Files
third_party_mesa3d/src/compiler/nir/nir_loop_analyze.c
Alyssa Rosenzweig c39896b17b nir: Use getters for nir_src::parent_*
First, we need to give the parent_instr field a unique name to be able to
replace with a helper.  We have parent_instr fields for both nir_src and
nir_def, so let's rename nir_src::parent_instr in preparation for rework.

This was done with a combination of sed and manual fix-ups.

Then we use semantic patches plus manual fixups:

    @@
    expression s;
    @@

    -s->renamed_parent_instr
    +nir_src_parent_instr(s)

    @@
    expression s;
    @@

    -s.renamed_parent_instr
    +nir_src_parent_instr(&s)

    @@
    expression s;
    @@

    -s->parent_if
    +nir_src_parent_if(s)

    @@
    expression s;
    @@

    -s.renamed_parent_if
    +nir_src_parent_if(&s)

    @@
    expression s;
    @@

    -s->is_if
    +nir_src_is_if(s)

    @@
    expression s;
    @@

    -s.is_if
    +nir_src_is_if(&s)

Signed-off-by: Alyssa Rosenzweig <alyssa@rosenzweig.io>
Reviewed-by: Rhys Perry <pendingchaos02@gmail.com>
Acked-by: Faith Ekstrand <faith.ekstrand@collabora.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/24671>
2023-10-10 04:58:05 -04:00

1585 lines
52 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2015 Thomas Helland
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "nir_loop_analyze.h"
#include "util/bitset.h"
#include "nir.h"
#include "nir_constant_expressions.h"
typedef enum {
undefined,
invariant,
not_invariant,
basic_induction
} nir_loop_variable_type;
typedef struct {
/* A link for the work list */
struct list_head process_link;
bool in_loop;
/* The ssa_def associated with this info */
nir_def *def;
/* The type of this ssa_def */
nir_loop_variable_type type;
/* True if variable is in an if branch */
bool in_if_branch;
/* True if variable is in a nested loop */
bool in_nested_loop;
/* Could be a basic_induction if following uniforms are inlined */
nir_src *init_src;
nir_alu_src *update_src;
/**
* SSA def of the phi-node associated with this induction variable.
*
* Every loop induction variable has an associated phi node in the loop
* header. This may point to the same SSA def as \c def. If, however, \c def
* is the increment of the induction variable, this will point to the SSA
* def being incremented.
*/
nir_def *basis;
} nir_loop_variable;
typedef struct {
/* The loop we store information for */
nir_loop *loop;
/* Loop_variable for all ssa_defs in function */
nir_loop_variable *loop_vars;
BITSET_WORD *loop_vars_init;
/* A list of the loop_vars to analyze */
struct list_head process_list;
nir_variable_mode indirect_mask;
bool force_unroll_sampler_indirect;
} loop_info_state;
static nir_loop_variable *
get_loop_var(nir_def *value, loop_info_state *state)
{
nir_loop_variable *var = &(state->loop_vars[value->index]);
if (!BITSET_TEST(state->loop_vars_init, value->index)) {
var->in_loop = false;
var->def = value;
var->in_if_branch = false;
var->in_nested_loop = false;
var->init_src = NULL;
var->update_src = NULL;
if (value->parent_instr->type == nir_instr_type_load_const)
var->type = invariant;
else
var->type = undefined;
BITSET_SET(state->loop_vars_init, value->index);
}
return var;
}
typedef struct {
loop_info_state *state;
bool in_if_branch;
bool in_nested_loop;
} init_loop_state;
static bool
init_loop_def(nir_def *def, void *void_init_loop_state)
{
init_loop_state *loop_init_state = void_init_loop_state;
nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
if (loop_init_state->in_nested_loop) {
var->in_nested_loop = true;
} else if (loop_init_state->in_if_branch) {
var->in_if_branch = true;
} else {
/* Add to the tail of the list. That way we start at the beginning of
* the defs in the loop instead of the end when walking the list. This
* means less recursive calls. Only add defs that are not in nested
* loops or conditional blocks.
*/
list_addtail(&var->process_link, &loop_init_state->state->process_list);
}
var->in_loop = true;
return true;
}
/** Calculate an estimated cost in number of instructions
*
* We do this so that we don't unroll loops which will later get massively
* inflated due to int64 or fp64 lowering. The estimates provided here don't
* have to be massively accurate; they just have to be good enough that loop
* unrolling doesn't cause things to blow up too much.
*/
static unsigned
instr_cost(loop_info_state *state, nir_instr *instr,
const nir_shader_compiler_options *options)
{
if (instr->type == nir_instr_type_intrinsic ||
instr->type == nir_instr_type_tex)
return 1;
if (instr->type != nir_instr_type_alu)
return 0;
nir_alu_instr *alu = nir_instr_as_alu(instr);
const nir_op_info *info = &nir_op_infos[alu->op];
unsigned cost = 1;
if (nir_op_is_selection(alu->op)) {
nir_scalar cond_scalar = { alu->src[0].src.ssa, 0 };
if (nir_is_terminator_condition_with_two_inputs(cond_scalar)) {
nir_instr *sel_cond = alu->src[0].src.ssa->parent_instr;
nir_alu_instr *sel_alu = nir_instr_as_alu(sel_cond);
nir_scalar rhs, lhs;
lhs = nir_scalar_chase_alu_src(cond_scalar, 0);
rhs = nir_scalar_chase_alu_src(cond_scalar, 1);
/* If the selects condition is a comparision between a constant and
* a basic induction variable we know that it will be eliminated once
* the loop is unrolled so here we assign it a cost of 0.
*/
if ((nir_src_is_const(sel_alu->src[0].src) &&
get_loop_var(rhs.def, state)->type == basic_induction) ||
(nir_src_is_const(sel_alu->src[1].src) &&
get_loop_var(lhs.def, state)->type == basic_induction)) {
/* Also if the selects condition is only used by the select then
* remove that alu instructons cost from the cost total also.
*/
if (!list_is_singular(&sel_alu->def.uses) ||
nir_def_used_by_if(&sel_alu->def))
return 0;
else
return -1;
}
}
}
if (alu->op == nir_op_flrp) {
if ((options->lower_flrp16 && alu->def.bit_size == 16) ||
(options->lower_flrp32 && alu->def.bit_size == 32) ||
(options->lower_flrp64 && alu->def.bit_size == 64))
cost *= 3;
}
/* Assume everything 16 or 32-bit is cheap.
*
* There are no 64-bit ops that don't have a 64-bit thing as their
* destination or first source.
*/
if (alu->def.bit_size < 64 &&
nir_src_bit_size(alu->src[0].src) < 64)
return cost;
bool is_fp64 = alu->def.bit_size == 64 &&
nir_alu_type_get_base_type(info->output_type) == nir_type_float;
for (unsigned i = 0; i < info->num_inputs; i++) {
if (nir_src_bit_size(alu->src[i].src) == 64 &&
nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float)
is_fp64 = true;
}
if (is_fp64) {
/* If it's something lowered normally, it's expensive. */
if (options->lower_doubles_options &
nir_lower_doubles_op_to_options_mask(alu->op))
cost *= 20;
/* If it's full software, it's even more expensive */
if (options->lower_doubles_options & nir_lower_fp64_full_software) {
cost *= 100;
state->loop->info->has_soft_fp64 = true;
}
return cost;
} else {
if (options->lower_int64_options &
nir_lower_int64_op_to_options_mask(alu->op)) {
/* These require a doing the division algorithm. */
if (alu->op == nir_op_idiv || alu->op == nir_op_udiv ||
alu->op == nir_op_imod || alu->op == nir_op_umod ||
alu->op == nir_op_irem)
return cost * 100;
/* Other int64 lowering isn't usually all that expensive */
return cost * 5;
}
return cost;
}
}
static bool
init_loop_block(nir_block *block, loop_info_state *state,
bool in_if_branch, bool in_nested_loop)
{
init_loop_state init_state = { .in_if_branch = in_if_branch,
.in_nested_loop = in_nested_loop,
.state = state };
nir_foreach_instr(instr, block) {
nir_foreach_def(instr, init_loop_def, &init_state);
}
return true;
}
static inline bool
is_var_alu(nir_loop_variable *var)
{
return var->def->parent_instr->type == nir_instr_type_alu;
}
static inline bool
is_var_phi(nir_loop_variable *var)
{
return var->def->parent_instr->type == nir_instr_type_phi;
}
static inline bool
mark_invariant(nir_def *def, loop_info_state *state)
{
nir_loop_variable *var = get_loop_var(def, state);
if (var->type == invariant)
return true;
if (!var->in_loop) {
var->type = invariant;
return true;
}
if (var->type == not_invariant)
return false;
if (is_var_alu(var)) {
nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (!mark_invariant(alu->src[i].src.ssa, state)) {
var->type = not_invariant;
return false;
}
}
var->type = invariant;
return true;
}
/* Phis shouldn't be invariant except if one operand is invariant, and the
* other is the phi itself. These should be removed by opt_remove_phis.
* load_consts are already set to invariant and constant during init,
* and so should return earlier. Remaining op_codes are set undefined.
*/
var->type = not_invariant;
return false;
}
static void
compute_invariance_information(loop_info_state *state)
{
/* An expression is invariant in a loop L if:
* (base cases)
* its a constant
* its a variable use, all of whose single defs are outside of L
* (inductive cases)
* its a pure computation all of whose args are loop invariant
* its a variable use whose single reaching def, and the
* rhs of that def is loop-invariant
*/
list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
process_link) {
assert(!var->in_if_branch && !var->in_nested_loop);
if (mark_invariant(var->def, state))
list_del(&var->process_link);
}
}
/* If all of the instruction sources point to identical ALU instructions (as
* per nir_instrs_equal), return one of the ALU instructions. Otherwise,
* return NULL.
*/
static nir_alu_instr *
phi_instr_as_alu(nir_phi_instr *phi)
{
nir_alu_instr *first = NULL;
nir_foreach_phi_src(src, phi) {
if (src->src.ssa->parent_instr->type != nir_instr_type_alu)
return NULL;
nir_alu_instr *alu = nir_instr_as_alu(src->src.ssa->parent_instr);
if (first == NULL) {
first = alu;
} else {
if (!nir_instrs_equal(&first->instr, &alu->instr))
return NULL;
}
}
return first;
}
static bool
alu_src_has_identity_swizzle(nir_alu_instr *alu, unsigned src_idx)
{
assert(nir_op_infos[alu->op].input_sizes[src_idx] == 0);
for (unsigned i = 0; i < alu->def.num_components; i++) {
if (alu->src[src_idx].swizzle[i] != i)
return false;
}
return true;
}
static bool
is_only_uniform_src(nir_src *src)
{
nir_instr *instr = src->ssa->parent_instr;
switch (instr->type) {
case nir_instr_type_alu: {
/* Return true if all sources return true. */
nir_alu_instr *alu = nir_instr_as_alu(instr);
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (!is_only_uniform_src(&alu->src[i].src))
return false;
}
return true;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *inst = nir_instr_as_intrinsic(instr);
/* current uniform inline only support load ubo */
return inst->intrinsic == nir_intrinsic_load_ubo;
}
case nir_instr_type_load_const:
/* Always return true for constants. */
return true;
default:
return false;
}
}
static bool
compute_induction_information(loop_info_state *state)
{
unsigned num_induction_vars = 0;
list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
process_link) {
/* It can't be an induction variable if it is invariant. Invariants and
* things in nested loops or conditionals should have been removed from
* the list by compute_invariance_information().
*/
assert(!var->in_if_branch && !var->in_nested_loop &&
var->type != invariant);
/* We are only interested in checking phis for the basic induction
* variable case as its simple to detect. All basic induction variables
* have a phi node
*/
if (!is_var_phi(var))
continue;
nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
nir_loop_variable *alu_src_var = NULL;
nir_foreach_phi_src(src, phi) {
nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
/* If one of the sources is in an if branch or nested loop then don't
* attempt to go any further.
*/
if (src_var->in_if_branch || src_var->in_nested_loop)
break;
/* Detect inductions variables that are incremented in both branches
* of an unnested if rather than in a loop block.
*/
if (is_var_phi(src_var)) {
nir_phi_instr *src_phi =
nir_instr_as_phi(src_var->def->parent_instr);
nir_alu_instr *src_phi_alu = phi_instr_as_alu(src_phi);
if (src_phi_alu) {
src_var = get_loop_var(&src_phi_alu->def, state);
if (!src_var->in_if_branch)
break;
}
}
if (!src_var->in_loop && !var->init_src) {
var->init_src = &src->src;
} else if (is_var_alu(src_var) && !var->update_src) {
alu_src_var = src_var;
nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
/* Check for unsupported alu operations */
if (alu->op != nir_op_iadd && alu->op != nir_op_fadd &&
alu->op != nir_op_imul && alu->op != nir_op_fmul &&
alu->op != nir_op_ishl && alu->op != nir_op_ishr &&
alu->op != nir_op_ushr)
break;
if (nir_op_infos[alu->op].num_inputs == 2) {
for (unsigned i = 0; i < 2; i++) {
/* Is one of the operands const or uniform, and the other the phi.
* The phi source can't be swizzled in any way.
*/
if (alu->src[1 - i].src.ssa == &phi->def &&
alu_src_has_identity_swizzle(alu, 1 - i)) {
if (is_only_uniform_src(&alu->src[i].src))
var->update_src = alu->src + i;
}
}
}
if (!var->update_src)
break;
} else {
var->update_src = NULL;
break;
}
}
if (var->update_src && var->init_src &&
is_only_uniform_src(var->init_src)) {
alu_src_var->init_src = var->init_src;
alu_src_var->update_src = var->update_src;
alu_src_var->basis = var->def;
alu_src_var->type = basic_induction;
var->basis = var->def;
var->type = basic_induction;
num_induction_vars += 2;
} else {
var->init_src = NULL;
var->update_src = NULL;
var->basis = NULL;
}
}
nir_loop_info *info = state->loop->info;
ralloc_free(info->induction_vars);
info->num_induction_vars = 0;
/* record induction variables into nir_loop_info */
if (num_induction_vars) {
info->induction_vars = ralloc_array(info, nir_loop_induction_variable,
num_induction_vars);
list_for_each_entry(nir_loop_variable, var, &state->process_list,
process_link) {
if (var->type == basic_induction) {
nir_loop_induction_variable *ivar =
&info->induction_vars[info->num_induction_vars++];
ivar->def = var->def;
ivar->init_src = var->init_src;
ivar->update_src = var->update_src;
}
}
/* don't overflow */
assert(info->num_induction_vars <= num_induction_vars);
}
return num_induction_vars != 0;
}
static bool
find_loop_terminators(loop_info_state *state)
{
bool success = false;
foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
if (node->type == nir_cf_node_if) {
nir_if *nif = nir_cf_node_as_if(node);
nir_block *break_blk = NULL;
nir_block *continue_from_blk = NULL;
bool continue_from_then = true;
nir_block *last_then = nir_if_last_then_block(nif);
nir_block *last_else = nir_if_last_else_block(nif);
if (nir_block_ends_in_break(last_then)) {
break_blk = last_then;
continue_from_blk = last_else;
continue_from_then = false;
} else if (nir_block_ends_in_break(last_else)) {
break_blk = last_else;
continue_from_blk = last_then;
}
/* If there is a break then we should find a terminator. If we can
* not find a loop terminator, but there is a break-statement then
* we should return false so that we do not try to find trip-count
*/
if (!nir_is_trivial_loop_if(nif, break_blk)) {
state->loop->info->complex_loop = true;
return false;
}
/* Continue if the if contained no jumps at all */
if (!break_blk)
continue;
if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) {
state->loop->info->complex_loop = true;
return false;
}
nir_loop_terminator *terminator =
rzalloc(state->loop->info, nir_loop_terminator);
list_addtail(&terminator->loop_terminator_link,
&state->loop->info->loop_terminator_list);
terminator->nif = nif;
terminator->break_block = break_blk;
terminator->continue_from_block = continue_from_blk;
terminator->continue_from_then = continue_from_then;
terminator->conditional_instr = nif->condition.ssa->parent_instr;
success = true;
}
}
return success;
}
/* This function looks for an array access within a loop that uses an
* induction variable for the array index. If found it returns the size of the
* array, otherwise 0 is returned. If we find an induction var we pass it back
* to the caller via array_index_out.
*/
static unsigned
find_array_access_via_induction(loop_info_state *state,
nir_deref_instr *deref,
nir_loop_variable **array_index_out)
{
for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
if (d->deref_type != nir_deref_type_array)
continue;
nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
if (array_index->type != basic_induction)
continue;
if (array_index_out)
*array_index_out = array_index;
nir_deref_instr *parent = nir_deref_instr_parent(d);
if (glsl_type_is_array_or_matrix(parent->type)) {
return glsl_get_length(parent->type);
} else {
assert(glsl_type_is_vector(parent->type));
return glsl_get_vector_elements(parent->type);
}
}
return 0;
}
static bool
guess_loop_limit(loop_info_state *state, nir_const_value *limit_val,
nir_scalar basic_ind)
{
unsigned min_array_size = 0;
nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
/* Check for arrays variably-indexed by a loop induction variable. */
if (intrin->intrinsic == nir_intrinsic_load_deref ||
intrin->intrinsic == nir_intrinsic_store_deref ||
intrin->intrinsic == nir_intrinsic_copy_deref) {
nir_loop_variable *array_idx = NULL;
unsigned array_size =
find_array_access_via_induction(state,
nir_src_as_deref(intrin->src[0]),
&array_idx);
if (array_idx && basic_ind.def == array_idx->def &&
(min_array_size == 0 || min_array_size > array_size)) {
/* Array indices are scalars */
assert(basic_ind.def->num_components == 1);
min_array_size = array_size;
}
if (intrin->intrinsic != nir_intrinsic_copy_deref)
continue;
array_size =
find_array_access_via_induction(state,
nir_src_as_deref(intrin->src[1]),
&array_idx);
if (array_idx && basic_ind.def == array_idx->def &&
(min_array_size == 0 || min_array_size > array_size)) {
/* Array indices are scalars */
assert(basic_ind.def->num_components == 1);
min_array_size = array_size;
}
}
}
}
if (min_array_size) {
*limit_val = nir_const_value_for_uint(min_array_size,
basic_ind.def->bit_size);
return true;
}
return false;
}
static bool
try_find_limit_of_alu(nir_scalar limit, nir_const_value *limit_val,
nir_loop_terminator *terminator, loop_info_state *state)
{
if (!nir_scalar_is_alu(limit))
return false;
nir_op limit_op = nir_scalar_alu_op(limit);
if (limit_op == nir_op_imin || limit_op == nir_op_fmin) {
for (unsigned i = 0; i < 2; i++) {
nir_scalar src = nir_scalar_chase_alu_src(limit, i);
if (nir_scalar_is_const(src)) {
*limit_val = nir_scalar_as_const_value(src);
terminator->exact_trip_count_unknown = true;
return true;
}
}
}
return false;
}
static nir_const_value
eval_const_unop(nir_op op, unsigned bit_size, nir_const_value src0,
unsigned execution_mode)
{
assert(nir_op_infos[op].num_inputs == 1);
nir_const_value dest;
nir_const_value *src[1] = { &src0 };
nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
return dest;
}
static nir_const_value
eval_const_binop(nir_op op, unsigned bit_size,
nir_const_value src0, nir_const_value src1,
unsigned execution_mode)
{
assert(nir_op_infos[op].num_inputs == 2);
nir_const_value dest;
nir_const_value *src[2] = { &src0, &src1 };
nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
return dest;
}
static int
find_replacement(const nir_def **originals, const nir_def *key,
unsigned num_replacements)
{
for (int i = 0; i < num_replacements; i++) {
if (originals[i] == key)
return i;
}
return -1;
}
/**
* Try to evaluate an ALU instruction as a constant with a replacement
*
* Much like \c nir_opt_constant_folding.c:try_fold_alu, this method attempts
* to evaluate an ALU instruction as a constant. There are two significant
* differences.
*
* First, this method performs the evaluation recursively. If any source of
* the ALU instruction is not itself a constant, it is first evaluated.
*
* Second, if the SSA value \c original is encountered as a source of the ALU
* instruction, the value \c replacement is substituted.
*
* The intended purpose of this function is to evaluate an arbitrary
* expression involving a loop induction variable. In this case, \c original
* would be the phi node associated with the induction variable, and
* \c replacement is the initial value of the induction variable.
*
* \returns true if the ALU instruction can be evaluated as constant (after
* applying the previously described substitution) or false otherwise.
*/
static bool
try_eval_const_alu(nir_const_value *dest, nir_alu_instr *alu,
const nir_def **originals,
const nir_const_value **replacements,
unsigned num_replacements, unsigned execution_mode)
{
nir_const_value src[NIR_MAX_VEC_COMPONENTS][NIR_MAX_VEC_COMPONENTS];
/* In the case that any outputs/inputs have unsized types, then we need to
* guess the bit-size. In this case, the validator ensures that all
* bit-sizes match so we can just take the bit-size from first
* output/input with an unsized type. If all the outputs/inputs are sized
* then we don't need to guess the bit-size at all because the code we
* generate for constant opcodes in this case already knows the sizes of
* the types involved and does not need the provided bit-size for anything
* (although it still requires to receive a valid bit-size).
*/
unsigned bit_size = 0;
if (!nir_alu_type_get_type_size(nir_op_infos[alu->op].output_type))
bit_size = alu->def.bit_size;
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
if (bit_size == 0 &&
!nir_alu_type_get_type_size(nir_op_infos[alu->op].input_types[i]))
bit_size = alu->src[i].src.ssa->bit_size;
nir_instr *src_instr = alu->src[i].src.ssa->parent_instr;
if (src_instr->type == nir_instr_type_load_const) {
nir_load_const_instr *load_const = nir_instr_as_load_const(src_instr);
for (unsigned j = 0; j < nir_ssa_alu_instr_src_components(alu, i);
j++) {
src[i][j] = load_const->value[alu->src[i].swizzle[j]];
}
} else {
int r = find_replacement(originals, alu->src[i].src.ssa,
num_replacements);
if (r >= 0) {
for (unsigned j = 0; j < nir_ssa_alu_instr_src_components(alu, i);
j++) {
src[i][j] = replacements[r][alu->src[i].swizzle[j]];
}
} else if (src_instr->type == nir_instr_type_alu) {
memset(src[i], 0, sizeof(src[i]));
if (!try_eval_const_alu(src[i], nir_instr_as_alu(src_instr),
originals, replacements, num_replacements,
execution_mode))
return false;
} else {
return false;
}
}
}
if (bit_size == 0)
bit_size = 32;
nir_const_value *srcs[NIR_MAX_VEC_COMPONENTS];
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; ++i)
srcs[i] = src[i];
nir_eval_const_opcode(alu->op, dest, alu->def.num_components,
bit_size, srcs, execution_mode);
return true;
}
static int32_t
get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step,
nir_const_value limit, unsigned bit_size,
unsigned execution_mode)
{
nir_const_value span, iter;
switch (cond_op) {
case nir_op_ine:
/* In order for execution to be here, limit must be the same as initial.
* Otherwise will_break_on_first_iteration would have returned false.
* If step is zero, the loop is infinite. Otherwise the loop will
* execute once.
*/
return step.u64 == 0 ? -1 : 1;
case nir_op_ige:
case nir_op_ilt:
case nir_op_ieq:
span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
execution_mode);
iter = eval_const_binop(nir_op_idiv, bit_size, span, step,
execution_mode);
break;
case nir_op_uge:
case nir_op_ult:
span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
execution_mode);
iter = eval_const_binop(nir_op_udiv, bit_size, span, step,
execution_mode);
break;
case nir_op_fneu:
/* In order for execution to be here, limit must be the same as initial.
* Otherwise will_break_on_first_iteration would have returned false.
* If step is zero, the loop is infinite. Otherwise the loop will
* execute once.
*
* This is a little more tricky for floating point since X-Y might still
* be X even if Y is not zero. Instead check that (initial + step) !=
* initial.
*/
span = eval_const_binop(nir_op_fadd, bit_size, initial, step,
execution_mode);
iter = eval_const_binop(nir_op_feq, bit_size, initial,
span, execution_mode);
/* return (initial + step) == initial ? -1 : 1 */
return iter.b ? -1 : 1;
case nir_op_fge:
case nir_op_flt:
case nir_op_feq:
span = eval_const_binop(nir_op_fsub, bit_size, limit, initial,
execution_mode);
iter = eval_const_binop(nir_op_fdiv, bit_size, span,
step, execution_mode);
iter = eval_const_unop(nir_op_f2i64, bit_size, iter, execution_mode);
break;
default:
return -1;
}
uint64_t iter_u64 = nir_const_value_as_uint(iter, bit_size);
return iter_u64 > INT_MAX ? -1 : (int)iter_u64;
}
static int32_t
get_iteration_empirical(nir_alu_instr *cond_alu, nir_alu_instr *incr_alu,
nir_def *basis, nir_const_value initial,
bool invert_cond, unsigned execution_mode,
unsigned max_unroll_iterations)
{
int iter_count = 0;
nir_const_value result;
nir_const_value iter = initial;
const nir_def *originals[2] = { basis, NULL };
const nir_const_value *replacements[2] = { &iter, NULL };
while (iter_count <= max_unroll_iterations) {
bool success;
success = try_eval_const_alu(&result, cond_alu, originals, replacements,
1, execution_mode);
if (!success)
return -1;
const bool cond_succ = invert_cond ? !result.b : result.b;
if (cond_succ)
return iter_count;
iter_count++;
success = try_eval_const_alu(&result, incr_alu, originals, replacements,
1, execution_mode);
assert(success);
iter = result;
}
return -1;
}
static bool
will_break_on_first_iteration(nir_alu_instr *cond_alu, nir_def *basis,
nir_def *limit_basis,
nir_const_value initial, nir_const_value limit,
bool invert_cond, unsigned execution_mode)
{
nir_const_value result;
const nir_def *originals[2] = { basis, limit_basis };
const nir_const_value *replacements[2] = { &initial, &limit };
ASSERTED bool success = try_eval_const_alu(&result, cond_alu, originals,
replacements, 2, execution_mode);
assert(success);
return invert_cond ? !result.b : result.b;
}
static bool
test_iterations(int32_t iter_int, nir_const_value step,
nir_const_value limit, nir_op cond_op, unsigned bit_size,
nir_alu_type induction_base_type,
nir_const_value initial, bool limit_rhs, bool invert_cond,
unsigned execution_mode)
{
assert(nir_op_infos[cond_op].num_inputs == 2);
nir_const_value iter_src;
nir_op mul_op;
nir_op add_op;
switch (induction_base_type) {
case nir_type_float:
iter_src = nir_const_value_for_float(iter_int, bit_size);
mul_op = nir_op_fmul;
add_op = nir_op_fadd;
break;
case nir_type_int:
case nir_type_uint:
iter_src = nir_const_value_for_int(iter_int, bit_size);
mul_op = nir_op_imul;
add_op = nir_op_iadd;
break;
default:
unreachable("Unhandled induction variable base type!");
}
/* Multiple the iteration count we are testing by the number of times we
* step the induction variable each iteration.
*/
nir_const_value mul_result =
eval_const_binop(mul_op, bit_size, iter_src, step, execution_mode);
/* Add the initial value to the accumulated induction variable total */
nir_const_value add_result =
eval_const_binop(add_op, bit_size, mul_result, initial, execution_mode);
nir_const_value *src[2];
src[limit_rhs ? 0 : 1] = &add_result;
src[limit_rhs ? 1 : 0] = &limit;
/* Evaluate the loop exit condition */
nir_const_value result;
nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode);
return invert_cond ? !result.b : result.b;
}
static int
calculate_iterations(nir_def *basis, nir_def *limit_basis,
nir_const_value initial, nir_const_value step,
nir_const_value limit, nir_alu_instr *alu,
nir_scalar cond, nir_op alu_op, bool limit_rhs,
bool invert_cond, unsigned execution_mode,
unsigned max_unroll_iterations)
{
/* nir_op_isub should have been lowered away by this point */
assert(alu->op != nir_op_isub);
/* Make sure the alu type for our induction variable is compatible with the
* conditional alus input type. If its not something has gone really wrong.
*/
nir_alu_type induction_base_type =
nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_int ||
nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_uint);
} else {
assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[0]) ==
induction_base_type);
}
/* do-while loops can increment the starting value before the condition is
* checked. e.g.
*
* do {
* ndx++;
* } while (ndx < 3);
*
* Here we check if the induction variable is used directly by the loop
* condition and if so we assume we need to step the initial value.
*/
unsigned trip_offset = 0;
nir_alu_instr *cond_alu = nir_instr_as_alu(cond.def->parent_instr);
if (cond_alu->src[0].src.ssa == &alu->def ||
cond_alu->src[1].src.ssa == &alu->def) {
trip_offset = 1;
}
unsigned bit_size = nir_src_bit_size(alu->src[0].src);
/* get_iteration works under assumption that iterator will be
* incremented or decremented until it hits the limit,
* however if the loop condition is false on the first iteration
* get_iteration's assumption is broken. Handle such loops first.
*/
if (will_break_on_first_iteration(cond_alu, basis, limit_basis, initial,
limit, invert_cond, execution_mode)) {
return 0;
}
/* For loops incremented with addition operation, it's easy to
* calculate the number of iterations theoretically. Even though it
* is possible for other operations as well, it is much more error
* prone, and doesn't cover all possible cases. So, we try to
* emulate the loop.
*/
int iter_int;
switch (alu->op) {
case nir_op_iadd:
case nir_op_fadd:
assert(nir_src_bit_size(alu->src[0].src) ==
nir_src_bit_size(alu->src[1].src));
iter_int = get_iteration(alu_op, initial, step, limit, bit_size,
execution_mode);
break;
case nir_op_fmul:
/* Detecting non-zero loop counts when the loop increment is floating
* point multiplication triggers a preexisting problem in
* glsl-fs-loop-unroll-mul-fp64.shader_test. See
* https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/3445#note_1779438.
*/
return -1;
case nir_op_imul:
case nir_op_ishl:
case nir_op_ishr:
case nir_op_ushr:
return get_iteration_empirical(cond_alu, alu, basis, initial,
invert_cond, execution_mode,
max_unroll_iterations);
default:
unreachable("Invalid induction variable increment operation.");
}
/* If iter_int is negative the loop is ill-formed or is the conditional is
* unsigned with a huge iteration count so don't bother going any further.
*/
if (iter_int < 0)
return -1;
if (alu_op == nir_op_ine || alu_op == nir_op_fneu)
return iter_int;
/* An explanation from the GLSL unrolling pass:
*
* Make sure that the calculated number of iterations satisfies the exit
* condition. This is needed to catch off-by-one errors and some types of
* ill-formed loops. For example, we need to detect that the following
* loop does not have a maximum iteration count.
*
* for (float x = 0.0; x != 0.9; x += 0.2);
*/
for (int bias = -1; bias <= 1; bias++) {
const int iter_bias = iter_int + bias;
if (test_iterations(iter_bias, step, limit, alu_op, bit_size,
induction_base_type, initial,
limit_rhs, invert_cond, execution_mode)) {
return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
}
}
return -1;
}
static bool
get_induction_and_limit_vars(nir_scalar cond,
nir_scalar *ind,
nir_scalar *limit,
bool *limit_rhs,
loop_info_state *state)
{
nir_scalar rhs, lhs;
lhs = nir_scalar_chase_alu_src(cond, 0);
rhs = nir_scalar_chase_alu_src(cond, 1);
nir_loop_variable *src0_lv = get_loop_var(lhs.def, state);
nir_loop_variable *src1_lv = get_loop_var(rhs.def, state);
if (src0_lv->type == basic_induction) {
if (!nir_src_is_const(*src0_lv->init_src))
return false;
*ind = lhs;
*limit = rhs;
*limit_rhs = true;
return true;
} else if (src1_lv->type == basic_induction) {
if (!nir_src_is_const(*src1_lv->init_src))
return false;
*ind = rhs;
*limit = lhs;
*limit_rhs = false;
return true;
} else {
return false;
}
}
static bool
try_find_trip_count_vars_in_iand(nir_scalar *cond,
nir_scalar *ind,
nir_scalar *limit,
bool *limit_rhs,
loop_info_state *state)
{
const nir_op alu_op = nir_scalar_alu_op(*cond);
assert(alu_op == nir_op_ieq || alu_op == nir_op_inot);
nir_scalar iand = nir_scalar_chase_alu_src(*cond, 0);
if (alu_op == nir_op_ieq) {
nir_scalar zero = nir_scalar_chase_alu_src(*cond, 1);
if (!nir_scalar_is_alu(iand) || !nir_scalar_is_const(zero)) {
/* Maybe we had it the wrong way, flip things around */
nir_scalar tmp = zero;
zero = iand;
iand = tmp;
/* If we still didn't find what we need then return */
if (!nir_scalar_is_const(zero))
return false;
}
/* If the loop is not breaking on (x && y) == 0 then return */
if (nir_scalar_as_uint(zero) != 0)
return false;
}
if (!nir_scalar_is_alu(iand))
return false;
if (nir_scalar_alu_op(iand) != nir_op_iand)
return false;
/* Check if iand src is a terminator condition and try get induction var
* and trip limit var.
*/
bool found_induction_var = false;
for (unsigned i = 0; i < 2; i++) {
nir_scalar src = nir_scalar_chase_alu_src(iand, i);
if (nir_is_terminator_condition_with_two_inputs(src) &&
get_induction_and_limit_vars(src, ind, limit, limit_rhs, state)) {
*cond = src;
found_induction_var = true;
/* If we've found one with a constant limit, stop. */
if (nir_scalar_is_const(*limit))
return true;
}
}
return found_induction_var;
}
/* Run through each of the terminators of the loop and try to infer a possible
* trip-count. We need to check them all, and set the lowest trip-count as the
* trip-count of our loop. If one of the terminators has an undecidable
* trip-count we can not safely assume anything about the duration of the
* loop.
*/
static void
find_trip_count(loop_info_state *state, unsigned execution_mode,
unsigned max_unroll_iterations)
{
bool trip_count_known = true;
bool guessed_trip_count = false;
nir_loop_terminator *limiting_terminator = NULL;
int max_trip_count = -1;
list_for_each_entry(nir_loop_terminator, terminator,
&state->loop->info->loop_terminator_list,
loop_terminator_link) {
nir_scalar cond = { terminator->nif->condition.ssa, 0 };
if (!nir_scalar_is_alu(cond)) {
/* If we get here the loop is dead and will get cleaned up by the
* nir_opt_dead_cf pass.
*/
trip_count_known = false;
terminator->exact_trip_count_unknown = true;
continue;
}
nir_op alu_op = nir_scalar_alu_op(cond);
bool invert_cond = terminator->continue_from_then;
bool limit_rhs;
nir_scalar basic_ind = { NULL, 0 };
nir_scalar limit;
if ((alu_op == nir_op_inot || alu_op == nir_op_ieq) &&
try_find_trip_count_vars_in_iand(&cond, &basic_ind, &limit,
&limit_rhs, state)) {
/* The loop is exiting on (x && y) == 0 so we need to get the
* inverse of x or y (i.e. which ever contained the induction var) in
* order to compute the trip count.
*/
alu_op = nir_scalar_alu_op(cond);
invert_cond = !invert_cond;
trip_count_known = false;
terminator->exact_trip_count_unknown = true;
}
if (!basic_ind.def) {
if (nir_is_supported_terminator_condition(cond)) {
/* Extract and inverse the comparision if it is wrapped in an inot
*/
if (alu_op == nir_op_inot) {
cond = nir_scalar_chase_alu_src(cond, 0);
alu_op = nir_scalar_alu_op(cond);
invert_cond = !invert_cond;
}
get_induction_and_limit_vars(cond, &basic_ind,
&limit, &limit_rhs, state);
}
}
/* The comparison has to have a basic induction variable for us to be
* able to find trip counts.
*/
if (!basic_ind.def) {
trip_count_known = false;
terminator->exact_trip_count_unknown = true;
continue;
}
terminator->induction_rhs = !limit_rhs;
/* Attempt to find a constant limit for the loop */
nir_const_value limit_val;
if (nir_scalar_is_const(limit)) {
limit_val = nir_scalar_as_const_value(limit);
} else {
trip_count_known = false;
if (!try_find_limit_of_alu(limit, &limit_val, terminator, state)) {
/* Guess loop limit based on array access */
if (!guess_loop_limit(state, &limit_val, basic_ind)) {
terminator->exact_trip_count_unknown = true;
continue;
}
guessed_trip_count = true;
}
}
/* We have determined that we have the following constants:
* (With the typical int i = 0; i < x; i++; as an example)
* - Upper limit.
* - Starting value
* - Step / iteration size
* Thats all thats needed to calculate the trip-count
*/
nir_loop_variable *lv = get_loop_var(basic_ind.def, state);
/* The basic induction var might be a vector but, because we guarantee
* earlier that the phi source has a scalar swizzle, we can take the
* component from basic_ind.
*/
nir_scalar initial_s = { lv->init_src->ssa, basic_ind.comp };
nir_scalar alu_s = {
lv->update_src->src.ssa,
lv->update_src->swizzle[basic_ind.comp]
};
/* We are not guaranteed by that at one of these sources is a constant.
* Try to find one.
*/
if (!nir_scalar_is_const(initial_s) ||
!nir_scalar_is_const(alu_s))
continue;
nir_const_value initial_val = nir_scalar_as_const_value(initial_s);
nir_const_value step_val = nir_scalar_as_const_value(alu_s);
int iterations = calculate_iterations(lv->basis, limit.def,
initial_val, step_val, limit_val,
nir_instr_as_alu(nir_src_parent_instr(&lv->update_src->src)),
cond,
alu_op, limit_rhs,
invert_cond,
execution_mode,
max_unroll_iterations);
/* Where we not able to calculate the iteration count */
if (iterations == -1) {
trip_count_known = false;
guessed_trip_count = false;
terminator->exact_trip_count_unknown = true;
continue;
}
if (guessed_trip_count) {
guessed_trip_count = false;
terminator->exact_trip_count_unknown = true;
if (state->loop->info->guessed_trip_count == 0 ||
state->loop->info->guessed_trip_count > iterations)
state->loop->info->guessed_trip_count = iterations;
continue;
}
/* If this is the first run or we have found a smaller amount of
* iterations than previously (we have identified a more limiting
* terminator) set the trip count and limiting terminator.
*/
if (max_trip_count == -1 || iterations < max_trip_count) {
max_trip_count = iterations;
limiting_terminator = terminator;
}
}
state->loop->info->exact_trip_count_known = trip_count_known;
if (max_trip_count > -1)
state->loop->info->max_trip_count = max_trip_count;
state->loop->info->limiting_terminator = limiting_terminator;
}
static bool
force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref,
bool contains_sampler)
{
unsigned array_size = find_array_access_via_induction(state, deref, NULL);
if (array_size) {
if ((array_size == state->loop->info->max_trip_count) &&
nir_deref_mode_must_be(deref, nir_var_shader_in |
nir_var_shader_out |
nir_var_shader_temp |
nir_var_function_temp))
return true;
if (nir_deref_mode_must_be(deref, state->indirect_mask))
return true;
if (contains_sampler && state->force_unroll_sampler_indirect)
return true;
}
return false;
}
static bool
force_unroll_heuristics(loop_info_state *state, nir_block *block)
{
nir_foreach_instr(instr, block) {
if (instr->type == nir_instr_type_tex) {
nir_tex_instr *tex_instr = nir_instr_as_tex(instr);
int sampler_idx =
nir_tex_instr_src_index(tex_instr,
nir_tex_src_sampler_deref);
if (sampler_idx >= 0) {
nir_deref_instr *deref =
nir_instr_as_deref(tex_instr->src[sampler_idx].src.ssa->parent_instr);
if (force_unroll_array_access(state, deref, true))
return true;
}
}
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
/* Check for arrays variably-indexed by a loop induction variable.
* Unrolling the loop may convert that access into constant-indexing.
*/
if (intrin->intrinsic == nir_intrinsic_load_deref ||
intrin->intrinsic == nir_intrinsic_store_deref ||
intrin->intrinsic == nir_intrinsic_copy_deref) {
if (force_unroll_array_access(state,
nir_src_as_deref(intrin->src[0]),
false))
return true;
if (intrin->intrinsic == nir_intrinsic_copy_deref &&
force_unroll_array_access(state,
nir_src_as_deref(intrin->src[1]),
false))
return true;
}
}
return false;
}
static void
get_loop_info(loop_info_state *state, nir_function_impl *impl)
{
nir_shader *shader = impl->function->shader;
const nir_shader_compiler_options *options = shader->options;
/* Add all entries in the outermost part of the loop to the processing list
* Mark the entries in conditionals or in nested loops accordingly
*/
foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
switch (node->type) {
case nir_cf_node_block:
init_loop_block(nir_cf_node_as_block(node), state, false, false);
break;
case nir_cf_node_if:
nir_foreach_block_in_cf_node(block, node)
init_loop_block(block, state, true, false);
break;
case nir_cf_node_loop:
nir_foreach_block_in_cf_node(block, node) {
init_loop_block(block, state, false, true);
}
break;
case nir_cf_node_function:
break;
}
}
/* Try to find all simple terminators of the loop. If we can't find any,
* or we find possible terminators that have side effects then bail.
*/
if (!find_loop_terminators(state)) {
list_for_each_entry_safe(nir_loop_terminator, terminator,
&state->loop->info->loop_terminator_list,
loop_terminator_link) {
list_del(&terminator->loop_terminator_link);
ralloc_free(terminator);
}
return;
}
/* Induction analysis needs invariance information so get that first */
compute_invariance_information(state);
/* We have invariance information so try to find induction variables */
if (!compute_induction_information(state))
return;
/* Run through each of the terminators and try to compute a trip-count */
find_trip_count(state,
impl->function->shader->info.float_controls_execution_mode,
impl->function->shader->options->max_unroll_iterations);
nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
nir_foreach_instr(instr, block) {
state->loop->info->instr_cost += instr_cost(state, instr, options);
}
if (state->loop->info->force_unroll)
continue;
if (force_unroll_heuristics(state, block)) {
state->loop->info->force_unroll = true;
}
}
}
static loop_info_state *
initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
nir_function_impl *impl)
{
loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
state->loop_vars = ralloc_array(mem_ctx, nir_loop_variable,
impl->ssa_alloc);
state->loop_vars_init = rzalloc_array(mem_ctx, BITSET_WORD,
BITSET_WORDS(impl->ssa_alloc));
state->loop = loop;
list_inithead(&state->process_list);
if (loop->info)
ralloc_free(loop->info);
loop->info = rzalloc(loop, nir_loop_info);
list_inithead(&loop->info->loop_terminator_list);
return state;
}
static void
process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask,
bool force_unroll_sampler_indirect)
{
switch (cf_node->type) {
case nir_cf_node_block:
return;
case nir_cf_node_if: {
nir_if *if_stmt = nir_cf_node_as_if(cf_node);
foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
return;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(cf_node);
assert(!nir_loop_has_continue_construct(loop));
foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
break;
}
default:
unreachable("unknown cf node type");
}
nir_loop *loop = nir_cf_node_as_loop(cf_node);
nir_function_impl *impl = nir_cf_node_get_function(cf_node);
void *mem_ctx = ralloc_context(NULL);
loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
state->indirect_mask = indirect_mask;
state->force_unroll_sampler_indirect = force_unroll_sampler_indirect;
get_loop_info(state, impl);
ralloc_free(mem_ctx);
}
void
nir_loop_analyze_impl(nir_function_impl *impl,
nir_variable_mode indirect_mask,
bool force_unroll_sampler_indirect)
{
nir_index_ssa_defs(impl);
foreach_list_typed(nir_cf_node, node, node, &impl->body)
process_loops(node, indirect_mask, force_unroll_sampler_indirect);
}