
Instead of computing an index at the end which we hope maps to the number of things written, just count the number of things as we go. Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
819 lines
27 KiB
C
819 lines
27 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include "anv_private.h"
|
|
|
|
#include "genxml/gen_macros.h"
|
|
#include "genxml/genX_pack.h"
|
|
|
|
VkResult genX(CreateQueryPool)(
|
|
VkDevice _device,
|
|
const VkQueryPoolCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkQueryPool* pQueryPool)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
struct anv_query_pool *pool;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
|
|
|
|
/* Query pool slots are made up of some number of 64-bit values packed
|
|
* tightly together. The first 64-bit value is always the "available" bit
|
|
* which is 0 when the query is unavailable and 1 when it is available.
|
|
* The 64-bit values that follow are determined by the type of query.
|
|
*/
|
|
uint32_t uint64s_per_slot = 1;
|
|
|
|
VkQueryPipelineStatisticFlags pipeline_statistics = 0;
|
|
switch (pCreateInfo->queryType) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
/* Occlusion queries have two values: begin and end. */
|
|
uint64s_per_slot += 2;
|
|
break;
|
|
case VK_QUERY_TYPE_TIMESTAMP:
|
|
/* Timestamps just have the one timestamp value */
|
|
uint64s_per_slot += 1;
|
|
break;
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
|
|
pipeline_statistics = pCreateInfo->pipelineStatistics;
|
|
/* We're going to trust this field implicitly so we need to ensure that
|
|
* no unhandled extension bits leak in.
|
|
*/
|
|
pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;
|
|
|
|
/* Statistics queries have a min and max for every statistic */
|
|
uint64s_per_slot += 2 * util_bitcount(pipeline_statistics);
|
|
break;
|
|
default:
|
|
assert(!"Invalid query type");
|
|
}
|
|
|
|
pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (pool == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
pool->type = pCreateInfo->queryType;
|
|
pool->pipeline_statistics = pipeline_statistics;
|
|
pool->stride = uint64s_per_slot * sizeof(uint64_t);
|
|
pool->slots = pCreateInfo->queryCount;
|
|
|
|
uint64_t size = pool->slots * pool->stride;
|
|
result = anv_bo_init_new(&pool->bo, device, size);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
if (pdevice->supports_48bit_addresses)
|
|
pool->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
|
|
|
|
if (pdevice->use_softpin)
|
|
pool->bo.flags |= EXEC_OBJECT_PINNED;
|
|
|
|
if (pdevice->has_exec_async)
|
|
pool->bo.flags |= EXEC_OBJECT_ASYNC;
|
|
|
|
anv_vma_alloc(device, &pool->bo);
|
|
|
|
/* For query pools, we set the caching mode to I915_CACHING_CACHED. On LLC
|
|
* platforms, this does nothing. On non-LLC platforms, this means snooping
|
|
* which comes at a slight cost. However, the buffers aren't big, won't be
|
|
* written frequently, and trying to handle the flushing manually without
|
|
* doing too much flushing is extremely painful.
|
|
*/
|
|
anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);
|
|
|
|
pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0);
|
|
|
|
*pQueryPool = anv_query_pool_to_handle(pool);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
vk_free2(&device->alloc, pAllocator, pool);
|
|
|
|
return result;
|
|
}
|
|
|
|
void genX(DestroyQueryPool)(
|
|
VkDevice _device,
|
|
VkQueryPool _pool,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, _pool);
|
|
|
|
if (!pool)
|
|
return;
|
|
|
|
anv_gem_munmap(pool->bo.map, pool->bo.size);
|
|
anv_vma_free(device, &pool->bo);
|
|
anv_gem_close(device, pool->bo.gem_handle);
|
|
vk_free2(&device->alloc, pAllocator, pool);
|
|
}
|
|
|
|
static void
|
|
cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
|
|
uint32_t value_index, uint64_t result)
|
|
{
|
|
if (flags & VK_QUERY_RESULT_64_BIT) {
|
|
uint64_t *dst64 = dst_slot;
|
|
dst64[value_index] = result;
|
|
} else {
|
|
uint32_t *dst32 = dst_slot;
|
|
dst32[value_index] = result;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
query_is_available(uint64_t *slot)
|
|
{
|
|
return *(volatile uint64_t *)slot;
|
|
}
|
|
|
|
static VkResult
|
|
wait_for_available(struct anv_device *device,
|
|
struct anv_query_pool *pool, uint64_t *slot)
|
|
{
|
|
while (true) {
|
|
if (query_is_available(slot))
|
|
return VK_SUCCESS;
|
|
|
|
int ret = anv_gem_busy(device, pool->bo.gem_handle);
|
|
if (ret == 1) {
|
|
/* The BO is still busy, keep waiting. */
|
|
continue;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
device->lost = true;
|
|
return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
|
|
"gem wait failed: %m");
|
|
} else {
|
|
assert(ret == 0);
|
|
/* The BO is no longer busy. */
|
|
if (query_is_available(slot)) {
|
|
return VK_SUCCESS;
|
|
} else {
|
|
VkResult status = anv_device_query_status(device);
|
|
if (status != VK_SUCCESS)
|
|
return status;
|
|
|
|
/* If we haven't seen availability yet, then we never will. This
|
|
* can only happen if we have a client error where they call
|
|
* GetQueryPoolResults on a query that they haven't submitted to
|
|
* the GPU yet. The spec allows us to do anything in this case,
|
|
* but returning VK_SUCCESS doesn't seem right and we shouldn't
|
|
* just keep spinning.
|
|
*/
|
|
return VK_NOT_READY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult genX(GetQueryPoolResults)(
|
|
VkDevice _device,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount,
|
|
size_t dataSize,
|
|
void* pData,
|
|
VkDeviceSize stride,
|
|
VkQueryResultFlags flags)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
|
|
assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
|
|
pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
|
|
pool->type == VK_QUERY_TYPE_TIMESTAMP);
|
|
|
|
if (unlikely(device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
if (pData == NULL)
|
|
return VK_SUCCESS;
|
|
|
|
void *data_end = pData + dataSize;
|
|
|
|
VkResult status = VK_SUCCESS;
|
|
for (uint32_t i = 0; i < queryCount; i++) {
|
|
uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride;
|
|
|
|
/* Availability is always at the start of the slot */
|
|
bool available = slot[0];
|
|
|
|
if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) {
|
|
status = wait_for_available(device, pool, slot);
|
|
if (status != VK_SUCCESS)
|
|
return status;
|
|
|
|
available = true;
|
|
}
|
|
|
|
/* From the Vulkan 1.0.42 spec:
|
|
*
|
|
* "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
|
|
* both not set then no result values are written to pData for
|
|
* queries that are in the unavailable state at the time of the call,
|
|
* and vkGetQueryPoolResults returns VK_NOT_READY. However,
|
|
* availability state is still written to pData for those queries if
|
|
* VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
|
|
*/
|
|
bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);
|
|
|
|
uint32_t idx = 0;
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
if (write_results)
|
|
cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]);
|
|
idx++;
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
|
|
uint32_t statistics = pool->pipeline_statistics;
|
|
while (statistics) {
|
|
uint32_t stat = u_bit_scan(&statistics);
|
|
if (write_results) {
|
|
uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];
|
|
|
|
/* WaDividePSInvocationCountBy4:HSW,BDW */
|
|
if ((device->info.gen == 8 || device->info.is_haswell) &&
|
|
(1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
|
|
result >>= 2;
|
|
|
|
cpu_write_query_result(pData, flags, idx, result);
|
|
}
|
|
idx++;
|
|
}
|
|
assert(idx == util_bitcount(pool->pipeline_statistics));
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_TIMESTAMP:
|
|
if (write_results)
|
|
cpu_write_query_result(pData, flags, idx, slot[1]);
|
|
idx++;
|
|
break;
|
|
|
|
default:
|
|
unreachable("invalid pool type");
|
|
}
|
|
|
|
if (!write_results)
|
|
status = VK_NOT_READY;
|
|
|
|
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
|
|
cpu_write_query_result(pData, flags, idx, available);
|
|
|
|
pData += stride;
|
|
if (pData >= data_end)
|
|
break;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_bo *bo, uint32_t offset)
|
|
{
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.DestinationAddressType = DAT_PPGTT;
|
|
pc.PostSyncOperation = WritePSDepthCount;
|
|
pc.DepthStallEnable = true;
|
|
pc.Address = (struct anv_address) { bo, offset };
|
|
|
|
if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
|
|
pc.CommandStreamerStallEnable = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_bo *bo, uint32_t offset)
|
|
{
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.DestinationAddressType = DAT_PPGTT;
|
|
pc.PostSyncOperation = WriteImmediateData;
|
|
pc.Address = (struct anv_address) { bo, offset };
|
|
pc.ImmediateData = 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Goes through a series of consecutive query indices in the given pool
|
|
* setting all element values to 0 and emitting them as available.
|
|
*/
|
|
static void
|
|
emit_zero_queries(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_query_pool *pool,
|
|
uint32_t first_index, uint32_t num_queries)
|
|
{
|
|
const uint32_t num_elements = pool->stride / sizeof(uint64_t);
|
|
|
|
for (uint32_t i = 0; i < num_queries; i++) {
|
|
uint32_t slot_offset = (first_index + i) * pool->stride;
|
|
for (uint32_t j = 1; j < num_elements; j++) {
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
|
|
sdi.Address.bo = &pool->bo;
|
|
sdi.Address.offset = slot_offset + j * sizeof(uint64_t);
|
|
sdi.ImmediateData = 0ull;
|
|
}
|
|
}
|
|
emit_query_availability(cmd_buffer, &pool->bo, slot_offset);
|
|
}
|
|
}
|
|
|
|
void genX(CmdResetQueryPool)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
|
|
for (uint32_t i = 0; i < queryCount; i++) {
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
|
|
sdm.Address = (struct anv_address) {
|
|
.bo = &pool->bo,
|
|
.offset = (firstQuery + i) * pool->stride,
|
|
};
|
|
sdm.ImmediateData = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const uint32_t vk_pipeline_stat_to_reg[] = {
|
|
GENX(IA_VERTICES_COUNT_num),
|
|
GENX(IA_PRIMITIVES_COUNT_num),
|
|
GENX(VS_INVOCATION_COUNT_num),
|
|
GENX(GS_INVOCATION_COUNT_num),
|
|
GENX(GS_PRIMITIVES_COUNT_num),
|
|
GENX(CL_INVOCATION_COUNT_num),
|
|
GENX(CL_PRIMITIVES_COUNT_num),
|
|
GENX(PS_INVOCATION_COUNT_num),
|
|
GENX(HS_INVOCATION_COUNT_num),
|
|
GENX(DS_INVOCATION_COUNT_num),
|
|
GENX(CS_INVOCATION_COUNT_num),
|
|
};
|
|
|
|
static void
|
|
emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat,
|
|
struct anv_bo *bo, uint32_t offset)
|
|
{
|
|
STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
|
|
(1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);
|
|
|
|
assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
|
|
uint32_t reg = vk_pipeline_stat_to_reg[stat];
|
|
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) {
|
|
lrm.RegisterAddress = reg,
|
|
lrm.MemoryAddress = (struct anv_address) { bo, offset };
|
|
}
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), lrm) {
|
|
lrm.RegisterAddress = reg + 4,
|
|
lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
|
|
}
|
|
}
|
|
|
|
void genX(CmdBeginQuery)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t query,
|
|
VkQueryControlFlags flags)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 8);
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
|
|
/* TODO: This might only be necessary for certain stats */
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
|
|
uint32_t statistics = pool->pipeline_statistics;
|
|
uint32_t offset = query * pool->stride + 8;
|
|
while (statistics) {
|
|
uint32_t stat = u_bit_scan(&statistics);
|
|
emit_pipeline_stat(cmd_buffer, stat, &pool->bo, offset);
|
|
offset += 16;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
unreachable("");
|
|
}
|
|
}
|
|
|
|
void genX(CmdEndQuery)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t query)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
emit_ps_depth_count(cmd_buffer, &pool->bo, query * pool->stride + 16);
|
|
emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
|
|
/* TODO: This might only be necessary for certain stats */
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
|
|
uint32_t statistics = pool->pipeline_statistics;
|
|
uint32_t offset = query * pool->stride + 16;
|
|
while (statistics) {
|
|
uint32_t stat = u_bit_scan(&statistics);
|
|
emit_pipeline_stat(cmd_buffer, stat, &pool->bo, offset);
|
|
offset += 16;
|
|
}
|
|
|
|
emit_query_availability(cmd_buffer, &pool->bo, query * pool->stride);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
unreachable("");
|
|
}
|
|
|
|
/* When multiview is active the spec requires that N consecutive query
|
|
* indices are used, where N is the number of active views in the subpass.
|
|
* The spec allows that we only write the results to one of the queries
|
|
* but we still need to manage result availability for all the query indices.
|
|
* Since we only emit a single query for all active views in the
|
|
* first index, mark the other query indices as being already available
|
|
* with result 0.
|
|
*/
|
|
if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
|
|
const uint32_t num_queries =
|
|
util_bitcount(cmd_buffer->state.subpass->view_mask);
|
|
if (num_queries > 1)
|
|
emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
|
|
}
|
|
}
|
|
|
|
#define TIMESTAMP 0x2358
|
|
|
|
void genX(CmdWriteTimestamp)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkPipelineStageFlagBits pipelineStage,
|
|
VkQueryPool queryPool,
|
|
uint32_t query)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
uint32_t offset = query * pool->stride;
|
|
|
|
assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
|
|
|
|
switch (pipelineStage) {
|
|
case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
|
|
srm.RegisterAddress = TIMESTAMP;
|
|
srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 8 };
|
|
}
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
|
|
srm.RegisterAddress = TIMESTAMP + 4;
|
|
srm.MemoryAddress = (struct anv_address) { &pool->bo, offset + 12 };
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Everything else is bottom-of-pipe */
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.DestinationAddressType = DAT_PPGTT;
|
|
pc.PostSyncOperation = WriteTimestamp;
|
|
pc.Address = (struct anv_address) { &pool->bo, offset + 8 };
|
|
|
|
if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
|
|
pc.CommandStreamerStallEnable = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
emit_query_availability(cmd_buffer, &pool->bo, offset);
|
|
|
|
/* When multiview is active the spec requires that N consecutive query
|
|
* indices are used, where N is the number of active views in the subpass.
|
|
* The spec allows that we only write the results to one of the queries
|
|
* but we still need to manage result availability for all the query indices.
|
|
* Since we only emit a single query for all active views in the
|
|
* first index, mark the other query indices as being already available
|
|
* with result 0.
|
|
*/
|
|
if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
|
|
const uint32_t num_queries =
|
|
util_bitcount(cmd_buffer->state.subpass->view_mask);
|
|
if (num_queries > 1)
|
|
emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
|
|
}
|
|
}
|
|
|
|
#if GEN_GEN > 7 || GEN_IS_HASWELL
|
|
|
|
static uint32_t
|
|
mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
|
|
{
|
|
struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
|
|
.ALUOpcode = opcode,
|
|
.Operand1 = operand1,
|
|
.Operand2 = operand2,
|
|
};
|
|
|
|
uint32_t dw;
|
|
GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
|
|
|
|
return dw;
|
|
}
|
|
|
|
#define CS_GPR(n) (0x2600 + (n) * 8)
|
|
|
|
static void
|
|
emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
|
|
struct anv_bo *bo, uint32_t offset)
|
|
{
|
|
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
|
|
lrm.RegisterAddress = reg,
|
|
lrm.MemoryAddress = (struct anv_address) { bo, offset };
|
|
}
|
|
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
|
|
lrm.RegisterAddress = reg + 4;
|
|
lrm.MemoryAddress = (struct anv_address) { bo, offset + 4 };
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm)
|
|
{
|
|
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
|
|
lri.RegisterOffset = reg;
|
|
lri.DataDWord = imm;
|
|
}
|
|
}
|
|
|
|
static void
|
|
emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm)
|
|
{
|
|
emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm);
|
|
emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32));
|
|
}
|
|
|
|
static void
|
|
emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst)
|
|
{
|
|
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
|
|
lrr.SourceRegisterAddress = src;
|
|
lrr.DestinationRegisterAddress = dst;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* GPR0 = GPR0 & ((1ull << n) - 1);
|
|
*/
|
|
static void
|
|
keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n)
|
|
{
|
|
assert(n < 64);
|
|
emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1);
|
|
|
|
uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
|
|
if (!dw) {
|
|
anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
return;
|
|
}
|
|
|
|
dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
|
|
dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
|
|
dw[3] = mi_alu(MI_ALU_AND, 0, 0);
|
|
dw[4] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
|
|
}
|
|
|
|
/*
|
|
* GPR0 = GPR0 << 30;
|
|
*/
|
|
static void
|
|
shl_gpr0_by_30_bits(struct anv_batch *batch)
|
|
{
|
|
/* First we mask 34 bits of GPR0 to prevent overflow */
|
|
keep_gpr0_lower_n_bits(batch, 34);
|
|
|
|
const uint32_t outer_count = 5;
|
|
const uint32_t inner_count = 6;
|
|
STATIC_ASSERT(outer_count * inner_count == 30);
|
|
const uint32_t cmd_len = 1 + inner_count * 4;
|
|
|
|
/* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
|
|
* 30 left shifts.
|
|
*/
|
|
for (int o = 0; o < outer_count; o++) {
|
|
/* Submit one MI_MATH to shift left by 6 bits */
|
|
uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH));
|
|
if (!dw) {
|
|
anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
return;
|
|
}
|
|
|
|
dw++;
|
|
for (int i = 0; i < inner_count; i++, dw += 4) {
|
|
dw[0] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
|
|
dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
|
|
dw[2] = mi_alu(MI_ALU_ADD, 0, 0);
|
|
dw[3] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* GPR0 = GPR0 >> 2;
|
|
*
|
|
* Note that the upper 30 bits of GPR are lost!
|
|
*/
|
|
static void
|
|
shr_gpr0_by_2_bits(struct anv_batch *batch)
|
|
{
|
|
shl_gpr0_by_30_bits(batch);
|
|
emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0));
|
|
emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0);
|
|
}
|
|
|
|
static void
|
|
gpu_write_query_result(struct anv_batch *batch,
|
|
struct anv_buffer *dst_buffer, uint32_t dst_offset,
|
|
VkQueryResultFlags flags,
|
|
uint32_t value_index, uint32_t reg)
|
|
{
|
|
if (flags & VK_QUERY_RESULT_64_BIT)
|
|
dst_offset += value_index * 8;
|
|
else
|
|
dst_offset += value_index * 4;
|
|
|
|
anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
|
|
srm.RegisterAddress = reg;
|
|
srm.MemoryAddress = anv_address_add(dst_buffer->address, dst_offset);
|
|
}
|
|
|
|
if (flags & VK_QUERY_RESULT_64_BIT) {
|
|
anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
|
|
srm.RegisterAddress = reg + 4;
|
|
srm.MemoryAddress = anv_address_add(dst_buffer->address,
|
|
dst_offset + 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
compute_query_result(struct anv_batch *batch, uint32_t dst_reg,
|
|
struct anv_bo *bo, uint32_t offset)
|
|
{
|
|
emit_load_alu_reg_u64(batch, CS_GPR(0), bo, offset);
|
|
emit_load_alu_reg_u64(batch, CS_GPR(1), bo, offset + 8);
|
|
|
|
/* FIXME: We need to clamp the result for 32 bit. */
|
|
|
|
uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
|
|
if (!dw) {
|
|
anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
return;
|
|
}
|
|
|
|
dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG1);
|
|
dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
|
|
dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
|
|
dw[4] = mi_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
|
|
}
|
|
|
|
void genX(CmdCopyQueryPoolResults)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount,
|
|
VkBuffer destBuffer,
|
|
VkDeviceSize destOffset,
|
|
VkDeviceSize destStride,
|
|
VkQueryResultFlags flags)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
|
|
uint32_t slot_offset;
|
|
|
|
if (flags & VK_QUERY_RESULT_WAIT_BIT) {
|
|
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
|
|
pc.CommandStreamerStallEnable = true;
|
|
pc.StallAtPixelScoreboard = true;
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < queryCount; i++) {
|
|
slot_offset = (firstQuery + i) * pool->stride;
|
|
uint32_t idx = 0;
|
|
switch (pool->type) {
|
|
case VK_QUERY_TYPE_OCCLUSION:
|
|
compute_query_result(&cmd_buffer->batch, MI_ALU_REG2,
|
|
&pool->bo, slot_offset + 8);
|
|
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
|
|
flags, idx++, CS_GPR(2));
|
|
break;
|
|
|
|
case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
|
|
uint32_t statistics = pool->pipeline_statistics;
|
|
while (statistics) {
|
|
uint32_t stat = u_bit_scan(&statistics);
|
|
|
|
compute_query_result(&cmd_buffer->batch, MI_ALU_REG0,
|
|
&pool->bo, slot_offset + idx * 16 + 8);
|
|
|
|
/* WaDividePSInvocationCountBy4:HSW,BDW */
|
|
if ((cmd_buffer->device->info.gen == 8 ||
|
|
cmd_buffer->device->info.is_haswell) &&
|
|
(1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
|
|
shr_gpr0_by_2_bits(&cmd_buffer->batch);
|
|
}
|
|
|
|
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
|
|
flags, idx++, CS_GPR(0));
|
|
}
|
|
assert(idx == util_bitcount(pool->pipeline_statistics));
|
|
break;
|
|
}
|
|
|
|
case VK_QUERY_TYPE_TIMESTAMP:
|
|
emit_load_alu_reg_u64(&cmd_buffer->batch,
|
|
CS_GPR(2), &pool->bo, slot_offset + 8);
|
|
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
|
|
flags, 0, CS_GPR(2));
|
|
break;
|
|
|
|
default:
|
|
unreachable("unhandled query type");
|
|
}
|
|
|
|
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
|
|
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
|
|
&pool->bo, slot_offset);
|
|
gpu_write_query_result(&cmd_buffer->batch, buffer, destOffset,
|
|
flags, idx, CS_GPR(0));
|
|
}
|
|
|
|
destOffset += destStride;
|
|
}
|
|
}
|
|
|
|
#else
|
|
void genX(CmdCopyQueryPoolResults)(
|
|
VkCommandBuffer commandBuffer,
|
|
VkQueryPool queryPool,
|
|
uint32_t firstQuery,
|
|
uint32_t queryCount,
|
|
VkBuffer destBuffer,
|
|
VkDeviceSize destOffset,
|
|
VkDeviceSize destStride,
|
|
VkQueryResultFlags flags)
|
|
{
|
|
anv_finishme("Queries not yet supported on Ivy Bridge");
|
|
}
|
|
#endif
|