
This shouldn't be unsigned, or else we'll trigger asserts.
Fixes: 7f00d4dac8
("glsl: Handle 16-bit types in loop analysis")
Reviewed-by: Alyssa Rosenzweig <alyssa@collabora.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/10125>
859 lines
24 KiB
C++
859 lines
24 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "compiler/glsl_types.h"
|
|
#include "loop_analysis.h"
|
|
#include "ir_hierarchical_visitor.h"
|
|
|
|
static void try_add_loop_terminator(loop_variable_state *ls, ir_if *ir);
|
|
|
|
static bool all_expression_operands_are_loop_constant(ir_rvalue *,
|
|
hash_table *);
|
|
|
|
static ir_rvalue *get_basic_induction_increment(ir_assignment *, hash_table *);
|
|
|
|
/**
|
|
* Find an initializer of a variable outside a loop
|
|
*
|
|
* Works backwards from the loop to find the pre-loop value of the variable.
|
|
* This is used, for example, to find the initial value of loop induction
|
|
* variables.
|
|
*
|
|
* \param loop Loop where \c var is an induction variable
|
|
* \param var Variable whose initializer is to be found
|
|
*
|
|
* \return
|
|
* The \c ir_rvalue assigned to the variable outside the loop. May return
|
|
* \c NULL if no initializer can be found.
|
|
*/
|
|
static ir_rvalue *
|
|
find_initial_value(ir_loop *loop, ir_variable *var)
|
|
{
|
|
for (exec_node *node = loop->prev; !node->is_head_sentinel();
|
|
node = node->prev) {
|
|
ir_instruction *ir = (ir_instruction *) node;
|
|
|
|
switch (ir->ir_type) {
|
|
case ir_type_call:
|
|
case ir_type_loop:
|
|
case ir_type_loop_jump:
|
|
case ir_type_return:
|
|
case ir_type_if:
|
|
return NULL;
|
|
|
|
case ir_type_function:
|
|
case ir_type_function_signature:
|
|
assert(!"Should not get here.");
|
|
return NULL;
|
|
|
|
case ir_type_assignment: {
|
|
ir_assignment *assign = ir->as_assignment();
|
|
ir_variable *assignee = assign->lhs->whole_variable_referenced();
|
|
|
|
if (assignee == var)
|
|
return (assign->condition != NULL) ? NULL : assign->rhs;
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int
|
|
calculate_iterations(ir_rvalue *from, ir_rvalue *to, ir_rvalue *increment,
|
|
enum ir_expression_operation op, bool continue_from_then,
|
|
bool swap_compare_operands, bool inc_before_terminator)
|
|
{
|
|
if (from == NULL || to == NULL || increment == NULL)
|
|
return -1;
|
|
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
ir_expression *const sub =
|
|
new(mem_ctx) ir_expression(ir_binop_sub, from->type, to, from);
|
|
|
|
ir_expression *const div =
|
|
new(mem_ctx) ir_expression(ir_binop_div, sub->type, sub, increment);
|
|
|
|
ir_constant *iter = div->constant_expression_value(mem_ctx);
|
|
if (iter == NULL) {
|
|
ralloc_free(mem_ctx);
|
|
return -1;
|
|
}
|
|
|
|
if (!iter->type->is_integer_32() && !iter->type->is_integer_64()) {
|
|
const ir_expression_operation op = iter->type->is_double()
|
|
? ir_unop_d2i : ir_unop_f2i;
|
|
ir_rvalue *cast =
|
|
new(mem_ctx) ir_expression(op, glsl_type::int_type, iter, NULL);
|
|
|
|
iter = cast->constant_expression_value(mem_ctx);
|
|
}
|
|
|
|
int64_t iter_value = iter->get_int64_component(0);
|
|
|
|
/* Code after this block works under assumption that iterator will be
|
|
* incremented or decremented until it hits the limit,
|
|
* however the loop condition can be false on the first iteration.
|
|
* Handle such loops first.
|
|
*/
|
|
{
|
|
ir_rvalue *first_value = from;
|
|
if (inc_before_terminator) {
|
|
first_value =
|
|
new(mem_ctx) ir_expression(ir_binop_add, from->type, from, increment);
|
|
}
|
|
|
|
ir_expression *cmp = swap_compare_operands
|
|
? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, first_value)
|
|
: new(mem_ctx) ir_expression(op, glsl_type::bool_type, first_value, to);
|
|
if (continue_from_then)
|
|
cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
|
|
|
|
ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
|
|
assert(cmp_result != NULL);
|
|
if (cmp_result->get_bool_component(0)) {
|
|
ralloc_free(mem_ctx);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Make sure that the calculated number of iterations satisfies the exit
|
|
* condition. This is needed to catch off-by-one errors and some types of
|
|
* ill-formed loops. For example, we need to detect that the following
|
|
* loop does not have a maximum iteration count.
|
|
*
|
|
* for (float x = 0.0; x != 0.9; x += 0.2)
|
|
* ;
|
|
*/
|
|
const int bias[] = { -1, 0, 1 };
|
|
bool valid_loop = false;
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(bias); i++) {
|
|
/* Increment may be of type int, uint or float. */
|
|
switch (increment->type->base_type) {
|
|
case GLSL_TYPE_INT:
|
|
iter = new(mem_ctx) ir_constant(int32_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_INT16:
|
|
iter = new(mem_ctx) ir_constant(int16_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_INT64:
|
|
iter = new(mem_ctx) ir_constant(int64_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_UINT:
|
|
iter = new(mem_ctx) ir_constant(unsigned(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_UINT16:
|
|
iter = new(mem_ctx) ir_constant(uint16_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_UINT64:
|
|
iter = new(mem_ctx) ir_constant(uint64_t(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_FLOAT:
|
|
iter = new(mem_ctx) ir_constant(float(iter_value + bias[i]));
|
|
break;
|
|
case GLSL_TYPE_FLOAT16:
|
|
iter = new(mem_ctx) ir_constant(float16_t(float(iter_value + bias[i])));
|
|
break;
|
|
case GLSL_TYPE_DOUBLE:
|
|
iter = new(mem_ctx) ir_constant(double(iter_value + bias[i]));
|
|
break;
|
|
default:
|
|
unreachable("Unsupported type for loop iterator.");
|
|
}
|
|
|
|
ir_expression *const mul =
|
|
new(mem_ctx) ir_expression(ir_binop_mul, increment->type, iter,
|
|
increment);
|
|
|
|
ir_expression *const add =
|
|
new(mem_ctx) ir_expression(ir_binop_add, mul->type, mul, from);
|
|
|
|
ir_expression *cmp = swap_compare_operands
|
|
? new(mem_ctx) ir_expression(op, glsl_type::bool_type, to, add)
|
|
: new(mem_ctx) ir_expression(op, glsl_type::bool_type, add, to);
|
|
if (continue_from_then)
|
|
cmp = new(mem_ctx) ir_expression(ir_unop_logic_not, cmp);
|
|
|
|
ir_constant *const cmp_result = cmp->constant_expression_value(mem_ctx);
|
|
|
|
assert(cmp_result != NULL);
|
|
if (cmp_result->get_bool_component(0)) {
|
|
iter_value += bias[i];
|
|
valid_loop = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ralloc_free(mem_ctx);
|
|
|
|
if (inc_before_terminator) {
|
|
iter_value--;
|
|
}
|
|
|
|
return (valid_loop) ? iter_value : -1;
|
|
}
|
|
|
|
static bool
|
|
incremented_before_terminator(ir_loop *loop, ir_variable *var,
|
|
ir_if *terminator)
|
|
{
|
|
for (exec_node *node = loop->body_instructions.get_head();
|
|
!node->is_tail_sentinel();
|
|
node = node->get_next()) {
|
|
ir_instruction *ir = (ir_instruction *) node;
|
|
|
|
switch (ir->ir_type) {
|
|
case ir_type_if:
|
|
if (ir->as_if() == terminator)
|
|
return false;
|
|
break;
|
|
|
|
case ir_type_assignment: {
|
|
ir_assignment *assign = ir->as_assignment();
|
|
ir_variable *assignee = assign->lhs->whole_variable_referenced();
|
|
|
|
if (assignee == var) {
|
|
assert(assign->condition == NULL);
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
unreachable("Unable to find induction variable");
|
|
}
|
|
|
|
/**
|
|
* Record the fact that the given loop variable was referenced inside the loop.
|
|
*
|
|
* \arg in_assignee is true if the reference was on the LHS of an assignment.
|
|
*
|
|
* \arg in_conditional_code_or_nested_loop is true if the reference occurred
|
|
* inside an if statement or a nested loop.
|
|
*
|
|
* \arg current_assignment is the ir_assignment node that the loop variable is
|
|
* on the LHS of, if any (ignored if \c in_assignee is false).
|
|
*/
|
|
void
|
|
loop_variable::record_reference(bool in_assignee,
|
|
bool in_conditional_code_or_nested_loop,
|
|
ir_assignment *current_assignment)
|
|
{
|
|
if (in_assignee) {
|
|
assert(current_assignment != NULL);
|
|
|
|
if (in_conditional_code_or_nested_loop ||
|
|
current_assignment->condition != NULL) {
|
|
this->conditional_or_nested_assignment = true;
|
|
}
|
|
|
|
if (this->first_assignment == NULL) {
|
|
assert(this->num_assignments == 0);
|
|
|
|
this->first_assignment = current_assignment;
|
|
}
|
|
|
|
this->num_assignments++;
|
|
} else if (this->first_assignment == current_assignment) {
|
|
/* This catches the case where the variable is used in the RHS of an
|
|
* assignment where it is also in the LHS.
|
|
*/
|
|
this->read_before_write = true;
|
|
}
|
|
}
|
|
|
|
|
|
loop_state::loop_state()
|
|
{
|
|
this->ht = _mesa_pointer_hash_table_create(NULL);
|
|
this->mem_ctx = ralloc_context(NULL);
|
|
this->loop_found = false;
|
|
}
|
|
|
|
|
|
loop_state::~loop_state()
|
|
{
|
|
_mesa_hash_table_destroy(this->ht, NULL);
|
|
ralloc_free(this->mem_ctx);
|
|
}
|
|
|
|
|
|
loop_variable_state *
|
|
loop_state::insert(ir_loop *ir)
|
|
{
|
|
loop_variable_state *ls = new(this->mem_ctx) loop_variable_state;
|
|
|
|
_mesa_hash_table_insert(this->ht, ir, ls);
|
|
this->loop_found = true;
|
|
|
|
return ls;
|
|
}
|
|
|
|
|
|
loop_variable_state *
|
|
loop_state::get(const ir_loop *ir)
|
|
{
|
|
hash_entry *entry = _mesa_hash_table_search(this->ht, ir);
|
|
return entry ? (loop_variable_state *) entry->data : NULL;
|
|
}
|
|
|
|
|
|
loop_variable *
|
|
loop_variable_state::get(const ir_variable *ir)
|
|
{
|
|
if (ir == NULL)
|
|
return NULL;
|
|
|
|
hash_entry *entry = _mesa_hash_table_search(this->var_hash, ir);
|
|
return entry ? (loop_variable *) entry->data : NULL;
|
|
}
|
|
|
|
|
|
loop_variable *
|
|
loop_variable_state::insert(ir_variable *var)
|
|
{
|
|
void *mem_ctx = ralloc_parent(this);
|
|
loop_variable *lv = rzalloc(mem_ctx, loop_variable);
|
|
|
|
lv->var = var;
|
|
|
|
_mesa_hash_table_insert(this->var_hash, lv->var, lv);
|
|
this->variables.push_tail(lv);
|
|
|
|
return lv;
|
|
}
|
|
|
|
|
|
loop_terminator *
|
|
loop_variable_state::insert(ir_if *if_stmt, bool continue_from_then)
|
|
{
|
|
void *mem_ctx = ralloc_parent(this);
|
|
loop_terminator *t = new(mem_ctx) loop_terminator(if_stmt,
|
|
continue_from_then);
|
|
|
|
this->terminators.push_tail(t);
|
|
|
|
return t;
|
|
}
|
|
|
|
|
|
/**
|
|
* If the given variable already is recorded in the state for this loop,
|
|
* return the corresponding loop_variable object that records information
|
|
* about it.
|
|
*
|
|
* Otherwise, create a new loop_variable object to record information about
|
|
* the variable, and set its \c read_before_write field appropriately based on
|
|
* \c in_assignee.
|
|
*
|
|
* \arg in_assignee is true if this variable was encountered on the LHS of an
|
|
* assignment.
|
|
*/
|
|
loop_variable *
|
|
loop_variable_state::get_or_insert(ir_variable *var, bool in_assignee)
|
|
{
|
|
loop_variable *lv = this->get(var);
|
|
|
|
if (lv == NULL) {
|
|
lv = this->insert(var);
|
|
lv->read_before_write = !in_assignee;
|
|
}
|
|
|
|
return lv;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
class loop_analysis : public ir_hierarchical_visitor {
|
|
public:
|
|
loop_analysis(loop_state *loops);
|
|
|
|
virtual ir_visitor_status visit(ir_loop_jump *);
|
|
virtual ir_visitor_status visit(ir_dereference_variable *);
|
|
|
|
virtual ir_visitor_status visit_enter(ir_call *);
|
|
|
|
virtual ir_visitor_status visit_enter(ir_loop *);
|
|
virtual ir_visitor_status visit_leave(ir_loop *);
|
|
virtual ir_visitor_status visit_enter(ir_assignment *);
|
|
virtual ir_visitor_status visit_leave(ir_assignment *);
|
|
virtual ir_visitor_status visit_enter(ir_if *);
|
|
virtual ir_visitor_status visit_leave(ir_if *);
|
|
|
|
loop_state *loops;
|
|
|
|
int if_statement_depth;
|
|
|
|
ir_assignment *current_assignment;
|
|
|
|
exec_list state;
|
|
};
|
|
|
|
} /* anonymous namespace */
|
|
|
|
loop_analysis::loop_analysis(loop_state *loops)
|
|
: loops(loops), if_statement_depth(0), current_assignment(NULL)
|
|
{
|
|
/* empty */
|
|
}
|
|
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit(ir_loop_jump *ir)
|
|
{
|
|
(void) ir;
|
|
|
|
assert(!this->state.is_empty());
|
|
|
|
loop_variable_state *const ls =
|
|
(loop_variable_state *) this->state.get_head();
|
|
|
|
ls->num_loop_jumps++;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_enter(ir_call *)
|
|
{
|
|
/* Mark every loop that we're currently analyzing as containing an ir_call
|
|
* (even those at outer nesting levels).
|
|
*/
|
|
foreach_in_list(loop_variable_state, ls, &this->state) {
|
|
ls->contains_calls = true;
|
|
}
|
|
|
|
return visit_continue_with_parent;
|
|
}
|
|
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit(ir_dereference_variable *ir)
|
|
{
|
|
/* If we're not somewhere inside a loop, there's nothing to do.
|
|
*/
|
|
if (this->state.is_empty())
|
|
return visit_continue;
|
|
|
|
bool nested = false;
|
|
|
|
foreach_in_list(loop_variable_state, ls, &this->state) {
|
|
ir_variable *var = ir->variable_referenced();
|
|
loop_variable *lv = ls->get_or_insert(var, this->in_assignee);
|
|
|
|
lv->record_reference(this->in_assignee,
|
|
nested || this->if_statement_depth > 0,
|
|
this->current_assignment);
|
|
nested = true;
|
|
}
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_enter(ir_loop *ir)
|
|
{
|
|
loop_variable_state *ls = this->loops->insert(ir);
|
|
this->state.push_head(ls);
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_leave(ir_loop *ir)
|
|
{
|
|
loop_variable_state *const ls =
|
|
(loop_variable_state *) this->state.pop_head();
|
|
|
|
/* Function calls may contain side effects. These could alter any of our
|
|
* variables in ways that cannot be known, and may even terminate shader
|
|
* execution (say, calling discard in the fragment shader). So we can't
|
|
* rely on any of our analysis about assignments to variables.
|
|
*
|
|
* We could perform some conservative analysis (prove there's no statically
|
|
* possible assignment, etc.) but it isn't worth it for now; function
|
|
* inlining will allow us to unroll loops anyway.
|
|
*/
|
|
if (ls->contains_calls)
|
|
return visit_continue;
|
|
|
|
foreach_in_list(ir_instruction, node, &ir->body_instructions) {
|
|
/* Skip over declarations at the start of a loop.
|
|
*/
|
|
if (node->as_variable())
|
|
continue;
|
|
|
|
ir_if *if_stmt = ((ir_instruction *) node)->as_if();
|
|
|
|
if (if_stmt != NULL)
|
|
try_add_loop_terminator(ls, if_stmt);
|
|
}
|
|
|
|
|
|
foreach_in_list_safe(loop_variable, lv, &ls->variables) {
|
|
/* Move variables that are already marked as being loop constant to
|
|
* a separate list. These trivially don't need to be tested.
|
|
*/
|
|
if (lv->is_loop_constant()) {
|
|
lv->remove();
|
|
ls->constants.push_tail(lv);
|
|
}
|
|
}
|
|
|
|
/* Each variable assigned in the loop that isn't already marked as being loop
|
|
* constant might still be loop constant. The requirements at this point
|
|
* are:
|
|
*
|
|
* - Variable is written before it is read.
|
|
*
|
|
* - Only one assignment to the variable.
|
|
*
|
|
* - All operands on the RHS of the assignment are also loop constants.
|
|
*
|
|
* The last requirement is the reason for the progress loop. A variable
|
|
* marked as a loop constant on one pass may allow other variables to be
|
|
* marked as loop constant on following passes.
|
|
*/
|
|
bool progress;
|
|
do {
|
|
progress = false;
|
|
|
|
foreach_in_list_safe(loop_variable, lv, &ls->variables) {
|
|
if (lv->conditional_or_nested_assignment || (lv->num_assignments > 1))
|
|
continue;
|
|
|
|
/* Process the RHS of the assignment. If all of the variables
|
|
* accessed there are loop constants, then add this
|
|
*/
|
|
ir_rvalue *const rhs = lv->first_assignment->rhs;
|
|
if (all_expression_operands_are_loop_constant(rhs, ls->var_hash)) {
|
|
lv->rhs_clean = true;
|
|
|
|
if (lv->is_loop_constant()) {
|
|
progress = true;
|
|
|
|
lv->remove();
|
|
ls->constants.push_tail(lv);
|
|
}
|
|
}
|
|
}
|
|
} while (progress);
|
|
|
|
/* The remaining variables that are not loop invariant might be loop
|
|
* induction variables.
|
|
*/
|
|
foreach_in_list_safe(loop_variable, lv, &ls->variables) {
|
|
/* If there is more than one assignment to a variable, it cannot be a
|
|
* loop induction variable. This isn't strictly true, but this is a
|
|
* very simple induction variable detector, and it can't handle more
|
|
* complex cases.
|
|
*/
|
|
if (lv->num_assignments > 1)
|
|
continue;
|
|
|
|
/* All of the variables with zero assignments in the loop are loop
|
|
* invariant, and they should have already been filtered out.
|
|
*/
|
|
assert(lv->num_assignments == 1);
|
|
assert(lv->first_assignment != NULL);
|
|
|
|
/* The assignment to the variable in the loop must be unconditional and
|
|
* not inside a nested loop.
|
|
*/
|
|
if (lv->conditional_or_nested_assignment)
|
|
continue;
|
|
|
|
/* Basic loop induction variables have a single assignment in the loop
|
|
* that has the form 'VAR = VAR + i' or 'VAR = VAR - i' where i is a
|
|
* loop invariant.
|
|
*/
|
|
ir_rvalue *const inc =
|
|
get_basic_induction_increment(lv->first_assignment, ls->var_hash);
|
|
if (inc != NULL) {
|
|
lv->increment = inc;
|
|
|
|
lv->remove();
|
|
ls->induction_variables.push_tail(lv);
|
|
}
|
|
}
|
|
|
|
/* Search the loop terminating conditions for those of the form 'i < c'
|
|
* where i is a loop induction variable, c is a constant, and < is any
|
|
* relative operator. From each of these we can infer an iteration count.
|
|
* Also figure out which terminator (if any) produces the smallest
|
|
* iteration count--this is the limiting terminator.
|
|
*/
|
|
foreach_in_list(loop_terminator, t, &ls->terminators) {
|
|
ir_if *if_stmt = t->ir;
|
|
|
|
/* If-statements can be either 'if (expr)' or 'if (deref)'. We only care
|
|
* about the former here.
|
|
*/
|
|
ir_expression *cond = if_stmt->condition->as_expression();
|
|
if (cond == NULL)
|
|
continue;
|
|
|
|
switch (cond->operation) {
|
|
case ir_binop_less:
|
|
case ir_binop_gequal: {
|
|
/* The expressions that we care about will either be of the form
|
|
* 'counter < limit' or 'limit < counter'. Figure out which is
|
|
* which.
|
|
*/
|
|
ir_rvalue *counter = cond->operands[0]->as_dereference_variable();
|
|
ir_constant *limit = cond->operands[1]->as_constant();
|
|
enum ir_expression_operation cmp = cond->operation;
|
|
bool swap_compare_operands = false;
|
|
|
|
if (limit == NULL) {
|
|
counter = cond->operands[1]->as_dereference_variable();
|
|
limit = cond->operands[0]->as_constant();
|
|
swap_compare_operands = true;
|
|
}
|
|
|
|
if ((counter == NULL) || (limit == NULL))
|
|
break;
|
|
|
|
ir_variable *var = counter->variable_referenced();
|
|
|
|
ir_rvalue *init = find_initial_value(ir, var);
|
|
|
|
loop_variable *lv = ls->get(var);
|
|
if (lv != NULL && lv->is_induction_var()) {
|
|
bool inc_before_terminator =
|
|
incremented_before_terminator(ir, var, t->ir);
|
|
|
|
t->iterations = calculate_iterations(init, limit, lv->increment,
|
|
cmp, t->continue_from_then,
|
|
swap_compare_operands,
|
|
inc_before_terminator);
|
|
|
|
if (t->iterations >= 0 &&
|
|
(ls->limiting_terminator == NULL ||
|
|
t->iterations < ls->limiting_terminator->iterations)) {
|
|
ls->limiting_terminator = t;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_enter(ir_if *ir)
|
|
{
|
|
(void) ir;
|
|
|
|
if (!this->state.is_empty())
|
|
this->if_statement_depth++;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_leave(ir_if *ir)
|
|
{
|
|
(void) ir;
|
|
|
|
if (!this->state.is_empty())
|
|
this->if_statement_depth--;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_enter(ir_assignment *ir)
|
|
{
|
|
/* If we're not somewhere inside a loop, there's nothing to do.
|
|
*/
|
|
if (this->state.is_empty())
|
|
return visit_continue_with_parent;
|
|
|
|
this->current_assignment = ir;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_visitor_status
|
|
loop_analysis::visit_leave(ir_assignment *ir)
|
|
{
|
|
/* Since the visit_enter exits with visit_continue_with_parent for this
|
|
* case, the loop state stack should never be empty here.
|
|
*/
|
|
assert(!this->state.is_empty());
|
|
|
|
assert(this->current_assignment == ir);
|
|
this->current_assignment = NULL;
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
|
|
class examine_rhs : public ir_hierarchical_visitor {
|
|
public:
|
|
examine_rhs(hash_table *loop_variables)
|
|
{
|
|
this->only_uses_loop_constants = true;
|
|
this->loop_variables = loop_variables;
|
|
}
|
|
|
|
virtual ir_visitor_status visit(ir_dereference_variable *ir)
|
|
{
|
|
hash_entry *entry = _mesa_hash_table_search(this->loop_variables,
|
|
ir->var);
|
|
loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
|
|
|
|
assert(lv != NULL);
|
|
|
|
if (lv->is_loop_constant()) {
|
|
return visit_continue;
|
|
} else {
|
|
this->only_uses_loop_constants = false;
|
|
return visit_stop;
|
|
}
|
|
}
|
|
|
|
hash_table *loop_variables;
|
|
bool only_uses_loop_constants;
|
|
};
|
|
|
|
|
|
bool
|
|
all_expression_operands_are_loop_constant(ir_rvalue *ir, hash_table *variables)
|
|
{
|
|
examine_rhs v(variables);
|
|
|
|
ir->accept(&v);
|
|
|
|
return v.only_uses_loop_constants;
|
|
}
|
|
|
|
|
|
ir_rvalue *
|
|
get_basic_induction_increment(ir_assignment *ir, hash_table *var_hash)
|
|
{
|
|
/* The RHS must be a binary expression.
|
|
*/
|
|
ir_expression *const rhs = ir->rhs->as_expression();
|
|
if ((rhs == NULL)
|
|
|| ((rhs->operation != ir_binop_add)
|
|
&& (rhs->operation != ir_binop_sub)))
|
|
return NULL;
|
|
|
|
/* One of the of operands of the expression must be the variable assigned.
|
|
* If the operation is subtraction, the variable in question must be the
|
|
* "left" operand.
|
|
*/
|
|
ir_variable *const var = ir->lhs->variable_referenced();
|
|
|
|
ir_variable *const op0 = rhs->operands[0]->variable_referenced();
|
|
ir_variable *const op1 = rhs->operands[1]->variable_referenced();
|
|
|
|
if (((op0 != var) && (op1 != var))
|
|
|| ((op1 == var) && (rhs->operation == ir_binop_sub)))
|
|
return NULL;
|
|
|
|
ir_rvalue *inc = (op0 == var) ? rhs->operands[1] : rhs->operands[0];
|
|
|
|
if (inc->as_constant() == NULL) {
|
|
ir_variable *const inc_var = inc->variable_referenced();
|
|
if (inc_var != NULL) {
|
|
hash_entry *entry = _mesa_hash_table_search(var_hash, inc_var);
|
|
loop_variable *lv = entry ? (loop_variable *) entry->data : NULL;
|
|
|
|
if (lv == NULL || !lv->is_loop_constant()) {
|
|
assert(lv != NULL);
|
|
inc = NULL;
|
|
}
|
|
} else
|
|
inc = NULL;
|
|
}
|
|
|
|
if ((inc != NULL) && (rhs->operation == ir_binop_sub)) {
|
|
void *mem_ctx = ralloc_parent(ir);
|
|
|
|
inc = new(mem_ctx) ir_expression(ir_unop_neg,
|
|
inc->type,
|
|
inc->clone(mem_ctx, NULL),
|
|
NULL);
|
|
}
|
|
|
|
return inc;
|
|
}
|
|
|
|
|
|
/**
|
|
* Detect whether an if-statement is a loop terminating condition, if so
|
|
* add it to the list of loop terminators.
|
|
*
|
|
* Detects if-statements of the form
|
|
*
|
|
* (if (expression bool ...) (...then_instrs...break))
|
|
*
|
|
* or
|
|
*
|
|
* (if (expression bool ...) ... (...else_instrs...break))
|
|
*/
|
|
void
|
|
try_add_loop_terminator(loop_variable_state *ls, ir_if *ir)
|
|
{
|
|
ir_instruction *inst = (ir_instruction *) ir->then_instructions.get_tail();
|
|
ir_instruction *else_inst =
|
|
(ir_instruction *) ir->else_instructions.get_tail();
|
|
|
|
if (is_break(inst) || is_break(else_inst))
|
|
ls->insert(ir, is_break(else_inst));
|
|
}
|
|
|
|
|
|
loop_state *
|
|
analyze_loop_variables(exec_list *instructions)
|
|
{
|
|
loop_state *loops = new loop_state;
|
|
loop_analysis v(loops);
|
|
|
|
v.run(instructions);
|
|
return v.loops;
|
|
}
|