
Without this, we may end up dereferencing blend before we check for
binding->index != UINT32_MAX. However, Vulkan allows the blend state to
be NULL so long as you don't have any color attachments. This fixes a
segfault when running The Talos Principal.
Fixes: 12f4e00b69
Cc: mesa-stable@lists.freedesktop.org
Reviewed-by: Alex Smith <asmith@feralinteractive.com>
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
1925 lines
74 KiB
C
1925 lines
74 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "anv_private.h"
|
|
|
|
#include "genxml/gen_macros.h"
|
|
#include "genxml/genX_pack.h"
|
|
|
|
#include "common/gen_l3_config.h"
|
|
#include "common/gen_sample_positions.h"
|
|
#include "vk_util.h"
|
|
#include "vk_format_info.h"
|
|
|
|
static uint32_t
|
|
vertex_element_comp_control(enum isl_format format, unsigned comp)
|
|
{
|
|
uint8_t bits;
|
|
switch (comp) {
|
|
case 0: bits = isl_format_layouts[format].channels.r.bits; break;
|
|
case 1: bits = isl_format_layouts[format].channels.g.bits; break;
|
|
case 2: bits = isl_format_layouts[format].channels.b.bits; break;
|
|
case 3: bits = isl_format_layouts[format].channels.a.bits; break;
|
|
default: unreachable("Invalid component");
|
|
}
|
|
|
|
/*
|
|
* Take in account hardware restrictions when dealing with 64-bit floats.
|
|
*
|
|
* From Broadwell spec, command reference structures, page 586:
|
|
* "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
|
|
* 64-bit components are stored * in the URB without any conversion. In
|
|
* this case, vertex elements must be written as 128 or 256 bits, with
|
|
* VFCOMP_STORE_0 being used to pad the output as required. E.g., if
|
|
* R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
|
|
* Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
|
|
* set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
|
|
* Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
|
|
* a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
|
|
* Component 3 to be specified as VFCOMP_STORE_0 in order to output a
|
|
* 256-bit vertex element."
|
|
*/
|
|
if (bits) {
|
|
return VFCOMP_STORE_SRC;
|
|
} else if (comp >= 2 &&
|
|
!isl_format_layouts[format].channels.b.bits &&
|
|
isl_format_layouts[format].channels.r.type == ISL_RAW) {
|
|
/* When emitting 64-bit attributes, we need to write either 128 or 256
|
|
* bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
|
|
* VFCOMP_STORE_0 to pad the written chunk */
|
|
return VFCOMP_NOSTORE;
|
|
} else if (comp < 3 ||
|
|
isl_format_layouts[format].channels.r.type == ISL_RAW) {
|
|
/* Note we need to pad with value 0, not 1, due hardware restrictions
|
|
* (see comment above) */
|
|
return VFCOMP_STORE_0;
|
|
} else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
|
|
isl_format_layouts[format].channels.r.type == ISL_SINT) {
|
|
assert(comp == 3);
|
|
return VFCOMP_STORE_1_INT;
|
|
} else {
|
|
assert(comp == 3);
|
|
return VFCOMP_STORE_1_FP;
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_vertex_input(struct anv_pipeline *pipeline,
|
|
const VkPipelineVertexInputStateCreateInfo *info)
|
|
{
|
|
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
|
|
|
|
/* Pull inputs_read out of the VS prog data */
|
|
const uint64_t inputs_read = vs_prog_data->inputs_read;
|
|
const uint64_t double_inputs_read = vs_prog_data->double_inputs_read;
|
|
assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
|
|
const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
|
|
const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
|
|
const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
|
|
vs_prog_data->uses_instanceid ||
|
|
vs_prog_data->uses_basevertex ||
|
|
vs_prog_data->uses_baseinstance;
|
|
|
|
uint32_t elem_count = __builtin_popcount(elements) -
|
|
__builtin_popcount(elements_double) / 2;
|
|
|
|
const uint32_t total_elems =
|
|
elem_count + needs_svgs_elem + vs_prog_data->uses_drawid;
|
|
if (total_elems == 0)
|
|
return;
|
|
|
|
uint32_t *p;
|
|
|
|
const uint32_t num_dwords = 1 + total_elems * 2;
|
|
p = anv_batch_emitn(&pipeline->batch, num_dwords,
|
|
GENX(3DSTATE_VERTEX_ELEMENTS));
|
|
if (!p)
|
|
return;
|
|
memset(p + 1, 0, (num_dwords - 1) * 4);
|
|
|
|
for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
|
|
const VkVertexInputAttributeDescription *desc =
|
|
&info->pVertexAttributeDescriptions[i];
|
|
enum isl_format format = anv_get_isl_format(&pipeline->device->info,
|
|
desc->format,
|
|
VK_IMAGE_ASPECT_COLOR_BIT,
|
|
VK_IMAGE_TILING_LINEAR);
|
|
|
|
assert(desc->binding < MAX_VBS);
|
|
|
|
if ((elements & (1 << desc->location)) == 0)
|
|
continue; /* Binding unused */
|
|
|
|
uint32_t slot =
|
|
__builtin_popcount(elements & ((1 << desc->location) - 1)) -
|
|
DIV_ROUND_UP(__builtin_popcount(elements_double &
|
|
((1 << desc->location) -1)), 2);
|
|
|
|
struct GENX(VERTEX_ELEMENT_STATE) element = {
|
|
.VertexBufferIndex = desc->binding,
|
|
.Valid = true,
|
|
.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) format,
|
|
.EdgeFlagEnable = false,
|
|
.SourceElementOffset = desc->offset,
|
|
.Component0Control = vertex_element_comp_control(format, 0),
|
|
.Component1Control = vertex_element_comp_control(format, 1),
|
|
.Component2Control = vertex_element_comp_control(format, 2),
|
|
.Component3Control = vertex_element_comp_control(format, 3),
|
|
};
|
|
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
|
|
|
|
#if GEN_GEN >= 8
|
|
/* On Broadwell and later, we have a separate VF_INSTANCING packet
|
|
* that controls instancing. On Haswell and prior, that's part of
|
|
* VERTEX_BUFFER_STATE which we emit later.
|
|
*/
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
|
|
vfi.InstancingEnable = pipeline->instancing_enable[desc->binding];
|
|
vfi.VertexElementIndex = slot;
|
|
/* Our implementation of VK_KHX_multiview uses instancing to draw
|
|
* the different views. If the client asks for instancing, we
|
|
* need to use the Instance Data Step Rate to ensure that we
|
|
* repeat the client's per-instance data once for each view.
|
|
*/
|
|
vfi.InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
const uint32_t id_slot = elem_count;
|
|
if (needs_svgs_elem) {
|
|
/* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
|
|
* "Within a VERTEX_ELEMENT_STATE structure, if a Component
|
|
* Control field is set to something other than VFCOMP_STORE_SRC,
|
|
* no higher-numbered Component Control fields may be set to
|
|
* VFCOMP_STORE_SRC"
|
|
*
|
|
* This means, that if we have BaseInstance, we need BaseVertex as
|
|
* well. Just do all or nothing.
|
|
*/
|
|
uint32_t base_ctrl = (vs_prog_data->uses_basevertex ||
|
|
vs_prog_data->uses_baseinstance) ?
|
|
VFCOMP_STORE_SRC : VFCOMP_STORE_0;
|
|
|
|
struct GENX(VERTEX_ELEMENT_STATE) element = {
|
|
.VertexBufferIndex = ANV_SVGS_VB_INDEX,
|
|
.Valid = true,
|
|
.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32G32_UINT,
|
|
.Component0Control = base_ctrl,
|
|
.Component1Control = base_ctrl,
|
|
#if GEN_GEN >= 8
|
|
.Component2Control = VFCOMP_STORE_0,
|
|
.Component3Control = VFCOMP_STORE_0,
|
|
#else
|
|
.Component2Control = VFCOMP_STORE_VID,
|
|
.Component3Control = VFCOMP_STORE_IID,
|
|
#endif
|
|
};
|
|
GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
|
|
}
|
|
|
|
#if GEN_GEN >= 8
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
|
|
sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
|
|
sgvs.VertexIDComponentNumber = 2;
|
|
sgvs.VertexIDElementOffset = id_slot;
|
|
sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
|
|
sgvs.InstanceIDComponentNumber = 3;
|
|
sgvs.InstanceIDElementOffset = id_slot;
|
|
}
|
|
#endif
|
|
|
|
const uint32_t drawid_slot = elem_count + needs_svgs_elem;
|
|
if (vs_prog_data->uses_drawid) {
|
|
struct GENX(VERTEX_ELEMENT_STATE) element = {
|
|
.VertexBufferIndex = ANV_DRAWID_VB_INDEX,
|
|
.Valid = true,
|
|
.SourceElementFormat = (enum GENX(SURFACE_FORMAT)) ISL_FORMAT_R32_UINT,
|
|
.Component0Control = VFCOMP_STORE_SRC,
|
|
.Component1Control = VFCOMP_STORE_0,
|
|
.Component2Control = VFCOMP_STORE_0,
|
|
.Component3Control = VFCOMP_STORE_0,
|
|
};
|
|
GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
|
|
&p[1 + drawid_slot * 2],
|
|
&element);
|
|
|
|
#if GEN_GEN >= 8
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
|
|
vfi.VertexElementIndex = drawid_slot;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
|
|
const struct gen_l3_config *l3_config,
|
|
VkShaderStageFlags active_stages,
|
|
const unsigned entry_size[4])
|
|
{
|
|
const struct gen_device_info *devinfo = &device->info;
|
|
#if GEN_IS_HASWELL
|
|
const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
|
|
#else
|
|
const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
|
|
#endif
|
|
|
|
const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
|
|
|
|
unsigned entries[4];
|
|
unsigned start[4];
|
|
gen_get_urb_config(devinfo,
|
|
1024 * push_constant_kb, 1024 * urb_size_kb,
|
|
active_stages &
|
|
VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
|
|
active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
|
|
entry_size, entries, start);
|
|
|
|
#if GEN_GEN == 7 && !GEN_IS_HASWELL
|
|
/* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
|
|
*
|
|
* "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
|
|
* needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
|
|
* 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
|
|
* 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
|
|
* needs to be sent before any combination of VS associated 3DSTATE."
|
|
*/
|
|
anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
|
|
pc.DepthStallEnable = true;
|
|
pc.PostSyncOperation = WriteImmediateData;
|
|
pc.Address = (struct anv_address) { &device->workaround_bo, 0 };
|
|
}
|
|
#endif
|
|
|
|
for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
|
|
urb._3DCommandSubOpcode += i;
|
|
urb.VSURBStartingAddress = start[i];
|
|
urb.VSURBEntryAllocationSize = entry_size[i] - 1;
|
|
urb.VSNumberofURBEntries = entries[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_urb_setup(struct anv_pipeline *pipeline)
|
|
{
|
|
unsigned entry_size[4];
|
|
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
const struct brw_vue_prog_data *prog_data =
|
|
!anv_pipeline_has_stage(pipeline, i) ? NULL :
|
|
(const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
|
|
|
|
entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
|
|
}
|
|
|
|
genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
|
|
pipeline->urb.l3_config,
|
|
pipeline->active_stages, entry_size);
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_sbe(struct anv_pipeline *pipeline)
|
|
{
|
|
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
|
|
|
|
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
|
|
#if GEN_GEN >= 8
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
const struct brw_vue_map *fs_input_map =
|
|
&anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
|
|
|
|
struct GENX(3DSTATE_SBE) sbe = {
|
|
GENX(3DSTATE_SBE_header),
|
|
.AttributeSwizzleEnable = true,
|
|
.PointSpriteTextureCoordinateOrigin = UPPERLEFT,
|
|
.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
|
|
.ConstantInterpolationEnable = wm_prog_data->flat_inputs,
|
|
};
|
|
|
|
#if GEN_GEN >= 9
|
|
for (unsigned i = 0; i < 32; i++)
|
|
sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
|
|
#endif
|
|
|
|
#if GEN_GEN >= 8
|
|
/* On Broadwell, they broke 3DSTATE_SBE into two packets */
|
|
struct GENX(3DSTATE_SBE_SWIZ) swiz = {
|
|
GENX(3DSTATE_SBE_SWIZ_header),
|
|
};
|
|
#else
|
|
# define swiz sbe
|
|
#endif
|
|
|
|
/* Skip the VUE header and position slots by default */
|
|
unsigned urb_entry_read_offset = 1;
|
|
int max_source_attr = 0;
|
|
for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
|
|
int input_index = wm_prog_data->urb_setup[attr];
|
|
|
|
if (input_index < 0)
|
|
continue;
|
|
|
|
/* gl_Layer is stored in the VUE header */
|
|
if (attr == VARYING_SLOT_LAYER) {
|
|
urb_entry_read_offset = 0;
|
|
continue;
|
|
}
|
|
|
|
if (attr == VARYING_SLOT_PNTC) {
|
|
sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
|
|
continue;
|
|
}
|
|
|
|
const int slot = fs_input_map->varying_to_slot[attr];
|
|
|
|
if (input_index >= 16)
|
|
continue;
|
|
|
|
if (slot == -1) {
|
|
/* This attribute does not exist in the VUE--that means that the
|
|
* vertex shader did not write to it. It could be that it's a
|
|
* regular varying read by the fragment shader but not written by
|
|
* the vertex shader or it's gl_PrimitiveID. In the first case the
|
|
* value is undefined, in the second it needs to be
|
|
* gl_PrimitiveID.
|
|
*/
|
|
swiz.Attribute[input_index].ConstantSource = PRIM_ID;
|
|
swiz.Attribute[input_index].ComponentOverrideX = true;
|
|
swiz.Attribute[input_index].ComponentOverrideY = true;
|
|
swiz.Attribute[input_index].ComponentOverrideZ = true;
|
|
swiz.Attribute[input_index].ComponentOverrideW = true;
|
|
} else {
|
|
/* We have to subtract two slots to accout for the URB entry output
|
|
* read offset in the VS and GS stages.
|
|
*/
|
|
const int source_attr = slot - 2 * urb_entry_read_offset;
|
|
assert(source_attr >= 0 && source_attr < 32);
|
|
max_source_attr = MAX2(max_source_attr, source_attr);
|
|
swiz.Attribute[input_index].SourceAttribute = source_attr;
|
|
}
|
|
}
|
|
|
|
sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
|
|
sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
|
|
#if GEN_GEN >= 8
|
|
sbe.ForceVertexURBEntryReadOffset = true;
|
|
sbe.ForceVertexURBEntryReadLength = true;
|
|
#endif
|
|
|
|
uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
|
|
GENX(3DSTATE_SBE_length));
|
|
if (!dw)
|
|
return;
|
|
GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
|
|
|
|
#if GEN_GEN >= 8
|
|
dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
|
|
if (!dw)
|
|
return;
|
|
GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
|
|
#endif
|
|
}
|
|
|
|
static const uint32_t vk_to_gen_cullmode[] = {
|
|
[VK_CULL_MODE_NONE] = CULLMODE_NONE,
|
|
[VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
|
|
[VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
|
|
[VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
|
|
};
|
|
|
|
static const uint32_t vk_to_gen_fillmode[] = {
|
|
[VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
|
|
[VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
|
|
[VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
|
|
};
|
|
|
|
static const uint32_t vk_to_gen_front_face[] = {
|
|
[VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
|
|
[VK_FRONT_FACE_CLOCKWISE] = 0
|
|
};
|
|
|
|
static void
|
|
emit_rs_state(struct anv_pipeline *pipeline,
|
|
const VkPipelineRasterizationStateCreateInfo *rs_info,
|
|
const VkPipelineMultisampleStateCreateInfo *ms_info,
|
|
const struct anv_render_pass *pass,
|
|
const struct anv_subpass *subpass)
|
|
{
|
|
struct GENX(3DSTATE_SF) sf = {
|
|
GENX(3DSTATE_SF_header),
|
|
};
|
|
|
|
sf.ViewportTransformEnable = true;
|
|
sf.StatisticsEnable = true;
|
|
sf.TriangleStripListProvokingVertexSelect = 0;
|
|
sf.LineStripListProvokingVertexSelect = 0;
|
|
sf.TriangleFanProvokingVertexSelect = 1;
|
|
|
|
const struct brw_vue_prog_data *last_vue_prog_data =
|
|
anv_pipeline_get_last_vue_prog_data(pipeline);
|
|
|
|
if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
|
|
sf.PointWidthSource = Vertex;
|
|
} else {
|
|
sf.PointWidthSource = State;
|
|
sf.PointWidth = 1.0;
|
|
}
|
|
|
|
#if GEN_GEN >= 8
|
|
struct GENX(3DSTATE_RASTER) raster = {
|
|
GENX(3DSTATE_RASTER_header),
|
|
};
|
|
#else
|
|
# define raster sf
|
|
#endif
|
|
|
|
/* For details on 3DSTATE_RASTER multisample state, see the BSpec table
|
|
* "Multisample Modes State".
|
|
*/
|
|
#if GEN_GEN >= 8
|
|
raster.DXMultisampleRasterizationEnable = true;
|
|
/* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
|
|
* computations. If we ever set this bit to a different value, they will
|
|
* need to be updated accordingly.
|
|
*/
|
|
raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
|
|
raster.ForceMultisampling = false;
|
|
#else
|
|
raster.MultisampleRasterizationMode =
|
|
(ms_info && ms_info->rasterizationSamples > 1) ?
|
|
MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
|
|
#endif
|
|
|
|
raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
|
|
raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
|
|
raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
|
|
raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
|
|
raster.ScissorRectangleEnable = true;
|
|
|
|
#if GEN_GEN >= 9
|
|
/* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
|
|
raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
|
|
raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
|
|
#elif GEN_GEN >= 8
|
|
raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
|
|
#endif
|
|
|
|
raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
|
|
raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
|
|
raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
|
|
|
|
#if GEN_GEN == 7
|
|
/* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
|
|
* can get the depth offsets correct.
|
|
*/
|
|
if (subpass->depth_stencil_attachment.attachment < pass->attachment_count) {
|
|
VkFormat vk_format =
|
|
pass->attachments[subpass->depth_stencil_attachment.attachment].format;
|
|
assert(vk_format_is_depth_or_stencil(vk_format));
|
|
if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
|
|
enum isl_format isl_format =
|
|
anv_get_isl_format(&pipeline->device->info, vk_format,
|
|
VK_IMAGE_ASPECT_DEPTH_BIT,
|
|
VK_IMAGE_TILING_OPTIMAL);
|
|
sf.DepthBufferSurfaceFormat =
|
|
isl_format_get_depth_format(isl_format, false);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if GEN_GEN >= 8
|
|
GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
|
|
GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
|
|
#else
|
|
# undef raster
|
|
GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
emit_ms_state(struct anv_pipeline *pipeline,
|
|
const VkPipelineMultisampleStateCreateInfo *info)
|
|
{
|
|
uint32_t samples = 1;
|
|
uint32_t log2_samples = 0;
|
|
|
|
/* From the Vulkan 1.0 spec:
|
|
* If pSampleMask is NULL, it is treated as if the mask has all bits
|
|
* enabled, i.e. no coverage is removed from fragments.
|
|
*
|
|
* 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
|
|
*/
|
|
#if GEN_GEN >= 8
|
|
uint32_t sample_mask = 0xffff;
|
|
#else
|
|
uint32_t sample_mask = 0xff;
|
|
#endif
|
|
|
|
if (info) {
|
|
samples = info->rasterizationSamples;
|
|
log2_samples = __builtin_ffs(samples) - 1;
|
|
}
|
|
|
|
if (info && info->pSampleMask)
|
|
sample_mask &= info->pSampleMask[0];
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
|
|
ms.NumberofMultisamples = log2_samples;
|
|
|
|
ms.PixelLocation = CENTER;
|
|
#if GEN_GEN >= 8
|
|
/* The PRM says that this bit is valid only for DX9:
|
|
*
|
|
* SW can choose to set this bit only for DX9 API. DX10/OGL API's
|
|
* should not have any effect by setting or not setting this bit.
|
|
*/
|
|
ms.PixelPositionOffsetEnable = false;
|
|
#else
|
|
|
|
switch (samples) {
|
|
case 1:
|
|
GEN_SAMPLE_POS_1X(ms.Sample);
|
|
break;
|
|
case 2:
|
|
GEN_SAMPLE_POS_2X(ms.Sample);
|
|
break;
|
|
case 4:
|
|
GEN_SAMPLE_POS_4X(ms.Sample);
|
|
break;
|
|
case 8:
|
|
GEN_SAMPLE_POS_8X(ms.Sample);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
|
|
sm.SampleMask = sample_mask;
|
|
}
|
|
}
|
|
|
|
static const uint32_t vk_to_gen_logic_op[] = {
|
|
[VK_LOGIC_OP_COPY] = LOGICOP_COPY,
|
|
[VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
|
|
[VK_LOGIC_OP_AND] = LOGICOP_AND,
|
|
[VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
|
|
[VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
|
|
[VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
|
|
[VK_LOGIC_OP_XOR] = LOGICOP_XOR,
|
|
[VK_LOGIC_OP_OR] = LOGICOP_OR,
|
|
[VK_LOGIC_OP_NOR] = LOGICOP_NOR,
|
|
[VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
|
|
[VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
|
|
[VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
|
|
[VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
|
|
[VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
|
|
[VK_LOGIC_OP_NAND] = LOGICOP_NAND,
|
|
[VK_LOGIC_OP_SET] = LOGICOP_SET,
|
|
};
|
|
|
|
static const uint32_t vk_to_gen_blend[] = {
|
|
[VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
|
|
[VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
|
|
[VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
|
|
[VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
|
|
[VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
|
|
[VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
|
|
[VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
|
|
[VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
|
|
[VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
|
|
[VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
|
|
[VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
|
|
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
|
|
[VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
|
|
[VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
|
|
[VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
|
|
[VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
|
|
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
|
|
[VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
|
|
[VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
|
|
};
|
|
|
|
static const uint32_t vk_to_gen_blend_op[] = {
|
|
[VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
|
|
[VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
|
|
[VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
|
|
[VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
|
|
[VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
|
|
};
|
|
|
|
static const uint32_t vk_to_gen_compare_op[] = {
|
|
[VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
|
|
[VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
|
|
[VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
|
|
[VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
|
|
[VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
|
|
[VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
|
|
[VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
|
|
[VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
|
|
};
|
|
|
|
static const uint32_t vk_to_gen_stencil_op[] = {
|
|
[VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
|
|
[VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
|
|
[VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
|
|
[VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
|
|
[VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
|
|
[VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
|
|
[VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
|
|
[VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
|
|
};
|
|
|
|
/* This function sanitizes the VkStencilOpState by looking at the compare ops
|
|
* and trying to determine whether or not a given stencil op can ever actually
|
|
* occur. Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
|
|
* This function returns true if, after sanitation, any of the stencil ops are
|
|
* set to something other than VK_STENCIL_OP_KEEP.
|
|
*/
|
|
static bool
|
|
sanitize_stencil_face(VkStencilOpState *face,
|
|
VkCompareOp depthCompareOp)
|
|
{
|
|
/* If compareOp is ALWAYS then the stencil test will never fail and failOp
|
|
* will never happen. Set failOp to KEEP in this case.
|
|
*/
|
|
if (face->compareOp == VK_COMPARE_OP_ALWAYS)
|
|
face->failOp = VK_STENCIL_OP_KEEP;
|
|
|
|
/* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
|
|
* or stencil tests will fail and passOp will never happen.
|
|
*/
|
|
if (face->compareOp == VK_COMPARE_OP_NEVER ||
|
|
depthCompareOp == VK_COMPARE_OP_NEVER)
|
|
face->passOp = VK_STENCIL_OP_KEEP;
|
|
|
|
/* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
|
|
* stencil test will fail or the depth test will pass. In either case,
|
|
* depthFailOp will never happen.
|
|
*/
|
|
if (face->compareOp == VK_COMPARE_OP_NEVER ||
|
|
depthCompareOp == VK_COMPARE_OP_ALWAYS)
|
|
face->depthFailOp = VK_STENCIL_OP_KEEP;
|
|
|
|
return face->failOp != VK_STENCIL_OP_KEEP ||
|
|
face->depthFailOp != VK_STENCIL_OP_KEEP ||
|
|
face->passOp != VK_STENCIL_OP_KEEP;
|
|
}
|
|
|
|
/* Intel hardware is fairly sensitive to whether or not depth/stencil writes
|
|
* are enabled. In the presence of discards, it's fairly easy to get into the
|
|
* non-promoted case which means a fairly big performance hit. From the Iron
|
|
* Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
|
|
*
|
|
* "Non-promoted depth (N) is active whenever the depth test can be done
|
|
* early but it cannot determine whether or not to write source depth to
|
|
* the depth buffer, therefore the depth write must be performed post pixel
|
|
* shader. This includes cases where the pixel shader can kill pixels,
|
|
* including via sampler chroma key, as well as cases where the alpha test
|
|
* function is enabled, which kills pixels based on a programmable alpha
|
|
* test. In this case, even if the depth test fails, the pixel cannot be
|
|
* killed if a stencil write is indicated. Whether or not the stencil write
|
|
* happens depends on whether or not the pixel is killed later. In these
|
|
* cases if stencil test fails and stencil writes are off, the pixels can
|
|
* also be killed early. If stencil writes are enabled, the pixels must be
|
|
* treated as Computed depth (described above)."
|
|
*
|
|
* The same thing as mentioned in the stencil case can happen in the depth
|
|
* case as well if it thinks it writes depth but, thanks to the depth test
|
|
* being GL_EQUAL, the write doesn't actually matter. A little extra work
|
|
* up-front to try and disable depth and stencil writes can make a big
|
|
* difference.
|
|
*
|
|
* Unfortunately, the way depth and stencil testing is specified, there are
|
|
* many case where, regardless of depth/stencil writes being enabled, nothing
|
|
* actually gets written due to some other bit of state being set. This
|
|
* function attempts to "sanitize" the depth stencil state and disable writes
|
|
* and sometimes even testing whenever possible.
|
|
*/
|
|
static void
|
|
sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
|
|
bool *stencilWriteEnable,
|
|
VkImageAspectFlags ds_aspects)
|
|
{
|
|
*stencilWriteEnable = state->stencilTestEnable;
|
|
|
|
/* If the depth test is disabled, we won't be writing anything. */
|
|
if (!state->depthTestEnable)
|
|
state->depthWriteEnable = false;
|
|
|
|
/* The Vulkan spec requires that if either depth or stencil is not present,
|
|
* the pipeline is to act as if the test silently passes.
|
|
*/
|
|
if (!(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
|
|
state->depthWriteEnable = false;
|
|
state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
|
|
}
|
|
|
|
if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
|
|
*stencilWriteEnable = false;
|
|
state->front.compareOp = VK_COMPARE_OP_ALWAYS;
|
|
state->back.compareOp = VK_COMPARE_OP_ALWAYS;
|
|
}
|
|
|
|
/* If the stencil test is enabled and always fails, then we will never get
|
|
* to the depth test so we can just disable the depth test entirely.
|
|
*/
|
|
if (state->stencilTestEnable &&
|
|
state->front.compareOp == VK_COMPARE_OP_NEVER &&
|
|
state->back.compareOp == VK_COMPARE_OP_NEVER) {
|
|
state->depthTestEnable = false;
|
|
state->depthWriteEnable = false;
|
|
}
|
|
|
|
/* If depthCompareOp is EQUAL then the value we would be writing to the
|
|
* depth buffer is the same as the value that's already there so there's no
|
|
* point in writing it.
|
|
*/
|
|
if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
|
|
state->depthWriteEnable = false;
|
|
|
|
/* If the stencil ops are such that we don't actually ever modify the
|
|
* stencil buffer, we should disable writes.
|
|
*/
|
|
if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
|
|
!sanitize_stencil_face(&state->back, state->depthCompareOp))
|
|
*stencilWriteEnable = false;
|
|
|
|
/* If the depth test always passes and we never write out depth, that's the
|
|
* same as if the depth test is disabled entirely.
|
|
*/
|
|
if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
|
|
!state->depthWriteEnable)
|
|
state->depthTestEnable = false;
|
|
|
|
/* If the stencil test always passes and we never write out stencil, that's
|
|
* the same as if the stencil test is disabled entirely.
|
|
*/
|
|
if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
|
|
state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
|
|
!*stencilWriteEnable)
|
|
state->stencilTestEnable = false;
|
|
}
|
|
|
|
static void
|
|
emit_ds_state(struct anv_pipeline *pipeline,
|
|
const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
|
|
const struct anv_render_pass *pass,
|
|
const struct anv_subpass *subpass)
|
|
{
|
|
#if GEN_GEN == 7
|
|
# define depth_stencil_dw pipeline->gen7.depth_stencil_state
|
|
#elif GEN_GEN == 8
|
|
# define depth_stencil_dw pipeline->gen8.wm_depth_stencil
|
|
#else
|
|
# define depth_stencil_dw pipeline->gen9.wm_depth_stencil
|
|
#endif
|
|
|
|
if (pCreateInfo == NULL) {
|
|
/* We're going to OR this together with the dynamic state. We need
|
|
* to make sure it's initialized to something useful.
|
|
*/
|
|
pipeline->writes_stencil = false;
|
|
pipeline->stencil_test_enable = false;
|
|
pipeline->writes_depth = false;
|
|
pipeline->depth_test_enable = false;
|
|
memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
|
|
return;
|
|
}
|
|
|
|
VkImageAspectFlags ds_aspects = 0;
|
|
if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
|
|
VkFormat depth_stencil_format =
|
|
pass->attachments[subpass->depth_stencil_attachment.attachment].format;
|
|
ds_aspects = vk_format_aspects(depth_stencil_format);
|
|
}
|
|
|
|
VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
|
|
sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
|
|
pipeline->stencil_test_enable = info.stencilTestEnable;
|
|
pipeline->writes_depth = info.depthWriteEnable;
|
|
pipeline->depth_test_enable = info.depthTestEnable;
|
|
|
|
/* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
|
|
|
|
#if GEN_GEN <= 7
|
|
struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
|
|
#else
|
|
struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
|
|
#endif
|
|
.DepthTestEnable = info.depthTestEnable,
|
|
.DepthBufferWriteEnable = info.depthWriteEnable,
|
|
.DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
|
|
.DoubleSidedStencilEnable = true,
|
|
|
|
.StencilTestEnable = info.stencilTestEnable,
|
|
.StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
|
|
.StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
|
|
.StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
|
|
.StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
|
|
.BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
|
|
.BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
|
|
.BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
|
|
.BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
|
|
};
|
|
|
|
#if GEN_GEN <= 7
|
|
GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
|
|
#else
|
|
GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
emit_cb_state(struct anv_pipeline *pipeline,
|
|
const VkPipelineColorBlendStateCreateInfo *info,
|
|
const VkPipelineMultisampleStateCreateInfo *ms_info)
|
|
{
|
|
struct anv_device *device = pipeline->device;
|
|
|
|
|
|
struct GENX(BLEND_STATE) blend_state = {
|
|
#if GEN_GEN >= 8
|
|
.AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
|
|
.AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
|
|
#endif
|
|
};
|
|
|
|
uint32_t surface_count = 0;
|
|
struct anv_pipeline_bind_map *map;
|
|
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
|
|
map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
|
|
surface_count = map->surface_count;
|
|
}
|
|
|
|
const uint32_t num_dwords = GENX(BLEND_STATE_length) +
|
|
GENX(BLEND_STATE_ENTRY_length) * surface_count;
|
|
pipeline->blend_state =
|
|
anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
|
|
|
|
bool has_writeable_rt = false;
|
|
uint32_t *state_pos = pipeline->blend_state.map;
|
|
state_pos += GENX(BLEND_STATE_length);
|
|
#if GEN_GEN >= 8
|
|
struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
|
|
#endif
|
|
for (unsigned i = 0; i < surface_count; i++) {
|
|
struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
|
|
|
|
/* All color attachments are at the beginning of the binding table */
|
|
if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
|
|
break;
|
|
|
|
/* We can have at most 8 attachments */
|
|
assert(i < 8);
|
|
|
|
if (info == NULL || binding->index >= info->attachmentCount) {
|
|
/* Default everything to disabled */
|
|
struct GENX(BLEND_STATE_ENTRY) entry = {
|
|
.WriteDisableAlpha = true,
|
|
.WriteDisableRed = true,
|
|
.WriteDisableGreen = true,
|
|
.WriteDisableBlue = true,
|
|
};
|
|
GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
|
|
state_pos += GENX(BLEND_STATE_ENTRY_length);
|
|
continue;
|
|
}
|
|
|
|
assert(binding->binding == 0);
|
|
const VkPipelineColorBlendAttachmentState *a =
|
|
&info->pAttachments[binding->index];
|
|
|
|
struct GENX(BLEND_STATE_ENTRY) entry = {
|
|
#if GEN_GEN < 8
|
|
.AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
|
|
.AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
|
|
#endif
|
|
.LogicOpEnable = info->logicOpEnable,
|
|
.LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
|
|
.ColorBufferBlendEnable = a->blendEnable,
|
|
.ColorClampRange = COLORCLAMP_RTFORMAT,
|
|
.PreBlendColorClampEnable = true,
|
|
.PostBlendColorClampEnable = true,
|
|
.SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
|
|
.DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
|
|
.ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
|
|
.SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
|
|
.DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
|
|
.AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
|
|
.WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
|
|
.WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
|
|
.WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
|
|
.WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
|
|
};
|
|
|
|
if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
|
|
a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
|
|
a->colorBlendOp != a->alphaBlendOp) {
|
|
#if GEN_GEN >= 8
|
|
blend_state.IndependentAlphaBlendEnable = true;
|
|
#else
|
|
entry.IndependentAlphaBlendEnable = true;
|
|
#endif
|
|
}
|
|
|
|
if (a->colorWriteMask != 0)
|
|
has_writeable_rt = true;
|
|
|
|
/* Our hardware applies the blend factor prior to the blend function
|
|
* regardless of what function is used. Technically, this means the
|
|
* hardware can do MORE than GL or Vulkan specify. However, it also
|
|
* means that, for MIN and MAX, we have to stomp the blend factor to
|
|
* ONE to make it a no-op.
|
|
*/
|
|
if (a->colorBlendOp == VK_BLEND_OP_MIN ||
|
|
a->colorBlendOp == VK_BLEND_OP_MAX) {
|
|
entry.SourceBlendFactor = BLENDFACTOR_ONE;
|
|
entry.DestinationBlendFactor = BLENDFACTOR_ONE;
|
|
}
|
|
if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
|
|
a->alphaBlendOp == VK_BLEND_OP_MAX) {
|
|
entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
|
|
entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
|
|
}
|
|
GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
|
|
state_pos += GENX(BLEND_STATE_ENTRY_length);
|
|
#if GEN_GEN >= 8
|
|
if (i == 0)
|
|
bs0 = entry;
|
|
#endif
|
|
}
|
|
|
|
#if GEN_GEN >= 8
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
|
|
blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
|
|
blend.HasWriteableRT = has_writeable_rt;
|
|
blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
|
|
blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
|
|
blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
|
|
blend.SourceBlendFactor = bs0.SourceBlendFactor;
|
|
blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
|
|
blend.AlphaTestEnable = false;
|
|
blend.IndependentAlphaBlendEnable =
|
|
blend_state.IndependentAlphaBlendEnable;
|
|
}
|
|
#else
|
|
(void)has_writeable_rt;
|
|
#endif
|
|
|
|
GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
|
|
anv_state_flush(device, pipeline->blend_state);
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
|
|
bsp.BlendStatePointer = pipeline->blend_state.offset;
|
|
#if GEN_GEN >= 8
|
|
bsp.BlendStatePointerValid = true;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_clip(struct anv_pipeline *pipeline,
|
|
const VkPipelineViewportStateCreateInfo *vp_info,
|
|
const VkPipelineRasterizationStateCreateInfo *rs_info)
|
|
{
|
|
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
|
|
(void) wm_prog_data;
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
|
|
clip.ClipEnable = true;
|
|
clip.StatisticsEnable = true;
|
|
clip.EarlyCullEnable = true;
|
|
clip.APIMode = APIMODE_D3D,
|
|
clip.ViewportXYClipTestEnable = true;
|
|
|
|
clip.ClipMode = CLIPMODE_NORMAL;
|
|
|
|
clip.TriangleStripListProvokingVertexSelect = 0;
|
|
clip.LineStripListProvokingVertexSelect = 0;
|
|
clip.TriangleFanProvokingVertexSelect = 1;
|
|
|
|
clip.MinimumPointWidth = 0.125;
|
|
clip.MaximumPointWidth = 255.875;
|
|
|
|
const struct brw_vue_prog_data *last =
|
|
anv_pipeline_get_last_vue_prog_data(pipeline);
|
|
|
|
/* From the Vulkan 1.0.45 spec:
|
|
*
|
|
* "If the last active vertex processing stage shader entry point's
|
|
* interface does not include a variable decorated with
|
|
* ViewportIndex, then the first viewport is used."
|
|
*/
|
|
if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
|
|
clip.MaximumVPIndex = vp_info->viewportCount - 1;
|
|
} else {
|
|
clip.MaximumVPIndex = 0;
|
|
}
|
|
|
|
/* From the Vulkan 1.0.45 spec:
|
|
*
|
|
* "If the last active vertex processing stage shader entry point's
|
|
* interface does not include a variable decorated with Layer, then
|
|
* the first layer is used."
|
|
*/
|
|
clip.ForceZeroRTAIndexEnable =
|
|
!(last->vue_map.slots_valid & VARYING_BIT_LAYER);
|
|
|
|
#if GEN_GEN == 7
|
|
clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
|
|
clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
|
|
clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
|
|
if (last) {
|
|
clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
|
|
clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
|
|
}
|
|
#else
|
|
clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
|
|
(wm_prog_data->barycentric_interp_modes &
|
|
BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_streamout(struct anv_pipeline *pipeline,
|
|
const VkPipelineRasterizationStateCreateInfo *rs_info)
|
|
{
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
|
|
so.RenderingDisable = rs_info->rasterizerDiscardEnable;
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
get_sampler_count(const struct anv_shader_bin *bin)
|
|
{
|
|
uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
|
|
|
|
/* We can potentially have way more than 32 samplers and that's ok.
|
|
* However, the 3DSTATE_XS packets only have 3 bits to specify how
|
|
* many to pre-fetch and all values above 4 are marked reserved.
|
|
*/
|
|
return MIN2(count_by_4, 4);
|
|
}
|
|
|
|
static uint32_t
|
|
get_binding_table_entry_count(const struct anv_shader_bin *bin)
|
|
{
|
|
return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
|
|
}
|
|
|
|
static struct anv_address
|
|
get_scratch_address(struct anv_pipeline *pipeline,
|
|
gl_shader_stage stage,
|
|
const struct anv_shader_bin *bin)
|
|
{
|
|
return (struct anv_address) {
|
|
.bo = anv_scratch_pool_alloc(pipeline->device,
|
|
&pipeline->device->scratch_pool,
|
|
stage, bin->prog_data->total_scratch),
|
|
.offset = 0,
|
|
};
|
|
}
|
|
|
|
static uint32_t
|
|
get_scratch_space(const struct anv_shader_bin *bin)
|
|
{
|
|
return ffs(bin->prog_data->total_scratch / 2048);
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_vs(struct anv_pipeline *pipeline)
|
|
{
|
|
const struct gen_device_info *devinfo = &pipeline->device->info;
|
|
const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
|
|
const struct anv_shader_bin *vs_bin =
|
|
pipeline->shaders[MESA_SHADER_VERTEX];
|
|
|
|
assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
|
|
vs.Enable = true;
|
|
vs.StatisticsEnable = true;
|
|
vs.KernelStartPointer = vs_bin->kernel.offset;
|
|
#if GEN_GEN >= 8
|
|
vs.SIMD8DispatchEnable =
|
|
vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
|
|
#endif
|
|
|
|
assert(!vs_prog_data->base.base.use_alt_mode);
|
|
vs.SingleVertexDispatch = false;
|
|
vs.VectorMaskEnable = false;
|
|
vs.SamplerCount = get_sampler_count(vs_bin);
|
|
vs.BindingTableEntryCount = get_binding_table_entry_count(vs_bin);
|
|
vs.FloatingPointMode = IEEE754;
|
|
vs.IllegalOpcodeExceptionEnable = false;
|
|
vs.SoftwareExceptionEnable = false;
|
|
vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
|
|
vs.VertexCacheDisable = false;
|
|
|
|
vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
|
|
vs.VertexURBEntryReadOffset = 0;
|
|
vs.DispatchGRFStartRegisterForURBData =
|
|
vs_prog_data->base.base.dispatch_grf_start_reg;
|
|
|
|
#if GEN_GEN >= 8
|
|
vs.UserClipDistanceClipTestEnableBitmask =
|
|
vs_prog_data->base.clip_distance_mask;
|
|
vs.UserClipDistanceCullTestEnableBitmask =
|
|
vs_prog_data->base.cull_distance_mask;
|
|
#endif
|
|
|
|
vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
|
|
vs.ScratchSpaceBasePointer =
|
|
get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
|
|
const VkPipelineTessellationStateCreateInfo *tess_info)
|
|
{
|
|
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
|
|
return;
|
|
}
|
|
|
|
const struct gen_device_info *devinfo = &pipeline->device->info;
|
|
const struct anv_shader_bin *tcs_bin =
|
|
pipeline->shaders[MESA_SHADER_TESS_CTRL];
|
|
const struct anv_shader_bin *tes_bin =
|
|
pipeline->shaders[MESA_SHADER_TESS_EVAL];
|
|
|
|
const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
|
|
const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
|
|
hs.Enable = true;
|
|
hs.StatisticsEnable = true;
|
|
hs.KernelStartPointer = tcs_bin->kernel.offset;
|
|
|
|
hs.SamplerCount = get_sampler_count(tcs_bin);
|
|
hs.BindingTableEntryCount = get_binding_table_entry_count(tcs_bin);
|
|
hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
|
|
hs.IncludeVertexHandles = true;
|
|
hs.InstanceCount = tcs_prog_data->instances - 1;
|
|
|
|
hs.VertexURBEntryReadLength = 0;
|
|
hs.VertexURBEntryReadOffset = 0;
|
|
hs.DispatchGRFStartRegisterForURBData =
|
|
tcs_prog_data->base.base.dispatch_grf_start_reg;
|
|
|
|
hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
|
|
hs.ScratchSpaceBasePointer =
|
|
get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
|
|
}
|
|
|
|
const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state =
|
|
tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR) : NULL;
|
|
|
|
VkTessellationDomainOriginKHR uv_origin =
|
|
domain_origin_state ? domain_origin_state->domainOrigin :
|
|
VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR;
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
|
|
te.Partitioning = tes_prog_data->partitioning;
|
|
|
|
if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR) {
|
|
te.OutputTopology = tes_prog_data->output_topology;
|
|
} else {
|
|
/* When the origin is upper-left, we have to flip the winding order */
|
|
if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
|
|
te.OutputTopology = OUTPUT_TRI_CW;
|
|
} else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
|
|
te.OutputTopology = OUTPUT_TRI_CCW;
|
|
} else {
|
|
te.OutputTopology = tes_prog_data->output_topology;
|
|
}
|
|
}
|
|
|
|
te.TEDomain = tes_prog_data->domain;
|
|
te.TEEnable = true;
|
|
te.MaximumTessellationFactorOdd = 63.0;
|
|
te.MaximumTessellationFactorNotOdd = 64.0;
|
|
}
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
|
|
ds.Enable = true;
|
|
ds.StatisticsEnable = true;
|
|
ds.KernelStartPointer = tes_bin->kernel.offset;
|
|
|
|
ds.SamplerCount = get_sampler_count(tes_bin);
|
|
ds.BindingTableEntryCount = get_binding_table_entry_count(tes_bin);
|
|
ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
|
|
|
|
ds.ComputeWCoordinateEnable =
|
|
tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
|
|
|
|
ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
|
|
ds.PatchURBEntryReadOffset = 0;
|
|
ds.DispatchGRFStartRegisterForURBData =
|
|
tes_prog_data->base.base.dispatch_grf_start_reg;
|
|
|
|
#if GEN_GEN >= 8
|
|
ds.DispatchMode =
|
|
tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
|
|
DISPATCH_MODE_SIMD8_SINGLE_PATCH :
|
|
DISPATCH_MODE_SIMD4X2;
|
|
|
|
ds.UserClipDistanceClipTestEnableBitmask =
|
|
tes_prog_data->base.clip_distance_mask;
|
|
ds.UserClipDistanceCullTestEnableBitmask =
|
|
tes_prog_data->base.cull_distance_mask;
|
|
#endif
|
|
|
|
ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
|
|
ds.ScratchSpaceBasePointer =
|
|
get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_gs(struct anv_pipeline *pipeline)
|
|
{
|
|
const struct gen_device_info *devinfo = &pipeline->device->info;
|
|
const struct anv_shader_bin *gs_bin =
|
|
pipeline->shaders[MESA_SHADER_GEOMETRY];
|
|
|
|
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
|
|
return;
|
|
}
|
|
|
|
const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
|
|
gs.Enable = true;
|
|
gs.StatisticsEnable = true;
|
|
gs.KernelStartPointer = gs_bin->kernel.offset;
|
|
gs.DispatchMode = gs_prog_data->base.dispatch_mode;
|
|
|
|
gs.SingleProgramFlow = false;
|
|
gs.VectorMaskEnable = false;
|
|
gs.SamplerCount = get_sampler_count(gs_bin);
|
|
gs.BindingTableEntryCount = get_binding_table_entry_count(gs_bin);
|
|
gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
|
|
gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
|
|
|
|
if (GEN_GEN == 8) {
|
|
/* Broadwell is weird. It needs us to divide by 2. */
|
|
gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
|
|
} else {
|
|
gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
|
|
}
|
|
|
|
gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
|
|
gs.OutputTopology = gs_prog_data->output_topology;
|
|
gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
|
|
gs.ControlDataFormat = gs_prog_data->control_data_format;
|
|
gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
|
|
gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
|
|
gs.ReorderMode = TRAILING;
|
|
|
|
#if GEN_GEN >= 8
|
|
gs.ExpectedVertexCount = gs_prog_data->vertices_in;
|
|
gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
|
|
gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
|
|
gs_prog_data->static_vertex_count : 0;
|
|
#endif
|
|
|
|
gs.VertexURBEntryReadOffset = 0;
|
|
gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
|
|
gs.DispatchGRFStartRegisterForURBData =
|
|
gs_prog_data->base.base.dispatch_grf_start_reg;
|
|
|
|
#if GEN_GEN >= 8
|
|
gs.UserClipDistanceClipTestEnableBitmask =
|
|
gs_prog_data->base.clip_distance_mask;
|
|
gs.UserClipDistanceCullTestEnableBitmask =
|
|
gs_prog_data->base.cull_distance_mask;
|
|
#endif
|
|
|
|
gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
|
|
gs.ScratchSpaceBasePointer =
|
|
get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
|
|
const VkPipelineColorBlendStateCreateInfo *blend)
|
|
{
|
|
const struct anv_shader_bin *shader_bin =
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT];
|
|
if (!shader_bin)
|
|
return false;
|
|
|
|
const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
|
|
for (int i = 0; i < bind_map->surface_count; i++) {
|
|
struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
|
|
|
|
if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
|
|
continue;
|
|
|
|
if (binding->index == UINT32_MAX)
|
|
continue;
|
|
|
|
if (blend->pAttachments[binding->index].colorWriteMask != 0)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
|
|
const VkPipelineColorBlendStateCreateInfo *blend,
|
|
const VkPipelineMultisampleStateCreateInfo *multisample)
|
|
{
|
|
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
|
|
|
|
MAYBE_UNUSED uint32_t samples =
|
|
multisample ? multisample->rasterizationSamples : 1;
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
|
|
wm.StatisticsEnable = true;
|
|
wm.LineEndCapAntialiasingRegionWidth = _05pixels;
|
|
wm.LineAntialiasingRegionWidth = _10pixels;
|
|
wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
|
|
|
|
if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
|
|
if (wm_prog_data->early_fragment_tests) {
|
|
wm.EarlyDepthStencilControl = EDSC_PREPS;
|
|
} else if (wm_prog_data->has_side_effects) {
|
|
wm.EarlyDepthStencilControl = EDSC_PSEXEC;
|
|
} else {
|
|
wm.EarlyDepthStencilControl = EDSC_NORMAL;
|
|
}
|
|
|
|
wm.BarycentricInterpolationMode =
|
|
wm_prog_data->barycentric_interp_modes;
|
|
|
|
#if GEN_GEN < 8
|
|
wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
|
|
wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
|
|
wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
|
|
wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
|
|
|
|
/* If the subpass has a depth or stencil self-dependency, then we
|
|
* need to force the hardware to do the depth/stencil write *after*
|
|
* fragment shader execution. Otherwise, the writes may hit memory
|
|
* before we get around to fetching from the input attachment and we
|
|
* may get the depth or stencil value from the current draw rather
|
|
* than the previous one.
|
|
*/
|
|
wm.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
|
|
wm_prog_data->uses_kill;
|
|
|
|
if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
|
|
wm_prog_data->has_side_effects ||
|
|
wm.PixelShaderKillsPixel ||
|
|
has_color_buffer_write_enabled(pipeline, blend))
|
|
wm.ThreadDispatchEnable = true;
|
|
|
|
if (samples > 1) {
|
|
wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
|
|
if (wm_prog_data->persample_dispatch) {
|
|
wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
|
|
} else {
|
|
wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
|
|
}
|
|
} else {
|
|
wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
|
|
wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
UNUSED static bool
|
|
is_dual_src_blend_factor(VkBlendFactor factor)
|
|
{
|
|
return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
|
|
factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
|
|
factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
|
|
factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_ps(struct anv_pipeline *pipeline,
|
|
const VkPipelineColorBlendStateCreateInfo *blend)
|
|
{
|
|
MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
|
|
const struct anv_shader_bin *fs_bin =
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT];
|
|
|
|
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
|
|
#if GEN_GEN == 7
|
|
/* Even if no fragments are ever dispatched, gen7 hardware hangs if
|
|
* we don't at least set the maximum number of threads.
|
|
*/
|
|
ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
|
|
|
|
#if GEN_GEN < 8
|
|
/* The hardware wedges if you have this bit set but don't turn on any dual
|
|
* source blend factors.
|
|
*/
|
|
bool dual_src_blend = false;
|
|
if (wm_prog_data->dual_src_blend && blend) {
|
|
for (uint32_t i = 0; i < blend->attachmentCount; i++) {
|
|
const VkPipelineColorBlendAttachmentState *bstate =
|
|
&blend->pAttachments[i];
|
|
|
|
if (bstate->blendEnable &&
|
|
(is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
|
|
is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
|
|
is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
|
|
is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
|
|
dual_src_blend = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
|
|
ps.KernelStartPointer0 = fs_bin->kernel.offset;
|
|
ps.KernelStartPointer1 = 0;
|
|
ps.KernelStartPointer2 = fs_bin->kernel.offset +
|
|
wm_prog_data->prog_offset_2;
|
|
ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
|
|
ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
|
|
ps._32PixelDispatchEnable = false;
|
|
|
|
ps.SingleProgramFlow = false;
|
|
ps.VectorMaskEnable = true;
|
|
ps.SamplerCount = get_sampler_count(fs_bin);
|
|
ps.BindingTableEntryCount = get_binding_table_entry_count(fs_bin);
|
|
ps.PushConstantEnable = wm_prog_data->base.nr_params > 0 ||
|
|
wm_prog_data->base.ubo_ranges[0].length;
|
|
ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
|
|
POSOFFSET_SAMPLE: POSOFFSET_NONE;
|
|
#if GEN_GEN < 8
|
|
ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
|
|
ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
|
|
ps.DualSourceBlendEnable = dual_src_blend;
|
|
#endif
|
|
|
|
#if GEN_IS_HASWELL
|
|
/* Haswell requires the sample mask to be set in this packet as well
|
|
* as in 3DSTATE_SAMPLE_MASK; the values should match.
|
|
*/
|
|
ps.SampleMask = 0xff;
|
|
#endif
|
|
|
|
#if GEN_GEN >= 9
|
|
ps.MaximumNumberofThreadsPerPSD = 64 - 1;
|
|
#elif GEN_GEN >= 8
|
|
ps.MaximumNumberofThreadsPerPSD = 64 - 2;
|
|
#else
|
|
ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
|
|
#endif
|
|
|
|
ps.DispatchGRFStartRegisterForConstantSetupData0 =
|
|
wm_prog_data->base.dispatch_grf_start_reg;
|
|
ps.DispatchGRFStartRegisterForConstantSetupData1 = 0;
|
|
ps.DispatchGRFStartRegisterForConstantSetupData2 =
|
|
wm_prog_data->dispatch_grf_start_reg_2;
|
|
|
|
ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
|
|
ps.ScratchSpaceBasePointer =
|
|
get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
|
|
}
|
|
}
|
|
|
|
#if GEN_GEN >= 8
|
|
static void
|
|
emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
|
|
struct anv_subpass *subpass,
|
|
const VkPipelineColorBlendStateCreateInfo *blend)
|
|
{
|
|
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
|
|
|
|
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
|
|
return;
|
|
}
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
|
|
ps.PixelShaderValid = true;
|
|
ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
|
|
ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
|
|
ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
|
|
ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
|
|
ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
|
|
ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
|
|
|
|
/* If the subpass has a depth or stencil self-dependency, then we need
|
|
* to force the hardware to do the depth/stencil write *after* fragment
|
|
* shader execution. Otherwise, the writes may hit memory before we get
|
|
* around to fetching from the input attachment and we may get the depth
|
|
* or stencil value from the current draw rather than the previous one.
|
|
*/
|
|
ps.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
|
|
wm_prog_data->uses_kill;
|
|
|
|
/* The stricter cross-primitive coherency guarantees that the hardware
|
|
* gives us with the "Accesses UAV" bit set for at least one shader stage
|
|
* and the "UAV coherency required" bit set on the 3DPRIMITIVE command are
|
|
* redundant within the current image, atomic counter and SSBO GL APIs,
|
|
* which all have very loose ordering and coherency requirements and
|
|
* generally rely on the application to insert explicit barriers when a
|
|
* shader invocation is expected to see the memory writes performed by the
|
|
* invocations of some previous primitive. Regardless of the value of
|
|
* "UAV coherency required", the "Accesses UAV" bits will implicitly cause
|
|
* an in most cases useless DC flush when the lowermost stage with the bit
|
|
* set finishes execution.
|
|
*
|
|
* It would be nice to disable it, but in some cases we can't because on
|
|
* Gen8+ it also has an influence on rasterization via the PS UAV-only
|
|
* signal (which could be set independently from the coherency mechanism
|
|
* in the 3DSTATE_WM command on Gen7), and because in some cases it will
|
|
* determine whether the hardware skips execution of the fragment shader
|
|
* or not via the ThreadDispatchEnable signal. However if we know that
|
|
* GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
|
|
* GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
|
|
* difference so we may just disable it here.
|
|
*
|
|
* Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
|
|
* take into account KillPixels when no depth or stencil writes are
|
|
* enabled. In order for occlusion queries to work correctly with no
|
|
* attachments, we need to force-enable here.
|
|
*/
|
|
if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
|
|
!has_color_buffer_write_enabled(pipeline, blend))
|
|
ps.PixelShaderHasUAV = true;
|
|
|
|
#if GEN_GEN >= 9
|
|
ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
|
|
ps.InputCoverageMaskState = wm_prog_data->uses_sample_mask ?
|
|
ICMS_INNER_CONSERVATIVE : ICMS_NONE;
|
|
#else
|
|
ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
|
|
{
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
|
|
vft.PrimitiveTopologyType = pipeline->topology;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
|
|
{
|
|
anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
|
|
vfs.StatisticsEnable = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
compute_kill_pixel(struct anv_pipeline *pipeline,
|
|
const VkPipelineMultisampleStateCreateInfo *ms_info,
|
|
const struct anv_subpass *subpass)
|
|
{
|
|
if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
|
|
pipeline->kill_pixel = false;
|
|
return;
|
|
}
|
|
|
|
const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
|
|
|
|
/* This computes the KillPixel portion of the computation for whether or
|
|
* not we want to enable the PMA fix on gen8 or gen9. It's given by this
|
|
* chunk of the giant formula:
|
|
*
|
|
* (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
|
|
* 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
|
|
* 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
|
|
* 3DSTATE_PS_BLEND::AlphaTestEnable ||
|
|
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
|
|
*
|
|
* 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
|
|
* 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
|
|
* of an alpha test.
|
|
*/
|
|
pipeline->kill_pixel =
|
|
subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
|
|
wm_prog_data->uses_omask ||
|
|
(ms_info && ms_info->alphaToCoverageEnable);
|
|
}
|
|
|
|
static VkResult
|
|
genX(graphics_pipeline_create)(
|
|
VkDevice _device,
|
|
struct anv_pipeline_cache * cache,
|
|
const VkGraphicsPipelineCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipeline)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
|
|
struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
|
|
struct anv_pipeline *pipeline;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
|
|
|
|
pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (pipeline == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
result = anv_pipeline_init(pipeline, device, cache,
|
|
pCreateInfo, pAllocator);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free2(&device->alloc, pAllocator, pipeline);
|
|
return result;
|
|
}
|
|
|
|
assert(pCreateInfo->pVertexInputState);
|
|
emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
|
|
assert(pCreateInfo->pRasterizationState);
|
|
emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
|
|
pCreateInfo->pMultisampleState, pass, subpass);
|
|
emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
|
|
emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
|
|
emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
|
|
pCreateInfo->pMultisampleState);
|
|
compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
|
|
|
|
emit_urb_setup(pipeline);
|
|
|
|
emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
|
|
pCreateInfo->pRasterizationState);
|
|
emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
|
|
|
|
#if 0
|
|
/* From gen7_vs_state.c */
|
|
|
|
/**
|
|
* From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
|
|
* Geometry > Geometry Shader > State:
|
|
*
|
|
* "Note: Because of corruption in IVB:GT2, software needs to flush the
|
|
* whole fixed function pipeline when the GS enable changes value in
|
|
* the 3DSTATE_GS."
|
|
*
|
|
* The hardware architects have clarified that in this context "flush the
|
|
* whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
|
|
* Stall" bit set.
|
|
*/
|
|
if (!device->info.is_haswell && !device->info.is_baytrail)
|
|
gen7_emit_vs_workaround_flush(brw);
|
|
#endif
|
|
|
|
emit_3dstate_vs(pipeline);
|
|
emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
|
|
emit_3dstate_gs(pipeline);
|
|
emit_3dstate_sbe(pipeline);
|
|
emit_3dstate_wm(pipeline, subpass, pCreateInfo->pColorBlendState,
|
|
pCreateInfo->pMultisampleState);
|
|
emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState);
|
|
#if GEN_GEN >= 8
|
|
emit_3dstate_ps_extra(pipeline, subpass, pCreateInfo->pColorBlendState);
|
|
emit_3dstate_vf_topology(pipeline);
|
|
#endif
|
|
emit_3dstate_vf_statistics(pipeline);
|
|
|
|
*pPipeline = anv_pipeline_to_handle(pipeline);
|
|
|
|
return pipeline->batch.status;
|
|
}
|
|
|
|
static VkResult
|
|
compute_pipeline_create(
|
|
VkDevice _device,
|
|
struct anv_pipeline_cache * cache,
|
|
const VkComputePipelineCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipeline)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
const struct anv_physical_device *physical_device =
|
|
&device->instance->physicalDevice;
|
|
const struct gen_device_info *devinfo = &physical_device->info;
|
|
struct anv_pipeline *pipeline;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
|
|
|
|
pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (pipeline == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
pipeline->device = device;
|
|
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
|
|
|
|
pipeline->blend_state.map = NULL;
|
|
|
|
result = anv_reloc_list_init(&pipeline->batch_relocs,
|
|
pAllocator ? pAllocator : &device->alloc);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free2(&device->alloc, pAllocator, pipeline);
|
|
return result;
|
|
}
|
|
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
|
|
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
|
|
pipeline->batch.relocs = &pipeline->batch_relocs;
|
|
pipeline->batch.status = VK_SUCCESS;
|
|
|
|
/* When we free the pipeline, we detect stages based on the NULL status
|
|
* of various prog_data pointers. Make them NULL by default.
|
|
*/
|
|
memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
|
|
|
|
pipeline->active_stages = 0;
|
|
|
|
pipeline->needs_data_cache = false;
|
|
|
|
assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
|
|
ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
|
|
result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
|
|
pCreateInfo->stage.pName,
|
|
pCreateInfo->stage.pSpecializationInfo);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free2(&device->alloc, pAllocator, pipeline);
|
|
return result;
|
|
}
|
|
|
|
const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
|
|
|
|
anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
|
|
|
|
uint32_t group_size = cs_prog_data->local_size[0] *
|
|
cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
|
|
uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
|
|
|
|
if (remainder > 0)
|
|
pipeline->cs_right_mask = ~0u >> (32 - remainder);
|
|
else
|
|
pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
|
|
|
|
const uint32_t vfe_curbe_allocation =
|
|
ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
|
|
cs_prog_data->push.cross_thread.regs, 2);
|
|
|
|
const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
|
|
|
|
const struct anv_shader_bin *cs_bin =
|
|
pipeline->shaders[MESA_SHADER_COMPUTE];
|
|
|
|
anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
|
|
#if GEN_GEN > 7
|
|
vfe.StackSize = 0;
|
|
#else
|
|
vfe.GPGPUMode = true;
|
|
#endif
|
|
vfe.MaximumNumberofThreads =
|
|
devinfo->max_cs_threads * subslices - 1;
|
|
vfe.NumberofURBEntries = GEN_GEN <= 7 ? 0 : 2;
|
|
vfe.ResetGatewayTimer = true;
|
|
#if GEN_GEN <= 8
|
|
vfe.BypassGatewayControl = true;
|
|
#endif
|
|
vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
|
|
vfe.CURBEAllocationSize = vfe_curbe_allocation;
|
|
|
|
vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
|
|
vfe.ScratchSpaceBasePointer =
|
|
get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
|
|
}
|
|
|
|
struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
|
|
.KernelStartPointer = cs_bin->kernel.offset,
|
|
|
|
.SamplerCount = get_sampler_count(cs_bin),
|
|
.BindingTableEntryCount = get_binding_table_entry_count(cs_bin),
|
|
.BarrierEnable = cs_prog_data->uses_barrier,
|
|
.SharedLocalMemorySize =
|
|
encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
|
|
|
|
#if !GEN_IS_HASWELL
|
|
.ConstantURBEntryReadOffset = 0,
|
|
#endif
|
|
.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
|
|
#if GEN_GEN >= 8 || GEN_IS_HASWELL
|
|
.CrossThreadConstantDataReadLength =
|
|
cs_prog_data->push.cross_thread.regs,
|
|
#endif
|
|
|
|
.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
|
|
};
|
|
GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
|
|
pipeline->interface_descriptor_data,
|
|
&desc);
|
|
|
|
*pPipeline = anv_pipeline_to_handle(pipeline);
|
|
|
|
return pipeline->batch.status;
|
|
}
|
|
|
|
VkResult genX(CreateGraphicsPipelines)(
|
|
VkDevice _device,
|
|
VkPipelineCache pipelineCache,
|
|
uint32_t count,
|
|
const VkGraphicsPipelineCreateInfo* pCreateInfos,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipelines)
|
|
{
|
|
ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
|
|
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
unsigned i;
|
|
for (i = 0; i < count; i++) {
|
|
result = genX(graphics_pipeline_create)(_device,
|
|
pipeline_cache,
|
|
&pCreateInfos[i],
|
|
pAllocator, &pPipelines[i]);
|
|
|
|
/* Bail out on the first error as it is not obvious what error should be
|
|
* report upon 2 different failures. */
|
|
if (result != VK_SUCCESS)
|
|
break;
|
|
}
|
|
|
|
for (; i < count; i++)
|
|
pPipelines[i] = VK_NULL_HANDLE;
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult genX(CreateComputePipelines)(
|
|
VkDevice _device,
|
|
VkPipelineCache pipelineCache,
|
|
uint32_t count,
|
|
const VkComputePipelineCreateInfo* pCreateInfos,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipelines)
|
|
{
|
|
ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
|
|
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
unsigned i;
|
|
for (i = 0; i < count; i++) {
|
|
result = compute_pipeline_create(_device, pipeline_cache,
|
|
&pCreateInfos[i],
|
|
pAllocator, &pPipelines[i]);
|
|
|
|
/* Bail out on the first error as it is not obvious what error should be
|
|
* report upon 2 different failures. */
|
|
if (result != VK_SUCCESS)
|
|
break;
|
|
}
|
|
|
|
for (; i < count; i++)
|
|
pPipelines[i] = VK_NULL_HANDLE;
|
|
|
|
return result;
|
|
}
|