1801 lines
59 KiB
C
1801 lines
59 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include "anv_private.h"
|
|
#include "mesa/main/git_sha1.h"
|
|
#include "util/strtod.h"
|
|
#include "util/debug.h"
|
|
|
|
#include "genxml/gen7_pack.h"
|
|
|
|
struct anv_dispatch_table dtable;
|
|
|
|
static void
|
|
compiler_debug_log(void *data, const char *fmt, ...)
|
|
{ }
|
|
|
|
static void
|
|
compiler_perf_log(void *data, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_PERF))
|
|
vfprintf(stderr, fmt, args);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init(struct anv_physical_device *device,
|
|
struct anv_instance *instance,
|
|
const char *path)
|
|
{
|
|
VkResult result;
|
|
int fd;
|
|
|
|
fd = open(path, O_RDWR | O_CLOEXEC);
|
|
if (fd < 0)
|
|
return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to open %s: %m", path);
|
|
|
|
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
device->instance = instance;
|
|
device->path = path;
|
|
|
|
device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
|
|
if (!device->chipset_id) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get chipset id: %m");
|
|
goto fail;
|
|
}
|
|
|
|
device->name = brw_get_device_name(device->chipset_id);
|
|
device->info = brw_get_device_info(device->chipset_id);
|
|
if (!device->info) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get device info");
|
|
goto fail;
|
|
}
|
|
|
|
if (device->info->is_haswell) {
|
|
fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
|
|
} else if (device->info->gen == 7 && !device->info->is_baytrail) {
|
|
fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
|
|
} else if (device->info->gen == 7 && device->info->is_baytrail) {
|
|
fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
|
|
} else if (device->info->gen >= 8) {
|
|
/* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
|
|
* supported as anything */
|
|
} else {
|
|
result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Vulkan not yet supported on %s", device->name);
|
|
goto fail;
|
|
}
|
|
|
|
device->cmd_parser_version = -1;
|
|
if (device->info->gen == 7) {
|
|
device->cmd_parser_version =
|
|
anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
|
|
if (device->cmd_parser_version == -1) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get command parser version");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (anv_gem_get_aperture(fd, &device->aperture_size) == -1) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get aperture size: %m");
|
|
goto fail;
|
|
}
|
|
|
|
if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing gem wait");
|
|
goto fail;
|
|
}
|
|
|
|
if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing execbuf2");
|
|
goto fail;
|
|
}
|
|
|
|
if (!device->info->has_llc &&
|
|
anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing wc mmap");
|
|
goto fail;
|
|
}
|
|
|
|
bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
|
|
|
|
close(fd);
|
|
|
|
brw_process_intel_debug_variable();
|
|
|
|
device->compiler = brw_compiler_create(NULL, device->info);
|
|
if (device->compiler == NULL) {
|
|
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail;
|
|
}
|
|
device->compiler->shader_debug_log = compiler_debug_log;
|
|
device->compiler->shader_perf_log = compiler_perf_log;
|
|
|
|
anv_init_wsi(device);
|
|
|
|
/* XXX: Actually detect bit6 swizzling */
|
|
isl_device_init(&device->isl_dev, device->info, swizzled);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
close(fd);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_finish(struct anv_physical_device *device)
|
|
{
|
|
anv_finish_wsi(device);
|
|
ralloc_free(device->compiler);
|
|
}
|
|
|
|
static const VkExtensionProperties global_extensions[] = {
|
|
{
|
|
.extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
|
|
.specVersion = 25,
|
|
},
|
|
#ifdef VK_USE_PLATFORM_XCB_KHR
|
|
{
|
|
.extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
|
|
.specVersion = 5,
|
|
},
|
|
#endif
|
|
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
|
|
{
|
|
.extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
|
|
.specVersion = 4,
|
|
},
|
|
#endif
|
|
};
|
|
|
|
static const VkExtensionProperties device_extensions[] = {
|
|
{
|
|
.extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
|
|
.specVersion = 67,
|
|
},
|
|
};
|
|
|
|
static void *
|
|
default_alloc_func(void *pUserData, size_t size, size_t align,
|
|
VkSystemAllocationScope allocationScope)
|
|
{
|
|
return malloc(size);
|
|
}
|
|
|
|
static void *
|
|
default_realloc_func(void *pUserData, void *pOriginal, size_t size,
|
|
size_t align, VkSystemAllocationScope allocationScope)
|
|
{
|
|
return realloc(pOriginal, size);
|
|
}
|
|
|
|
static void
|
|
default_free_func(void *pUserData, void *pMemory)
|
|
{
|
|
free(pMemory);
|
|
}
|
|
|
|
static const VkAllocationCallbacks default_alloc = {
|
|
.pUserData = NULL,
|
|
.pfnAllocation = default_alloc_func,
|
|
.pfnReallocation = default_realloc_func,
|
|
.pfnFree = default_free_func,
|
|
};
|
|
|
|
VkResult anv_CreateInstance(
|
|
const VkInstanceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkInstance* pInstance)
|
|
{
|
|
struct anv_instance *instance;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
|
|
|
|
uint32_t client_version;
|
|
if (pCreateInfo->pApplicationInfo &&
|
|
pCreateInfo->pApplicationInfo->apiVersion != 0) {
|
|
client_version = pCreateInfo->pApplicationInfo->apiVersion;
|
|
} else {
|
|
client_version = VK_MAKE_VERSION(1, 0, 0);
|
|
}
|
|
|
|
if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
|
|
client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
|
|
return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Client requested version %d.%d.%d",
|
|
VK_VERSION_MAJOR(client_version),
|
|
VK_VERSION_MINOR(client_version),
|
|
VK_VERSION_PATCH(client_version));
|
|
}
|
|
|
|
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
|
|
bool found = false;
|
|
for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
|
|
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
|
|
global_extensions[j].extensionName) == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
}
|
|
|
|
instance = anv_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
if (!instance)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
|
|
if (pAllocator)
|
|
instance->alloc = *pAllocator;
|
|
else
|
|
instance->alloc = default_alloc;
|
|
|
|
instance->apiVersion = client_version;
|
|
instance->physicalDeviceCount = -1;
|
|
|
|
_mesa_locale_init();
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
|
|
|
|
*pInstance = anv_instance_to_handle(instance);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyInstance(
|
|
VkInstance _instance,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
|
|
if (instance->physicalDeviceCount > 0) {
|
|
/* We support at most one physical device. */
|
|
assert(instance->physicalDeviceCount == 1);
|
|
anv_physical_device_finish(&instance->physicalDevice);
|
|
}
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(instance));
|
|
|
|
_mesa_locale_fini();
|
|
|
|
anv_free(&instance->alloc, instance);
|
|
}
|
|
|
|
VkResult anv_EnumeratePhysicalDevices(
|
|
VkInstance _instance,
|
|
uint32_t* pPhysicalDeviceCount,
|
|
VkPhysicalDevice* pPhysicalDevices)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
VkResult result;
|
|
|
|
if (instance->physicalDeviceCount < 0) {
|
|
result = anv_physical_device_init(&instance->physicalDevice,
|
|
instance, "/dev/dri/renderD128");
|
|
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
|
|
instance->physicalDeviceCount = 0;
|
|
} else if (result == VK_SUCCESS) {
|
|
instance->physicalDeviceCount = 1;
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/* pPhysicalDeviceCount is an out parameter if pPhysicalDevices is NULL;
|
|
* otherwise it's an inout parameter.
|
|
*
|
|
* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* pPhysicalDeviceCount is a pointer to an unsigned integer variable
|
|
* that is initialized with the number of devices the application is
|
|
* prepared to receive handles to. pname:pPhysicalDevices is pointer to
|
|
* an array of at least this many VkPhysicalDevice handles [...].
|
|
*
|
|
* Upon success, if pPhysicalDevices is NULL, vkEnumeratePhysicalDevices
|
|
* overwrites the contents of the variable pointed to by
|
|
* pPhysicalDeviceCount with the number of physical devices in in the
|
|
* instance; otherwise, vkEnumeratePhysicalDevices overwrites
|
|
* pPhysicalDeviceCount with the number of physical handles written to
|
|
* pPhysicalDevices.
|
|
*/
|
|
if (!pPhysicalDevices) {
|
|
*pPhysicalDeviceCount = instance->physicalDeviceCount;
|
|
} else if (*pPhysicalDeviceCount >= 1) {
|
|
pPhysicalDevices[0] = anv_physical_device_to_handle(&instance->physicalDevice);
|
|
*pPhysicalDeviceCount = 1;
|
|
} else {
|
|
*pPhysicalDeviceCount = 0;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures* pFeatures)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
*pFeatures = (VkPhysicalDeviceFeatures) {
|
|
.robustBufferAccess = true,
|
|
.fullDrawIndexUint32 = true,
|
|
.imageCubeArray = false,
|
|
.independentBlend = pdevice->info->gen >= 8,
|
|
.geometryShader = true,
|
|
.tessellationShader = false,
|
|
.sampleRateShading = false,
|
|
.dualSrcBlend = true,
|
|
.logicOp = true,
|
|
.multiDrawIndirect = false,
|
|
.drawIndirectFirstInstance = false,
|
|
.depthClamp = false,
|
|
.depthBiasClamp = false,
|
|
.fillModeNonSolid = true,
|
|
.depthBounds = false,
|
|
.wideLines = true,
|
|
.largePoints = true,
|
|
.alphaToOne = true,
|
|
.multiViewport = true,
|
|
.samplerAnisotropy = false, /* FINISHME */
|
|
.textureCompressionETC2 = pdevice->info->gen >= 8 ||
|
|
pdevice->info->is_baytrail,
|
|
.textureCompressionASTC_LDR = false, /* FINISHME */
|
|
.textureCompressionBC = true,
|
|
.occlusionQueryPrecise = true,
|
|
.pipelineStatisticsQuery = false,
|
|
.fragmentStoresAndAtomics = true,
|
|
.shaderTessellationAndGeometryPointSize = true,
|
|
.shaderImageGatherExtended = false,
|
|
.shaderStorageImageExtendedFormats = false,
|
|
.shaderStorageImageMultisample = false,
|
|
.shaderUniformBufferArrayDynamicIndexing = true,
|
|
.shaderSampledImageArrayDynamicIndexing = true,
|
|
.shaderStorageBufferArrayDynamicIndexing = true,
|
|
.shaderStorageImageArrayDynamicIndexing = true,
|
|
.shaderStorageImageReadWithoutFormat = false,
|
|
.shaderStorageImageWriteWithoutFormat = true,
|
|
.shaderClipDistance = false,
|
|
.shaderCullDistance = false,
|
|
.shaderFloat64 = false,
|
|
.shaderInt64 = false,
|
|
.shaderInt16 = false,
|
|
.alphaToOne = true,
|
|
.variableMultisampleRate = false,
|
|
.inheritedQueries = false,
|
|
};
|
|
|
|
/* We can't do image stores in vec4 shaders */
|
|
pFeatures->vertexPipelineStoresAndAtomics =
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
|
|
}
|
|
|
|
void
|
|
anv_device_get_cache_uuid(void *uuid)
|
|
{
|
|
memset(uuid, 0, VK_UUID_SIZE);
|
|
snprintf(uuid, VK_UUID_SIZE, "anv-%s", MESA_GIT_SHA1 + 4);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
const struct brw_device_info *devinfo = pdevice->info;
|
|
|
|
anv_finishme("Get correct values for VkPhysicalDeviceLimits");
|
|
|
|
const float time_stamp_base = devinfo->gen >= 9 ? 83.333 : 80.0;
|
|
|
|
VkSampleCountFlags sample_counts =
|
|
isl_device_get_sample_counts(&pdevice->isl_dev);
|
|
|
|
VkPhysicalDeviceLimits limits = {
|
|
.maxImageDimension1D = (1 << 14),
|
|
.maxImageDimension2D = (1 << 14),
|
|
.maxImageDimension3D = (1 << 11),
|
|
.maxImageDimensionCube = (1 << 14),
|
|
.maxImageArrayLayers = (1 << 11),
|
|
.maxTexelBufferElements = 128 * 1024 * 1024,
|
|
.maxUniformBufferRange = UINT32_MAX,
|
|
.maxStorageBufferRange = UINT32_MAX,
|
|
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
|
|
.maxMemoryAllocationCount = UINT32_MAX,
|
|
.maxSamplerAllocationCount = 64 * 1024,
|
|
.bufferImageGranularity = 64, /* A cache line */
|
|
.sparseAddressSpaceSize = 0,
|
|
.maxBoundDescriptorSets = MAX_SETS,
|
|
.maxPerStageDescriptorSamplers = 64,
|
|
.maxPerStageDescriptorUniformBuffers = 64,
|
|
.maxPerStageDescriptorStorageBuffers = 64,
|
|
.maxPerStageDescriptorSampledImages = 64,
|
|
.maxPerStageDescriptorStorageImages = 64,
|
|
.maxPerStageDescriptorInputAttachments = 64,
|
|
.maxPerStageResources = 128,
|
|
.maxDescriptorSetSamplers = 256,
|
|
.maxDescriptorSetUniformBuffers = 256,
|
|
.maxDescriptorSetUniformBuffersDynamic = 256,
|
|
.maxDescriptorSetStorageBuffers = 256,
|
|
.maxDescriptorSetStorageBuffersDynamic = 256,
|
|
.maxDescriptorSetSampledImages = 256,
|
|
.maxDescriptorSetStorageImages = 256,
|
|
.maxDescriptorSetInputAttachments = 256,
|
|
.maxVertexInputAttributes = 32,
|
|
.maxVertexInputBindings = 32,
|
|
.maxVertexInputAttributeOffset = 2047,
|
|
.maxVertexInputBindingStride = 2048,
|
|
.maxVertexOutputComponents = 128,
|
|
.maxTessellationGenerationLevel = 0,
|
|
.maxTessellationPatchSize = 0,
|
|
.maxTessellationControlPerVertexInputComponents = 0,
|
|
.maxTessellationControlPerVertexOutputComponents = 0,
|
|
.maxTessellationControlPerPatchOutputComponents = 0,
|
|
.maxTessellationControlTotalOutputComponents = 0,
|
|
.maxTessellationEvaluationInputComponents = 0,
|
|
.maxTessellationEvaluationOutputComponents = 0,
|
|
.maxGeometryShaderInvocations = 32,
|
|
.maxGeometryInputComponents = 64,
|
|
.maxGeometryOutputComponents = 128,
|
|
.maxGeometryOutputVertices = 256,
|
|
.maxGeometryTotalOutputComponents = 1024,
|
|
.maxFragmentInputComponents = 128,
|
|
.maxFragmentOutputAttachments = 8,
|
|
.maxFragmentDualSrcAttachments = 2,
|
|
.maxFragmentCombinedOutputResources = 8,
|
|
.maxComputeSharedMemorySize = 32768,
|
|
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
|
|
.maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
|
|
.maxComputeWorkGroupSize = {
|
|
16 * devinfo->max_cs_threads,
|
|
16 * devinfo->max_cs_threads,
|
|
16 * devinfo->max_cs_threads,
|
|
},
|
|
.subPixelPrecisionBits = 4 /* FIXME */,
|
|
.subTexelPrecisionBits = 4 /* FIXME */,
|
|
.mipmapPrecisionBits = 4 /* FIXME */,
|
|
.maxDrawIndexedIndexValue = UINT32_MAX,
|
|
.maxDrawIndirectCount = UINT32_MAX,
|
|
.maxSamplerLodBias = 16,
|
|
.maxSamplerAnisotropy = 16,
|
|
.maxViewports = MAX_VIEWPORTS,
|
|
.maxViewportDimensions = { (1 << 14), (1 << 14) },
|
|
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
|
|
.viewportSubPixelBits = 13, /* We take a float? */
|
|
.minMemoryMapAlignment = 4096, /* A page */
|
|
.minTexelBufferOffsetAlignment = 1,
|
|
.minUniformBufferOffsetAlignment = 1,
|
|
.minStorageBufferOffsetAlignment = 1,
|
|
.minTexelOffset = -8,
|
|
.maxTexelOffset = 7,
|
|
.minTexelGatherOffset = -8,
|
|
.maxTexelGatherOffset = 7,
|
|
.minInterpolationOffset = 0, /* FIXME */
|
|
.maxInterpolationOffset = 0, /* FIXME */
|
|
.subPixelInterpolationOffsetBits = 0, /* FIXME */
|
|
.maxFramebufferWidth = (1 << 14),
|
|
.maxFramebufferHeight = (1 << 14),
|
|
.maxFramebufferLayers = (1 << 10),
|
|
.framebufferColorSampleCounts = sample_counts,
|
|
.framebufferDepthSampleCounts = sample_counts,
|
|
.framebufferStencilSampleCounts = sample_counts,
|
|
.framebufferNoAttachmentsSampleCounts = sample_counts,
|
|
.maxColorAttachments = MAX_RTS,
|
|
.sampledImageColorSampleCounts = sample_counts,
|
|
.sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
|
.sampledImageDepthSampleCounts = sample_counts,
|
|
.sampledImageStencilSampleCounts = sample_counts,
|
|
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
|
.maxSampleMaskWords = 1,
|
|
.timestampComputeAndGraphics = false,
|
|
.timestampPeriod = time_stamp_base / (1000 * 1000 * 1000),
|
|
.maxClipDistances = 0 /* FIXME */,
|
|
.maxCullDistances = 0 /* FIXME */,
|
|
.maxCombinedClipAndCullDistances = 0 /* FIXME */,
|
|
.discreteQueuePriorities = 1,
|
|
.pointSizeRange = { 0.125, 255.875 },
|
|
.lineWidthRange = { 0.0, 7.9921875 },
|
|
.pointSizeGranularity = (1.0 / 8.0),
|
|
.lineWidthGranularity = (1.0 / 128.0),
|
|
.strictLines = false, /* FINISHME */
|
|
.standardSampleLocations = true,
|
|
.optimalBufferCopyOffsetAlignment = 128,
|
|
.optimalBufferCopyRowPitchAlignment = 128,
|
|
.nonCoherentAtomSize = 64,
|
|
};
|
|
|
|
*pProperties = (VkPhysicalDeviceProperties) {
|
|
.apiVersion = VK_MAKE_VERSION(1, 0, 5),
|
|
.driverVersion = 1,
|
|
.vendorID = 0x8086,
|
|
.deviceID = pdevice->chipset_id,
|
|
.deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
|
|
.limits = limits,
|
|
.sparseProperties = {0}, /* Broadwell doesn't do sparse. */
|
|
};
|
|
|
|
strcpy(pProperties->deviceName, pdevice->name);
|
|
anv_device_get_cache_uuid(pProperties->pipelineCacheUUID);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceQueueFamilyProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pCount,
|
|
VkQueueFamilyProperties* pQueueFamilyProperties)
|
|
{
|
|
if (pQueueFamilyProperties == NULL) {
|
|
*pCount = 1;
|
|
return;
|
|
}
|
|
|
|
assert(*pCount >= 1);
|
|
|
|
*pQueueFamilyProperties = (VkQueueFamilyProperties) {
|
|
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
|
VK_QUEUE_COMPUTE_BIT |
|
|
VK_QUEUE_TRANSFER_BIT,
|
|
.queueCount = 1,
|
|
.timestampValidBits = 36, /* XXX: Real value here */
|
|
.minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
|
|
};
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
VkDeviceSize heap_size;
|
|
|
|
/* Reserve some wiggle room for the driver by exposing only 75% of the
|
|
* aperture to the heap.
|
|
*/
|
|
heap_size = 3 * physical_device->aperture_size / 4;
|
|
|
|
if (physical_device->info->has_llc) {
|
|
/* Big core GPUs share LLC with the CPU and thus one memory type can be
|
|
* both cached and coherent at the same time.
|
|
*/
|
|
pMemoryProperties->memoryTypeCount = 1;
|
|
pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = 0,
|
|
};
|
|
} else {
|
|
/* The spec requires that we expose a host-visible, coherent memory
|
|
* type, but Atom GPUs don't share LLC. Thus we offer two memory types
|
|
* to give the application a choice between cached, but not coherent and
|
|
* coherent but uncached (WC though).
|
|
*/
|
|
pMemoryProperties->memoryTypeCount = 2;
|
|
pMemoryProperties->memoryTypes[0] = (VkMemoryType) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
.heapIndex = 0,
|
|
};
|
|
pMemoryProperties->memoryTypes[1] = (VkMemoryType) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = 0,
|
|
};
|
|
}
|
|
|
|
pMemoryProperties->memoryHeapCount = 1;
|
|
pMemoryProperties->memoryHeaps[0] = (VkMemoryHeap) {
|
|
.size = heap_size,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
};
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName)
|
|
{
|
|
return anv_lookup_entrypoint(pName);
|
|
}
|
|
|
|
/* The loader wants us to expose a second GetInstanceProcAddr function
|
|
* to work around certain LD_PRELOAD issues seen in apps.
|
|
*/
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName);
|
|
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName)
|
|
{
|
|
return anv_GetInstanceProcAddr(instance, pName);
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetDeviceProcAddr(
|
|
VkDevice device,
|
|
const char* pName)
|
|
{
|
|
return anv_lookup_entrypoint(pName);
|
|
}
|
|
|
|
static VkResult
|
|
anv_queue_init(struct anv_device *device, struct anv_queue *queue)
|
|
{
|
|
queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
queue->device = device;
|
|
queue->pool = &device->surface_state_pool;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
anv_queue_finish(struct anv_queue *queue)
|
|
{
|
|
}
|
|
|
|
static struct anv_state
|
|
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
|
|
{
|
|
struct anv_state state;
|
|
|
|
state = anv_state_pool_alloc(pool, size, align);
|
|
memcpy(state.map, p, size);
|
|
|
|
if (!pool->block_pool->device->info.has_llc)
|
|
anv_state_clflush(state);
|
|
|
|
return state;
|
|
}
|
|
|
|
struct gen8_border_color {
|
|
union {
|
|
float float32[4];
|
|
uint32_t uint32[4];
|
|
};
|
|
/* Pad out to 64 bytes */
|
|
uint32_t _pad[12];
|
|
};
|
|
|
|
static void
|
|
anv_device_init_border_colors(struct anv_device *device)
|
|
{
|
|
static const struct gen8_border_color border_colors[] = {
|
|
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
|
|
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
|
|
sizeof(border_colors), 64,
|
|
border_colors);
|
|
}
|
|
|
|
VkResult
|
|
anv_device_submit_simple_batch(struct anv_device *device,
|
|
struct anv_batch *batch)
|
|
{
|
|
struct drm_i915_gem_execbuffer2 execbuf;
|
|
struct drm_i915_gem_exec_object2 exec2_objects[1];
|
|
struct anv_bo bo;
|
|
VkResult result = VK_SUCCESS;
|
|
uint32_t size;
|
|
int64_t timeout;
|
|
int ret;
|
|
|
|
/* Kernel driver requires 8 byte aligned batch length */
|
|
size = align_u32(batch->next - batch->start, 8);
|
|
result = anv_bo_pool_alloc(&device->batch_bo_pool, &bo, size);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
memcpy(bo.map, batch->start, size);
|
|
if (!device->info.has_llc)
|
|
anv_clflush_range(bo.map, size);
|
|
|
|
exec2_objects[0].handle = bo.gem_handle;
|
|
exec2_objects[0].relocation_count = 0;
|
|
exec2_objects[0].relocs_ptr = 0;
|
|
exec2_objects[0].alignment = 0;
|
|
exec2_objects[0].offset = bo.offset;
|
|
exec2_objects[0].flags = 0;
|
|
exec2_objects[0].rsvd1 = 0;
|
|
exec2_objects[0].rsvd2 = 0;
|
|
|
|
execbuf.buffers_ptr = (uintptr_t) exec2_objects;
|
|
execbuf.buffer_count = 1;
|
|
execbuf.batch_start_offset = 0;
|
|
execbuf.batch_len = size;
|
|
execbuf.cliprects_ptr = 0;
|
|
execbuf.num_cliprects = 0;
|
|
execbuf.DR1 = 0;
|
|
execbuf.DR4 = 0;
|
|
|
|
execbuf.flags =
|
|
I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
|
|
execbuf.rsvd1 = device->context_id;
|
|
execbuf.rsvd2 = 0;
|
|
|
|
ret = anv_gem_execbuffer(device, &execbuf);
|
|
if (ret != 0) {
|
|
/* We don't know the real error. */
|
|
result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
|
|
goto fail;
|
|
}
|
|
|
|
timeout = INT64_MAX;
|
|
ret = anv_gem_wait(device, bo.gem_handle, &timeout);
|
|
if (ret != 0) {
|
|
/* We don't know the real error. */
|
|
result = vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY, "execbuf2 failed: %m");
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
anv_bo_pool_free(&device->batch_bo_pool, &bo);
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult anv_CreateDevice(
|
|
VkPhysicalDevice physicalDevice,
|
|
const VkDeviceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDevice* pDevice)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
VkResult result;
|
|
struct anv_device *device;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
|
|
|
|
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
|
|
bool found = false;
|
|
for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
|
|
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
|
|
device_extensions[j].extensionName) == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
}
|
|
|
|
anv_set_dispatch_devinfo(physical_device->info);
|
|
|
|
device = anv_alloc2(&physical_device->instance->alloc, pAllocator,
|
|
sizeof(*device), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
if (!device)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
device->instance = physical_device->instance;
|
|
device->chipset_id = physical_device->chipset_id;
|
|
|
|
if (pAllocator)
|
|
device->alloc = *pAllocator;
|
|
else
|
|
device->alloc = physical_device->instance->alloc;
|
|
|
|
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
|
|
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
|
|
if (device->fd == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_device;
|
|
}
|
|
|
|
device->context_id = anv_gem_create_context(device);
|
|
if (device->context_id == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
device->info = *physical_device->info;
|
|
device->isl_dev = physical_device->isl_dev;
|
|
|
|
/* On Broadwell and later, we can use batch chaining to more efficiently
|
|
* implement growing command buffers. Prior to Haswell, the kernel
|
|
* command parser gets in the way and we have to fall back to growing
|
|
* the batch.
|
|
*/
|
|
device->can_chain_batches = device->info.gen >= 8;
|
|
|
|
device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
|
|
pCreateInfo->pEnabledFeatures->robustBufferAccess;
|
|
|
|
pthread_mutex_init(&device->mutex, NULL);
|
|
|
|
anv_bo_pool_init(&device->batch_bo_pool, device);
|
|
|
|
anv_block_pool_init(&device->dynamic_state_block_pool, device, 16384);
|
|
|
|
anv_state_pool_init(&device->dynamic_state_pool,
|
|
&device->dynamic_state_block_pool);
|
|
|
|
anv_block_pool_init(&device->instruction_block_pool, device, 128 * 1024);
|
|
anv_pipeline_cache_init(&device->default_pipeline_cache, device);
|
|
|
|
anv_block_pool_init(&device->surface_state_block_pool, device, 4096);
|
|
|
|
anv_state_pool_init(&device->surface_state_pool,
|
|
&device->surface_state_block_pool);
|
|
|
|
anv_bo_init_new(&device->workaround_bo, device, 1024);
|
|
|
|
anv_block_pool_init(&device->scratch_block_pool, device, 0x10000);
|
|
|
|
anv_queue_init(device, &device->queue);
|
|
|
|
switch (device->info.gen) {
|
|
case 7:
|
|
if (!device->info.is_haswell)
|
|
result = gen7_init_device_state(device);
|
|
else
|
|
result = gen75_init_device_state(device);
|
|
break;
|
|
case 8:
|
|
result = gen8_init_device_state(device);
|
|
break;
|
|
case 9:
|
|
result = gen9_init_device_state(device);
|
|
break;
|
|
default:
|
|
/* Shouldn't get here as we don't create physical devices for any other
|
|
* gens. */
|
|
unreachable("unhandled gen");
|
|
}
|
|
if (result != VK_SUCCESS)
|
|
goto fail_fd;
|
|
|
|
result = anv_device_init_meta(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_fd;
|
|
|
|
anv_device_init_border_colors(device);
|
|
|
|
*pDevice = anv_device_to_handle(device);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_fd:
|
|
close(device->fd);
|
|
fail_device:
|
|
anv_free(&device->alloc, device);
|
|
|
|
return result;
|
|
}
|
|
|
|
void anv_DestroyDevice(
|
|
VkDevice _device,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
anv_queue_finish(&device->queue);
|
|
|
|
anv_device_finish_meta(device);
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
/* We only need to free these to prevent valgrind errors. The backing
|
|
* BO will go away in a couple of lines so we don't actually leak.
|
|
*/
|
|
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
|
|
#endif
|
|
|
|
anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
|
|
anv_gem_close(device, device->workaround_bo.gem_handle);
|
|
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
anv_block_pool_finish(&device->dynamic_state_block_pool);
|
|
anv_block_pool_finish(&device->instruction_block_pool);
|
|
anv_state_pool_finish(&device->surface_state_pool);
|
|
anv_block_pool_finish(&device->surface_state_block_pool);
|
|
anv_block_pool_finish(&device->scratch_block_pool);
|
|
|
|
close(device->fd);
|
|
|
|
pthread_mutex_destroy(&device->mutex);
|
|
|
|
anv_free(&device->alloc, device);
|
|
}
|
|
|
|
VkResult anv_EnumerateInstanceExtensionProperties(
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = ARRAY_SIZE(global_extensions);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
assert(*pPropertyCount >= ARRAY_SIZE(global_extensions));
|
|
|
|
*pPropertyCount = ARRAY_SIZE(global_extensions);
|
|
memcpy(pProperties, global_extensions, sizeof(global_extensions));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_EnumerateDeviceExtensionProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = ARRAY_SIZE(device_extensions);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
assert(*pPropertyCount >= ARRAY_SIZE(device_extensions));
|
|
|
|
*pPropertyCount = ARRAY_SIZE(device_extensions);
|
|
memcpy(pProperties, device_extensions, sizeof(device_extensions));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_EnumerateInstanceLayerProperties(
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
VkResult anv_EnumerateDeviceLayerProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
void anv_GetDeviceQueue(
|
|
VkDevice _device,
|
|
uint32_t queueNodeIndex,
|
|
uint32_t queueIndex,
|
|
VkQueue* pQueue)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
assert(queueIndex == 0);
|
|
|
|
*pQueue = anv_queue_to_handle(&device->queue);
|
|
}
|
|
|
|
VkResult anv_QueueSubmit(
|
|
VkQueue _queue,
|
|
uint32_t submitCount,
|
|
const VkSubmitInfo* pSubmits,
|
|
VkFence _fence)
|
|
{
|
|
ANV_FROM_HANDLE(anv_queue, queue, _queue);
|
|
ANV_FROM_HANDLE(anv_fence, fence, _fence);
|
|
struct anv_device *device = queue->device;
|
|
int ret;
|
|
|
|
for (uint32_t i = 0; i < submitCount; i++) {
|
|
for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer,
|
|
pSubmits[i].pCommandBuffers[j]);
|
|
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
|
|
|
|
ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf2.execbuf);
|
|
if (ret != 0) {
|
|
/* We don't know the real error. */
|
|
return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"execbuf2 failed: %m");
|
|
}
|
|
|
|
for (uint32_t k = 0; k < cmd_buffer->execbuf2.bo_count; k++)
|
|
cmd_buffer->execbuf2.bos[k]->offset = cmd_buffer->execbuf2.objects[k].offset;
|
|
}
|
|
}
|
|
|
|
if (fence) {
|
|
ret = anv_gem_execbuffer(device, &fence->execbuf);
|
|
if (ret != 0) {
|
|
/* We don't know the real error. */
|
|
return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"execbuf2 failed: %m");
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_QueueWaitIdle(
|
|
VkQueue _queue)
|
|
{
|
|
ANV_FROM_HANDLE(anv_queue, queue, _queue);
|
|
|
|
return ANV_CALL(DeviceWaitIdle)(anv_device_to_handle(queue->device));
|
|
}
|
|
|
|
VkResult anv_DeviceWaitIdle(
|
|
VkDevice _device)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_batch batch;
|
|
|
|
uint32_t cmds[8];
|
|
batch.start = batch.next = cmds;
|
|
batch.end = (void *) cmds + sizeof(cmds);
|
|
|
|
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
|
|
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
|
|
|
|
return anv_device_submit_simple_batch(device, &batch);
|
|
}
|
|
|
|
VkResult
|
|
anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
|
|
{
|
|
bo->gem_handle = anv_gem_create(device, size);
|
|
if (!bo->gem_handle)
|
|
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
bo->map = NULL;
|
|
bo->index = 0;
|
|
bo->offset = 0;
|
|
bo->size = size;
|
|
bo->is_winsys_bo = false;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_AllocateMemory(
|
|
VkDevice _device,
|
|
const VkMemoryAllocateInfo* pAllocateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDeviceMemory* pMem)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_device_memory *mem;
|
|
VkResult result;
|
|
|
|
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
|
|
|
|
if (pAllocateInfo->allocationSize == 0) {
|
|
/* Apparently, this is allowed */
|
|
*pMem = VK_NULL_HANDLE;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* We support exactly one memory heap. */
|
|
assert(pAllocateInfo->memoryTypeIndex == 0 ||
|
|
(!device->info.has_llc && pAllocateInfo->memoryTypeIndex < 2));
|
|
|
|
/* FINISHME: Fail if allocation request exceeds heap size. */
|
|
|
|
mem = anv_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (mem == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
/* The kernel is going to give us whole pages anyway */
|
|
uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
|
|
|
|
result = anv_bo_init_new(&mem->bo, device, alloc_size);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
mem->type_index = pAllocateInfo->memoryTypeIndex;
|
|
|
|
*pMem = anv_device_memory_to_handle(mem);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
anv_free2(&device->alloc, pAllocator, mem);
|
|
|
|
return result;
|
|
}
|
|
|
|
void anv_FreeMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _mem,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
|
|
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
if (mem->bo.map)
|
|
anv_gem_munmap(mem->bo.map, mem->bo.size);
|
|
|
|
if (mem->bo.gem_handle != 0)
|
|
anv_gem_close(device, mem->bo.gem_handle);
|
|
|
|
anv_free2(&device->alloc, pAllocator, mem);
|
|
}
|
|
|
|
VkResult anv_MapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size,
|
|
VkMemoryMapFlags flags,
|
|
void** ppData)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL) {
|
|
*ppData = NULL;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
if (size == VK_WHOLE_SIZE)
|
|
size = mem->bo.size - offset;
|
|
|
|
/* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
|
|
* takes a VkDeviceMemory pointer, it seems like only one map of the memory
|
|
* at a time is valid. We could just mmap up front and return an offset
|
|
* pointer here, but that may exhaust virtual memory on 32 bit
|
|
* userspace. */
|
|
|
|
uint32_t gem_flags = 0;
|
|
if (!device->info.has_llc && mem->type_index == 0)
|
|
gem_flags |= I915_MMAP_WC;
|
|
|
|
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
|
|
uint64_t map_offset = offset & ~4095ull;
|
|
assert(offset >= map_offset);
|
|
uint64_t map_size = (offset + size) - map_offset;
|
|
|
|
/* Let's map whole pages */
|
|
map_size = align_u64(map_size, 4096);
|
|
|
|
mem->map = anv_gem_mmap(device, mem->bo.gem_handle,
|
|
map_offset, map_size, gem_flags);
|
|
mem->map_size = map_size;
|
|
|
|
*ppData = mem->map + (offset - map_offset);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_UnmapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
anv_gem_munmap(mem->map, mem->map_size);
|
|
}
|
|
|
|
static void
|
|
clflush_mapped_ranges(struct anv_device *device,
|
|
uint32_t count,
|
|
const VkMappedMemoryRange *ranges)
|
|
{
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
|
|
void *p = mem->map + (ranges[i].offset & ~CACHELINE_MASK);
|
|
void *end;
|
|
|
|
if (ranges[i].offset + ranges[i].size > mem->map_size)
|
|
end = mem->map + mem->map_size;
|
|
else
|
|
end = mem->map + ranges[i].offset + ranges[i].size;
|
|
|
|
while (p < end) {
|
|
__builtin_ia32_clflush(p);
|
|
p += CACHELINE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult anv_FlushMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (device->info.has_llc)
|
|
return VK_SUCCESS;
|
|
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
|
|
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_InvalidateMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (device->info.has_llc)
|
|
return VK_SUCCESS;
|
|
|
|
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
|
|
|
|
/* Make sure no reads get moved up above the invalidate. */
|
|
__builtin_ia32_mfence();
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_GetBufferMemoryRequirements(
|
|
VkDevice device,
|
|
VkBuffer _buffer,
|
|
VkMemoryRequirements* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*
|
|
* We support exactly one memory type.
|
|
*/
|
|
pMemoryRequirements->memoryTypeBits = 1;
|
|
|
|
pMemoryRequirements->size = buffer->size;
|
|
pMemoryRequirements->alignment = 16;
|
|
}
|
|
|
|
void anv_GetImageMemoryRequirements(
|
|
VkDevice device,
|
|
VkImage _image,
|
|
VkMemoryRequirements* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_image, image, _image);
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*
|
|
* We support exactly one memory type.
|
|
*/
|
|
pMemoryRequirements->memoryTypeBits = 1;
|
|
|
|
pMemoryRequirements->size = image->size;
|
|
pMemoryRequirements->alignment = image->alignment;
|
|
}
|
|
|
|
void anv_GetImageSparseMemoryRequirements(
|
|
VkDevice device,
|
|
VkImage image,
|
|
uint32_t* pSparseMemoryRequirementCount,
|
|
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
|
|
{
|
|
stub();
|
|
}
|
|
|
|
void anv_GetDeviceMemoryCommitment(
|
|
VkDevice device,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize* pCommittedMemoryInBytes)
|
|
{
|
|
*pCommittedMemoryInBytes = 0;
|
|
}
|
|
|
|
VkResult anv_BindBufferMemory(
|
|
VkDevice device,
|
|
VkBuffer _buffer,
|
|
VkDeviceMemory _memory,
|
|
VkDeviceSize memoryOffset)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
|
|
if (mem) {
|
|
buffer->bo = &mem->bo;
|
|
buffer->offset = memoryOffset;
|
|
} else {
|
|
buffer->bo = NULL;
|
|
buffer->offset = 0;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_BindImageMemory(
|
|
VkDevice device,
|
|
VkImage _image,
|
|
VkDeviceMemory _memory,
|
|
VkDeviceSize memoryOffset)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
ANV_FROM_HANDLE(anv_image, image, _image);
|
|
|
|
if (mem) {
|
|
image->bo = &mem->bo;
|
|
image->offset = memoryOffset;
|
|
} else {
|
|
image->bo = NULL;
|
|
image->offset = 0;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_QueueBindSparse(
|
|
VkQueue queue,
|
|
uint32_t bindInfoCount,
|
|
const VkBindSparseInfo* pBindInfo,
|
|
VkFence fence)
|
|
{
|
|
stub_return(VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
}
|
|
|
|
VkResult anv_CreateFence(
|
|
VkDevice _device,
|
|
const VkFenceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkFence* pFence)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_bo fence_bo;
|
|
struct anv_fence *fence;
|
|
struct anv_batch batch;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
|
|
|
|
result = anv_bo_pool_alloc(&device->batch_bo_pool, &fence_bo, 4096);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
/* Fences are small. Just store the CPU data structure in the BO. */
|
|
fence = fence_bo.map;
|
|
fence->bo = fence_bo;
|
|
|
|
/* Place the batch after the CPU data but on its own cache line. */
|
|
const uint32_t batch_offset = align_u32(sizeof(*fence), CACHELINE_SIZE);
|
|
batch.next = batch.start = fence->bo.map + batch_offset;
|
|
batch.end = fence->bo.map + fence->bo.size;
|
|
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
|
|
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
|
|
|
|
if (!device->info.has_llc) {
|
|
assert(((uintptr_t) batch.start & CACHELINE_MASK) == 0);
|
|
assert(batch.next - batch.start <= CACHELINE_SIZE);
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(batch.start);
|
|
}
|
|
|
|
fence->exec2_objects[0].handle = fence->bo.gem_handle;
|
|
fence->exec2_objects[0].relocation_count = 0;
|
|
fence->exec2_objects[0].relocs_ptr = 0;
|
|
fence->exec2_objects[0].alignment = 0;
|
|
fence->exec2_objects[0].offset = fence->bo.offset;
|
|
fence->exec2_objects[0].flags = 0;
|
|
fence->exec2_objects[0].rsvd1 = 0;
|
|
fence->exec2_objects[0].rsvd2 = 0;
|
|
|
|
fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
|
|
fence->execbuf.buffer_count = 1;
|
|
fence->execbuf.batch_start_offset = batch.start - fence->bo.map;
|
|
fence->execbuf.batch_len = batch.next - batch.start;
|
|
fence->execbuf.cliprects_ptr = 0;
|
|
fence->execbuf.num_cliprects = 0;
|
|
fence->execbuf.DR1 = 0;
|
|
fence->execbuf.DR4 = 0;
|
|
|
|
fence->execbuf.flags =
|
|
I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
|
|
fence->execbuf.rsvd1 = device->context_id;
|
|
fence->execbuf.rsvd2 = 0;
|
|
|
|
fence->ready = false;
|
|
|
|
*pFence = anv_fence_to_handle(fence);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyFence(
|
|
VkDevice _device,
|
|
VkFence _fence,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_fence, fence, _fence);
|
|
|
|
assert(fence->bo.map == fence);
|
|
anv_bo_pool_free(&device->batch_bo_pool, &fence->bo);
|
|
}
|
|
|
|
VkResult anv_ResetFences(
|
|
VkDevice _device,
|
|
uint32_t fenceCount,
|
|
const VkFence* pFences)
|
|
{
|
|
for (uint32_t i = 0; i < fenceCount; i++) {
|
|
ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
|
|
fence->ready = false;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_GetFenceStatus(
|
|
VkDevice _device,
|
|
VkFence _fence)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_fence, fence, _fence);
|
|
int64_t t = 0;
|
|
int ret;
|
|
|
|
if (fence->ready)
|
|
return VK_SUCCESS;
|
|
|
|
ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
|
|
if (ret == 0) {
|
|
fence->ready = true;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
return VK_NOT_READY;
|
|
}
|
|
|
|
VkResult anv_WaitForFences(
|
|
VkDevice _device,
|
|
uint32_t fenceCount,
|
|
const VkFence* pFences,
|
|
VkBool32 waitAll,
|
|
uint64_t timeout)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
/* DRM_IOCTL_I915_GEM_WAIT uses a signed 64 bit timeout and is supposed
|
|
* to block indefinitely timeouts <= 0. Unfortunately, this was broken
|
|
* for a couple of kernel releases. Since there's no way to know
|
|
* whether or not the kernel we're using is one of the broken ones, the
|
|
* best we can do is to clamp the timeout to INT64_MAX. This limits the
|
|
* maximum timeout from 584 years to 292 years - likely not a big deal.
|
|
*/
|
|
if (timeout > INT64_MAX)
|
|
timeout = INT64_MAX;
|
|
|
|
int64_t t = timeout;
|
|
|
|
/* FIXME: handle !waitAll */
|
|
|
|
for (uint32_t i = 0; i < fenceCount; i++) {
|
|
ANV_FROM_HANDLE(anv_fence, fence, pFences[i]);
|
|
int ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
|
|
if (ret == -1 && errno == ETIME) {
|
|
return VK_TIMEOUT;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"gem wait failed: %m");
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Queue semaphore functions
|
|
|
|
VkResult anv_CreateSemaphore(
|
|
VkDevice device,
|
|
const VkSemaphoreCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkSemaphore* pSemaphore)
|
|
{
|
|
/* The DRM execbuffer ioctl always execute in-oder, even between different
|
|
* rings. As such, there's nothing to do for the user space semaphore.
|
|
*/
|
|
|
|
*pSemaphore = (VkSemaphore)1;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroySemaphore(
|
|
VkDevice device,
|
|
VkSemaphore semaphore,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
}
|
|
|
|
// Event functions
|
|
|
|
VkResult anv_CreateEvent(
|
|
VkDevice _device,
|
|
const VkEventCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkEvent* pEvent)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_state state;
|
|
struct anv_event *event;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
|
|
|
|
state = anv_state_pool_alloc(&device->dynamic_state_pool,
|
|
sizeof(*event), 8);
|
|
event = state.map;
|
|
event->state = state;
|
|
event->semaphore = VK_EVENT_RESET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
*pEvent = anv_event_to_handle(event);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyEvent(
|
|
VkDevice _device,
|
|
VkEvent _event,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
anv_state_pool_free(&device->dynamic_state_pool, event->state);
|
|
}
|
|
|
|
VkResult anv_GetEventStatus(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Invalidate read cache before reading event written by GPU. */
|
|
__builtin_ia32_clflush(event);
|
|
__builtin_ia32_mfence();
|
|
|
|
}
|
|
|
|
return event->semaphore;
|
|
}
|
|
|
|
VkResult anv_SetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
event->semaphore = VK_EVENT_SET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_ResetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
event->semaphore = VK_EVENT_RESET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Buffer functions
|
|
|
|
VkResult anv_CreateBuffer(
|
|
VkDevice _device,
|
|
const VkBufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkBuffer* pBuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_buffer *buffer;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
|
|
|
|
buffer = anv_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (buffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
buffer->size = pCreateInfo->size;
|
|
buffer->usage = pCreateInfo->usage;
|
|
buffer->bo = NULL;
|
|
buffer->offset = 0;
|
|
|
|
*pBuffer = anv_buffer_to_handle(buffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyBuffer(
|
|
VkDevice _device,
|
|
VkBuffer _buffer,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
|
|
anv_free2(&device->alloc, pAllocator, buffer);
|
|
}
|
|
|
|
void
|
|
anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
|
|
enum isl_format format,
|
|
uint32_t offset, uint32_t range, uint32_t stride)
|
|
{
|
|
isl_buffer_fill_state(&device->isl_dev, state.map,
|
|
.address = offset,
|
|
.mocs = device->default_mocs,
|
|
.size = range,
|
|
.format = format,
|
|
.stride = stride);
|
|
|
|
if (!device->info.has_llc)
|
|
anv_state_clflush(state);
|
|
}
|
|
|
|
void anv_DestroySampler(
|
|
VkDevice _device,
|
|
VkSampler _sampler,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
|
|
|
|
anv_free2(&device->alloc, pAllocator, sampler);
|
|
}
|
|
|
|
VkResult anv_CreateFramebuffer(
|
|
VkDevice _device,
|
|
const VkFramebufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkFramebuffer* pFramebuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_framebuffer *framebuffer;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
|
|
|
|
size_t size = sizeof(*framebuffer) +
|
|
sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
|
|
framebuffer = anv_alloc2(&device->alloc, pAllocator, size, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (framebuffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
framebuffer->attachment_count = pCreateInfo->attachmentCount;
|
|
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
|
|
VkImageView _iview = pCreateInfo->pAttachments[i];
|
|
framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
|
|
}
|
|
|
|
framebuffer->width = pCreateInfo->width;
|
|
framebuffer->height = pCreateInfo->height;
|
|
framebuffer->layers = pCreateInfo->layers;
|
|
|
|
*pFramebuffer = anv_framebuffer_to_handle(framebuffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyFramebuffer(
|
|
VkDevice _device,
|
|
VkFramebuffer _fb,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
|
|
|
|
anv_free2(&device->alloc, pAllocator, fb);
|
|
}
|
|
|
|
void vkCmdDbgMarkerBegin(
|
|
VkCommandBuffer commandBuffer,
|
|
const char* pMarker)
|
|
__attribute__ ((visibility ("default")));
|
|
|
|
void vkCmdDbgMarkerEnd(
|
|
VkCommandBuffer commandBuffer)
|
|
__attribute__ ((visibility ("default")));
|
|
|
|
void vkCmdDbgMarkerBegin(
|
|
VkCommandBuffer commandBuffer,
|
|
const char* pMarker)
|
|
{
|
|
}
|
|
|
|
void vkCmdDbgMarkerEnd(
|
|
VkCommandBuffer commandBuffer)
|
|
{
|
|
}
|