Files
third_party_mesa3d/src/intel/compiler/brw_fs_combine_constants.cpp
Francisco Jerez c2a7eababf intel/compiler: Move idom tree calculation and related logic into analysis object
This only does half of the work.  The actual representation of the
idom tree is left untouched, but the computation algorithm is moved
into a separate analysis result class wrapped in a BRW_ANALYSIS
object, along with the intersect() and dump_domtree() auxiliary
functions in order to keep things tidy.

Reviewed-by: Matt Turner <mattst88@gmail.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4012>
2020-03-06 10:21:03 -08:00

566 lines
17 KiB
C++

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/** @file brw_fs_combine_constants.cpp
*
* This file contains the opt_combine_constants() pass that runs after the
* regular optimization loop. It passes over the instruction list and
* selectively promotes immediate values to registers by emitting a mov(1)
* instruction.
*
* This is useful on Gen 7 particularly, because a few instructions can be
* coissued (i.e., issued in the same cycle as another thread on the same EU
* issues an instruction) under some circumstances, one of which is that they
* cannot use immediate values.
*/
#include "brw_fs.h"
#include "brw_cfg.h"
#include "util/half_float.h"
using namespace brw;
static const bool debug = false;
/* Returns whether an instruction could co-issue if its immediate source were
* replaced with a GRF source.
*/
static bool
could_coissue(const struct gen_device_info *devinfo, const fs_inst *inst)
{
if (devinfo->gen != 7)
return false;
switch (inst->opcode) {
case BRW_OPCODE_MOV:
case BRW_OPCODE_CMP:
case BRW_OPCODE_ADD:
case BRW_OPCODE_MUL:
/* Only float instructions can coissue. We don't have a great
* understanding of whether or not something like float(int(a) + int(b))
* would be considered float (based on the destination type) or integer
* (based on the source types), so we take the conservative choice of
* only promoting when both destination and source are float.
*/
return inst->dst.type == BRW_REGISTER_TYPE_F &&
inst->src[0].type == BRW_REGISTER_TYPE_F;
default:
return false;
}
}
/**
* Returns true for instructions that don't support immediate sources.
*/
static bool
must_promote_imm(const struct gen_device_info *devinfo, const fs_inst *inst)
{
switch (inst->opcode) {
case SHADER_OPCODE_POW:
return devinfo->gen < 8;
case BRW_OPCODE_MAD:
case BRW_OPCODE_LRP:
return true;
default:
return false;
}
}
/** A box for putting fs_regs in a linked list. */
struct reg_link {
DECLARE_RALLOC_CXX_OPERATORS(reg_link)
reg_link(fs_reg *reg) : reg(reg) {}
struct exec_node link;
fs_reg *reg;
};
static struct exec_node *
link(void *mem_ctx, fs_reg *reg)
{
reg_link *l = new(mem_ctx) reg_link(reg);
return &l->link;
}
/**
* Information about an immediate value.
*/
struct imm {
/** The common ancestor of all blocks using this immediate value. */
bblock_t *block;
/**
* The instruction generating the immediate value, if all uses are contained
* within a single basic block. Otherwise, NULL.
*/
fs_inst *inst;
/**
* A list of fs_regs that refer to this immediate. If we promote it, we'll
* have to patch these up to refer to the new GRF.
*/
exec_list *uses;
/** The immediate value */
union {
char bytes[8];
double df;
int64_t d64;
float f;
int32_t d;
int16_t w;
};
uint8_t size;
/** When promoting half-float we need to account for certain restrictions */
bool is_half_float;
/**
* The GRF register and subregister number where we've decided to store the
* constant value.
*/
uint8_t subreg_offset;
uint16_t nr;
/** The number of coissuable instructions using this immediate. */
uint16_t uses_by_coissue;
/**
* Whether this constant is used by an instruction that can't handle an
* immediate source (and already has to be promoted to a GRF).
*/
bool must_promote;
uint16_t first_use_ip;
uint16_t last_use_ip;
};
/** The working set of information about immediates. */
struct table {
struct imm *imm;
int size;
int len;
};
static struct imm *
find_imm(struct table *table, void *data, uint8_t size)
{
for (int i = 0; i < table->len; i++) {
if (table->imm[i].size == size &&
!memcmp(table->imm[i].bytes, data, size)) {
return &table->imm[i];
}
}
return NULL;
}
static struct imm *
new_imm(struct table *table, void *mem_ctx)
{
if (table->len == table->size) {
table->size *= 2;
table->imm = reralloc(mem_ctx, table->imm, struct imm, table->size);
}
return &table->imm[table->len++];
}
/**
* Comparator used for sorting an array of imm structures.
*
* We sort by basic block number, then last use IP, then first use IP (least
* to greatest). This sorting causes immediates live in the same area to be
* allocated to the same register in the hopes that all values will be dead
* about the same time and the register can be reused.
*/
static int
compare(const void *_a, const void *_b)
{
const struct imm *a = (const struct imm *)_a,
*b = (const struct imm *)_b;
int block_diff = a->block->num - b->block->num;
if (block_diff)
return block_diff;
int end_diff = a->last_use_ip - b->last_use_ip;
if (end_diff)
return end_diff;
return a->first_use_ip - b->first_use_ip;
}
static bool
get_constant_value(const struct gen_device_info *devinfo,
const fs_inst *inst, uint32_t src_idx,
void *out, brw_reg_type *out_type)
{
const bool can_do_source_mods = inst->can_do_source_mods(devinfo);
const fs_reg *src = &inst->src[src_idx];
*out_type = src->type;
switch (*out_type) {
case BRW_REGISTER_TYPE_DF: {
double val = !can_do_source_mods ? src->df : fabs(src->df);
memcpy(out, &val, 8);
break;
}
case BRW_REGISTER_TYPE_F: {
float val = !can_do_source_mods ? src->f : fabsf(src->f);
memcpy(out, &val, 4);
break;
}
case BRW_REGISTER_TYPE_HF: {
uint16_t val = src->d & 0xffffu;
if (can_do_source_mods)
val = _mesa_float_to_half(fabsf(_mesa_half_to_float(val)));
memcpy(out, &val, 2);
break;
}
case BRW_REGISTER_TYPE_Q: {
int64_t val = !can_do_source_mods ? src->d64 : llabs(src->d64);
memcpy(out, &val, 8);
break;
}
case BRW_REGISTER_TYPE_UQ:
memcpy(out, &src->u64, 8);
break;
case BRW_REGISTER_TYPE_D: {
int32_t val = !can_do_source_mods ? src->d : abs(src->d);
memcpy(out, &val, 4);
break;
}
case BRW_REGISTER_TYPE_UD:
memcpy(out, &src->ud, 4);
break;
case BRW_REGISTER_TYPE_W: {
int16_t val = src->d & 0xffffu;
if (can_do_source_mods)
val = abs(val);
memcpy(out, &val, 2);
break;
}
case BRW_REGISTER_TYPE_UW:
memcpy(out, &src->ud, 2);
break;
default:
return false;
};
return true;
}
static struct brw_reg
build_imm_reg_for_copy(struct imm *imm)
{
switch (imm->size) {
case 8:
return brw_imm_d(imm->d64);
case 4:
return brw_imm_d(imm->d);
case 2:
return brw_imm_w(imm->w);
default:
unreachable("not implemented");
}
}
static inline uint32_t
get_alignment_for_imm(const struct imm *imm)
{
if (imm->is_half_float)
return 4; /* At least MAD seems to require this */
else
return imm->size;
}
static bool
needs_negate(const fs_reg *reg, const struct imm *imm)
{
switch (reg->type) {
case BRW_REGISTER_TYPE_DF:
return signbit(reg->df) != signbit(imm->df);
case BRW_REGISTER_TYPE_F:
return signbit(reg->f) != signbit(imm->f);
case BRW_REGISTER_TYPE_Q:
return (reg->d64 < 0) != (imm->d64 < 0);
case BRW_REGISTER_TYPE_D:
return (reg->d < 0) != (imm->d < 0);
case BRW_REGISTER_TYPE_HF:
return (reg->d & 0x8000u) != (imm->w & 0x8000u);
case BRW_REGISTER_TYPE_W:
return ((int16_t)reg->d < 0) != (imm->w < 0);
case BRW_REGISTER_TYPE_UQ:
case BRW_REGISTER_TYPE_UD:
case BRW_REGISTER_TYPE_UW:
return false;
default:
unreachable("not implemented");
};
}
static bool
representable_as_hf(float f, uint16_t *hf)
{
union fi u;
uint16_t h = _mesa_float_to_half(f);
u.f = _mesa_half_to_float(h);
if (u.f == f) {
*hf = h;
return true;
}
return false;
}
static bool
represent_src_as_imm(const struct gen_device_info *devinfo,
fs_reg *src)
{
/* TODO : consider specific platforms also */
if (devinfo->gen == 12) {
uint16_t hf;
if (representable_as_hf(src->f, &hf)) {
*src = retype(brw_imm_uw(hf), BRW_REGISTER_TYPE_HF);
return true;
}
}
return false;
}
bool
fs_visitor::opt_combine_constants()
{
void *const_ctx = ralloc_context(NULL);
struct table table;
table.size = 8;
table.len = 0;
table.imm = ralloc_array(const_ctx, struct imm, table.size);
const brw::idom_tree &idom = idom_analysis.require();
unsigned ip = -1;
/* Make a pass through all instructions and count the number of times each
* constant is used by coissueable instructions or instructions that cannot
* take immediate arguments.
*/
foreach_block_and_inst(block, fs_inst, inst, cfg) {
ip++;
if (!could_coissue(devinfo, inst) && !must_promote_imm(devinfo, inst))
continue;
bool represented_as_imm = false;
for (int i = 0; i < inst->sources; i++) {
if (inst->src[i].file != IMM)
continue;
if (!represented_as_imm && i == 0 &&
inst->opcode == BRW_OPCODE_MAD &&
represent_src_as_imm(devinfo, &inst->src[i])) {
represented_as_imm = true;
continue;
}
char data[8];
brw_reg_type type;
if (!get_constant_value(devinfo, inst, i, data, &type))
continue;
uint8_t size = type_sz(type);
struct imm *imm = find_imm(&table, data, size);
if (imm) {
bblock_t *intersection = idom.intersect(block, imm->block);
if (intersection != imm->block)
imm->inst = NULL;
imm->block = intersection;
imm->uses->push_tail(link(const_ctx, &inst->src[i]));
imm->uses_by_coissue += could_coissue(devinfo, inst);
imm->must_promote = imm->must_promote || must_promote_imm(devinfo, inst);
imm->last_use_ip = ip;
if (type == BRW_REGISTER_TYPE_HF)
imm->is_half_float = true;
} else {
imm = new_imm(&table, const_ctx);
imm->block = block;
imm->inst = inst;
imm->uses = new(const_ctx) exec_list();
imm->uses->push_tail(link(const_ctx, &inst->src[i]));
memcpy(imm->bytes, data, size);
imm->size = size;
imm->is_half_float = type == BRW_REGISTER_TYPE_HF;
imm->uses_by_coissue = could_coissue(devinfo, inst);
imm->must_promote = must_promote_imm(devinfo, inst);
imm->first_use_ip = ip;
imm->last_use_ip = ip;
}
}
}
/* Remove constants from the table that don't have enough uses to make them
* profitable to store in a register.
*/
for (int i = 0; i < table.len;) {
struct imm *imm = &table.imm[i];
if (!imm->must_promote && imm->uses_by_coissue < 4) {
table.imm[i] = table.imm[table.len - 1];
table.len--;
continue;
}
i++;
}
if (table.len == 0) {
ralloc_free(const_ctx);
return false;
}
if (cfg->num_blocks != 1)
qsort(table.imm, table.len, sizeof(struct imm), compare);
/* Insert MOVs to load the constant values into GRFs. */
fs_reg reg(VGRF, alloc.allocate(1));
reg.stride = 0;
for (int i = 0; i < table.len; i++) {
struct imm *imm = &table.imm[i];
/* Insert it either before the instruction that generated the immediate
* or after the last non-control flow instruction of the common ancestor.
*/
exec_node *n = (imm->inst ? imm->inst :
imm->block->last_non_control_flow_inst()->next);
/* From the BDW and CHV PRM, 3D Media GPGPU, Special Restrictions:
*
* "In Align16 mode, the channel selects and channel enables apply to a
* pair of half-floats, because these parameters are defined for DWord
* elements ONLY. This is applicable when both source and destination
* are half-floats."
*
* This means that Align16 instructions that use promoted HF immediates
* and use a <0,1,0>:HF region would read 2 HF slots instead of
* replicating the single one we want. To avoid this, we always populate
* both HF slots within a DWord with the constant.
*/
const uint32_t width = devinfo->gen == 8 && imm->is_half_float ? 2 : 1;
const fs_builder ibld = bld.at(imm->block, n).exec_all().group(width, 0);
/* Put the immediate in an offset aligned to its size. Some instructions
* seem to have additional alignment requirements, so account for that
* too.
*/
reg.offset = ALIGN(reg.offset, get_alignment_for_imm(imm));
/* Ensure we have enough space in the register to copy the immediate */
struct brw_reg imm_reg = build_imm_reg_for_copy(imm);
if (reg.offset + type_sz(imm_reg.type) * width > REG_SIZE) {
reg.nr = alloc.allocate(1);
reg.offset = 0;
}
ibld.MOV(retype(reg, imm_reg.type), imm_reg);
imm->nr = reg.nr;
imm->subreg_offset = reg.offset;
reg.offset += imm->size * width;
}
shader_stats.promoted_constants = table.len;
/* Rewrite the immediate sources to refer to the new GRFs. */
for (int i = 0; i < table.len; i++) {
foreach_list_typed(reg_link, link, link, table.imm[i].uses) {
fs_reg *reg = link->reg;
#ifdef DEBUG
switch (reg->type) {
case BRW_REGISTER_TYPE_DF:
assert((isnan(reg->df) && isnan(table.imm[i].df)) ||
(fabs(reg->df) == fabs(table.imm[i].df)));
break;
case BRW_REGISTER_TYPE_F:
assert((isnan(reg->f) && isnan(table.imm[i].f)) ||
(fabsf(reg->f) == fabsf(table.imm[i].f)));
break;
case BRW_REGISTER_TYPE_HF:
assert((isnan(_mesa_half_to_float(reg->d & 0xffffu)) &&
isnan(_mesa_half_to_float(table.imm[i].w))) ||
(fabsf(_mesa_half_to_float(reg->d & 0xffffu)) ==
fabsf(_mesa_half_to_float(table.imm[i].w))));
break;
case BRW_REGISTER_TYPE_Q:
assert(abs(reg->d64) == abs(table.imm[i].d64));
break;
case BRW_REGISTER_TYPE_UQ:
assert(reg->d64 == table.imm[i].d64);
break;
case BRW_REGISTER_TYPE_D:
assert(abs(reg->d) == abs(table.imm[i].d));
break;
case BRW_REGISTER_TYPE_UD:
assert(reg->d == table.imm[i].d);
break;
case BRW_REGISTER_TYPE_W:
assert(abs((int16_t) (reg->d & 0xffff)) == table.imm[i].w);
break;
case BRW_REGISTER_TYPE_UW:
assert((reg->ud & 0xffffu) == (uint16_t) table.imm[i].w);
break;
default:
break;
}
#endif
reg->file = VGRF;
reg->offset = table.imm[i].subreg_offset;
reg->stride = 0;
reg->negate = needs_negate(reg, &table.imm[i]);
reg->nr = table.imm[i].nr;
}
}
if (debug) {
for (int i = 0; i < table.len; i++) {
struct imm *imm = &table.imm[i];
printf("0x%016" PRIx64 " - block %3d, reg %3d sub %2d, "
"Uses: (%2d, %2d), IP: %4d to %4d, length %4d\n",
(uint64_t)(imm->d & BITFIELD64_MASK(imm->size * 8)),
imm->block->num,
imm->nr,
imm->subreg_offset,
imm->must_promote,
imm->uses_by_coissue,
imm->first_use_ip,
imm->last_use_ip,
imm->last_use_ip - imm->first_use_ip);
}
}
ralloc_free(const_ctx);
invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
return true;
}