
This was misleading because it's also needed on GFX6-8. Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/22134>
1556 lines
63 KiB
C
1556 lines
63 KiB
C
/*
|
|
* Copyright © 2017 Red Hat
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
#include "nir/nir.h"
|
|
#include "nir/nir_xfb_info.h"
|
|
#include "radv_private.h"
|
|
#include "radv_shader.h"
|
|
|
|
#include "ac_nir.h"
|
|
|
|
static void
|
|
mark_sampler_desc(const nir_variable *var, struct radv_shader_info *info)
|
|
{
|
|
info->desc_set_used_mask |= (1u << var->data.descriptor_set);
|
|
}
|
|
|
|
static void
|
|
gather_intrinsic_load_input_info(const nir_shader *nir, const nir_intrinsic_instr *instr,
|
|
struct radv_shader_info *info)
|
|
{
|
|
switch (nir->info.stage) {
|
|
case MESA_SHADER_VERTEX: {
|
|
unsigned idx = nir_intrinsic_io_semantics(instr).location;
|
|
unsigned component = nir_intrinsic_component(instr);
|
|
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
|
|
mask = (instr->dest.ssa.bit_size == 64 ? util_widen_mask(mask, 2) : mask) << component;
|
|
|
|
info->vs.input_usage_mask[idx] |= mask & 0xf;
|
|
if (mask >> 4)
|
|
info->vs.input_usage_mask[idx + 1] |= mask >> 4;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_intrinsic_store_output_info(const nir_shader *nir, const nir_intrinsic_instr *instr,
|
|
struct radv_shader_info *info, bool consider_force_vrs)
|
|
{
|
|
unsigned idx = nir_intrinsic_base(instr);
|
|
unsigned num_slots = nir_intrinsic_io_semantics(instr).num_slots;
|
|
unsigned component = nir_intrinsic_component(instr);
|
|
unsigned write_mask = nir_intrinsic_write_mask(instr);
|
|
uint8_t *output_usage_mask = NULL;
|
|
|
|
switch (nir->info.stage) {
|
|
case MESA_SHADER_VERTEX:
|
|
output_usage_mask = info->vs.output_usage_mask;
|
|
break;
|
|
case MESA_SHADER_TESS_EVAL:
|
|
output_usage_mask = info->tes.output_usage_mask;
|
|
break;
|
|
case MESA_SHADER_GEOMETRY:
|
|
output_usage_mask = info->gs.output_usage_mask;
|
|
break;
|
|
case MESA_SHADER_FRAGMENT:
|
|
if (idx >= FRAG_RESULT_DATA0) {
|
|
info->ps.colors_written |= 0xf << (4 * (idx - FRAG_RESULT_DATA0));
|
|
|
|
if (idx == FRAG_RESULT_DATA0)
|
|
info->ps.color0_written = write_mask;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (output_usage_mask) {
|
|
for (unsigned i = 0; i < num_slots; i++) {
|
|
output_usage_mask[idx + i] |= ((write_mask >> (i * 4)) & 0xf) << component;
|
|
}
|
|
}
|
|
|
|
if (consider_force_vrs && idx == VARYING_SLOT_POS) {
|
|
unsigned pos_w_chan = 3 - component;
|
|
|
|
if (write_mask & BITFIELD_BIT(pos_w_chan)) {
|
|
nir_ssa_scalar pos_w = nir_ssa_scalar_resolved(instr->src[0].ssa, pos_w_chan);
|
|
/* Use coarse shading if the value of Pos.W can't be determined or if its value is != 1
|
|
* (typical for non-GUI elements).
|
|
*/
|
|
if (!nir_ssa_scalar_is_const(pos_w) || nir_ssa_scalar_as_uint(pos_w) != 0x3f800000u)
|
|
info->force_vrs_per_vertex = true;
|
|
}
|
|
}
|
|
|
|
if (nir->info.stage == MESA_SHADER_GEOMETRY) {
|
|
uint8_t gs_streams = nir_intrinsic_io_semantics(instr).gs_streams;
|
|
info->gs.output_streams[idx] |= gs_streams << (component * 2);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_push_constant_info(const nir_shader *nir, const nir_intrinsic_instr *instr,
|
|
struct radv_shader_info *info)
|
|
{
|
|
info->loads_push_constants = true;
|
|
|
|
if (nir_src_is_const(instr->src[0]) && instr->dest.ssa.bit_size >= 32) {
|
|
uint32_t start = (nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0])) / 4u;
|
|
uint32_t size = instr->num_components * (instr->dest.ssa.bit_size / 32u);
|
|
|
|
if (start + size <= (MAX_PUSH_CONSTANTS_SIZE / 4u)) {
|
|
info->inline_push_constant_mask |= u_bit_consecutive64(start, size);
|
|
return;
|
|
}
|
|
}
|
|
|
|
info->can_inline_all_push_constants = false;
|
|
}
|
|
|
|
static void
|
|
gather_intrinsic_info(const nir_shader *nir, const nir_intrinsic_instr *instr,
|
|
struct radv_shader_info *info, bool consider_force_vrs)
|
|
{
|
|
switch (instr->intrinsic) {
|
|
case nir_intrinsic_load_barycentric_sample:
|
|
case nir_intrinsic_load_barycentric_pixel:
|
|
case nir_intrinsic_load_barycentric_centroid:
|
|
case nir_intrinsic_load_barycentric_at_sample:
|
|
case nir_intrinsic_load_barycentric_at_offset: {
|
|
enum glsl_interp_mode mode = nir_intrinsic_interp_mode(instr);
|
|
switch (mode) {
|
|
case INTERP_MODE_SMOOTH:
|
|
case INTERP_MODE_NONE:
|
|
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel ||
|
|
instr->intrinsic == nir_intrinsic_load_barycentric_at_sample ||
|
|
instr->intrinsic == nir_intrinsic_load_barycentric_at_offset)
|
|
info->ps.reads_persp_center = true;
|
|
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
|
|
info->ps.reads_persp_centroid = true;
|
|
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
|
|
info->ps.reads_persp_sample = true;
|
|
break;
|
|
case INTERP_MODE_NOPERSPECTIVE:
|
|
if (instr->intrinsic == nir_intrinsic_load_barycentric_pixel ||
|
|
instr->intrinsic == nir_intrinsic_load_barycentric_at_sample ||
|
|
instr->intrinsic == nir_intrinsic_load_barycentric_at_offset)
|
|
info->ps.reads_linear_center = true;
|
|
else if (instr->intrinsic == nir_intrinsic_load_barycentric_centroid)
|
|
info->ps.reads_linear_centroid = true;
|
|
else if (instr->intrinsic == nir_intrinsic_load_barycentric_sample)
|
|
info->ps.reads_linear_sample = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (instr->intrinsic == nir_intrinsic_load_barycentric_at_sample)
|
|
info->ps.needs_sample_positions = true;
|
|
break;
|
|
}
|
|
case nir_intrinsic_load_local_invocation_id:
|
|
case nir_intrinsic_load_workgroup_id: {
|
|
unsigned mask = nir_ssa_def_components_read(&instr->dest.ssa);
|
|
while (mask) {
|
|
unsigned i = u_bit_scan(&mask);
|
|
|
|
if (instr->intrinsic == nir_intrinsic_load_workgroup_id)
|
|
info->cs.uses_block_id[i] = true;
|
|
else
|
|
info->cs.uses_thread_id[i] = true;
|
|
}
|
|
break;
|
|
}
|
|
case nir_intrinsic_load_frag_coord:
|
|
info->ps.reads_frag_coord_mask |= nir_ssa_def_components_read(&instr->dest.ssa);
|
|
break;
|
|
case nir_intrinsic_load_sample_pos:
|
|
info->ps.reads_sample_pos_mask |= nir_ssa_def_components_read(&instr->dest.ssa);
|
|
break;
|
|
case nir_intrinsic_load_push_constant:
|
|
gather_push_constant_info(nir, instr, info);
|
|
break;
|
|
case nir_intrinsic_vulkan_resource_index:
|
|
info->desc_set_used_mask |= (1u << nir_intrinsic_desc_set(instr));
|
|
break;
|
|
case nir_intrinsic_image_deref_load:
|
|
case nir_intrinsic_image_deref_sparse_load:
|
|
case nir_intrinsic_image_deref_store:
|
|
case nir_intrinsic_image_deref_atomic_add:
|
|
case nir_intrinsic_image_deref_atomic_imin:
|
|
case nir_intrinsic_image_deref_atomic_umin:
|
|
case nir_intrinsic_image_deref_atomic_imax:
|
|
case nir_intrinsic_image_deref_atomic_umax:
|
|
case nir_intrinsic_image_deref_atomic_and:
|
|
case nir_intrinsic_image_deref_atomic_or:
|
|
case nir_intrinsic_image_deref_atomic_xor:
|
|
case nir_intrinsic_image_deref_atomic_exchange:
|
|
case nir_intrinsic_image_deref_atomic_comp_swap:
|
|
case nir_intrinsic_image_deref_atomic_fmin:
|
|
case nir_intrinsic_image_deref_atomic_fmax:
|
|
case nir_intrinsic_image_deref_size:
|
|
case nir_intrinsic_image_deref_samples: {
|
|
nir_variable *var =
|
|
nir_deref_instr_get_variable(nir_instr_as_deref(instr->src[0].ssa->parent_instr));
|
|
mark_sampler_desc(var, info);
|
|
break;
|
|
}
|
|
case nir_intrinsic_load_input:
|
|
gather_intrinsic_load_input_info(nir, instr, info);
|
|
break;
|
|
case nir_intrinsic_store_output:
|
|
gather_intrinsic_store_output_info(nir, instr, info, consider_force_vrs);
|
|
break;
|
|
case nir_intrinsic_load_sbt_base_amd:
|
|
info->cs.is_rt_shader = true;
|
|
break;
|
|
case nir_intrinsic_load_rt_dynamic_callable_stack_base_amd:
|
|
info->cs.uses_dynamic_rt_callable_stack = true;
|
|
break;
|
|
case nir_intrinsic_bvh64_intersect_ray_amd:
|
|
info->cs.uses_rt = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_tex_info(const nir_shader *nir, const nir_tex_instr *instr, struct radv_shader_info *info)
|
|
{
|
|
for (unsigned i = 0; i < instr->num_srcs; i++) {
|
|
switch (instr->src[i].src_type) {
|
|
case nir_tex_src_texture_deref:
|
|
mark_sampler_desc(nir_deref_instr_get_variable(nir_src_as_deref(instr->src[i].src)), info);
|
|
break;
|
|
case nir_tex_src_sampler_deref:
|
|
mark_sampler_desc(nir_deref_instr_get_variable(nir_src_as_deref(instr->src[i].src)), info);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_info_block(const nir_shader *nir, const nir_block *block, struct radv_shader_info *info,
|
|
bool consider_force_vrs)
|
|
{
|
|
nir_foreach_instr (instr, block) {
|
|
switch (instr->type) {
|
|
case nir_instr_type_intrinsic:
|
|
gather_intrinsic_info(nir, nir_instr_as_intrinsic(instr), info, consider_force_vrs);
|
|
break;
|
|
case nir_instr_type_tex:
|
|
gather_tex_info(nir, nir_instr_as_tex(instr), info);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mark_16bit_ps_input(struct radv_shader_info *info, const struct glsl_type *type, int location)
|
|
{
|
|
if (glsl_type_is_scalar(type) || glsl_type_is_vector(type) || glsl_type_is_matrix(type)) {
|
|
unsigned attrib_count = glsl_count_attribute_slots(type, false);
|
|
if (glsl_type_is_16bit(type)) {
|
|
info->ps.float16_shaded_mask |= ((1ull << attrib_count) - 1) << location;
|
|
}
|
|
} else if (glsl_type_is_array(type)) {
|
|
unsigned stride = glsl_count_attribute_slots(glsl_get_array_element(type), false);
|
|
for (unsigned i = 0; i < glsl_get_length(type); ++i) {
|
|
mark_16bit_ps_input(info, glsl_get_array_element(type), location + i * stride);
|
|
}
|
|
} else {
|
|
assert(glsl_type_is_struct_or_ifc(type));
|
|
for (unsigned i = 0; i < glsl_get_length(type); i++) {
|
|
mark_16bit_ps_input(info, glsl_get_struct_field(type, i), location);
|
|
location += glsl_count_attribute_slots(glsl_get_struct_field(type, i), false);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_xfb_info(const nir_shader *nir, struct radv_shader_info *info)
|
|
{
|
|
struct radv_streamout_info *so = &info->so;
|
|
|
|
if (!nir->xfb_info)
|
|
return;
|
|
|
|
const nir_xfb_info *xfb = nir->xfb_info;
|
|
assert(xfb->output_count <= MAX_SO_OUTPUTS);
|
|
so->num_outputs = xfb->output_count;
|
|
|
|
for (unsigned i = 0; i < xfb->output_count; i++) {
|
|
unsigned output_buffer = xfb->outputs[i].buffer;
|
|
unsigned stream = xfb->buffer_to_stream[xfb->outputs[i].buffer];
|
|
so->enabled_stream_buffers_mask |= (1 << output_buffer) << (stream * 4);
|
|
}
|
|
|
|
for (unsigned i = 0; i < NIR_MAX_XFB_BUFFERS; i++) {
|
|
so->strides[i] = xfb->buffers[i].stride / 4;
|
|
}
|
|
}
|
|
|
|
static void
|
|
assign_outinfo_param(struct radv_vs_output_info *outinfo, gl_varying_slot idx,
|
|
unsigned *total_param_exports, unsigned extra_offset)
|
|
{
|
|
if (outinfo->vs_output_param_offset[idx] == AC_EXP_PARAM_UNDEFINED)
|
|
outinfo->vs_output_param_offset[idx] = extra_offset + (*total_param_exports)++;
|
|
}
|
|
|
|
static void
|
|
assign_outinfo_params(struct radv_vs_output_info *outinfo, uint64_t mask,
|
|
unsigned *total_param_exports, unsigned extra_offset)
|
|
{
|
|
u_foreach_bit64(idx, mask) {
|
|
if (idx >= VARYING_SLOT_VAR0 || idx == VARYING_SLOT_LAYER ||
|
|
idx == VARYING_SLOT_PRIMITIVE_ID || idx == VARYING_SLOT_VIEWPORT)
|
|
assign_outinfo_param(outinfo, idx, total_param_exports, extra_offset);
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
radv_get_wave_size(struct radv_device *device, gl_shader_stage stage,
|
|
const struct radv_shader_info *info)
|
|
{
|
|
if (stage == MESA_SHADER_GEOMETRY && !info->is_ngg)
|
|
return 64;
|
|
else if (stage == MESA_SHADER_COMPUTE)
|
|
return info->cs.subgroup_size;
|
|
else if (stage == MESA_SHADER_FRAGMENT)
|
|
return device->physical_device->ps_wave_size;
|
|
else if (stage == MESA_SHADER_TASK)
|
|
return device->physical_device->cs_wave_size;
|
|
else if (gl_shader_stage_is_rt(stage))
|
|
return device->physical_device->rt_wave_size;
|
|
else
|
|
return device->physical_device->ge_wave_size;
|
|
}
|
|
|
|
static uint8_t
|
|
radv_get_ballot_bit_size(struct radv_device *device, gl_shader_stage stage,
|
|
const struct radv_shader_info *info)
|
|
{
|
|
if (stage == MESA_SHADER_COMPUTE && info->cs.subgroup_size)
|
|
return info->cs.subgroup_size;
|
|
else if (gl_shader_stage_is_rt(stage))
|
|
return device->physical_device->rt_wave_size;
|
|
return 64;
|
|
}
|
|
|
|
static void
|
|
gather_info_input_decl_vs(const nir_shader *nir, unsigned location, const struct glsl_type *type,
|
|
const struct radv_pipeline_key *key, struct radv_shader_info *info)
|
|
{
|
|
if (glsl_type_is_scalar(type) || glsl_type_is_vector(type)) {
|
|
if (key->vs.instance_rate_inputs & BITFIELD_BIT(location)) {
|
|
info->vs.needs_instance_id = true;
|
|
info->vs.needs_base_instance = true;
|
|
}
|
|
|
|
if (info->vs.use_per_attribute_vb_descs)
|
|
info->vs.vb_desc_usage_mask |= BITFIELD_BIT(location);
|
|
else
|
|
info->vs.vb_desc_usage_mask |= BITFIELD_BIT(key->vs.vertex_attribute_bindings[location]);
|
|
|
|
info->vs.input_slot_usage_mask |=
|
|
BITFIELD_RANGE(location, glsl_count_attribute_slots(type, false));
|
|
} else if (glsl_type_is_matrix(type) || glsl_type_is_array(type)) {
|
|
const struct glsl_type *elem = glsl_get_array_element(type);
|
|
unsigned stride = glsl_count_attribute_slots(elem, false);
|
|
|
|
for (unsigned i = 0; i < glsl_get_length(type); ++i)
|
|
gather_info_input_decl_vs(nir, location + i * stride, elem, key, info);
|
|
} else {
|
|
assert(glsl_type_is_struct_or_ifc(type));
|
|
|
|
for (unsigned i = 0; i < glsl_get_length(type); i++) {
|
|
const struct glsl_type *field = glsl_get_struct_field(type, i);
|
|
gather_info_input_decl_vs(nir, location, field, key, info);
|
|
location += glsl_count_attribute_slots(field, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_vs(struct radv_device *device, const nir_shader *nir,
|
|
const struct radv_pipeline_key *pipeline_key, struct radv_shader_info *info)
|
|
{
|
|
if (pipeline_key->vs.has_prolog && nir->info.inputs_read) {
|
|
info->vs.has_prolog = true;
|
|
info->vs.dynamic_inputs = true;
|
|
}
|
|
|
|
/* Use per-attribute vertex descriptors to prevent faults and for correct bounds checking. */
|
|
info->vs.use_per_attribute_vb_descs = device->robust_buffer_access || info->vs.dynamic_inputs;
|
|
|
|
/* We have to ensure consistent input register assignments between the main shader and the
|
|
* prolog.
|
|
*/
|
|
info->vs.needs_instance_id |= info->vs.has_prolog;
|
|
info->vs.needs_base_instance |= info->vs.has_prolog;
|
|
info->vs.needs_draw_id |= info->vs.has_prolog;
|
|
|
|
nir_foreach_shader_in_variable(var, nir)
|
|
gather_info_input_decl_vs(nir, var->data.location - VERT_ATTRIB_GENERIC0, var->type,
|
|
pipeline_key, info);
|
|
|
|
/* When the topology is unknown (with GPL), the number of vertices per primitive needs be passed
|
|
* through a user SGPR for NGG streamout with VS. Otherwise, the XFB offset is incorrectly
|
|
* computed because using the maximum number of vertices can't work.
|
|
*/
|
|
info->vs.dynamic_num_verts_per_prim =
|
|
pipeline_key->vs.topology == V_008958_DI_PT_NONE && info->is_ngg && nir->xfb_info;
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_tcs(struct radv_device *device, const nir_shader *nir,
|
|
const struct radv_pipeline_key *pipeline_key, struct radv_shader_info *info)
|
|
{
|
|
info->tcs.tcs_vertices_out = nir->info.tess.tcs_vertices_out;
|
|
|
|
if (!(pipeline_key->dynamic_patch_control_points)) {
|
|
/* Number of tessellation patches per workgroup processed by the current pipeline. */
|
|
info->num_tess_patches =
|
|
get_tcs_num_patches(pipeline_key->tcs.tess_input_vertices, nir->info.tess.tcs_vertices_out,
|
|
info->tcs.num_linked_inputs, info->tcs.num_linked_outputs,
|
|
info->tcs.num_linked_patch_outputs,
|
|
device->physical_device->hs.tess_offchip_block_dw_size,
|
|
device->physical_device->rad_info.gfx_level,
|
|
device->physical_device->rad_info.family);
|
|
|
|
/* LDS size used by VS+TCS for storing TCS inputs and outputs. */
|
|
info->tcs.num_lds_blocks =
|
|
calculate_tess_lds_size(device->physical_device->rad_info.gfx_level,
|
|
pipeline_key->tcs.tess_input_vertices,
|
|
nir->info.tess.tcs_vertices_out, info->tcs.num_linked_inputs,
|
|
info->num_tess_patches, info->tcs.num_linked_outputs,
|
|
info->tcs.num_linked_patch_outputs);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_tes(const nir_shader *nir, struct radv_shader_info *info)
|
|
{
|
|
info->tes._primitive_mode = nir->info.tess._primitive_mode;
|
|
info->tes.spacing = nir->info.tess.spacing;
|
|
info->tes.ccw = nir->info.tess.ccw;
|
|
info->tes.point_mode = nir->info.tess.point_mode;
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_gs(const nir_shader *nir, struct radv_shader_info *info)
|
|
{
|
|
unsigned add_clip = nir->info.clip_distance_array_size + nir->info.cull_distance_array_size > 4;
|
|
info->gs.gsvs_vertex_size = (util_bitcount64(nir->info.outputs_written) + add_clip) * 16;
|
|
info->gs.max_gsvs_emit_size = info->gs.gsvs_vertex_size * nir->info.gs.vertices_out;
|
|
|
|
info->gs.vertices_in = nir->info.gs.vertices_in;
|
|
info->gs.vertices_out = nir->info.gs.vertices_out;
|
|
info->gs.input_prim = nir->info.gs.input_primitive;
|
|
info->gs.output_prim = nir->info.gs.output_primitive;
|
|
info->gs.invocations = nir->info.gs.invocations;
|
|
info->gs.max_stream =
|
|
nir->info.gs.active_stream_mask ? util_last_bit(nir->info.gs.active_stream_mask) - 1 : 0;
|
|
|
|
nir_foreach_shader_out_variable(var, nir) {
|
|
unsigned num_components = glsl_get_component_slots(var->type);
|
|
unsigned stream = var->data.stream;
|
|
|
|
assert(stream < 4);
|
|
|
|
info->gs.num_stream_output_components[stream] += num_components;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_mesh(const nir_shader *nir, struct radv_shader_info *info)
|
|
{
|
|
struct gfx10_ngg_info *ngg_info = &info->ngg_info;
|
|
|
|
info->ms.output_prim = nir->info.mesh.primitive_type;
|
|
|
|
/* Special case for mesh shader workgroups.
|
|
*
|
|
* Mesh shaders don't have any real vertex input, but they can produce
|
|
* an arbitrary number of vertices and primitives (up to 256).
|
|
* We need to precisely control the number of mesh shader workgroups
|
|
* that are launched from draw calls.
|
|
*
|
|
* To achieve that, we set:
|
|
* - input primitive topology to point list
|
|
* - input vertex and primitive count to 1
|
|
* - max output vertex count and primitive amplification factor
|
|
* to the boundaries of the shader
|
|
*
|
|
* With that, in the draw call:
|
|
* - drawing 1 input vertex ~ launching 1 mesh shader workgroup
|
|
*
|
|
* In the shader:
|
|
* - base vertex ~ first workgroup index (firstTask in NV_mesh_shader)
|
|
* - input vertex id ~ workgroup id (in 1D - shader needs to calculate in 3D)
|
|
*
|
|
* Notes:
|
|
* - without GS_EN=1 PRIM_AMP_FACTOR and MAX_VERTS_PER_SUBGROUP don't seem to work
|
|
* - with GS_EN=1 we must also set VGT_GS_MAX_VERT_OUT (otherwise the GPU hangs)
|
|
* - with GS_FAST_LAUNCH=1 every lane's VGPRs are initialized to the same input vertex index
|
|
*
|
|
*/
|
|
ngg_info->esgs_ring_size = 1;
|
|
ngg_info->hw_max_esverts = 1;
|
|
ngg_info->max_gsprims = 1;
|
|
ngg_info->max_out_verts = nir->info.mesh.max_vertices_out;
|
|
ngg_info->max_vert_out_per_gs_instance = false;
|
|
ngg_info->ngg_emit_size = 0;
|
|
ngg_info->prim_amp_factor = nir->info.mesh.max_primitives_out;
|
|
ngg_info->vgt_esgs_ring_itemsize = 1;
|
|
|
|
unsigned min_ngg_workgroup_size =
|
|
ac_compute_ngg_workgroup_size(ngg_info->hw_max_esverts, ngg_info->max_gsprims,
|
|
ngg_info->max_out_verts, ngg_info->prim_amp_factor);
|
|
|
|
unsigned api_workgroup_size =
|
|
ac_compute_cs_workgroup_size(nir->info.workgroup_size, false, UINT32_MAX);
|
|
|
|
info->workgroup_size = MAX2(min_ngg_workgroup_size, api_workgroup_size);
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_fs(const struct radv_device *device, const nir_shader *nir,
|
|
const struct radv_pipeline_key *pipeline_key, struct radv_shader_info *info)
|
|
{
|
|
uint64_t per_primitive_input_mask = nir->info.inputs_read & nir->info.per_primitive_inputs;
|
|
unsigned num_per_primitive_inputs = util_bitcount64(per_primitive_input_mask);
|
|
assert(num_per_primitive_inputs <= nir->num_inputs);
|
|
|
|
info->ps.num_interp = nir->num_inputs;
|
|
info->ps.num_prim_interp = 0;
|
|
|
|
if (device->physical_device->rad_info.gfx_level == GFX10_3) {
|
|
/* GFX10.3 distinguishes NUM_INTERP and NUM_PRIM_INTERP, but
|
|
* these are counted together in NUM_INTERP on GFX11.
|
|
*/
|
|
info->ps.num_interp = nir->num_inputs - num_per_primitive_inputs;
|
|
info->ps.num_prim_interp = num_per_primitive_inputs;
|
|
}
|
|
|
|
info->ps.can_discard = nir->info.fs.uses_discard;
|
|
info->ps.early_fragment_test = nir->info.fs.early_fragment_tests ||
|
|
(nir->info.fs.early_and_late_fragment_tests &&
|
|
nir->info.fs.depth_layout == FRAG_DEPTH_LAYOUT_NONE &&
|
|
nir->info.fs.stencil_front_layout == FRAG_STENCIL_LAYOUT_NONE &&
|
|
nir->info.fs.stencil_back_layout == FRAG_STENCIL_LAYOUT_NONE);
|
|
info->ps.post_depth_coverage = nir->info.fs.post_depth_coverage;
|
|
info->ps.depth_layout = nir->info.fs.depth_layout;
|
|
info->ps.uses_sample_shading = nir->info.fs.uses_sample_shading;
|
|
info->ps.writes_memory = nir->info.writes_memory;
|
|
info->ps.has_pcoord = nir->info.inputs_read & VARYING_BIT_PNTC;
|
|
info->ps.prim_id_input = nir->info.inputs_read & VARYING_BIT_PRIMITIVE_ID;
|
|
info->ps.layer_input = nir->info.inputs_read & VARYING_BIT_LAYER;
|
|
info->ps.viewport_index_input = nir->info.inputs_read & VARYING_BIT_VIEWPORT;
|
|
info->ps.writes_z = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH);
|
|
info->ps.writes_stencil = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
|
|
info->ps.writes_sample_mask = nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
|
|
info->ps.reads_sample_mask_in = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);
|
|
info->ps.reads_sample_id = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID);
|
|
info->ps.reads_frag_shading_rate = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_SHADING_RATE);
|
|
info->ps.reads_front_face = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRONT_FACE);
|
|
info->ps.reads_barycentric_model = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BARYCENTRIC_PULL_MODEL);
|
|
info->ps.reads_fully_covered =
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FULLY_COVERED);
|
|
|
|
bool uses_persp_or_linear_interp = info->ps.reads_persp_center ||
|
|
info->ps.reads_persp_centroid ||
|
|
info->ps.reads_persp_sample ||
|
|
info->ps.reads_linear_center ||
|
|
info->ps.reads_linear_centroid ||
|
|
info->ps.reads_linear_sample;
|
|
|
|
info->ps.allow_flat_shading =
|
|
!(uses_persp_or_linear_interp || info->ps.needs_sample_positions ||
|
|
info->ps.writes_memory || nir->info.fs.needs_quad_helper_invocations ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_POINT_COORD) ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_ID) ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS) ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN) ||
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_HELPER_INVOCATION));
|
|
|
|
info->ps.spi_ps_input = radv_compute_spi_ps_input(pipeline_key, info);
|
|
|
|
info->ps.has_epilog = pipeline_key->ps.has_epilog && info->ps.colors_written;
|
|
|
|
info->ps.writes_mrt0_alpha =
|
|
(pipeline_key->ps.alpha_to_coverage_via_mrtz && (info->ps.color0_written & 0x8)) &&
|
|
(info->ps.writes_z || info->ps.writes_stencil || info->ps.writes_sample_mask);
|
|
|
|
info->ps.mrt0_is_dual_src = pipeline_key->ps.epilog.mrt0_is_dual_src;
|
|
|
|
info->ps.spi_shader_col_format = pipeline_key->ps.epilog.spi_shader_col_format;
|
|
|
|
nir_foreach_shader_in_variable(var, nir) {
|
|
unsigned attrib_count = glsl_count_attribute_slots(var->type, false);
|
|
int idx = var->data.location;
|
|
|
|
switch (idx) {
|
|
case VARYING_SLOT_CLIP_DIST0:
|
|
case VARYING_SLOT_CLIP_DIST1:
|
|
info->ps.num_input_clips_culls += attrib_count;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (var->data.compact) {
|
|
unsigned component_count = var->data.location_frac + glsl_get_length(var->type);
|
|
attrib_count = (component_count + 3) / 4;
|
|
} else {
|
|
mark_16bit_ps_input(info, var->type, var->data.driver_location);
|
|
}
|
|
|
|
uint64_t mask = ((1ull << attrib_count) - 1);
|
|
|
|
if (!var->data.per_primitive) {
|
|
if (var->data.interpolation == INTERP_MODE_FLAT)
|
|
info->ps.flat_shaded_mask |= mask << var->data.driver_location;
|
|
else if (var->data.interpolation == INTERP_MODE_EXPLICIT)
|
|
info->ps.explicit_shaded_mask |= mask << var->data.driver_location;
|
|
}
|
|
|
|
if (var->data.location >= VARYING_SLOT_VAR0) {
|
|
if (var->data.per_primitive)
|
|
info->ps.input_per_primitive_mask |= mask << (var->data.location - VARYING_SLOT_VAR0);
|
|
else
|
|
info->ps.input_mask |= mask << (var->data.location - VARYING_SLOT_VAR0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_rt(const nir_shader *nir, struct radv_shader_info *info)
|
|
{
|
|
// TODO: inline push_constants again
|
|
info->loads_dynamic_offsets = true;
|
|
info->loads_push_constants = true;
|
|
info->can_inline_all_push_constants = false;
|
|
info->inline_push_constant_mask = 0;
|
|
info->desc_set_used_mask = -1u;
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_cs(struct radv_device *device, const nir_shader *nir,
|
|
const struct radv_pipeline_key *pipeline_key, struct radv_shader_info *info)
|
|
{
|
|
info->cs.uses_ray_launch_size = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_RAY_LAUNCH_SIZE_ADDR_AMD);
|
|
|
|
unsigned subgroup_size = pipeline_key->cs.compute_subgroup_size;
|
|
unsigned req_subgroup_size = subgroup_size;
|
|
bool require_full_subgroups = pipeline_key->cs.require_full_subgroups;
|
|
|
|
unsigned default_wave_size = device->physical_device->cs_wave_size;
|
|
if (info->cs.uses_rt)
|
|
default_wave_size = device->physical_device->rt_wave_size;
|
|
|
|
if (!subgroup_size)
|
|
subgroup_size = default_wave_size;
|
|
|
|
unsigned local_size =
|
|
nir->info.workgroup_size[0] * nir->info.workgroup_size[1] * nir->info.workgroup_size[2];
|
|
|
|
/* Games don't always request full subgroups when they should, which can cause bugs if cswave32
|
|
* is enabled.
|
|
*/
|
|
if (default_wave_size == 32 && nir->info.uses_wide_subgroup_intrinsics && !req_subgroup_size &&
|
|
local_size % RADV_SUBGROUP_SIZE == 0)
|
|
require_full_subgroups = true;
|
|
|
|
if (require_full_subgroups && !req_subgroup_size) {
|
|
/* don't use wave32 pretending to be wave64 */
|
|
subgroup_size = RADV_SUBGROUP_SIZE;
|
|
}
|
|
|
|
info->cs.subgroup_size = subgroup_size;
|
|
|
|
if (device->physical_device->rad_info.has_cs_regalloc_hang_bug) {
|
|
info->cs.regalloc_hang_bug =
|
|
info->cs.block_size[0] * info->cs.block_size[1] * info->cs.block_size[2] > 256;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gather_shader_info_task(const nir_shader *nir, struct radv_shader_info *info)
|
|
{
|
|
/* Task shaders always need these for the I/O lowering even if the API shader doesn't actually
|
|
* use them.
|
|
*/
|
|
|
|
/* Needed to address the IB to read firstTask in NV_mesh_shader. */
|
|
info->vs.needs_draw_id |=
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_WORKGROUP_ID);
|
|
|
|
/* Needed to address the task draw/payload rings. */
|
|
info->cs.uses_block_id[0] = true;
|
|
info->cs.uses_block_id[1] = true;
|
|
info->cs.uses_block_id[2] = true;
|
|
info->cs.uses_grid_size = true;
|
|
|
|
/* Needed for storing draw ready only on the 1st thread. */
|
|
info->cs.uses_local_invocation_idx = true;
|
|
}
|
|
|
|
void
|
|
radv_nir_shader_info_init(struct radv_shader_info *info)
|
|
{
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
/* Assume that shaders can inline all push constants by default. */
|
|
info->can_inline_all_push_constants = true;
|
|
}
|
|
|
|
void
|
|
radv_nir_shader_info_pass(struct radv_device *device, const struct nir_shader *nir,
|
|
const struct radv_pipeline_layout *layout,
|
|
const struct radv_pipeline_key *pipeline_key,
|
|
const enum radv_pipeline_type pipeline_type,
|
|
bool consider_force_vrs,
|
|
struct radv_shader_info *info)
|
|
{
|
|
info->stage = nir->info.stage;
|
|
|
|
struct nir_function *func = (struct nir_function *)exec_list_get_head_const(&nir->functions);
|
|
|
|
if (layout && layout->dynamic_offset_count &&
|
|
(layout->dynamic_shader_stages & mesa_to_vk_shader_stage(nir->info.stage))) {
|
|
info->loads_push_constants = true;
|
|
info->loads_dynamic_offsets = true;
|
|
}
|
|
|
|
nir_foreach_block (block, func->impl) {
|
|
gather_info_block(nir, block, info, consider_force_vrs);
|
|
}
|
|
|
|
if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
|
|
nir->info.stage == MESA_SHADER_GEOMETRY)
|
|
gather_xfb_info(nir, info);
|
|
|
|
if (nir->info.stage == MESA_SHADER_VERTEX || nir->info.stage == MESA_SHADER_TESS_EVAL ||
|
|
nir->info.stage == MESA_SHADER_GEOMETRY || nir->info.stage == MESA_SHADER_MESH) {
|
|
struct radv_vs_output_info *outinfo = &info->outinfo;
|
|
|
|
/* These are not compiled into neither output param nor position exports. */
|
|
uint64_t special_mask = BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) |
|
|
BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) |
|
|
BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
|
|
uint64_t per_prim_mask =
|
|
nir->info.outputs_written & nir->info.per_primitive_outputs & ~special_mask;
|
|
uint64_t per_vtx_mask =
|
|
nir->info.outputs_written & ~nir->info.per_primitive_outputs & ~special_mask;
|
|
|
|
/* Mesh multivew is only lowered in ac_nir_lower_ngg, so we have to fake it here. */
|
|
if (nir->info.stage == MESA_SHADER_MESH && pipeline_key->has_multiview_view_index) {
|
|
per_prim_mask |= VARYING_BIT_LAYER;
|
|
info->uses_view_index = true;
|
|
}
|
|
|
|
/* Per vertex outputs. */
|
|
outinfo->writes_pointsize = per_vtx_mask & VARYING_BIT_PSIZ;
|
|
outinfo->writes_viewport_index = per_vtx_mask & VARYING_BIT_VIEWPORT;
|
|
outinfo->writes_layer = per_vtx_mask & VARYING_BIT_LAYER;
|
|
outinfo->writes_primitive_shading_rate =
|
|
(per_vtx_mask & VARYING_BIT_PRIMITIVE_SHADING_RATE) || info->force_vrs_per_vertex;
|
|
|
|
/* Per primitive outputs. */
|
|
outinfo->writes_viewport_index_per_primitive = per_prim_mask & VARYING_BIT_VIEWPORT;
|
|
outinfo->writes_layer_per_primitive = per_prim_mask & VARYING_BIT_LAYER;
|
|
outinfo->writes_primitive_shading_rate_per_primitive = per_prim_mask & VARYING_BIT_PRIMITIVE_SHADING_RATE;
|
|
|
|
/* Clip/cull distances. */
|
|
outinfo->clip_dist_mask = (1 << nir->info.clip_distance_array_size) - 1;
|
|
outinfo->cull_dist_mask = (1 << nir->info.cull_distance_array_size) - 1;
|
|
outinfo->cull_dist_mask <<= nir->info.clip_distance_array_size;
|
|
|
|
int pos_written = 0x1;
|
|
|
|
if (outinfo->writes_pointsize || outinfo->writes_viewport_index || outinfo->writes_layer ||
|
|
outinfo->writes_primitive_shading_rate)
|
|
pos_written |= 1 << 1;
|
|
|
|
unsigned num_clip_distances = util_bitcount(outinfo->clip_dist_mask);
|
|
unsigned num_cull_distances = util_bitcount(outinfo->cull_dist_mask);
|
|
|
|
if (num_clip_distances + num_cull_distances > 0)
|
|
pos_written |= 1 << 2;
|
|
if (num_clip_distances + num_cull_distances > 4)
|
|
pos_written |= 1 << 3;
|
|
|
|
outinfo->pos_exports = util_bitcount(pos_written);
|
|
|
|
memset(outinfo->vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
|
|
sizeof(outinfo->vs_output_param_offset));
|
|
|
|
unsigned total_param_exports = 0;
|
|
|
|
/* Per-vertex outputs */
|
|
assign_outinfo_params(outinfo, per_vtx_mask, &total_param_exports, 0);
|
|
|
|
outinfo->param_exports = total_param_exports;
|
|
|
|
/* The HW always assumes that there is at least 1 per-vertex param.
|
|
* so if there aren't any, we have to offset per-primitive params by 1.
|
|
*/
|
|
const unsigned extra_offset =
|
|
!!(total_param_exports == 0 && device->physical_device->rad_info.gfx_level >= GFX11);
|
|
|
|
/* Per-primitive outputs: the HW needs these to be last. */
|
|
assign_outinfo_params(outinfo, per_prim_mask, &total_param_exports, extra_offset);
|
|
|
|
outinfo->prim_param_exports = total_param_exports - outinfo->param_exports;
|
|
}
|
|
|
|
info->vs.needs_draw_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID);
|
|
info->vs.needs_base_instance |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE);
|
|
info->vs.needs_instance_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
|
|
info->uses_view_index |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VIEW_INDEX);
|
|
info->uses_invocation_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INVOCATION_ID);
|
|
info->uses_prim_id |= BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
|
|
|
|
/* Used by compute and mesh shaders. */
|
|
info->cs.uses_grid_size = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_NUM_WORKGROUPS);
|
|
info->cs.uses_local_invocation_idx = BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_LOCAL_INVOCATION_INDEX) |
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_SUBGROUP_ID) |
|
|
BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_NUM_SUBGROUPS);
|
|
|
|
if (nir->info.stage == MESA_SHADER_COMPUTE || nir->info.stage == MESA_SHADER_TASK) {
|
|
for (int i = 0; i < 3; ++i)
|
|
info->cs.block_size[i] = nir->info.workgroup_size[i];
|
|
}
|
|
|
|
switch (nir->info.stage) {
|
|
case MESA_SHADER_COMPUTE:
|
|
gather_shader_info_cs(device, nir, pipeline_key, info);
|
|
break;
|
|
case MESA_SHADER_TASK:
|
|
gather_shader_info_task(nir, info);
|
|
break;
|
|
case MESA_SHADER_FRAGMENT:
|
|
gather_shader_info_fs(device, nir, pipeline_key, info);
|
|
break;
|
|
case MESA_SHADER_GEOMETRY:
|
|
gather_shader_info_gs(nir, info);
|
|
break;
|
|
case MESA_SHADER_TESS_EVAL:
|
|
gather_shader_info_tes(nir, info);
|
|
break;
|
|
case MESA_SHADER_TESS_CTRL:
|
|
gather_shader_info_tcs(device, nir, pipeline_key, info);
|
|
break;
|
|
case MESA_SHADER_VERTEX:
|
|
gather_shader_info_vs(device, nir, pipeline_key, info);
|
|
break;
|
|
case MESA_SHADER_MESH:
|
|
gather_shader_info_mesh(nir, info);
|
|
break;
|
|
default:
|
|
if (gl_shader_stage_is_rt(nir->info.stage))
|
|
gather_shader_info_rt(nir, info);
|
|
break;
|
|
}
|
|
|
|
info->wave_size = radv_get_wave_size(device, nir->info.stage, info);
|
|
info->ballot_bit_size = radv_get_ballot_bit_size(device, nir->info.stage, info);
|
|
|
|
switch (nir->info.stage) {
|
|
case MESA_SHADER_COMPUTE:
|
|
case MESA_SHADER_TASK:
|
|
info->workgroup_size =
|
|
ac_compute_cs_workgroup_size(nir->info.workgroup_size, false, UINT32_MAX);
|
|
|
|
/* Allow the compiler to assume that the shader always has full subgroups,
|
|
* meaning that the initial EXEC mask is -1 in all waves (all lanes enabled).
|
|
* This assumption is incorrect for ray tracing and internal (meta) shaders
|
|
* because they can use unaligned dispatch.
|
|
*/
|
|
info->cs.uses_full_subgroups =
|
|
pipeline_type != RADV_PIPELINE_RAY_TRACING &&
|
|
!nir->info.internal &&
|
|
(info->workgroup_size % info->wave_size) == 0;
|
|
break;
|
|
case MESA_SHADER_MESH:
|
|
/* Already computed in gather_shader_info_mesh(). */
|
|
break;
|
|
default:
|
|
/* FS always operates without workgroups. Other stages are computed during linking but assume
|
|
* no workgroups by default.
|
|
*/
|
|
info->workgroup_size = info->wave_size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
radv_get_legacy_gs_info(const struct radv_device *device, struct radv_pipeline_stage *es_stage,
|
|
struct radv_pipeline_stage *gs_stage)
|
|
{
|
|
const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
|
|
struct radv_shader_info *gs_info = &gs_stage->info;
|
|
struct radv_shader_info *es_info = &es_stage->info;
|
|
struct radv_legacy_gs_info *out = &gs_stage->info.gs_ring_info;
|
|
|
|
const unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1);
|
|
const bool uses_adjacency = gs_info->gs.input_prim == SHADER_PRIM_LINES_ADJACENCY ||
|
|
gs_info->gs.input_prim == SHADER_PRIM_TRIANGLES_ADJACENCY;
|
|
|
|
/* All these are in dwords: */
|
|
/* We can't allow using the whole LDS, because GS waves compete with
|
|
* other shader stages for LDS space. */
|
|
const unsigned max_lds_size = 8 * 1024;
|
|
const unsigned esgs_itemsize = es_info->esgs_itemsize / 4;
|
|
unsigned esgs_lds_size;
|
|
|
|
/* All these are per subgroup: */
|
|
const unsigned max_out_prims = 32 * 1024;
|
|
const unsigned max_es_verts = 255;
|
|
const unsigned ideal_gs_prims = 64;
|
|
unsigned max_gs_prims, gs_prims;
|
|
unsigned min_es_verts, es_verts, worst_case_es_verts;
|
|
|
|
if (uses_adjacency || gs_num_invocations > 1)
|
|
max_gs_prims = 127 / gs_num_invocations;
|
|
else
|
|
max_gs_prims = 255;
|
|
|
|
/* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
|
|
* Make sure we don't go over the maximum value.
|
|
*/
|
|
if (gs_info->gs.vertices_out > 0) {
|
|
max_gs_prims =
|
|
MIN2(max_gs_prims, max_out_prims / (gs_info->gs.vertices_out * gs_num_invocations));
|
|
}
|
|
assert(max_gs_prims > 0);
|
|
|
|
/* If the primitive has adjacency, halve the number of vertices
|
|
* that will be reused in multiple primitives.
|
|
*/
|
|
min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1);
|
|
|
|
gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
|
|
worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
|
|
|
|
/* Compute ESGS LDS size based on the worst case number of ES vertices
|
|
* needed to create the target number of GS prims per subgroup.
|
|
*/
|
|
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
|
|
|
|
/* If total LDS usage is too big, refactor partitions based on ratio
|
|
* of ESGS item sizes.
|
|
*/
|
|
if (esgs_lds_size > max_lds_size) {
|
|
/* Our target GS Prims Per Subgroup was too large. Calculate
|
|
* the maximum number of GS Prims Per Subgroup that will fit
|
|
* into LDS, capped by the maximum that the hardware can support.
|
|
*/
|
|
gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
|
|
assert(gs_prims > 0);
|
|
worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
|
|
|
|
esgs_lds_size = esgs_itemsize * worst_case_es_verts;
|
|
assert(esgs_lds_size <= max_lds_size);
|
|
}
|
|
|
|
/* Now calculate remaining ESGS information. */
|
|
if (esgs_lds_size)
|
|
es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
|
|
else
|
|
es_verts = max_es_verts;
|
|
|
|
/* Vertices for adjacency primitives are not always reused, so restore
|
|
* it for ES_VERTS_PER_SUBGRP.
|
|
*/
|
|
min_es_verts = gs_info->gs.vertices_in;
|
|
|
|
/* For normal primitives, the VGT only checks if they are past the ES
|
|
* verts per subgroup after allocating a full GS primitive and if they
|
|
* are, kick off a new subgroup. But if those additional ES verts are
|
|
* unique (e.g. not reused) we need to make sure there is enough LDS
|
|
* space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
|
|
*/
|
|
es_verts -= min_es_verts - 1;
|
|
|
|
const uint32_t es_verts_per_subgroup = es_verts;
|
|
const uint32_t gs_prims_per_subgroup = gs_prims;
|
|
const uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
|
|
const uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out;
|
|
out->lds_size = align(esgs_lds_size, 128) / 128;
|
|
out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) |
|
|
S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) |
|
|
S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup);
|
|
out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup);
|
|
out->vgt_esgs_ring_itemsize = esgs_itemsize;
|
|
assert(max_prims_per_subgroup <= max_out_prims);
|
|
|
|
unsigned workgroup_size = ac_compute_esgs_workgroup_size(gfx_level, es_info->wave_size,
|
|
es_verts_per_subgroup, gs_inst_prims_in_subgroup);
|
|
es_info->workgroup_size = workgroup_size;
|
|
gs_info->workgroup_size = workgroup_size;
|
|
}
|
|
|
|
static void
|
|
clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts, unsigned min_verts_per_prim,
|
|
bool use_adjacency)
|
|
{
|
|
unsigned max_reuse = max_esverts - min_verts_per_prim;
|
|
if (use_adjacency)
|
|
max_reuse /= 2;
|
|
*max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
|
|
}
|
|
|
|
static unsigned
|
|
radv_get_num_input_vertices(const struct radv_pipeline_stage *es_stage,
|
|
const struct radv_pipeline_stage *gs_stage)
|
|
{
|
|
if (gs_stage) {
|
|
return gs_stage->nir->info.gs.vertices_in;
|
|
}
|
|
|
|
if (es_stage->stage == MESA_SHADER_TESS_EVAL) {
|
|
if (es_stage->nir->info.tess.point_mode)
|
|
return 1;
|
|
if (es_stage->nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
return 3;
|
|
}
|
|
|
|
static unsigned
|
|
radv_get_pre_rast_input_topology(const struct radv_pipeline_stage *es_stage,
|
|
const struct radv_pipeline_stage *gs_stage)
|
|
{
|
|
if (gs_stage) {
|
|
return gs_stage->nir->info.gs.input_primitive;
|
|
}
|
|
|
|
if (es_stage->stage == MESA_SHADER_TESS_EVAL) {
|
|
if (es_stage->nir->info.tess.point_mode)
|
|
return SHADER_PRIM_POINTS;
|
|
if (es_stage->nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
|
|
return SHADER_PRIM_LINES;
|
|
return SHADER_PRIM_TRIANGLES;
|
|
}
|
|
|
|
return SHADER_PRIM_TRIANGLES;
|
|
}
|
|
|
|
static void
|
|
gfx10_get_ngg_info(const struct radv_device *device, struct radv_pipeline_stage *es_stage,
|
|
struct radv_pipeline_stage *gs_stage)
|
|
{
|
|
const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level;
|
|
struct radv_shader_info *gs_info = gs_stage ? &gs_stage->info : NULL;
|
|
struct radv_shader_info *es_info = &es_stage->info;
|
|
const unsigned max_verts_per_prim = radv_get_num_input_vertices(es_stage, gs_stage);
|
|
const unsigned min_verts_per_prim = gs_stage ? max_verts_per_prim : 1;
|
|
struct gfx10_ngg_info *out = gs_stage ? &gs_info->ngg_info : &es_info->ngg_info;
|
|
|
|
const unsigned gs_num_invocations = gs_stage ? MAX2(gs_info->gs.invocations, 1) : 1;
|
|
|
|
const unsigned input_prim = radv_get_pre_rast_input_topology(es_stage, gs_stage);
|
|
const bool uses_adjacency = input_prim == SHADER_PRIM_LINES_ADJACENCY ||
|
|
input_prim == SHADER_PRIM_TRIANGLES_ADJACENCY;
|
|
|
|
/* All these are in dwords: */
|
|
/* We can't allow using the whole LDS, because GS waves compete with
|
|
* other shader stages for LDS space.
|
|
*
|
|
* TODO: We should really take the shader's internal LDS use into
|
|
* account. The linker will fail if the size is greater than
|
|
* 8K dwords.
|
|
*/
|
|
const unsigned max_lds_size = 8 * 1024 - 768;
|
|
const unsigned target_lds_size = max_lds_size;
|
|
unsigned esvert_lds_size = 0;
|
|
unsigned gsprim_lds_size = 0;
|
|
|
|
/* All these are per subgroup: */
|
|
const unsigned min_esverts = gfx_level >= GFX11 ? 3 : /* gfx11 requires at least 1 primitive per TG */
|
|
gfx_level >= GFX10_3 ? 29 : 24;
|
|
bool max_vert_out_per_gs_instance = false;
|
|
unsigned max_esverts_base = 128;
|
|
unsigned max_gsprims_base = 128; /* default prim group size clamp */
|
|
|
|
/* Hardware has the following non-natural restrictions on the value
|
|
* of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
|
|
* the draw:
|
|
* - at most 252 for any line input primitive type
|
|
* - at most 251 for any quad input primitive type
|
|
* - at most 251 for triangle strips with adjacency (this happens to
|
|
* be the natural limit for triangle *lists* with adjacency)
|
|
*/
|
|
max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
|
|
|
|
if (gs_stage) {
|
|
unsigned max_out_verts_per_gsprim = gs_info->gs.vertices_out * gs_num_invocations;
|
|
|
|
if (max_out_verts_per_gsprim <= 256) {
|
|
if (max_out_verts_per_gsprim) {
|
|
max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
|
|
}
|
|
} else {
|
|
/* Use special multi-cycling mode in which each GS
|
|
* instance gets its own subgroup. Does not work with
|
|
* tessellation. */
|
|
max_vert_out_per_gs_instance = true;
|
|
max_gsprims_base = 1;
|
|
max_out_verts_per_gsprim = gs_info->gs.vertices_out;
|
|
}
|
|
|
|
esvert_lds_size = es_info->esgs_itemsize / 4;
|
|
gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
|
|
} else {
|
|
/* VS and TES. */
|
|
/* LDS size for passing data from GS to ES. */
|
|
struct radv_streamout_info *so_info = &es_info->so;
|
|
|
|
if (so_info->num_outputs) {
|
|
/* Compute the same pervertex LDS size as the NGG streamout lowering pass which allocates
|
|
* space for all outputs.
|
|
* TODO: only alloc space for outputs that really need streamout.
|
|
*/
|
|
esvert_lds_size = 4 * es_stage->nir->num_outputs + 1;
|
|
}
|
|
|
|
/* GS stores Primitive IDs (one DWORD) into LDS at the address
|
|
* corresponding to the ES thread of the provoking vertex. All
|
|
* ES threads load and export PrimitiveID for their thread.
|
|
*/
|
|
if (es_stage->stage == MESA_SHADER_VERTEX && es_stage->info.outinfo.export_prim_id)
|
|
esvert_lds_size = MAX2(esvert_lds_size, 1);
|
|
}
|
|
|
|
unsigned max_gsprims = max_gsprims_base;
|
|
unsigned max_esverts = max_esverts_base;
|
|
|
|
if (esvert_lds_size)
|
|
max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
|
|
if (gsprim_lds_size)
|
|
max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
|
|
|
|
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
|
|
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
|
|
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
|
|
|
|
if (esvert_lds_size || gsprim_lds_size) {
|
|
/* Now that we have a rough proportionality between esverts
|
|
* and gsprims based on the primitive type, scale both of them
|
|
* down simultaneously based on required LDS space.
|
|
*
|
|
* We could be smarter about this if we knew how much vertex
|
|
* reuse to expect.
|
|
*/
|
|
unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
|
|
if (lds_total > target_lds_size) {
|
|
max_esverts = max_esverts * target_lds_size / lds_total;
|
|
max_gsprims = max_gsprims * target_lds_size / lds_total;
|
|
|
|
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
|
|
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
|
|
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
|
|
}
|
|
}
|
|
|
|
/* Round up towards full wave sizes for better ALU utilization. */
|
|
if (!max_vert_out_per_gs_instance) {
|
|
unsigned orig_max_esverts;
|
|
unsigned orig_max_gsprims;
|
|
unsigned wavesize;
|
|
|
|
if (gs_stage) {
|
|
wavesize = gs_info->wave_size;
|
|
} else {
|
|
wavesize = es_info->wave_size;
|
|
}
|
|
|
|
do {
|
|
orig_max_esverts = max_esverts;
|
|
orig_max_gsprims = max_gsprims;
|
|
|
|
max_esverts = align(max_esverts, wavesize);
|
|
max_esverts = MIN2(max_esverts, max_esverts_base);
|
|
if (esvert_lds_size)
|
|
max_esverts =
|
|
MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
|
|
max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
|
|
|
|
/* Hardware restriction: minimum value of max_esverts */
|
|
if (gfx_level == GFX10)
|
|
max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
|
|
else
|
|
max_esverts = MAX2(max_esverts, min_esverts);
|
|
|
|
max_gsprims = align(max_gsprims, wavesize);
|
|
max_gsprims = MIN2(max_gsprims, max_gsprims_base);
|
|
if (gsprim_lds_size) {
|
|
/* Don't count unusable vertices to the LDS
|
|
* size. Those are vertices above the maximum
|
|
* number of vertices that can occur in the
|
|
* workgroup, which is e.g. max_gsprims * 3
|
|
* for triangles.
|
|
*/
|
|
unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
|
|
max_gsprims = MIN2(max_gsprims,
|
|
(max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size);
|
|
}
|
|
clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency);
|
|
assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
|
|
} while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
|
|
|
|
/* Verify the restriction. */
|
|
if (gfx_level == GFX10)
|
|
assert(max_esverts >= min_esverts - 1 + max_verts_per_prim);
|
|
else
|
|
assert(max_esverts >= min_esverts);
|
|
} else {
|
|
/* Hardware restriction: minimum value of max_esverts */
|
|
if (gfx_level == GFX10)
|
|
max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
|
|
else
|
|
max_esverts = MAX2(max_esverts, min_esverts);
|
|
}
|
|
|
|
unsigned max_out_vertices = max_vert_out_per_gs_instance ? gs_info->gs.vertices_out
|
|
: gs_stage
|
|
? max_gsprims * gs_num_invocations * gs_info->gs.vertices_out
|
|
: max_esverts;
|
|
assert(max_out_vertices <= 256);
|
|
|
|
unsigned prim_amp_factor = 1;
|
|
if (gs_stage) {
|
|
/* Number of output primitives per GS input primitive after
|
|
* GS instancing. */
|
|
prim_amp_factor = gs_info->gs.vertices_out;
|
|
}
|
|
|
|
/* On Gfx10, the GE only checks against the maximum number of ES verts
|
|
* after allocating a full GS primitive. So we need to ensure that
|
|
* whenever this check passes, there is enough space for a full
|
|
* primitive without vertex reuse.
|
|
*/
|
|
if (gfx_level == GFX10)
|
|
out->hw_max_esverts = max_esverts - max_verts_per_prim + 1;
|
|
else
|
|
out->hw_max_esverts = max_esverts;
|
|
|
|
out->max_gsprims = max_gsprims;
|
|
out->max_out_verts = max_out_vertices;
|
|
out->prim_amp_factor = prim_amp_factor;
|
|
out->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
|
|
out->ngg_emit_size = max_gsprims * gsprim_lds_size;
|
|
|
|
/* Don't count unusable vertices. */
|
|
out->esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) * esvert_lds_size * 4;
|
|
|
|
if (gs_stage) {
|
|
out->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4;
|
|
} else {
|
|
out->vgt_esgs_ring_itemsize = 1;
|
|
}
|
|
|
|
assert(out->hw_max_esverts >= min_esverts); /* HW limitation */
|
|
|
|
unsigned workgroup_size =
|
|
ac_compute_ngg_workgroup_size(
|
|
max_esverts, max_gsprims * gs_num_invocations, max_out_vertices, prim_amp_factor);
|
|
if (gs_stage) {
|
|
gs_info->workgroup_size = workgroup_size;
|
|
}
|
|
es_info->workgroup_size = workgroup_size;
|
|
}
|
|
|
|
static void
|
|
gfx10_get_ngg_query_info(const struct radv_device *device, struct radv_pipeline_stage *es_stage,
|
|
struct radv_pipeline_stage *gs_stage,
|
|
const struct radv_pipeline_key *pipeline_key)
|
|
{
|
|
struct radv_shader_info *info = gs_stage ? &gs_stage->info : &es_stage->info;
|
|
|
|
info->gs.has_ngg_pipeline_stat_query =
|
|
device->physical_device->emulate_ngg_gs_query_pipeline_stat && !!gs_stage;
|
|
info->has_ngg_xfb_query = gs_stage ? !!gs_stage->nir->xfb_info : !!es_stage->nir->xfb_info;
|
|
info->has_ngg_prim_query = pipeline_key->primitives_generated_query || info->has_ngg_xfb_query;
|
|
}
|
|
|
|
static void
|
|
radv_determine_ngg_settings(struct radv_device *device, struct radv_pipeline_stage *es_stage,
|
|
struct radv_pipeline_stage *fs_stage,
|
|
const struct radv_pipeline_key *pipeline_key)
|
|
{
|
|
assert(es_stage->stage == MESA_SHADER_VERTEX || es_stage->stage == MESA_SHADER_TESS_EVAL);
|
|
assert(fs_stage->stage == MESA_SHADER_FRAGMENT);
|
|
|
|
uint64_t ps_inputs_read = fs_stage->nir->info.inputs_read;
|
|
|
|
unsigned num_vertices_per_prim = 0;
|
|
if (es_stage->stage == MESA_SHADER_VERTEX) {
|
|
num_vertices_per_prim = radv_get_num_vertices_per_prim(pipeline_key);
|
|
} else if (es_stage->stage == MESA_SHADER_TESS_EVAL) {
|
|
num_vertices_per_prim = es_stage->nir->info.tess.point_mode ? 1 :
|
|
es_stage->nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES ? 2 : 3;
|
|
}
|
|
|
|
/* TODO: Enable culling for LLVM. */
|
|
es_stage->info.has_ngg_culling =
|
|
radv_consider_culling(device->physical_device, es_stage->nir, ps_inputs_read,
|
|
num_vertices_per_prim, &es_stage->info) &&
|
|
!radv_use_llvm_for_stage(device, es_stage->stage);
|
|
|
|
nir_function_impl *impl = nir_shader_get_entrypoint(es_stage->nir);
|
|
es_stage->info.has_ngg_early_prim_export = exec_list_is_singular(&impl->body);
|
|
|
|
/* NGG passthrough mode should be disabled when culling and when the vertex shader
|
|
* exports the primitive ID.
|
|
*/
|
|
es_stage->info.is_ngg_passthrough = !es_stage->info.has_ngg_culling &&
|
|
!(es_stage->stage == MESA_SHADER_VERTEX && es_stage->info.outinfo.export_prim_id);
|
|
}
|
|
|
|
static void
|
|
radv_link_shaders_info(struct radv_device *device,
|
|
struct radv_pipeline_stage *producer, struct radv_pipeline_stage *consumer,
|
|
const struct radv_pipeline_key *pipeline_key)
|
|
{
|
|
/* Export primitive ID and clip/cull distances if read by the FS, or export unconditionally when
|
|
* the next stage is unknown (with graphics pipeline library).
|
|
*/
|
|
if (!consumer || consumer->stage == MESA_SHADER_FRAGMENT) {
|
|
struct radv_vs_output_info *outinfo = &producer->info.outinfo;
|
|
const bool ps_prim_id_in = !consumer || consumer->info.ps.prim_id_input;
|
|
const bool ps_clip_dists_in = !consumer || !!consumer->info.ps.num_input_clips_culls;
|
|
|
|
if (ps_prim_id_in &&
|
|
(producer->stage == MESA_SHADER_VERTEX || producer->stage == MESA_SHADER_TESS_EVAL)) {
|
|
/* Mark the primitive ID as output when it's implicitly exported by VS or TES. */
|
|
if (outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] == AC_EXP_PARAM_UNDEFINED)
|
|
outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID] = outinfo->param_exports++;
|
|
|
|
outinfo->export_prim_id = true;
|
|
}
|
|
|
|
if (ps_clip_dists_in) {
|
|
if (producer->nir->info.outputs_written & VARYING_BIT_CLIP_DIST0)
|
|
outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST0] = outinfo->param_exports++;
|
|
if (producer->nir->info.outputs_written & VARYING_BIT_CLIP_DIST1)
|
|
outinfo->vs_output_param_offset[VARYING_SLOT_CLIP_DIST1] = outinfo->param_exports++;
|
|
|
|
outinfo->export_clip_dists = true;
|
|
}
|
|
}
|
|
|
|
if (producer->stage == MESA_SHADER_VERTEX || producer->stage == MESA_SHADER_TESS_EVAL) {
|
|
if (consumer && consumer->stage == MESA_SHADER_GEOMETRY) {
|
|
uint32_t num_outputs_written;
|
|
|
|
if (producer->stage == MESA_SHADER_TESS_EVAL) {
|
|
num_outputs_written = producer->info.tes.num_linked_outputs;
|
|
producer->info.tes.as_es = true;
|
|
} else {
|
|
num_outputs_written = producer->info.vs.num_linked_outputs;
|
|
producer->info.vs.as_es = true;
|
|
}
|
|
|
|
/* Compute the ESGS item size for VS or TES as ES. */
|
|
producer->info.esgs_itemsize = num_outputs_written * 16;
|
|
}
|
|
|
|
/* Compute NGG info (GFX10+) or GS info. */
|
|
if (producer->info.is_ngg) {
|
|
struct radv_pipeline_stage *gs_stage =
|
|
consumer && consumer->stage == MESA_SHADER_GEOMETRY ? consumer : NULL;
|
|
|
|
gfx10_get_ngg_info(device, producer, gs_stage);
|
|
gfx10_get_ngg_query_info(device, producer, gs_stage, pipeline_key);
|
|
|
|
/* Determine other NGG settings like culling for VS or TES without GS. */
|
|
if (!gs_stage && consumer) {
|
|
radv_determine_ngg_settings(device, producer, consumer, pipeline_key);
|
|
}
|
|
} else if (consumer && consumer->stage == MESA_SHADER_GEOMETRY) {
|
|
radv_get_legacy_gs_info(device, producer, consumer);
|
|
}
|
|
}
|
|
|
|
if (producer->stage == MESA_SHADER_VERTEX &&
|
|
consumer && consumer->stage == MESA_SHADER_TESS_CTRL) {
|
|
struct radv_pipeline_stage *vs_stage = producer;
|
|
struct radv_pipeline_stage *tcs_stage = consumer;
|
|
|
|
vs_stage->info.vs.as_ls = true;
|
|
|
|
if (pipeline_key->dynamic_patch_control_points) {
|
|
/* Set the workgroup size to the maximum possible value to ensure that compilers don't
|
|
* optimize barriers.
|
|
*/
|
|
vs_stage->info.workgroup_size = 256;
|
|
tcs_stage->info.workgroup_size = 256;
|
|
} else {
|
|
vs_stage->info.workgroup_size =
|
|
ac_compute_lshs_workgroup_size(device->physical_device->rad_info.gfx_level,
|
|
MESA_SHADER_VERTEX, tcs_stage->info.num_tess_patches,
|
|
pipeline_key->tcs.tess_input_vertices,
|
|
tcs_stage->info.tcs.tcs_vertices_out);
|
|
|
|
tcs_stage->info.workgroup_size =
|
|
ac_compute_lshs_workgroup_size(device->physical_device->rad_info.gfx_level,
|
|
MESA_SHADER_TESS_CTRL, tcs_stage->info.num_tess_patches,
|
|
pipeline_key->tcs.tess_input_vertices,
|
|
tcs_stage->info.tcs.tcs_vertices_out);
|
|
|
|
if (!radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX)) {
|
|
/* When the number of TCS input and output vertices are the same (typically 3):
|
|
* - There is an equal amount of LS and HS invocations
|
|
* - In case of merged LSHS shaders, the LS and HS halves of the shader always process
|
|
* the exact same vertex. We can use this knowledge to optimize them.
|
|
*
|
|
* We don't set tcs_in_out_eq if the float controls differ because that might involve
|
|
* different float modes for the same block and our optimizer doesn't handle a
|
|
* instruction dominating another with a different mode.
|
|
*/
|
|
vs_stage->info.vs.tcs_in_out_eq =
|
|
device->physical_device->rad_info.gfx_level >= GFX9 &&
|
|
pipeline_key->tcs.tess_input_vertices == tcs_stage->info.tcs.tcs_vertices_out &&
|
|
vs_stage->nir->info.float_controls_execution_mode ==
|
|
tcs_stage->nir->info.float_controls_execution_mode;
|
|
|
|
if (vs_stage->info.vs.tcs_in_out_eq)
|
|
vs_stage->info.vs.tcs_temp_only_input_mask =
|
|
tcs_stage->nir->info.inputs_read &
|
|
vs_stage->nir->info.outputs_written &
|
|
~tcs_stage->nir->info.tess.tcs_cross_invocation_inputs_read &
|
|
~tcs_stage->nir->info.inputs_read_indirectly &
|
|
~vs_stage->nir->info.outputs_accessed_indirectly;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Copy shader info between TCS<->TES. */
|
|
if (producer->stage == MESA_SHADER_TESS_CTRL) {
|
|
struct radv_pipeline_stage *tcs_stage = producer;
|
|
struct radv_pipeline_stage *tes_stage = consumer;
|
|
|
|
tcs_stage->info.tcs.tes_reads_tess_factors =
|
|
!!(tes_stage->nir->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER));
|
|
tcs_stage->info.tcs.tes_inputs_read = tes_stage->nir->info.inputs_read;
|
|
tcs_stage->info.tcs.tes_patch_inputs_read = tes_stage->nir->info.patch_inputs_read;
|
|
|
|
tes_stage->info.num_tess_patches = tcs_stage->info.num_tess_patches;
|
|
}
|
|
|
|
/* Task/mesh I/O uses the task ring buffers. */
|
|
if (producer->stage == MESA_SHADER_TASK) {
|
|
consumer->info.ms.has_task = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
radv_nir_shader_info_merge(const struct radv_pipeline_stage *src, struct radv_pipeline_stage *dst)
|
|
{
|
|
const struct radv_shader_info *src_info = &src->info;
|
|
struct radv_shader_info *dst_info = &dst->info;
|
|
|
|
assert((src->stage == MESA_SHADER_VERTEX && dst->stage == MESA_SHADER_TESS_CTRL) ||
|
|
(src->stage == MESA_SHADER_VERTEX && dst->stage == MESA_SHADER_GEOMETRY) ||
|
|
(src->stage == MESA_SHADER_TESS_EVAL && dst->stage == MESA_SHADER_GEOMETRY));
|
|
|
|
dst_info->loads_push_constants |= src_info->loads_push_constants;
|
|
dst_info->loads_dynamic_offsets |= src_info->loads_dynamic_offsets;
|
|
dst_info->desc_set_used_mask |= src_info->desc_set_used_mask;
|
|
dst_info->uses_view_index |= src_info->uses_view_index;
|
|
dst_info->uses_invocation_id |= src_info->uses_invocation_id;
|
|
dst_info->uses_prim_id |= src_info->uses_prim_id;
|
|
dst_info->inline_push_constant_mask |= src_info->inline_push_constant_mask;
|
|
|
|
/* Only inline all push constants if both allows it. */
|
|
dst_info->can_inline_all_push_constants &= src_info->can_inline_all_push_constants;
|
|
|
|
if (src->stage == MESA_SHADER_VERTEX) {
|
|
dst_info->vs = src_info->vs;
|
|
} else {
|
|
dst_info->tes = src_info->tes;
|
|
}
|
|
|
|
if (dst->stage == MESA_SHADER_GEOMETRY) {
|
|
dst_info->is_ngg = src_info->is_ngg;
|
|
dst_info->gs.es_type = src->stage;
|
|
}
|
|
}
|
|
|
|
static const gl_shader_stage graphics_shader_order[] = {
|
|
MESA_SHADER_VERTEX,
|
|
MESA_SHADER_TESS_CTRL,
|
|
MESA_SHADER_TESS_EVAL,
|
|
MESA_SHADER_GEOMETRY,
|
|
|
|
MESA_SHADER_TASK,
|
|
MESA_SHADER_MESH,
|
|
};
|
|
|
|
void
|
|
radv_nir_shader_info_link(struct radv_device *device, const struct radv_pipeline_key *pipeline_key,
|
|
struct radv_pipeline_stage *stages)
|
|
{
|
|
/* Walk backwards to link */
|
|
struct radv_pipeline_stage *next_stage =
|
|
stages[MESA_SHADER_FRAGMENT].nir ? &stages[MESA_SHADER_FRAGMENT] : NULL;
|
|
|
|
for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
|
|
gl_shader_stage s = graphics_shader_order[i];
|
|
if (!stages[s].nir)
|
|
continue;
|
|
|
|
radv_link_shaders_info(device, &stages[s], next_stage, pipeline_key);
|
|
next_stage = &stages[s];
|
|
}
|
|
|
|
if (device->physical_device->rad_info.gfx_level >= GFX9) {
|
|
/* Merge shader info for VS+TCS. */
|
|
if (stages[MESA_SHADER_TESS_CTRL].nir) {
|
|
radv_nir_shader_info_merge(&stages[MESA_SHADER_VERTEX], &stages[MESA_SHADER_TESS_CTRL]);
|
|
}
|
|
|
|
/* Merge shader info for VS+GS or TES+GS. */
|
|
if (stages[MESA_SHADER_GEOMETRY].nir) {
|
|
gl_shader_stage pre_stage =
|
|
stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
|
|
|
|
radv_nir_shader_info_merge(&stages[pre_stage], &stages[MESA_SHADER_GEOMETRY]);
|
|
}
|
|
}
|
|
}
|