c->specs->has_new_transcendentals);
/* needs to be the last pass that touches pass_flags! */
NIR_PASS_V(s, etna_nir_lower_to_source_mods);
if (DBG_ENABLED(ETNA_DBG_DUMP_SHADERS))
nir_print_shader(s, stdout);
unsigned block_ptr[nir_shader_get_entrypoint(s)->num_blocks];
c->block_ptr = block_ptr;
unsigned num_consts;
ASSERTED bool ok = emit_shader(c, &v->num_temps, &num_consts);
assert(ok);
/* empty shader, emit NOP */
if (!c->inst_ptr)
emit_inst(c, &(struct etna_inst) { .opcode = ISA_OPC_NOP });
/* assemble instructions, fixing up labels */
uint32_t *code = MALLOC(c->inst_ptr * 16);
for (unsigned i = 0; i < c->inst_ptr; i++) {
struct etna_inst *inst = &c->code[i];
if (inst->opcode == ISA_OPC_BRANCH || inst->opcode == ISA_OPC_BRANCH_UNARY || inst->opcode == ISA_OPC_BRANCH_BINARY)
inst->imm = block_ptr[inst->imm];
etna_assemble(&code[i * 4], inst, specs->has_no_oneconst_limit);
}
v->code_size = c->inst_ptr * 4;
v->code = code;
v->needs_icache = c->inst_ptr > specs->max_instructions;
copy_uniform_state_to_shader(v, c->consts, num_consts);
if (s->info.stage == MESA_SHADER_FRAGMENT) {
v->input_count_unk8 = 31; /* XXX what is this */
assert(v->ps_depth_out_reg <= 0);
} else {
fill_vs_mystery(v);
}
bool result = etna_compile_check_limits(v);
ralloc_free(c->nir);
FREE(c);
return result;
}
static const struct etna_shader_inout *
etna_shader_vs_lookup(const struct etna_shader_variant *sobj,
const struct etna_shader_inout *in)
{
for (int i = 0; i < sobj->outfile.num_reg; i++)
if (sobj->outfile.reg[i].slot == in->slot)
return &sobj->outfile.reg[i];
/*
* There are valid NIR shaders pairs where the vertex shader has
* a VARYING_SLOT_BFC0 shader_out and the corresponding framgent
* shader has a VARYING_SLOT_COL0 shader_in.
* So at link time if there is no matching VARYING_SLOT_BFC[n],
* we must map VARYING_SLOT_BFC0[n] to VARYING_SLOT_COL[n].
*/
gl_varying_slot slot;
if (in->slot == VARYING_SLOT_COL0)
slot = VARYING_SLOT_BFC0;
else if (in->slot == VARYING_SLOT_COL1)
slot = VARYING_SLOT_BFC1;
else
return NULL;
for (int i = 0; i < sobj->outfile.num_reg; i++)
if (sobj->outfile.reg[i].slot == slot)
return &sobj->outfile.reg[i];
return NULL;
}
void
etna_link_shader(struct etna_shader_link_info *info,
const struct etna_shader_variant *vs,
const struct etna_shader_variant *fs)
{
int comp_ofs = 0;
/* For each fragment input we need to find the associated vertex shader
* output, which can be found by matching on semantic name and index. A
* binary search could be used because the vs outputs are sorted by their
* semantic index and grouped by semantic type by fill_in_vs_outputs.
*/
assert(fs->infile.num_reg <= ETNA_NUM_INPUTS);
info->pcoord_varying_comp_ofs = -1;
for (int idx = 0; idx < fs->infile.num_reg; ++idx) {
const struct etna_shader_inout *fsio = &fs->infile.reg[idx];
const struct etna_shader_inout *vsio = etna_shader_vs_lookup(vs, fsio);
struct etna_varying *varying;
bool interpolate_always = true;
assert(fsio->reg > 0 && fsio->reg <= ARRAY_SIZE(info->varyings));
if (fsio->reg > info->num_varyings)
info->num_varyings = fsio->reg;
varying = &info->varyings[fsio->reg - 1];
varying->num_components = fsio->num_components;
if (!interpolate_always) /* colors affected by flat shading */
varying->pa_attributes = 0x200;
else /* texture coord or other bypasses flat shading */
varying->pa_attributes = 0x2f1;
varying->use[0] = VARYING_COMPONENT_USE_GENERIC;
varying->use[1] = VARYING_COMPONENT_USE_GENERIC;
varying->use[2] = VARYING_COMPONENT_USE_GENERIC;
varying->use[3] = VARYING_COMPONENT_USE_GENERIC;
/* point/tex coord is an input to the PS without matching VS output,
* so it gets a varying slot without being assigned a VS register.
*/
if (fsio->slot == VARYING_SLOT_PNTC) {
varying->use[0] = VARYING_COMPONENT_USE_POINTCOORD_X;
varying->use[1] = VARYING_COMPONENT_USE_POINTCOORD_Y;
info->pcoord_varying_comp_ofs = comp_ofs;
} else if (util_varying_is_point_coord(fsio->slot, fs->key.sprite_coord_enable)) {
/*
* Do nothing, TexCoord is lowered to PointCoord above
* and the TexCoord here is just a remnant. This needs
* to be removed with some nir_remove_dead_variables(),
* but that one removes all FS inputs ... why?
*/
} else {
/* pick a random register to use if there is no VS output */
if (vsio == NULL)
varying->reg = 0;
else
varying->reg = vsio->reg;
}
comp_ofs += varying->num_components;
}
assert(info->num_varyings == fs->infile.num_reg);
}