
First, we need to give the parent_instr field a unique name to be able to replace with a helper. We have parent_instr fields for both nir_src and nir_def, so let's rename nir_src::parent_instr in preparation for rework. This was done with a combination of sed and manual fix-ups. Then we use semantic patches plus manual fixups: @@ expression s; @@ -s->renamed_parent_instr +nir_src_parent_instr(s) @@ expression s; @@ -s.renamed_parent_instr +nir_src_parent_instr(&s) @@ expression s; @@ -s->parent_if +nir_src_parent_if(s) @@ expression s; @@ -s.renamed_parent_if +nir_src_parent_if(&s) @@ expression s; @@ -s->is_if +nir_src_is_if(s) @@ expression s; @@ -s.is_if +nir_src_is_if(&s) Signed-off-by: Alyssa Rosenzweig <alyssa@rosenzweig.io> Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Acked-by: Faith Ekstrand <faith.ekstrand@collabora.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/24671>
1585 lines
52 KiB
C
1585 lines
52 KiB
C
/*
|
||
* Copyright © 2015 Thomas Helland
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining a
|
||
* copy of this software and associated documentation files (the "Software"),
|
||
* to deal in the Software without restriction, including without limitation
|
||
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||
* and/or sell copies of the Software, and to permit persons to whom the
|
||
* Software is furnished to do so, subject to the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice (including the next
|
||
* paragraph) shall be included in all copies or substantial portions of the
|
||
* Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
* IN THE SOFTWARE.
|
||
*/
|
||
|
||
#include "nir_loop_analyze.h"
|
||
#include "util/bitset.h"
|
||
#include "nir.h"
|
||
#include "nir_constant_expressions.h"
|
||
|
||
typedef enum {
|
||
undefined,
|
||
invariant,
|
||
not_invariant,
|
||
basic_induction
|
||
} nir_loop_variable_type;
|
||
|
||
typedef struct {
|
||
/* A link for the work list */
|
||
struct list_head process_link;
|
||
|
||
bool in_loop;
|
||
|
||
/* The ssa_def associated with this info */
|
||
nir_def *def;
|
||
|
||
/* The type of this ssa_def */
|
||
nir_loop_variable_type type;
|
||
|
||
/* True if variable is in an if branch */
|
||
bool in_if_branch;
|
||
|
||
/* True if variable is in a nested loop */
|
||
bool in_nested_loop;
|
||
|
||
/* Could be a basic_induction if following uniforms are inlined */
|
||
nir_src *init_src;
|
||
nir_alu_src *update_src;
|
||
|
||
/**
|
||
* SSA def of the phi-node associated with this induction variable.
|
||
*
|
||
* Every loop induction variable has an associated phi node in the loop
|
||
* header. This may point to the same SSA def as \c def. If, however, \c def
|
||
* is the increment of the induction variable, this will point to the SSA
|
||
* def being incremented.
|
||
*/
|
||
nir_def *basis;
|
||
} nir_loop_variable;
|
||
|
||
typedef struct {
|
||
/* The loop we store information for */
|
||
nir_loop *loop;
|
||
|
||
/* Loop_variable for all ssa_defs in function */
|
||
nir_loop_variable *loop_vars;
|
||
BITSET_WORD *loop_vars_init;
|
||
|
||
/* A list of the loop_vars to analyze */
|
||
struct list_head process_list;
|
||
|
||
nir_variable_mode indirect_mask;
|
||
|
||
bool force_unroll_sampler_indirect;
|
||
} loop_info_state;
|
||
|
||
static nir_loop_variable *
|
||
get_loop_var(nir_def *value, loop_info_state *state)
|
||
{
|
||
nir_loop_variable *var = &(state->loop_vars[value->index]);
|
||
|
||
if (!BITSET_TEST(state->loop_vars_init, value->index)) {
|
||
var->in_loop = false;
|
||
var->def = value;
|
||
var->in_if_branch = false;
|
||
var->in_nested_loop = false;
|
||
var->init_src = NULL;
|
||
var->update_src = NULL;
|
||
if (value->parent_instr->type == nir_instr_type_load_const)
|
||
var->type = invariant;
|
||
else
|
||
var->type = undefined;
|
||
|
||
BITSET_SET(state->loop_vars_init, value->index);
|
||
}
|
||
|
||
return var;
|
||
}
|
||
|
||
typedef struct {
|
||
loop_info_state *state;
|
||
bool in_if_branch;
|
||
bool in_nested_loop;
|
||
} init_loop_state;
|
||
|
||
static bool
|
||
init_loop_def(nir_def *def, void *void_init_loop_state)
|
||
{
|
||
init_loop_state *loop_init_state = void_init_loop_state;
|
||
nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
|
||
|
||
if (loop_init_state->in_nested_loop) {
|
||
var->in_nested_loop = true;
|
||
} else if (loop_init_state->in_if_branch) {
|
||
var->in_if_branch = true;
|
||
} else {
|
||
/* Add to the tail of the list. That way we start at the beginning of
|
||
* the defs in the loop instead of the end when walking the list. This
|
||
* means less recursive calls. Only add defs that are not in nested
|
||
* loops or conditional blocks.
|
||
*/
|
||
list_addtail(&var->process_link, &loop_init_state->state->process_list);
|
||
}
|
||
|
||
var->in_loop = true;
|
||
|
||
return true;
|
||
}
|
||
|
||
/** Calculate an estimated cost in number of instructions
|
||
*
|
||
* We do this so that we don't unroll loops which will later get massively
|
||
* inflated due to int64 or fp64 lowering. The estimates provided here don't
|
||
* have to be massively accurate; they just have to be good enough that loop
|
||
* unrolling doesn't cause things to blow up too much.
|
||
*/
|
||
static unsigned
|
||
instr_cost(loop_info_state *state, nir_instr *instr,
|
||
const nir_shader_compiler_options *options)
|
||
{
|
||
if (instr->type == nir_instr_type_intrinsic ||
|
||
instr->type == nir_instr_type_tex)
|
||
return 1;
|
||
|
||
if (instr->type != nir_instr_type_alu)
|
||
return 0;
|
||
|
||
nir_alu_instr *alu = nir_instr_as_alu(instr);
|
||
const nir_op_info *info = &nir_op_infos[alu->op];
|
||
unsigned cost = 1;
|
||
|
||
if (nir_op_is_selection(alu->op)) {
|
||
nir_scalar cond_scalar = { alu->src[0].src.ssa, 0 };
|
||
if (nir_is_terminator_condition_with_two_inputs(cond_scalar)) {
|
||
nir_instr *sel_cond = alu->src[0].src.ssa->parent_instr;
|
||
nir_alu_instr *sel_alu = nir_instr_as_alu(sel_cond);
|
||
|
||
nir_scalar rhs, lhs;
|
||
lhs = nir_scalar_chase_alu_src(cond_scalar, 0);
|
||
rhs = nir_scalar_chase_alu_src(cond_scalar, 1);
|
||
|
||
/* If the selects condition is a comparision between a constant and
|
||
* a basic induction variable we know that it will be eliminated once
|
||
* the loop is unrolled so here we assign it a cost of 0.
|
||
*/
|
||
if ((nir_src_is_const(sel_alu->src[0].src) &&
|
||
get_loop_var(rhs.def, state)->type == basic_induction) ||
|
||
(nir_src_is_const(sel_alu->src[1].src) &&
|
||
get_loop_var(lhs.def, state)->type == basic_induction)) {
|
||
/* Also if the selects condition is only used by the select then
|
||
* remove that alu instructons cost from the cost total also.
|
||
*/
|
||
if (!list_is_singular(&sel_alu->def.uses) ||
|
||
nir_def_used_by_if(&sel_alu->def))
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (alu->op == nir_op_flrp) {
|
||
if ((options->lower_flrp16 && alu->def.bit_size == 16) ||
|
||
(options->lower_flrp32 && alu->def.bit_size == 32) ||
|
||
(options->lower_flrp64 && alu->def.bit_size == 64))
|
||
cost *= 3;
|
||
}
|
||
|
||
/* Assume everything 16 or 32-bit is cheap.
|
||
*
|
||
* There are no 64-bit ops that don't have a 64-bit thing as their
|
||
* destination or first source.
|
||
*/
|
||
if (alu->def.bit_size < 64 &&
|
||
nir_src_bit_size(alu->src[0].src) < 64)
|
||
return cost;
|
||
|
||
bool is_fp64 = alu->def.bit_size == 64 &&
|
||
nir_alu_type_get_base_type(info->output_type) == nir_type_float;
|
||
for (unsigned i = 0; i < info->num_inputs; i++) {
|
||
if (nir_src_bit_size(alu->src[i].src) == 64 &&
|
||
nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float)
|
||
is_fp64 = true;
|
||
}
|
||
|
||
if (is_fp64) {
|
||
/* If it's something lowered normally, it's expensive. */
|
||
if (options->lower_doubles_options &
|
||
nir_lower_doubles_op_to_options_mask(alu->op))
|
||
cost *= 20;
|
||
|
||
/* If it's full software, it's even more expensive */
|
||
if (options->lower_doubles_options & nir_lower_fp64_full_software) {
|
||
cost *= 100;
|
||
state->loop->info->has_soft_fp64 = true;
|
||
}
|
||
|
||
return cost;
|
||
} else {
|
||
if (options->lower_int64_options &
|
||
nir_lower_int64_op_to_options_mask(alu->op)) {
|
||
/* These require a doing the division algorithm. */
|
||
if (alu->op == nir_op_idiv || alu->op == nir_op_udiv ||
|
||
alu->op == nir_op_imod || alu->op == nir_op_umod ||
|
||
alu->op == nir_op_irem)
|
||
return cost * 100;
|
||
|
||
/* Other int64 lowering isn't usually all that expensive */
|
||
return cost * 5;
|
||
}
|
||
|
||
return cost;
|
||
}
|
||
}
|
||
|
||
static bool
|
||
init_loop_block(nir_block *block, loop_info_state *state,
|
||
bool in_if_branch, bool in_nested_loop)
|
||
{
|
||
init_loop_state init_state = { .in_if_branch = in_if_branch,
|
||
.in_nested_loop = in_nested_loop,
|
||
.state = state };
|
||
|
||
nir_foreach_instr(instr, block) {
|
||
nir_foreach_def(instr, init_loop_def, &init_state);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static inline bool
|
||
is_var_alu(nir_loop_variable *var)
|
||
{
|
||
return var->def->parent_instr->type == nir_instr_type_alu;
|
||
}
|
||
|
||
static inline bool
|
||
is_var_phi(nir_loop_variable *var)
|
||
{
|
||
return var->def->parent_instr->type == nir_instr_type_phi;
|
||
}
|
||
|
||
static inline bool
|
||
mark_invariant(nir_def *def, loop_info_state *state)
|
||
{
|
||
nir_loop_variable *var = get_loop_var(def, state);
|
||
|
||
if (var->type == invariant)
|
||
return true;
|
||
|
||
if (!var->in_loop) {
|
||
var->type = invariant;
|
||
return true;
|
||
}
|
||
|
||
if (var->type == not_invariant)
|
||
return false;
|
||
|
||
if (is_var_alu(var)) {
|
||
nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);
|
||
|
||
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
|
||
if (!mark_invariant(alu->src[i].src.ssa, state)) {
|
||
var->type = not_invariant;
|
||
return false;
|
||
}
|
||
}
|
||
var->type = invariant;
|
||
return true;
|
||
}
|
||
|
||
/* Phis shouldn't be invariant except if one operand is invariant, and the
|
||
* other is the phi itself. These should be removed by opt_remove_phis.
|
||
* load_consts are already set to invariant and constant during init,
|
||
* and so should return earlier. Remaining op_codes are set undefined.
|
||
*/
|
||
var->type = not_invariant;
|
||
return false;
|
||
}
|
||
|
||
static void
|
||
compute_invariance_information(loop_info_state *state)
|
||
{
|
||
/* An expression is invariant in a loop L if:
|
||
* (base cases)
|
||
* – it’s a constant
|
||
* – it’s a variable use, all of whose single defs are outside of L
|
||
* (inductive cases)
|
||
* – it’s a pure computation all of whose args are loop invariant
|
||
* – it’s a variable use whose single reaching def, and the
|
||
* rhs of that def is loop-invariant
|
||
*/
|
||
list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
|
||
process_link) {
|
||
assert(!var->in_if_branch && !var->in_nested_loop);
|
||
|
||
if (mark_invariant(var->def, state))
|
||
list_del(&var->process_link);
|
||
}
|
||
}
|
||
|
||
/* If all of the instruction sources point to identical ALU instructions (as
|
||
* per nir_instrs_equal), return one of the ALU instructions. Otherwise,
|
||
* return NULL.
|
||
*/
|
||
static nir_alu_instr *
|
||
phi_instr_as_alu(nir_phi_instr *phi)
|
||
{
|
||
nir_alu_instr *first = NULL;
|
||
nir_foreach_phi_src(src, phi) {
|
||
if (src->src.ssa->parent_instr->type != nir_instr_type_alu)
|
||
return NULL;
|
||
|
||
nir_alu_instr *alu = nir_instr_as_alu(src->src.ssa->parent_instr);
|
||
if (first == NULL) {
|
||
first = alu;
|
||
} else {
|
||
if (!nir_instrs_equal(&first->instr, &alu->instr))
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
return first;
|
||
}
|
||
|
||
static bool
|
||
alu_src_has_identity_swizzle(nir_alu_instr *alu, unsigned src_idx)
|
||
{
|
||
assert(nir_op_infos[alu->op].input_sizes[src_idx] == 0);
|
||
for (unsigned i = 0; i < alu->def.num_components; i++) {
|
||
if (alu->src[src_idx].swizzle[i] != i)
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool
|
||
is_only_uniform_src(nir_src *src)
|
||
{
|
||
nir_instr *instr = src->ssa->parent_instr;
|
||
|
||
switch (instr->type) {
|
||
case nir_instr_type_alu: {
|
||
/* Return true if all sources return true. */
|
||
nir_alu_instr *alu = nir_instr_as_alu(instr);
|
||
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
|
||
if (!is_only_uniform_src(&alu->src[i].src))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
case nir_instr_type_intrinsic: {
|
||
nir_intrinsic_instr *inst = nir_instr_as_intrinsic(instr);
|
||
/* current uniform inline only support load ubo */
|
||
return inst->intrinsic == nir_intrinsic_load_ubo;
|
||
}
|
||
|
||
case nir_instr_type_load_const:
|
||
/* Always return true for constants. */
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static bool
|
||
compute_induction_information(loop_info_state *state)
|
||
{
|
||
unsigned num_induction_vars = 0;
|
||
|
||
list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
|
||
process_link) {
|
||
|
||
/* It can't be an induction variable if it is invariant. Invariants and
|
||
* things in nested loops or conditionals should have been removed from
|
||
* the list by compute_invariance_information().
|
||
*/
|
||
assert(!var->in_if_branch && !var->in_nested_loop &&
|
||
var->type != invariant);
|
||
|
||
/* We are only interested in checking phis for the basic induction
|
||
* variable case as its simple to detect. All basic induction variables
|
||
* have a phi node
|
||
*/
|
||
if (!is_var_phi(var))
|
||
continue;
|
||
|
||
nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
|
||
|
||
nir_loop_variable *alu_src_var = NULL;
|
||
nir_foreach_phi_src(src, phi) {
|
||
nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
|
||
|
||
/* If one of the sources is in an if branch or nested loop then don't
|
||
* attempt to go any further.
|
||
*/
|
||
if (src_var->in_if_branch || src_var->in_nested_loop)
|
||
break;
|
||
|
||
/* Detect inductions variables that are incremented in both branches
|
||
* of an unnested if rather than in a loop block.
|
||
*/
|
||
if (is_var_phi(src_var)) {
|
||
nir_phi_instr *src_phi =
|
||
nir_instr_as_phi(src_var->def->parent_instr);
|
||
nir_alu_instr *src_phi_alu = phi_instr_as_alu(src_phi);
|
||
if (src_phi_alu) {
|
||
src_var = get_loop_var(&src_phi_alu->def, state);
|
||
if (!src_var->in_if_branch)
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!src_var->in_loop && !var->init_src) {
|
||
var->init_src = &src->src;
|
||
} else if (is_var_alu(src_var) && !var->update_src) {
|
||
alu_src_var = src_var;
|
||
nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
|
||
|
||
/* Check for unsupported alu operations */
|
||
if (alu->op != nir_op_iadd && alu->op != nir_op_fadd &&
|
||
alu->op != nir_op_imul && alu->op != nir_op_fmul &&
|
||
alu->op != nir_op_ishl && alu->op != nir_op_ishr &&
|
||
alu->op != nir_op_ushr)
|
||
break;
|
||
|
||
if (nir_op_infos[alu->op].num_inputs == 2) {
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
/* Is one of the operands const or uniform, and the other the phi.
|
||
* The phi source can't be swizzled in any way.
|
||
*/
|
||
if (alu->src[1 - i].src.ssa == &phi->def &&
|
||
alu_src_has_identity_swizzle(alu, 1 - i)) {
|
||
if (is_only_uniform_src(&alu->src[i].src))
|
||
var->update_src = alu->src + i;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!var->update_src)
|
||
break;
|
||
} else {
|
||
var->update_src = NULL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (var->update_src && var->init_src &&
|
||
is_only_uniform_src(var->init_src)) {
|
||
alu_src_var->init_src = var->init_src;
|
||
alu_src_var->update_src = var->update_src;
|
||
alu_src_var->basis = var->def;
|
||
alu_src_var->type = basic_induction;
|
||
|
||
var->basis = var->def;
|
||
var->type = basic_induction;
|
||
|
||
num_induction_vars += 2;
|
||
} else {
|
||
var->init_src = NULL;
|
||
var->update_src = NULL;
|
||
var->basis = NULL;
|
||
}
|
||
}
|
||
|
||
nir_loop_info *info = state->loop->info;
|
||
ralloc_free(info->induction_vars);
|
||
info->num_induction_vars = 0;
|
||
|
||
/* record induction variables into nir_loop_info */
|
||
if (num_induction_vars) {
|
||
info->induction_vars = ralloc_array(info, nir_loop_induction_variable,
|
||
num_induction_vars);
|
||
|
||
list_for_each_entry(nir_loop_variable, var, &state->process_list,
|
||
process_link) {
|
||
if (var->type == basic_induction) {
|
||
nir_loop_induction_variable *ivar =
|
||
&info->induction_vars[info->num_induction_vars++];
|
||
ivar->def = var->def;
|
||
ivar->init_src = var->init_src;
|
||
ivar->update_src = var->update_src;
|
||
}
|
||
}
|
||
/* don't overflow */
|
||
assert(info->num_induction_vars <= num_induction_vars);
|
||
}
|
||
|
||
return num_induction_vars != 0;
|
||
}
|
||
|
||
static bool
|
||
find_loop_terminators(loop_info_state *state)
|
||
{
|
||
bool success = false;
|
||
foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
|
||
if (node->type == nir_cf_node_if) {
|
||
nir_if *nif = nir_cf_node_as_if(node);
|
||
|
||
nir_block *break_blk = NULL;
|
||
nir_block *continue_from_blk = NULL;
|
||
bool continue_from_then = true;
|
||
|
||
nir_block *last_then = nir_if_last_then_block(nif);
|
||
nir_block *last_else = nir_if_last_else_block(nif);
|
||
if (nir_block_ends_in_break(last_then)) {
|
||
break_blk = last_then;
|
||
continue_from_blk = last_else;
|
||
continue_from_then = false;
|
||
} else if (nir_block_ends_in_break(last_else)) {
|
||
break_blk = last_else;
|
||
continue_from_blk = last_then;
|
||
}
|
||
|
||
/* If there is a break then we should find a terminator. If we can
|
||
* not find a loop terminator, but there is a break-statement then
|
||
* we should return false so that we do not try to find trip-count
|
||
*/
|
||
if (!nir_is_trivial_loop_if(nif, break_blk)) {
|
||
state->loop->info->complex_loop = true;
|
||
return false;
|
||
}
|
||
|
||
/* Continue if the if contained no jumps at all */
|
||
if (!break_blk)
|
||
continue;
|
||
|
||
if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) {
|
||
state->loop->info->complex_loop = true;
|
||
return false;
|
||
}
|
||
|
||
nir_loop_terminator *terminator =
|
||
rzalloc(state->loop->info, nir_loop_terminator);
|
||
|
||
list_addtail(&terminator->loop_terminator_link,
|
||
&state->loop->info->loop_terminator_list);
|
||
|
||
terminator->nif = nif;
|
||
terminator->break_block = break_blk;
|
||
terminator->continue_from_block = continue_from_blk;
|
||
terminator->continue_from_then = continue_from_then;
|
||
terminator->conditional_instr = nif->condition.ssa->parent_instr;
|
||
|
||
success = true;
|
||
}
|
||
}
|
||
|
||
return success;
|
||
}
|
||
|
||
/* This function looks for an array access within a loop that uses an
|
||
* induction variable for the array index. If found it returns the size of the
|
||
* array, otherwise 0 is returned. If we find an induction var we pass it back
|
||
* to the caller via array_index_out.
|
||
*/
|
||
static unsigned
|
||
find_array_access_via_induction(loop_info_state *state,
|
||
nir_deref_instr *deref,
|
||
nir_loop_variable **array_index_out)
|
||
{
|
||
for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
|
||
if (d->deref_type != nir_deref_type_array)
|
||
continue;
|
||
|
||
nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
|
||
|
||
if (array_index->type != basic_induction)
|
||
continue;
|
||
|
||
if (array_index_out)
|
||
*array_index_out = array_index;
|
||
|
||
nir_deref_instr *parent = nir_deref_instr_parent(d);
|
||
|
||
if (glsl_type_is_array_or_matrix(parent->type)) {
|
||
return glsl_get_length(parent->type);
|
||
} else {
|
||
assert(glsl_type_is_vector(parent->type));
|
||
return glsl_get_vector_elements(parent->type);
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
guess_loop_limit(loop_info_state *state, nir_const_value *limit_val,
|
||
nir_scalar basic_ind)
|
||
{
|
||
unsigned min_array_size = 0;
|
||
|
||
nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
|
||
nir_foreach_instr(instr, block) {
|
||
if (instr->type != nir_instr_type_intrinsic)
|
||
continue;
|
||
|
||
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
||
|
||
/* Check for arrays variably-indexed by a loop induction variable. */
|
||
if (intrin->intrinsic == nir_intrinsic_load_deref ||
|
||
intrin->intrinsic == nir_intrinsic_store_deref ||
|
||
intrin->intrinsic == nir_intrinsic_copy_deref) {
|
||
|
||
nir_loop_variable *array_idx = NULL;
|
||
unsigned array_size =
|
||
find_array_access_via_induction(state,
|
||
nir_src_as_deref(intrin->src[0]),
|
||
&array_idx);
|
||
if (array_idx && basic_ind.def == array_idx->def &&
|
||
(min_array_size == 0 || min_array_size > array_size)) {
|
||
/* Array indices are scalars */
|
||
assert(basic_ind.def->num_components == 1);
|
||
min_array_size = array_size;
|
||
}
|
||
|
||
if (intrin->intrinsic != nir_intrinsic_copy_deref)
|
||
continue;
|
||
|
||
array_size =
|
||
find_array_access_via_induction(state,
|
||
nir_src_as_deref(intrin->src[1]),
|
||
&array_idx);
|
||
if (array_idx && basic_ind.def == array_idx->def &&
|
||
(min_array_size == 0 || min_array_size > array_size)) {
|
||
/* Array indices are scalars */
|
||
assert(basic_ind.def->num_components == 1);
|
||
min_array_size = array_size;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (min_array_size) {
|
||
*limit_val = nir_const_value_for_uint(min_array_size,
|
||
basic_ind.def->bit_size);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool
|
||
try_find_limit_of_alu(nir_scalar limit, nir_const_value *limit_val,
|
||
nir_loop_terminator *terminator, loop_info_state *state)
|
||
{
|
||
if (!nir_scalar_is_alu(limit))
|
||
return false;
|
||
|
||
nir_op limit_op = nir_scalar_alu_op(limit);
|
||
if (limit_op == nir_op_imin || limit_op == nir_op_fmin) {
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
nir_scalar src = nir_scalar_chase_alu_src(limit, i);
|
||
if (nir_scalar_is_const(src)) {
|
||
*limit_val = nir_scalar_as_const_value(src);
|
||
terminator->exact_trip_count_unknown = true;
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static nir_const_value
|
||
eval_const_unop(nir_op op, unsigned bit_size, nir_const_value src0,
|
||
unsigned execution_mode)
|
||
{
|
||
assert(nir_op_infos[op].num_inputs == 1);
|
||
nir_const_value dest;
|
||
nir_const_value *src[1] = { &src0 };
|
||
nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
|
||
return dest;
|
||
}
|
||
|
||
static nir_const_value
|
||
eval_const_binop(nir_op op, unsigned bit_size,
|
||
nir_const_value src0, nir_const_value src1,
|
||
unsigned execution_mode)
|
||
{
|
||
assert(nir_op_infos[op].num_inputs == 2);
|
||
nir_const_value dest;
|
||
nir_const_value *src[2] = { &src0, &src1 };
|
||
nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
|
||
return dest;
|
||
}
|
||
|
||
static int
|
||
find_replacement(const nir_def **originals, const nir_def *key,
|
||
unsigned num_replacements)
|
||
{
|
||
for (int i = 0; i < num_replacements; i++) {
|
||
if (originals[i] == key)
|
||
return i;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/**
|
||
* Try to evaluate an ALU instruction as a constant with a replacement
|
||
*
|
||
* Much like \c nir_opt_constant_folding.c:try_fold_alu, this method attempts
|
||
* to evaluate an ALU instruction as a constant. There are two significant
|
||
* differences.
|
||
*
|
||
* First, this method performs the evaluation recursively. If any source of
|
||
* the ALU instruction is not itself a constant, it is first evaluated.
|
||
*
|
||
* Second, if the SSA value \c original is encountered as a source of the ALU
|
||
* instruction, the value \c replacement is substituted.
|
||
*
|
||
* The intended purpose of this function is to evaluate an arbitrary
|
||
* expression involving a loop induction variable. In this case, \c original
|
||
* would be the phi node associated with the induction variable, and
|
||
* \c replacement is the initial value of the induction variable.
|
||
*
|
||
* \returns true if the ALU instruction can be evaluated as constant (after
|
||
* applying the previously described substitution) or false otherwise.
|
||
*/
|
||
static bool
|
||
try_eval_const_alu(nir_const_value *dest, nir_alu_instr *alu,
|
||
const nir_def **originals,
|
||
const nir_const_value **replacements,
|
||
unsigned num_replacements, unsigned execution_mode)
|
||
{
|
||
nir_const_value src[NIR_MAX_VEC_COMPONENTS][NIR_MAX_VEC_COMPONENTS];
|
||
|
||
/* In the case that any outputs/inputs have unsized types, then we need to
|
||
* guess the bit-size. In this case, the validator ensures that all
|
||
* bit-sizes match so we can just take the bit-size from first
|
||
* output/input with an unsized type. If all the outputs/inputs are sized
|
||
* then we don't need to guess the bit-size at all because the code we
|
||
* generate for constant opcodes in this case already knows the sizes of
|
||
* the types involved and does not need the provided bit-size for anything
|
||
* (although it still requires to receive a valid bit-size).
|
||
*/
|
||
unsigned bit_size = 0;
|
||
if (!nir_alu_type_get_type_size(nir_op_infos[alu->op].output_type))
|
||
bit_size = alu->def.bit_size;
|
||
|
||
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
|
||
if (bit_size == 0 &&
|
||
!nir_alu_type_get_type_size(nir_op_infos[alu->op].input_types[i]))
|
||
bit_size = alu->src[i].src.ssa->bit_size;
|
||
|
||
nir_instr *src_instr = alu->src[i].src.ssa->parent_instr;
|
||
|
||
if (src_instr->type == nir_instr_type_load_const) {
|
||
nir_load_const_instr *load_const = nir_instr_as_load_const(src_instr);
|
||
|
||
for (unsigned j = 0; j < nir_ssa_alu_instr_src_components(alu, i);
|
||
j++) {
|
||
src[i][j] = load_const->value[alu->src[i].swizzle[j]];
|
||
}
|
||
} else {
|
||
int r = find_replacement(originals, alu->src[i].src.ssa,
|
||
num_replacements);
|
||
|
||
if (r >= 0) {
|
||
for (unsigned j = 0; j < nir_ssa_alu_instr_src_components(alu, i);
|
||
j++) {
|
||
src[i][j] = replacements[r][alu->src[i].swizzle[j]];
|
||
}
|
||
} else if (src_instr->type == nir_instr_type_alu) {
|
||
memset(src[i], 0, sizeof(src[i]));
|
||
|
||
if (!try_eval_const_alu(src[i], nir_instr_as_alu(src_instr),
|
||
originals, replacements, num_replacements,
|
||
execution_mode))
|
||
return false;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (bit_size == 0)
|
||
bit_size = 32;
|
||
|
||
nir_const_value *srcs[NIR_MAX_VEC_COMPONENTS];
|
||
|
||
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; ++i)
|
||
srcs[i] = src[i];
|
||
|
||
nir_eval_const_opcode(alu->op, dest, alu->def.num_components,
|
||
bit_size, srcs, execution_mode);
|
||
|
||
return true;
|
||
}
|
||
|
||
static int32_t
|
||
get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step,
|
||
nir_const_value limit, unsigned bit_size,
|
||
unsigned execution_mode)
|
||
{
|
||
nir_const_value span, iter;
|
||
|
||
switch (cond_op) {
|
||
case nir_op_ine:
|
||
/* In order for execution to be here, limit must be the same as initial.
|
||
* Otherwise will_break_on_first_iteration would have returned false.
|
||
* If step is zero, the loop is infinite. Otherwise the loop will
|
||
* execute once.
|
||
*/
|
||
return step.u64 == 0 ? -1 : 1;
|
||
|
||
case nir_op_ige:
|
||
case nir_op_ilt:
|
||
case nir_op_ieq:
|
||
span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
|
||
execution_mode);
|
||
iter = eval_const_binop(nir_op_idiv, bit_size, span, step,
|
||
execution_mode);
|
||
break;
|
||
|
||
case nir_op_uge:
|
||
case nir_op_ult:
|
||
span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
|
||
execution_mode);
|
||
iter = eval_const_binop(nir_op_udiv, bit_size, span, step,
|
||
execution_mode);
|
||
break;
|
||
|
||
case nir_op_fneu:
|
||
/* In order for execution to be here, limit must be the same as initial.
|
||
* Otherwise will_break_on_first_iteration would have returned false.
|
||
* If step is zero, the loop is infinite. Otherwise the loop will
|
||
* execute once.
|
||
*
|
||
* This is a little more tricky for floating point since X-Y might still
|
||
* be X even if Y is not zero. Instead check that (initial + step) !=
|
||
* initial.
|
||
*/
|
||
span = eval_const_binop(nir_op_fadd, bit_size, initial, step,
|
||
execution_mode);
|
||
iter = eval_const_binop(nir_op_feq, bit_size, initial,
|
||
span, execution_mode);
|
||
|
||
/* return (initial + step) == initial ? -1 : 1 */
|
||
return iter.b ? -1 : 1;
|
||
|
||
case nir_op_fge:
|
||
case nir_op_flt:
|
||
case nir_op_feq:
|
||
span = eval_const_binop(nir_op_fsub, bit_size, limit, initial,
|
||
execution_mode);
|
||
iter = eval_const_binop(nir_op_fdiv, bit_size, span,
|
||
step, execution_mode);
|
||
iter = eval_const_unop(nir_op_f2i64, bit_size, iter, execution_mode);
|
||
break;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
|
||
uint64_t iter_u64 = nir_const_value_as_uint(iter, bit_size);
|
||
return iter_u64 > INT_MAX ? -1 : (int)iter_u64;
|
||
}
|
||
|
||
static int32_t
|
||
get_iteration_empirical(nir_alu_instr *cond_alu, nir_alu_instr *incr_alu,
|
||
nir_def *basis, nir_const_value initial,
|
||
bool invert_cond, unsigned execution_mode,
|
||
unsigned max_unroll_iterations)
|
||
{
|
||
int iter_count = 0;
|
||
nir_const_value result;
|
||
nir_const_value iter = initial;
|
||
|
||
const nir_def *originals[2] = { basis, NULL };
|
||
const nir_const_value *replacements[2] = { &iter, NULL };
|
||
|
||
while (iter_count <= max_unroll_iterations) {
|
||
bool success;
|
||
|
||
success = try_eval_const_alu(&result, cond_alu, originals, replacements,
|
||
1, execution_mode);
|
||
if (!success)
|
||
return -1;
|
||
|
||
const bool cond_succ = invert_cond ? !result.b : result.b;
|
||
if (cond_succ)
|
||
return iter_count;
|
||
|
||
iter_count++;
|
||
|
||
success = try_eval_const_alu(&result, incr_alu, originals, replacements,
|
||
1, execution_mode);
|
||
assert(success);
|
||
|
||
iter = result;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
static bool
|
||
will_break_on_first_iteration(nir_alu_instr *cond_alu, nir_def *basis,
|
||
nir_def *limit_basis,
|
||
nir_const_value initial, nir_const_value limit,
|
||
bool invert_cond, unsigned execution_mode)
|
||
{
|
||
nir_const_value result;
|
||
|
||
const nir_def *originals[2] = { basis, limit_basis };
|
||
const nir_const_value *replacements[2] = { &initial, &limit };
|
||
|
||
ASSERTED bool success = try_eval_const_alu(&result, cond_alu, originals,
|
||
replacements, 2, execution_mode);
|
||
|
||
assert(success);
|
||
|
||
return invert_cond ? !result.b : result.b;
|
||
}
|
||
|
||
static bool
|
||
test_iterations(int32_t iter_int, nir_const_value step,
|
||
nir_const_value limit, nir_op cond_op, unsigned bit_size,
|
||
nir_alu_type induction_base_type,
|
||
nir_const_value initial, bool limit_rhs, bool invert_cond,
|
||
unsigned execution_mode)
|
||
{
|
||
assert(nir_op_infos[cond_op].num_inputs == 2);
|
||
|
||
nir_const_value iter_src;
|
||
nir_op mul_op;
|
||
nir_op add_op;
|
||
switch (induction_base_type) {
|
||
case nir_type_float:
|
||
iter_src = nir_const_value_for_float(iter_int, bit_size);
|
||
mul_op = nir_op_fmul;
|
||
add_op = nir_op_fadd;
|
||
break;
|
||
case nir_type_int:
|
||
case nir_type_uint:
|
||
iter_src = nir_const_value_for_int(iter_int, bit_size);
|
||
mul_op = nir_op_imul;
|
||
add_op = nir_op_iadd;
|
||
break;
|
||
default:
|
||
unreachable("Unhandled induction variable base type!");
|
||
}
|
||
|
||
/* Multiple the iteration count we are testing by the number of times we
|
||
* step the induction variable each iteration.
|
||
*/
|
||
nir_const_value mul_result =
|
||
eval_const_binop(mul_op, bit_size, iter_src, step, execution_mode);
|
||
|
||
/* Add the initial value to the accumulated induction variable total */
|
||
nir_const_value add_result =
|
||
eval_const_binop(add_op, bit_size, mul_result, initial, execution_mode);
|
||
|
||
nir_const_value *src[2];
|
||
src[limit_rhs ? 0 : 1] = &add_result;
|
||
src[limit_rhs ? 1 : 0] = &limit;
|
||
|
||
/* Evaluate the loop exit condition */
|
||
nir_const_value result;
|
||
nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode);
|
||
|
||
return invert_cond ? !result.b : result.b;
|
||
}
|
||
|
||
static int
|
||
calculate_iterations(nir_def *basis, nir_def *limit_basis,
|
||
nir_const_value initial, nir_const_value step,
|
||
nir_const_value limit, nir_alu_instr *alu,
|
||
nir_scalar cond, nir_op alu_op, bool limit_rhs,
|
||
bool invert_cond, unsigned execution_mode,
|
||
unsigned max_unroll_iterations)
|
||
{
|
||
/* nir_op_isub should have been lowered away by this point */
|
||
assert(alu->op != nir_op_isub);
|
||
|
||
/* Make sure the alu type for our induction variable is compatible with the
|
||
* conditional alus input type. If its not something has gone really wrong.
|
||
*/
|
||
nir_alu_type induction_base_type =
|
||
nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
|
||
if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
|
||
assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_int ||
|
||
nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_uint);
|
||
} else {
|
||
assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[0]) ==
|
||
induction_base_type);
|
||
}
|
||
|
||
/* do-while loops can increment the starting value before the condition is
|
||
* checked. e.g.
|
||
*
|
||
* do {
|
||
* ndx++;
|
||
* } while (ndx < 3);
|
||
*
|
||
* Here we check if the induction variable is used directly by the loop
|
||
* condition and if so we assume we need to step the initial value.
|
||
*/
|
||
unsigned trip_offset = 0;
|
||
nir_alu_instr *cond_alu = nir_instr_as_alu(cond.def->parent_instr);
|
||
if (cond_alu->src[0].src.ssa == &alu->def ||
|
||
cond_alu->src[1].src.ssa == &alu->def) {
|
||
trip_offset = 1;
|
||
}
|
||
|
||
unsigned bit_size = nir_src_bit_size(alu->src[0].src);
|
||
|
||
/* get_iteration works under assumption that iterator will be
|
||
* incremented or decremented until it hits the limit,
|
||
* however if the loop condition is false on the first iteration
|
||
* get_iteration's assumption is broken. Handle such loops first.
|
||
*/
|
||
if (will_break_on_first_iteration(cond_alu, basis, limit_basis, initial,
|
||
limit, invert_cond, execution_mode)) {
|
||
return 0;
|
||
}
|
||
|
||
/* For loops incremented with addition operation, it's easy to
|
||
* calculate the number of iterations theoretically. Even though it
|
||
* is possible for other operations as well, it is much more error
|
||
* prone, and doesn't cover all possible cases. So, we try to
|
||
* emulate the loop.
|
||
*/
|
||
int iter_int;
|
||
switch (alu->op) {
|
||
case nir_op_iadd:
|
||
case nir_op_fadd:
|
||
assert(nir_src_bit_size(alu->src[0].src) ==
|
||
nir_src_bit_size(alu->src[1].src));
|
||
|
||
iter_int = get_iteration(alu_op, initial, step, limit, bit_size,
|
||
execution_mode);
|
||
break;
|
||
case nir_op_fmul:
|
||
/* Detecting non-zero loop counts when the loop increment is floating
|
||
* point multiplication triggers a preexisting problem in
|
||
* glsl-fs-loop-unroll-mul-fp64.shader_test. See
|
||
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/3445#note_1779438.
|
||
*/
|
||
return -1;
|
||
case nir_op_imul:
|
||
case nir_op_ishl:
|
||
case nir_op_ishr:
|
||
case nir_op_ushr:
|
||
return get_iteration_empirical(cond_alu, alu, basis, initial,
|
||
invert_cond, execution_mode,
|
||
max_unroll_iterations);
|
||
default:
|
||
unreachable("Invalid induction variable increment operation.");
|
||
}
|
||
|
||
/* If iter_int is negative the loop is ill-formed or is the conditional is
|
||
* unsigned with a huge iteration count so don't bother going any further.
|
||
*/
|
||
if (iter_int < 0)
|
||
return -1;
|
||
|
||
if (alu_op == nir_op_ine || alu_op == nir_op_fneu)
|
||
return iter_int;
|
||
|
||
/* An explanation from the GLSL unrolling pass:
|
||
*
|
||
* Make sure that the calculated number of iterations satisfies the exit
|
||
* condition. This is needed to catch off-by-one errors and some types of
|
||
* ill-formed loops. For example, we need to detect that the following
|
||
* loop does not have a maximum iteration count.
|
||
*
|
||
* for (float x = 0.0; x != 0.9; x += 0.2);
|
||
*/
|
||
for (int bias = -1; bias <= 1; bias++) {
|
||
const int iter_bias = iter_int + bias;
|
||
|
||
if (test_iterations(iter_bias, step, limit, alu_op, bit_size,
|
||
induction_base_type, initial,
|
||
limit_rhs, invert_cond, execution_mode)) {
|
||
return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
|
||
}
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
static bool
|
||
get_induction_and_limit_vars(nir_scalar cond,
|
||
nir_scalar *ind,
|
||
nir_scalar *limit,
|
||
bool *limit_rhs,
|
||
loop_info_state *state)
|
||
{
|
||
nir_scalar rhs, lhs;
|
||
lhs = nir_scalar_chase_alu_src(cond, 0);
|
||
rhs = nir_scalar_chase_alu_src(cond, 1);
|
||
|
||
nir_loop_variable *src0_lv = get_loop_var(lhs.def, state);
|
||
nir_loop_variable *src1_lv = get_loop_var(rhs.def, state);
|
||
|
||
if (src0_lv->type == basic_induction) {
|
||
if (!nir_src_is_const(*src0_lv->init_src))
|
||
return false;
|
||
|
||
*ind = lhs;
|
||
*limit = rhs;
|
||
*limit_rhs = true;
|
||
return true;
|
||
} else if (src1_lv->type == basic_induction) {
|
||
if (!nir_src_is_const(*src1_lv->init_src))
|
||
return false;
|
||
|
||
*ind = rhs;
|
||
*limit = lhs;
|
||
*limit_rhs = false;
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
static bool
|
||
try_find_trip_count_vars_in_iand(nir_scalar *cond,
|
||
nir_scalar *ind,
|
||
nir_scalar *limit,
|
||
bool *limit_rhs,
|
||
loop_info_state *state)
|
||
{
|
||
const nir_op alu_op = nir_scalar_alu_op(*cond);
|
||
assert(alu_op == nir_op_ieq || alu_op == nir_op_inot);
|
||
|
||
nir_scalar iand = nir_scalar_chase_alu_src(*cond, 0);
|
||
|
||
if (alu_op == nir_op_ieq) {
|
||
nir_scalar zero = nir_scalar_chase_alu_src(*cond, 1);
|
||
|
||
if (!nir_scalar_is_alu(iand) || !nir_scalar_is_const(zero)) {
|
||
/* Maybe we had it the wrong way, flip things around */
|
||
nir_scalar tmp = zero;
|
||
zero = iand;
|
||
iand = tmp;
|
||
|
||
/* If we still didn't find what we need then return */
|
||
if (!nir_scalar_is_const(zero))
|
||
return false;
|
||
}
|
||
|
||
/* If the loop is not breaking on (x && y) == 0 then return */
|
||
if (nir_scalar_as_uint(zero) != 0)
|
||
return false;
|
||
}
|
||
|
||
if (!nir_scalar_is_alu(iand))
|
||
return false;
|
||
|
||
if (nir_scalar_alu_op(iand) != nir_op_iand)
|
||
return false;
|
||
|
||
/* Check if iand src is a terminator condition and try get induction var
|
||
* and trip limit var.
|
||
*/
|
||
bool found_induction_var = false;
|
||
for (unsigned i = 0; i < 2; i++) {
|
||
nir_scalar src = nir_scalar_chase_alu_src(iand, i);
|
||
if (nir_is_terminator_condition_with_two_inputs(src) &&
|
||
get_induction_and_limit_vars(src, ind, limit, limit_rhs, state)) {
|
||
*cond = src;
|
||
found_induction_var = true;
|
||
|
||
/* If we've found one with a constant limit, stop. */
|
||
if (nir_scalar_is_const(*limit))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return found_induction_var;
|
||
}
|
||
|
||
/* Run through each of the terminators of the loop and try to infer a possible
|
||
* trip-count. We need to check them all, and set the lowest trip-count as the
|
||
* trip-count of our loop. If one of the terminators has an undecidable
|
||
* trip-count we can not safely assume anything about the duration of the
|
||
* loop.
|
||
*/
|
||
static void
|
||
find_trip_count(loop_info_state *state, unsigned execution_mode,
|
||
unsigned max_unroll_iterations)
|
||
{
|
||
bool trip_count_known = true;
|
||
bool guessed_trip_count = false;
|
||
nir_loop_terminator *limiting_terminator = NULL;
|
||
int max_trip_count = -1;
|
||
|
||
list_for_each_entry(nir_loop_terminator, terminator,
|
||
&state->loop->info->loop_terminator_list,
|
||
loop_terminator_link) {
|
||
nir_scalar cond = { terminator->nif->condition.ssa, 0 };
|
||
|
||
if (!nir_scalar_is_alu(cond)) {
|
||
/* If we get here the loop is dead and will get cleaned up by the
|
||
* nir_opt_dead_cf pass.
|
||
*/
|
||
trip_count_known = false;
|
||
terminator->exact_trip_count_unknown = true;
|
||
continue;
|
||
}
|
||
|
||
nir_op alu_op = nir_scalar_alu_op(cond);
|
||
|
||
bool invert_cond = terminator->continue_from_then;
|
||
|
||
bool limit_rhs;
|
||
nir_scalar basic_ind = { NULL, 0 };
|
||
nir_scalar limit;
|
||
if ((alu_op == nir_op_inot || alu_op == nir_op_ieq) &&
|
||
try_find_trip_count_vars_in_iand(&cond, &basic_ind, &limit,
|
||
&limit_rhs, state)) {
|
||
|
||
/* The loop is exiting on (x && y) == 0 so we need to get the
|
||
* inverse of x or y (i.e. which ever contained the induction var) in
|
||
* order to compute the trip count.
|
||
*/
|
||
alu_op = nir_scalar_alu_op(cond);
|
||
invert_cond = !invert_cond;
|
||
trip_count_known = false;
|
||
terminator->exact_trip_count_unknown = true;
|
||
}
|
||
|
||
if (!basic_ind.def) {
|
||
if (nir_is_supported_terminator_condition(cond)) {
|
||
/* Extract and inverse the comparision if it is wrapped in an inot
|
||
*/
|
||
if (alu_op == nir_op_inot) {
|
||
cond = nir_scalar_chase_alu_src(cond, 0);
|
||
alu_op = nir_scalar_alu_op(cond);
|
||
invert_cond = !invert_cond;
|
||
}
|
||
|
||
get_induction_and_limit_vars(cond, &basic_ind,
|
||
&limit, &limit_rhs, state);
|
||
}
|
||
}
|
||
|
||
/* The comparison has to have a basic induction variable for us to be
|
||
* able to find trip counts.
|
||
*/
|
||
if (!basic_ind.def) {
|
||
trip_count_known = false;
|
||
terminator->exact_trip_count_unknown = true;
|
||
continue;
|
||
}
|
||
|
||
terminator->induction_rhs = !limit_rhs;
|
||
|
||
/* Attempt to find a constant limit for the loop */
|
||
nir_const_value limit_val;
|
||
if (nir_scalar_is_const(limit)) {
|
||
limit_val = nir_scalar_as_const_value(limit);
|
||
} else {
|
||
trip_count_known = false;
|
||
|
||
if (!try_find_limit_of_alu(limit, &limit_val, terminator, state)) {
|
||
/* Guess loop limit based on array access */
|
||
if (!guess_loop_limit(state, &limit_val, basic_ind)) {
|
||
terminator->exact_trip_count_unknown = true;
|
||
continue;
|
||
}
|
||
|
||
guessed_trip_count = true;
|
||
}
|
||
}
|
||
|
||
/* We have determined that we have the following constants:
|
||
* (With the typical int i = 0; i < x; i++; as an example)
|
||
* - Upper limit.
|
||
* - Starting value
|
||
* - Step / iteration size
|
||
* Thats all thats needed to calculate the trip-count
|
||
*/
|
||
|
||
nir_loop_variable *lv = get_loop_var(basic_ind.def, state);
|
||
|
||
/* The basic induction var might be a vector but, because we guarantee
|
||
* earlier that the phi source has a scalar swizzle, we can take the
|
||
* component from basic_ind.
|
||
*/
|
||
nir_scalar initial_s = { lv->init_src->ssa, basic_ind.comp };
|
||
nir_scalar alu_s = {
|
||
lv->update_src->src.ssa,
|
||
lv->update_src->swizzle[basic_ind.comp]
|
||
};
|
||
|
||
/* We are not guaranteed by that at one of these sources is a constant.
|
||
* Try to find one.
|
||
*/
|
||
if (!nir_scalar_is_const(initial_s) ||
|
||
!nir_scalar_is_const(alu_s))
|
||
continue;
|
||
|
||
nir_const_value initial_val = nir_scalar_as_const_value(initial_s);
|
||
nir_const_value step_val = nir_scalar_as_const_value(alu_s);
|
||
|
||
int iterations = calculate_iterations(lv->basis, limit.def,
|
||
initial_val, step_val, limit_val,
|
||
nir_instr_as_alu(nir_src_parent_instr(&lv->update_src->src)),
|
||
cond,
|
||
alu_op, limit_rhs,
|
||
invert_cond,
|
||
execution_mode,
|
||
max_unroll_iterations);
|
||
|
||
/* Where we not able to calculate the iteration count */
|
||
if (iterations == -1) {
|
||
trip_count_known = false;
|
||
guessed_trip_count = false;
|
||
terminator->exact_trip_count_unknown = true;
|
||
continue;
|
||
}
|
||
|
||
if (guessed_trip_count) {
|
||
guessed_trip_count = false;
|
||
terminator->exact_trip_count_unknown = true;
|
||
if (state->loop->info->guessed_trip_count == 0 ||
|
||
state->loop->info->guessed_trip_count > iterations)
|
||
state->loop->info->guessed_trip_count = iterations;
|
||
|
||
continue;
|
||
}
|
||
|
||
/* If this is the first run or we have found a smaller amount of
|
||
* iterations than previously (we have identified a more limiting
|
||
* terminator) set the trip count and limiting terminator.
|
||
*/
|
||
if (max_trip_count == -1 || iterations < max_trip_count) {
|
||
max_trip_count = iterations;
|
||
limiting_terminator = terminator;
|
||
}
|
||
}
|
||
|
||
state->loop->info->exact_trip_count_known = trip_count_known;
|
||
if (max_trip_count > -1)
|
||
state->loop->info->max_trip_count = max_trip_count;
|
||
state->loop->info->limiting_terminator = limiting_terminator;
|
||
}
|
||
|
||
static bool
|
||
force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref,
|
||
bool contains_sampler)
|
||
{
|
||
unsigned array_size = find_array_access_via_induction(state, deref, NULL);
|
||
if (array_size) {
|
||
if ((array_size == state->loop->info->max_trip_count) &&
|
||
nir_deref_mode_must_be(deref, nir_var_shader_in |
|
||
nir_var_shader_out |
|
||
nir_var_shader_temp |
|
||
nir_var_function_temp))
|
||
return true;
|
||
|
||
if (nir_deref_mode_must_be(deref, state->indirect_mask))
|
||
return true;
|
||
|
||
if (contains_sampler && state->force_unroll_sampler_indirect)
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool
|
||
force_unroll_heuristics(loop_info_state *state, nir_block *block)
|
||
{
|
||
nir_foreach_instr(instr, block) {
|
||
if (instr->type == nir_instr_type_tex) {
|
||
nir_tex_instr *tex_instr = nir_instr_as_tex(instr);
|
||
int sampler_idx =
|
||
nir_tex_instr_src_index(tex_instr,
|
||
nir_tex_src_sampler_deref);
|
||
|
||
if (sampler_idx >= 0) {
|
||
nir_deref_instr *deref =
|
||
nir_instr_as_deref(tex_instr->src[sampler_idx].src.ssa->parent_instr);
|
||
if (force_unroll_array_access(state, deref, true))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
if (instr->type != nir_instr_type_intrinsic)
|
||
continue;
|
||
|
||
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
||
|
||
/* Check for arrays variably-indexed by a loop induction variable.
|
||
* Unrolling the loop may convert that access into constant-indexing.
|
||
*/
|
||
if (intrin->intrinsic == nir_intrinsic_load_deref ||
|
||
intrin->intrinsic == nir_intrinsic_store_deref ||
|
||
intrin->intrinsic == nir_intrinsic_copy_deref) {
|
||
if (force_unroll_array_access(state,
|
||
nir_src_as_deref(intrin->src[0]),
|
||
false))
|
||
return true;
|
||
|
||
if (intrin->intrinsic == nir_intrinsic_copy_deref &&
|
||
force_unroll_array_access(state,
|
||
nir_src_as_deref(intrin->src[1]),
|
||
false))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static void
|
||
get_loop_info(loop_info_state *state, nir_function_impl *impl)
|
||
{
|
||
nir_shader *shader = impl->function->shader;
|
||
const nir_shader_compiler_options *options = shader->options;
|
||
|
||
/* Add all entries in the outermost part of the loop to the processing list
|
||
* Mark the entries in conditionals or in nested loops accordingly
|
||
*/
|
||
foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
|
||
switch (node->type) {
|
||
|
||
case nir_cf_node_block:
|
||
init_loop_block(nir_cf_node_as_block(node), state, false, false);
|
||
break;
|
||
|
||
case nir_cf_node_if:
|
||
nir_foreach_block_in_cf_node(block, node)
|
||
init_loop_block(block, state, true, false);
|
||
break;
|
||
|
||
case nir_cf_node_loop:
|
||
nir_foreach_block_in_cf_node(block, node) {
|
||
init_loop_block(block, state, false, true);
|
||
}
|
||
break;
|
||
|
||
case nir_cf_node_function:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Try to find all simple terminators of the loop. If we can't find any,
|
||
* or we find possible terminators that have side effects then bail.
|
||
*/
|
||
if (!find_loop_terminators(state)) {
|
||
list_for_each_entry_safe(nir_loop_terminator, terminator,
|
||
&state->loop->info->loop_terminator_list,
|
||
loop_terminator_link) {
|
||
list_del(&terminator->loop_terminator_link);
|
||
ralloc_free(terminator);
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Induction analysis needs invariance information so get that first */
|
||
compute_invariance_information(state);
|
||
|
||
/* We have invariance information so try to find induction variables */
|
||
if (!compute_induction_information(state))
|
||
return;
|
||
|
||
/* Run through each of the terminators and try to compute a trip-count */
|
||
find_trip_count(state,
|
||
impl->function->shader->info.float_controls_execution_mode,
|
||
impl->function->shader->options->max_unroll_iterations);
|
||
|
||
nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
|
||
nir_foreach_instr(instr, block) {
|
||
state->loop->info->instr_cost += instr_cost(state, instr, options);
|
||
}
|
||
|
||
if (state->loop->info->force_unroll)
|
||
continue;
|
||
|
||
if (force_unroll_heuristics(state, block)) {
|
||
state->loop->info->force_unroll = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
static loop_info_state *
|
||
initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
|
||
nir_function_impl *impl)
|
||
{
|
||
loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
|
||
state->loop_vars = ralloc_array(mem_ctx, nir_loop_variable,
|
||
impl->ssa_alloc);
|
||
state->loop_vars_init = rzalloc_array(mem_ctx, BITSET_WORD,
|
||
BITSET_WORDS(impl->ssa_alloc));
|
||
state->loop = loop;
|
||
|
||
list_inithead(&state->process_list);
|
||
|
||
if (loop->info)
|
||
ralloc_free(loop->info);
|
||
|
||
loop->info = rzalloc(loop, nir_loop_info);
|
||
|
||
list_inithead(&loop->info->loop_terminator_list);
|
||
|
||
return state;
|
||
}
|
||
|
||
static void
|
||
process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask,
|
||
bool force_unroll_sampler_indirect)
|
||
{
|
||
switch (cf_node->type) {
|
||
case nir_cf_node_block:
|
||
return;
|
||
case nir_cf_node_if: {
|
||
nir_if *if_stmt = nir_cf_node_as_if(cf_node);
|
||
foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
|
||
process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
|
||
foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
|
||
process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
|
||
return;
|
||
}
|
||
case nir_cf_node_loop: {
|
||
nir_loop *loop = nir_cf_node_as_loop(cf_node);
|
||
assert(!nir_loop_has_continue_construct(loop));
|
||
|
||
foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
|
||
process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
|
||
break;
|
||
}
|
||
default:
|
||
unreachable("unknown cf node type");
|
||
}
|
||
|
||
nir_loop *loop = nir_cf_node_as_loop(cf_node);
|
||
nir_function_impl *impl = nir_cf_node_get_function(cf_node);
|
||
void *mem_ctx = ralloc_context(NULL);
|
||
|
||
loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
|
||
state->indirect_mask = indirect_mask;
|
||
state->force_unroll_sampler_indirect = force_unroll_sampler_indirect;
|
||
|
||
get_loop_info(state, impl);
|
||
|
||
ralloc_free(mem_ctx);
|
||
}
|
||
|
||
void
|
||
nir_loop_analyze_impl(nir_function_impl *impl,
|
||
nir_variable_mode indirect_mask,
|
||
bool force_unroll_sampler_indirect)
|
||
{
|
||
nir_index_ssa_defs(impl);
|
||
foreach_list_typed(nir_cf_node, node, node, &impl->body)
|
||
process_loops(node, indirect_mask, force_unroll_sampler_indirect);
|
||
}
|