
Basically a sed but shaderapi.c and get.c. get.c => GL_CURRENT_PROGAM always refer to the "old" UseProgram behavior shaderapi.c => the old api stil update the Shader object directly V2: formatting improvement V3 (idr): * Rebase fixes after a block of code was moved from ir_to_mesa.cpp to shaderapi.c. * Trivial reformatting. Reviewed-by: Ian Romanick <ian.d.romanick@intel.com> Reviewed-by: Eric Anholt <eric@anholt.net>
1399 lines
41 KiB
C++
1399 lines
41 KiB
C++
/**************************************************************************
|
|
*
|
|
* Copyright 2007 VMware, Inc.
|
|
* All Rights Reserved.
|
|
* Copyright 2009 VMware, Inc. All Rights Reserved.
|
|
* Copyright © 2010-2011 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sub license, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
|
|
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
**************************************************************************/
|
|
|
|
extern "C" {
|
|
#include "glheader.h"
|
|
#include "imports.h"
|
|
#include "mtypes.h"
|
|
#include "main/context.h"
|
|
#include "main/macros.h"
|
|
#include "main/samplerobj.h"
|
|
#include "program/program.h"
|
|
#include "program/prog_parameter.h"
|
|
#include "program/prog_cache.h"
|
|
#include "program/prog_instruction.h"
|
|
#include "program/prog_print.h"
|
|
#include "program/prog_statevars.h"
|
|
#include "program/programopt.h"
|
|
#include "texenvprogram.h"
|
|
}
|
|
#include "main/uniforms.h"
|
|
#include "../glsl/glsl_types.h"
|
|
#include "../glsl/ir.h"
|
|
#include "../glsl/ir_builder.h"
|
|
#include "../glsl/glsl_symbol_table.h"
|
|
#include "../glsl/glsl_parser_extras.h"
|
|
#include "../glsl/ir_optimization.h"
|
|
#include "../program/ir_to_mesa.h"
|
|
|
|
using namespace ir_builder;
|
|
|
|
/*
|
|
* Note on texture units:
|
|
*
|
|
* The number of texture units supported by fixed-function fragment
|
|
* processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
|
|
* That's because there's a one-to-one correspondence between texture
|
|
* coordinates and samplers in fixed-function processing.
|
|
*
|
|
* Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
|
|
* sets of texcoords, so is fixed-function fragment processing.
|
|
*
|
|
* We can safely use ctx->Const.MaxTextureUnits for loop bounds.
|
|
*/
|
|
|
|
|
|
struct texenvprog_cache_item
|
|
{
|
|
GLuint hash;
|
|
void *key;
|
|
struct gl_shader_program *data;
|
|
struct texenvprog_cache_item *next;
|
|
};
|
|
|
|
static GLboolean
|
|
texenv_doing_secondary_color(struct gl_context *ctx)
|
|
{
|
|
if (ctx->Light.Enabled &&
|
|
(ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
|
|
return GL_TRUE;
|
|
|
|
if (ctx->Fog.ColorSumEnabled)
|
|
return GL_TRUE;
|
|
|
|
return GL_FALSE;
|
|
}
|
|
|
|
struct mode_opt {
|
|
#ifdef __GNUC__
|
|
__extension__ GLubyte Source:4; /**< SRC_x */
|
|
__extension__ GLubyte Operand:3; /**< OPR_x */
|
|
#else
|
|
GLubyte Source; /**< SRC_x */
|
|
GLubyte Operand; /**< OPR_x */
|
|
#endif
|
|
};
|
|
|
|
struct state_key {
|
|
GLuint nr_enabled_units:8;
|
|
GLuint enabled_units:8;
|
|
GLuint separate_specular:1;
|
|
GLuint fog_enabled:1;
|
|
GLuint fog_mode:2; /**< FOG_x */
|
|
GLuint inputs_available:12;
|
|
GLuint num_draw_buffers:4;
|
|
|
|
/* NOTE: This array of structs must be last! (see "keySize" below) */
|
|
struct {
|
|
GLuint enabled:1;
|
|
GLuint source_index:4; /**< TEXTURE_x_INDEX */
|
|
GLuint shadow:1;
|
|
GLuint ScaleShiftRGB:2;
|
|
GLuint ScaleShiftA:2;
|
|
|
|
GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
|
|
GLuint ModeRGB:5; /**< MODE_x */
|
|
|
|
GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
|
|
GLuint ModeA:5; /**< MODE_x */
|
|
|
|
struct mode_opt OptRGB[MAX_COMBINER_TERMS];
|
|
struct mode_opt OptA[MAX_COMBINER_TERMS];
|
|
} unit[MAX_TEXTURE_UNITS];
|
|
};
|
|
|
|
#define FOG_LINEAR 0
|
|
#define FOG_EXP 1
|
|
#define FOG_EXP2 2
|
|
#define FOG_UNKNOWN 3
|
|
|
|
static GLuint translate_fog_mode( GLenum mode )
|
|
{
|
|
switch (mode) {
|
|
case GL_LINEAR: return FOG_LINEAR;
|
|
case GL_EXP: return FOG_EXP;
|
|
case GL_EXP2: return FOG_EXP2;
|
|
default: return FOG_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
#define OPR_SRC_COLOR 0
|
|
#define OPR_ONE_MINUS_SRC_COLOR 1
|
|
#define OPR_SRC_ALPHA 2
|
|
#define OPR_ONE_MINUS_SRC_ALPHA 3
|
|
#define OPR_ZERO 4
|
|
#define OPR_ONE 5
|
|
#define OPR_UNKNOWN 7
|
|
|
|
static GLuint translate_operand( GLenum operand )
|
|
{
|
|
switch (operand) {
|
|
case GL_SRC_COLOR: return OPR_SRC_COLOR;
|
|
case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
|
|
case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
|
|
case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
|
|
case GL_ZERO: return OPR_ZERO;
|
|
case GL_ONE: return OPR_ONE;
|
|
default:
|
|
assert(0);
|
|
return OPR_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
#define SRC_TEXTURE 0
|
|
#define SRC_TEXTURE0 1
|
|
#define SRC_TEXTURE1 2
|
|
#define SRC_TEXTURE2 3
|
|
#define SRC_TEXTURE3 4
|
|
#define SRC_TEXTURE4 5
|
|
#define SRC_TEXTURE5 6
|
|
#define SRC_TEXTURE6 7
|
|
#define SRC_TEXTURE7 8
|
|
#define SRC_CONSTANT 9
|
|
#define SRC_PRIMARY_COLOR 10
|
|
#define SRC_PREVIOUS 11
|
|
#define SRC_ZERO 12
|
|
#define SRC_UNKNOWN 15
|
|
|
|
static GLuint translate_source( GLenum src )
|
|
{
|
|
switch (src) {
|
|
case GL_TEXTURE: return SRC_TEXTURE;
|
|
case GL_TEXTURE0:
|
|
case GL_TEXTURE1:
|
|
case GL_TEXTURE2:
|
|
case GL_TEXTURE3:
|
|
case GL_TEXTURE4:
|
|
case GL_TEXTURE5:
|
|
case GL_TEXTURE6:
|
|
case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
|
|
case GL_CONSTANT: return SRC_CONSTANT;
|
|
case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
|
|
case GL_PREVIOUS: return SRC_PREVIOUS;
|
|
case GL_ZERO:
|
|
return SRC_ZERO;
|
|
default:
|
|
assert(0);
|
|
return SRC_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
#define MODE_REPLACE 0 /* r = a0 */
|
|
#define MODE_MODULATE 1 /* r = a0 * a1 */
|
|
#define MODE_ADD 2 /* r = a0 + a1 */
|
|
#define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
|
|
#define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
|
|
#define MODE_SUBTRACT 5 /* r = a0 - a1 */
|
|
#define MODE_DOT3_RGB 6 /* r = a0 . a1 */
|
|
#define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
|
|
#define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
|
|
#define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
|
|
#define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
|
|
#define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
|
|
#define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
|
|
#define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
|
|
#define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
|
|
#define MODE_BUMP_ENVMAP_ATI 15 /* special */
|
|
#define MODE_UNKNOWN 16
|
|
|
|
/**
|
|
* Translate GL combiner state into a MODE_x value
|
|
*/
|
|
static GLuint translate_mode( GLenum envMode, GLenum mode )
|
|
{
|
|
switch (mode) {
|
|
case GL_REPLACE: return MODE_REPLACE;
|
|
case GL_MODULATE: return MODE_MODULATE;
|
|
case GL_ADD:
|
|
if (envMode == GL_COMBINE4_NV)
|
|
return MODE_ADD_PRODUCTS;
|
|
else
|
|
return MODE_ADD;
|
|
case GL_ADD_SIGNED:
|
|
if (envMode == GL_COMBINE4_NV)
|
|
return MODE_ADD_PRODUCTS_SIGNED;
|
|
else
|
|
return MODE_ADD_SIGNED;
|
|
case GL_INTERPOLATE: return MODE_INTERPOLATE;
|
|
case GL_SUBTRACT: return MODE_SUBTRACT;
|
|
case GL_DOT3_RGB: return MODE_DOT3_RGB;
|
|
case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
|
|
case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
|
|
case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
|
|
case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
|
|
case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
|
|
case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
|
|
case GL_BUMP_ENVMAP_ATI: return MODE_BUMP_ENVMAP_ATI;
|
|
default:
|
|
assert(0);
|
|
return MODE_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Do we need to clamp the results of the given texture env/combine mode?
|
|
* If the inputs to the mode are in [0,1] we don't always have to clamp
|
|
* the results.
|
|
*/
|
|
static GLboolean
|
|
need_saturate( GLuint mode )
|
|
{
|
|
switch (mode) {
|
|
case MODE_REPLACE:
|
|
case MODE_MODULATE:
|
|
case MODE_INTERPOLATE:
|
|
return GL_FALSE;
|
|
case MODE_ADD:
|
|
case MODE_ADD_SIGNED:
|
|
case MODE_SUBTRACT:
|
|
case MODE_DOT3_RGB:
|
|
case MODE_DOT3_RGB_EXT:
|
|
case MODE_DOT3_RGBA:
|
|
case MODE_DOT3_RGBA_EXT:
|
|
case MODE_MODULATE_ADD_ATI:
|
|
case MODE_MODULATE_SIGNED_ADD_ATI:
|
|
case MODE_MODULATE_SUBTRACT_ATI:
|
|
case MODE_ADD_PRODUCTS:
|
|
case MODE_ADD_PRODUCTS_SIGNED:
|
|
case MODE_BUMP_ENVMAP_ATI:
|
|
return GL_TRUE;
|
|
default:
|
|
assert(0);
|
|
return GL_FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Translate TEXTURE_x_BIT to TEXTURE_x_INDEX.
|
|
*/
|
|
static GLuint translate_tex_src_bit( GLbitfield bit )
|
|
{
|
|
ASSERT(bit);
|
|
return ffs(bit) - 1;
|
|
}
|
|
|
|
|
|
#define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
|
|
|
|
/**
|
|
* Identify all possible varying inputs. The fragment program will
|
|
* never reference non-varying inputs, but will track them via state
|
|
* constants instead.
|
|
*
|
|
* This function figures out all the inputs that the fragment program
|
|
* has access to. The bitmask is later reduced to just those which
|
|
* are actually referenced.
|
|
*/
|
|
static GLbitfield get_fp_input_mask( struct gl_context *ctx )
|
|
{
|
|
/* _NEW_PROGRAM */
|
|
const GLboolean vertexShader =
|
|
(ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] &&
|
|
ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->LinkStatus &&
|
|
ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]);
|
|
const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
|
|
GLbitfield fp_inputs = 0x0;
|
|
|
|
if (ctx->VertexProgram._Overriden) {
|
|
/* Somebody's messing with the vertex program and we don't have
|
|
* a clue what's happening. Assume that it could be producing
|
|
* all possible outputs.
|
|
*/
|
|
fp_inputs = ~0;
|
|
}
|
|
else if (ctx->RenderMode == GL_FEEDBACK) {
|
|
/* _NEW_RENDERMODE */
|
|
fp_inputs = (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
|
|
}
|
|
else if (!(vertexProgram || vertexShader)) {
|
|
/* Fixed function vertex logic */
|
|
/* _NEW_VARYING_VP_INPUTS */
|
|
GLbitfield64 varying_inputs = ctx->varying_vp_inputs;
|
|
|
|
/* These get generated in the setup routine regardless of the
|
|
* vertex program:
|
|
*/
|
|
/* _NEW_POINT */
|
|
if (ctx->Point.PointSprite)
|
|
varying_inputs |= VARYING_BITS_TEX_ANY;
|
|
|
|
/* First look at what values may be computed by the generated
|
|
* vertex program:
|
|
*/
|
|
/* _NEW_LIGHT */
|
|
if (ctx->Light.Enabled) {
|
|
fp_inputs |= VARYING_BIT_COL0;
|
|
|
|
if (texenv_doing_secondary_color(ctx))
|
|
fp_inputs |= VARYING_BIT_COL1;
|
|
}
|
|
|
|
/* _NEW_TEXTURE */
|
|
fp_inputs |= (ctx->Texture._TexGenEnabled |
|
|
ctx->Texture._TexMatEnabled) << VARYING_SLOT_TEX0;
|
|
|
|
/* Then look at what might be varying as a result of enabled
|
|
* arrays, etc:
|
|
*/
|
|
if (varying_inputs & VERT_BIT_COLOR0)
|
|
fp_inputs |= VARYING_BIT_COL0;
|
|
if (varying_inputs & VERT_BIT_COLOR1)
|
|
fp_inputs |= VARYING_BIT_COL1;
|
|
|
|
fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
|
|
<< VARYING_SLOT_TEX0);
|
|
|
|
}
|
|
else {
|
|
/* calculate from vp->outputs */
|
|
struct gl_program *vprog;
|
|
GLbitfield64 vp_outputs;
|
|
|
|
/* Choose GLSL vertex shader over ARB vertex program. Need this
|
|
* since vertex shader state validation comes after fragment state
|
|
* validation (see additional comments in state.c).
|
|
*/
|
|
if (vertexShader)
|
|
vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
|
|
else
|
|
vprog = &ctx->VertexProgram.Current->Base;
|
|
|
|
vp_outputs = vprog->OutputsWritten;
|
|
|
|
/* These get generated in the setup routine regardless of the
|
|
* vertex program:
|
|
*/
|
|
/* _NEW_POINT */
|
|
if (ctx->Point.PointSprite)
|
|
vp_outputs |= VARYING_BITS_TEX_ANY;
|
|
|
|
if (vp_outputs & (1 << VARYING_SLOT_COL0))
|
|
fp_inputs |= VARYING_BIT_COL0;
|
|
if (vp_outputs & (1 << VARYING_SLOT_COL1))
|
|
fp_inputs |= VARYING_BIT_COL1;
|
|
|
|
fp_inputs |= (((vp_outputs & VARYING_BITS_TEX_ANY) >> VARYING_SLOT_TEX0)
|
|
<< VARYING_SLOT_TEX0);
|
|
}
|
|
|
|
return fp_inputs;
|
|
}
|
|
|
|
|
|
/**
|
|
* Examine current texture environment state and generate a unique
|
|
* key to identify it.
|
|
*/
|
|
static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
|
|
{
|
|
GLuint i, j;
|
|
GLbitfield inputs_referenced = VARYING_BIT_COL0;
|
|
const GLbitfield inputs_available = get_fp_input_mask( ctx );
|
|
GLuint keySize;
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
/* _NEW_TEXTURE */
|
|
for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
|
|
const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
|
|
const struct gl_texture_object *texObj = texUnit->_Current;
|
|
const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
|
|
const struct gl_sampler_object *samp;
|
|
GLenum format;
|
|
|
|
if (!texUnit->_ReallyEnabled || !texUnit->Enabled)
|
|
continue;
|
|
|
|
samp = _mesa_get_samplerobj(ctx, i);
|
|
format = texObj->Image[0][texObj->BaseLevel]->_BaseFormat;
|
|
|
|
key->unit[i].enabled = 1;
|
|
key->enabled_units |= (1<<i);
|
|
key->nr_enabled_units = i + 1;
|
|
inputs_referenced |= VARYING_BIT_TEX(i);
|
|
|
|
key->unit[i].source_index =
|
|
translate_tex_src_bit(texUnit->_ReallyEnabled);
|
|
|
|
key->unit[i].shadow =
|
|
((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
|
|
((format == GL_DEPTH_COMPONENT) ||
|
|
(format == GL_DEPTH_STENCIL_EXT)));
|
|
|
|
key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
|
|
key->unit[i].NumArgsA = comb->_NumArgsA;
|
|
|
|
key->unit[i].ModeRGB =
|
|
translate_mode(texUnit->EnvMode, comb->ModeRGB);
|
|
key->unit[i].ModeA =
|
|
translate_mode(texUnit->EnvMode, comb->ModeA);
|
|
|
|
key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
|
|
key->unit[i].ScaleShiftA = comb->ScaleShiftA;
|
|
|
|
for (j = 0; j < MAX_COMBINER_TERMS; j++) {
|
|
key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
|
|
key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
|
|
key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
|
|
key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
|
|
}
|
|
|
|
if (key->unit[i].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
|
|
/* requires some special translation */
|
|
key->unit[i].NumArgsRGB = 2;
|
|
key->unit[i].ScaleShiftRGB = 0;
|
|
key->unit[i].OptRGB[0].Operand = OPR_SRC_COLOR;
|
|
key->unit[i].OptRGB[0].Source = SRC_TEXTURE;
|
|
key->unit[i].OptRGB[1].Operand = OPR_SRC_COLOR;
|
|
key->unit[i].OptRGB[1].Source = texUnit->BumpTarget - GL_TEXTURE0 + SRC_TEXTURE0;
|
|
}
|
|
}
|
|
|
|
/* _NEW_LIGHT | _NEW_FOG */
|
|
if (texenv_doing_secondary_color(ctx)) {
|
|
key->separate_specular = 1;
|
|
inputs_referenced |= VARYING_BIT_COL1;
|
|
}
|
|
|
|
/* _NEW_FOG */
|
|
if (ctx->Fog.Enabled) {
|
|
key->fog_enabled = 1;
|
|
key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
|
|
inputs_referenced |= VARYING_BIT_FOGC; /* maybe */
|
|
}
|
|
|
|
/* _NEW_BUFFERS */
|
|
key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
|
|
|
|
/* _NEW_COLOR */
|
|
if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
|
|
/* if alpha test is enabled we need to emit at least one color */
|
|
key->num_draw_buffers = 1;
|
|
}
|
|
|
|
key->inputs_available = (inputs_available & inputs_referenced);
|
|
|
|
/* compute size of state key, ignoring unused texture units */
|
|
keySize = sizeof(*key) - sizeof(key->unit)
|
|
+ key->nr_enabled_units * sizeof(key->unit[0]);
|
|
|
|
return keySize;
|
|
}
|
|
|
|
|
|
/** State used to build the fragment program:
|
|
*/
|
|
class texenv_fragment_program : public ir_factory {
|
|
public:
|
|
struct gl_shader_program *shader_program;
|
|
struct gl_shader *shader;
|
|
exec_list *top_instructions;
|
|
struct state_key *state;
|
|
|
|
ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
|
|
/* Reg containing each texture unit's sampled texture color,
|
|
* else undef.
|
|
*/
|
|
|
|
/* Texcoord override from bumpmapping. */
|
|
ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
|
|
|
|
/* Reg containing texcoord for a texture unit,
|
|
* needed for bump mapping, else undef.
|
|
*/
|
|
|
|
ir_rvalue *src_previous; /**< Reg containing color from previous
|
|
* stage. May need to be decl'd.
|
|
*/
|
|
};
|
|
|
|
static ir_rvalue *
|
|
get_current_attrib(texenv_fragment_program *p, GLuint attrib)
|
|
{
|
|
ir_variable *current;
|
|
ir_rvalue *val;
|
|
|
|
current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
|
|
assert(current);
|
|
current->data.max_array_access = MAX2(current->data.max_array_access, attrib);
|
|
val = new(p->mem_ctx) ir_dereference_variable(current);
|
|
ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
|
|
return new(p->mem_ctx) ir_dereference_array(val, index);
|
|
}
|
|
|
|
static ir_rvalue *
|
|
get_gl_Color(texenv_fragment_program *p)
|
|
{
|
|
if (p->state->inputs_available & VARYING_BIT_COL0) {
|
|
ir_variable *var = p->shader->symbols->get_variable("gl_Color");
|
|
assert(var);
|
|
return new(p->mem_ctx) ir_dereference_variable(var);
|
|
} else {
|
|
return get_current_attrib(p, VERT_ATTRIB_COLOR0);
|
|
}
|
|
}
|
|
|
|
static ir_rvalue *
|
|
get_source(texenv_fragment_program *p,
|
|
GLuint src, GLuint unit)
|
|
{
|
|
ir_variable *var;
|
|
ir_dereference *deref;
|
|
|
|
switch (src) {
|
|
case SRC_TEXTURE:
|
|
return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
|
|
|
|
case SRC_TEXTURE0:
|
|
case SRC_TEXTURE1:
|
|
case SRC_TEXTURE2:
|
|
case SRC_TEXTURE3:
|
|
case SRC_TEXTURE4:
|
|
case SRC_TEXTURE5:
|
|
case SRC_TEXTURE6:
|
|
case SRC_TEXTURE7:
|
|
return new(p->mem_ctx)
|
|
ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]);
|
|
|
|
case SRC_CONSTANT:
|
|
var = p->shader->symbols->get_variable("gl_TextureEnvColor");
|
|
assert(var);
|
|
deref = new(p->mem_ctx) ir_dereference_variable(var);
|
|
var->data.max_array_access = MAX2(var->data.max_array_access, unit);
|
|
return new(p->mem_ctx) ir_dereference_array(deref,
|
|
new(p->mem_ctx) ir_constant(unit));
|
|
|
|
case SRC_PRIMARY_COLOR:
|
|
var = p->shader->symbols->get_variable("gl_Color");
|
|
assert(var);
|
|
return new(p->mem_ctx) ir_dereference_variable(var);
|
|
|
|
case SRC_ZERO:
|
|
return new(p->mem_ctx) ir_constant(0.0f);
|
|
|
|
case SRC_PREVIOUS:
|
|
if (!p->src_previous) {
|
|
return get_gl_Color(p);
|
|
} else {
|
|
return p->src_previous->clone(p->mem_ctx, NULL);
|
|
}
|
|
|
|
default:
|
|
assert(0);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static ir_rvalue *
|
|
emit_combine_source(texenv_fragment_program *p,
|
|
GLuint unit,
|
|
GLuint source,
|
|
GLuint operand)
|
|
{
|
|
ir_rvalue *src;
|
|
|
|
src = get_source(p, source, unit);
|
|
|
|
switch (operand) {
|
|
case OPR_ONE_MINUS_SRC_COLOR:
|
|
return sub(new(p->mem_ctx) ir_constant(1.0f), src);
|
|
|
|
case OPR_SRC_ALPHA:
|
|
return src->type->is_scalar() ? src : swizzle_w(src);
|
|
|
|
case OPR_ONE_MINUS_SRC_ALPHA: {
|
|
ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
|
|
|
|
return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
|
|
}
|
|
|
|
case OPR_ZERO:
|
|
return new(p->mem_ctx) ir_constant(0.0f);
|
|
case OPR_ONE:
|
|
return new(p->mem_ctx) ir_constant(1.0f);
|
|
case OPR_SRC_COLOR:
|
|
return src;
|
|
default:
|
|
assert(0);
|
|
return src;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check if the RGB and Alpha sources and operands match for the given
|
|
* texture unit's combinder state. When the RGB and A sources and
|
|
* operands match, we can emit fewer instructions.
|
|
*/
|
|
static GLboolean args_match( const struct state_key *key, GLuint unit )
|
|
{
|
|
GLuint i, numArgs = key->unit[unit].NumArgsRGB;
|
|
|
|
for (i = 0; i < numArgs; i++) {
|
|
if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
|
|
return GL_FALSE;
|
|
|
|
switch (key->unit[unit].OptA[i].Operand) {
|
|
case OPR_SRC_ALPHA:
|
|
switch (key->unit[unit].OptRGB[i].Operand) {
|
|
case OPR_SRC_COLOR:
|
|
case OPR_SRC_ALPHA:
|
|
break;
|
|
default:
|
|
return GL_FALSE;
|
|
}
|
|
break;
|
|
case OPR_ONE_MINUS_SRC_ALPHA:
|
|
switch (key->unit[unit].OptRGB[i].Operand) {
|
|
case OPR_ONE_MINUS_SRC_COLOR:
|
|
case OPR_ONE_MINUS_SRC_ALPHA:
|
|
break;
|
|
default:
|
|
return GL_FALSE;
|
|
}
|
|
break;
|
|
default:
|
|
return GL_FALSE; /* impossible */
|
|
}
|
|
}
|
|
|
|
return GL_TRUE;
|
|
}
|
|
|
|
static ir_rvalue *
|
|
smear(texenv_fragment_program *p, ir_rvalue *val)
|
|
{
|
|
if (!val->type->is_scalar())
|
|
return val;
|
|
|
|
return swizzle_xxxx(val);
|
|
}
|
|
|
|
static ir_rvalue *
|
|
emit_combine(texenv_fragment_program *p,
|
|
GLuint unit,
|
|
GLuint nr,
|
|
GLuint mode,
|
|
const struct mode_opt *opt)
|
|
{
|
|
ir_rvalue *src[MAX_COMBINER_TERMS];
|
|
ir_rvalue *tmp0, *tmp1;
|
|
GLuint i;
|
|
|
|
assert(nr <= MAX_COMBINER_TERMS);
|
|
|
|
for (i = 0; i < nr; i++)
|
|
src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
|
|
|
|
switch (mode) {
|
|
case MODE_REPLACE:
|
|
return src[0];
|
|
|
|
case MODE_MODULATE:
|
|
return mul(src[0], src[1]);
|
|
|
|
case MODE_ADD:
|
|
return add(src[0], src[1]);
|
|
|
|
case MODE_ADD_SIGNED:
|
|
return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
|
|
|
|
case MODE_INTERPOLATE:
|
|
/* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
|
|
tmp0 = mul(src[0], src[2]);
|
|
tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
|
|
src[2]->clone(p->mem_ctx, NULL)));
|
|
return add(tmp0, tmp1);
|
|
|
|
case MODE_SUBTRACT:
|
|
return sub(src[0], src[1]);
|
|
|
|
case MODE_DOT3_RGBA:
|
|
case MODE_DOT3_RGBA_EXT:
|
|
case MODE_DOT3_RGB_EXT:
|
|
case MODE_DOT3_RGB: {
|
|
tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
|
|
tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
|
|
|
|
tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
|
|
tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
|
|
|
|
return dot(swizzle_xyz(smear(p, tmp0)), swizzle_xyz(smear(p, tmp1)));
|
|
}
|
|
case MODE_MODULATE_ADD_ATI:
|
|
return add(mul(src[0], src[2]), src[1]);
|
|
|
|
case MODE_MODULATE_SIGNED_ADD_ATI:
|
|
return add(add(mul(src[0], src[2]), src[1]),
|
|
new(p->mem_ctx) ir_constant(-0.5f));
|
|
|
|
case MODE_MODULATE_SUBTRACT_ATI:
|
|
return sub(mul(src[0], src[2]), src[1]);
|
|
|
|
case MODE_ADD_PRODUCTS:
|
|
return add(mul(src[0], src[1]), mul(src[2], src[3]));
|
|
|
|
case MODE_ADD_PRODUCTS_SIGNED:
|
|
return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
|
|
new(p->mem_ctx) ir_constant(-0.5f));
|
|
|
|
case MODE_BUMP_ENVMAP_ATI:
|
|
/* special - not handled here */
|
|
assert(0);
|
|
return src[0];
|
|
default:
|
|
assert(0);
|
|
return src[0];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate instructions for one texture unit's env/combiner mode.
|
|
*/
|
|
static ir_rvalue *
|
|
emit_texenv(texenv_fragment_program *p, GLuint unit)
|
|
{
|
|
const struct state_key *key = p->state;
|
|
GLboolean rgb_saturate, alpha_saturate;
|
|
GLuint rgb_shift, alpha_shift;
|
|
|
|
if (!key->unit[unit].enabled) {
|
|
return get_source(p, SRC_PREVIOUS, 0);
|
|
}
|
|
if (key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
|
|
/* this isn't really a env stage delivering a color and handled elsewhere */
|
|
return get_source(p, SRC_PREVIOUS, 0);
|
|
}
|
|
|
|
switch (key->unit[unit].ModeRGB) {
|
|
case MODE_DOT3_RGB_EXT:
|
|
alpha_shift = key->unit[unit].ScaleShiftA;
|
|
rgb_shift = 0;
|
|
break;
|
|
case MODE_DOT3_RGBA_EXT:
|
|
alpha_shift = 0;
|
|
rgb_shift = 0;
|
|
break;
|
|
default:
|
|
rgb_shift = key->unit[unit].ScaleShiftRGB;
|
|
alpha_shift = key->unit[unit].ScaleShiftA;
|
|
break;
|
|
}
|
|
|
|
/* If we'll do rgb/alpha shifting don't saturate in emit_combine().
|
|
* We don't want to clamp twice.
|
|
*/
|
|
if (rgb_shift)
|
|
rgb_saturate = GL_FALSE; /* saturate after rgb shift */
|
|
else if (need_saturate(key->unit[unit].ModeRGB))
|
|
rgb_saturate = GL_TRUE;
|
|
else
|
|
rgb_saturate = GL_FALSE;
|
|
|
|
if (alpha_shift)
|
|
alpha_saturate = GL_FALSE; /* saturate after alpha shift */
|
|
else if (need_saturate(key->unit[unit].ModeA))
|
|
alpha_saturate = GL_TRUE;
|
|
else
|
|
alpha_saturate = GL_FALSE;
|
|
|
|
ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
|
|
ir_dereference *deref;
|
|
ir_rvalue *val;
|
|
|
|
/* Emit the RGB and A combine ops
|
|
*/
|
|
if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
|
|
args_match(key, unit)) {
|
|
val = emit_combine(p, unit,
|
|
key->unit[unit].NumArgsRGB,
|
|
key->unit[unit].ModeRGB,
|
|
key->unit[unit].OptRGB);
|
|
val = smear(p, val);
|
|
if (rgb_saturate)
|
|
val = saturate(val);
|
|
|
|
p->emit(assign(temp_var, val));
|
|
}
|
|
else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
|
|
key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
|
|
ir_rvalue *val = emit_combine(p, unit,
|
|
key->unit[unit].NumArgsRGB,
|
|
key->unit[unit].ModeRGB,
|
|
key->unit[unit].OptRGB);
|
|
val = smear(p, val);
|
|
if (rgb_saturate)
|
|
val = saturate(val);
|
|
p->emit(assign(temp_var, val));
|
|
}
|
|
else {
|
|
/* Need to do something to stop from re-emitting identical
|
|
* argument calculations here:
|
|
*/
|
|
val = emit_combine(p, unit,
|
|
key->unit[unit].NumArgsRGB,
|
|
key->unit[unit].ModeRGB,
|
|
key->unit[unit].OptRGB);
|
|
val = swizzle_xyz(smear(p, val));
|
|
if (rgb_saturate)
|
|
val = saturate(val);
|
|
p->emit(assign(temp_var, val, WRITEMASK_XYZ));
|
|
|
|
val = emit_combine(p, unit,
|
|
key->unit[unit].NumArgsA,
|
|
key->unit[unit].ModeA,
|
|
key->unit[unit].OptA);
|
|
val = swizzle_w(smear(p, val));
|
|
if (alpha_saturate)
|
|
val = saturate(val);
|
|
p->emit(assign(temp_var, val, WRITEMASK_W));
|
|
}
|
|
|
|
deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
|
|
|
|
/* Deal with the final shift:
|
|
*/
|
|
if (alpha_shift || rgb_shift) {
|
|
ir_constant *shift;
|
|
|
|
if (rgb_shift == alpha_shift) {
|
|
shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
|
|
}
|
|
else {
|
|
float const_data[4] = {
|
|
float(1 << rgb_shift),
|
|
float(1 << rgb_shift),
|
|
float(1 << rgb_shift),
|
|
float(1 << alpha_shift)
|
|
};
|
|
shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
|
|
(ir_constant_data *)const_data);
|
|
}
|
|
|
|
return saturate(mul(deref, shift));
|
|
}
|
|
else
|
|
return deref;
|
|
}
|
|
|
|
|
|
/**
|
|
* Generate instruction for getting a texture source term.
|
|
*/
|
|
static void load_texture( texenv_fragment_program *p, GLuint unit )
|
|
{
|
|
ir_dereference *deref;
|
|
|
|
if (p->src_texture[unit])
|
|
return;
|
|
|
|
const GLuint texTarget = p->state->unit[unit].source_index;
|
|
ir_rvalue *texcoord;
|
|
|
|
if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
|
|
texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
|
|
} else if (p->texcoord_tex[unit]) {
|
|
texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
|
|
} else {
|
|
ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
|
|
assert(tc_array);
|
|
texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
|
|
ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
|
|
texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
|
|
tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, unit);
|
|
}
|
|
|
|
if (!p->state->unit[unit].enabled) {
|
|
p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
|
|
"dummy_tex");
|
|
p->emit(p->src_texture[unit]);
|
|
|
|
p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
|
|
return ;
|
|
}
|
|
|
|
const glsl_type *sampler_type = NULL;
|
|
int coords = 0;
|
|
|
|
switch (texTarget) {
|
|
case TEXTURE_1D_INDEX:
|
|
if (p->state->unit[unit].shadow)
|
|
sampler_type = p->shader->symbols->get_type("sampler1DShadow");
|
|
else
|
|
sampler_type = p->shader->symbols->get_type("sampler1D");
|
|
coords = 1;
|
|
break;
|
|
case TEXTURE_1D_ARRAY_INDEX:
|
|
if (p->state->unit[unit].shadow)
|
|
sampler_type = p->shader->symbols->get_type("sampler1DArrayShadow");
|
|
else
|
|
sampler_type = p->shader->symbols->get_type("sampler1DArray");
|
|
coords = 2;
|
|
break;
|
|
case TEXTURE_2D_INDEX:
|
|
if (p->state->unit[unit].shadow)
|
|
sampler_type = p->shader->symbols->get_type("sampler2DShadow");
|
|
else
|
|
sampler_type = p->shader->symbols->get_type("sampler2D");
|
|
coords = 2;
|
|
break;
|
|
case TEXTURE_2D_ARRAY_INDEX:
|
|
if (p->state->unit[unit].shadow)
|
|
sampler_type = p->shader->symbols->get_type("sampler2DArrayShadow");
|
|
else
|
|
sampler_type = p->shader->symbols->get_type("sampler2DArray");
|
|
coords = 3;
|
|
break;
|
|
case TEXTURE_RECT_INDEX:
|
|
if (p->state->unit[unit].shadow)
|
|
sampler_type = p->shader->symbols->get_type("sampler2DRectShadow");
|
|
else
|
|
sampler_type = p->shader->symbols->get_type("sampler2DRect");
|
|
coords = 2;
|
|
break;
|
|
case TEXTURE_3D_INDEX:
|
|
assert(!p->state->unit[unit].shadow);
|
|
sampler_type = p->shader->symbols->get_type("sampler3D");
|
|
coords = 3;
|
|
break;
|
|
case TEXTURE_CUBE_INDEX:
|
|
if (p->state->unit[unit].shadow)
|
|
sampler_type = p->shader->symbols->get_type("samplerCubeShadow");
|
|
else
|
|
sampler_type = p->shader->symbols->get_type("samplerCube");
|
|
coords = 3;
|
|
break;
|
|
case TEXTURE_EXTERNAL_INDEX:
|
|
assert(!p->state->unit[unit].shadow);
|
|
sampler_type = p->shader->symbols->get_type("samplerExternalOES");
|
|
coords = 2;
|
|
break;
|
|
}
|
|
|
|
p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
|
|
"tex");
|
|
|
|
ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
|
|
|
|
|
|
char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
|
|
ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
|
|
sampler_name,
|
|
ir_var_uniform);
|
|
p->top_instructions->push_head(sampler);
|
|
|
|
/* Set the texture unit for this sampler. The linker will pick this value
|
|
* up and do-the-right-thing.
|
|
*
|
|
* NOTE: The cast to int is important. Without it, the constant will have
|
|
* type uint, and things later on may get confused.
|
|
*/
|
|
sampler->constant_value = new(p->mem_ctx) ir_constant(int(unit));
|
|
|
|
deref = new(p->mem_ctx) ir_dereference_variable(sampler);
|
|
tex->set_sampler(deref, glsl_type::vec4_type);
|
|
|
|
tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
|
|
|
|
if (p->state->unit[unit].shadow) {
|
|
texcoord = texcoord->clone(p->mem_ctx, NULL);
|
|
tex->shadow_comparitor = new(p->mem_ctx) ir_swizzle(texcoord,
|
|
coords, 0, 0, 0,
|
|
1);
|
|
coords++;
|
|
}
|
|
|
|
texcoord = texcoord->clone(p->mem_ctx, NULL);
|
|
tex->projector = swizzle_w(texcoord);
|
|
|
|
p->emit(assign(p->src_texture[unit], tex));
|
|
}
|
|
|
|
static void
|
|
load_texenv_source(texenv_fragment_program *p,
|
|
GLuint src, GLuint unit)
|
|
{
|
|
switch (src) {
|
|
case SRC_TEXTURE:
|
|
load_texture(p, unit);
|
|
break;
|
|
|
|
case SRC_TEXTURE0:
|
|
case SRC_TEXTURE1:
|
|
case SRC_TEXTURE2:
|
|
case SRC_TEXTURE3:
|
|
case SRC_TEXTURE4:
|
|
case SRC_TEXTURE5:
|
|
case SRC_TEXTURE6:
|
|
case SRC_TEXTURE7:
|
|
load_texture(p, src - SRC_TEXTURE0);
|
|
break;
|
|
|
|
default:
|
|
/* not a texture src - do nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Generate instructions for loading all texture source terms.
|
|
*/
|
|
static GLboolean
|
|
load_texunit_sources( texenv_fragment_program *p, GLuint unit )
|
|
{
|
|
const struct state_key *key = p->state;
|
|
GLuint i;
|
|
|
|
for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
|
|
load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
|
|
}
|
|
|
|
for (i = 0; i < key->unit[unit].NumArgsA; i++) {
|
|
load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
|
|
}
|
|
|
|
return GL_TRUE;
|
|
}
|
|
|
|
/**
|
|
* Generate instructions for loading bump map textures.
|
|
*/
|
|
static void
|
|
load_texunit_bumpmap( texenv_fragment_program *p, GLuint unit )
|
|
{
|
|
const struct state_key *key = p->state;
|
|
GLuint bumpedUnitNr = key->unit[unit].OptRGB[1].Source - SRC_TEXTURE0;
|
|
ir_rvalue *bump;
|
|
ir_rvalue *texcoord;
|
|
ir_variable *rot_mat_0, *rot_mat_1;
|
|
|
|
rot_mat_0 = p->shader->symbols->get_variable("gl_BumpRotMatrix0MESA");
|
|
assert(rot_mat_0);
|
|
rot_mat_1 = p->shader->symbols->get_variable("gl_BumpRotMatrix1MESA");
|
|
assert(rot_mat_1);
|
|
|
|
ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
|
|
assert(tc_array);
|
|
texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
|
|
ir_rvalue *index = new(p->mem_ctx) ir_constant(bumpedUnitNr);
|
|
texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
|
|
tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, unit);
|
|
|
|
load_texenv_source( p, unit + SRC_TEXTURE0, unit );
|
|
|
|
/* Apply rot matrix and add coords to be available in next phase.
|
|
* dest = Arg1 + (Arg0.xx * rotMat0) + (Arg0.yy * rotMat1)
|
|
* note only 2 coords are affected the rest are left unchanged (mul by 0)
|
|
*/
|
|
ir_rvalue *bump_x, *bump_y;
|
|
|
|
texcoord = smear(p, texcoord);
|
|
|
|
/* bump_texcoord = texcoord */
|
|
ir_variable *bumped = p->make_temp(texcoord->type, "bump_texcoord");
|
|
p->emit(bumped);
|
|
p->emit(assign(bumped, texcoord));
|
|
|
|
/* bump_texcoord.xy += arg0.x * rotmat0 + arg0.y * rotmat1 */
|
|
bump = get_source(p, key->unit[unit].OptRGB[0].Source, unit);
|
|
bump_x = mul(swizzle_x(bump), rot_mat_0);
|
|
bump_y = mul(swizzle_y(bump->clone(p->mem_ctx, NULL)), rot_mat_1);
|
|
|
|
p->emit(assign(bumped, add(swizzle_xy(bumped), add(bump_x, bump_y)),
|
|
WRITEMASK_XY));
|
|
|
|
p->texcoord_tex[bumpedUnitNr] = bumped;
|
|
}
|
|
|
|
/**
|
|
* Applies the fog calculations.
|
|
*
|
|
* This is basically like the ARB_fragment_prorgam fog options. Note
|
|
* that ffvertex_prog.c produces fogcoord for us when
|
|
* GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
|
|
*/
|
|
static ir_rvalue *
|
|
emit_fog_instructions(texenv_fragment_program *p,
|
|
ir_rvalue *fragcolor)
|
|
{
|
|
struct state_key *key = p->state;
|
|
ir_rvalue *f, *temp;
|
|
ir_variable *params, *oparams;
|
|
ir_variable *fogcoord;
|
|
|
|
/* Temporary storage for the whole fog result. Fog calculations
|
|
* only affect rgb so we're hanging on to the .a value of fragcolor
|
|
* this way.
|
|
*/
|
|
ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
|
|
p->emit(assign(fog_result, fragcolor));
|
|
|
|
fragcolor = swizzle_xyz(fog_result);
|
|
|
|
oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
|
|
assert(oparams);
|
|
fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
|
|
assert(fogcoord);
|
|
params = p->shader->symbols->get_variable("gl_Fog");
|
|
assert(params);
|
|
f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
|
|
|
|
ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
|
|
|
|
switch (key->fog_mode) {
|
|
case FOG_LINEAR:
|
|
/* f = (end - z) / (end - start)
|
|
*
|
|
* gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
|
|
* (end / (end - start)) so we can generate a single MAD.
|
|
*/
|
|
f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
|
|
break;
|
|
case FOG_EXP:
|
|
/* f = e^(-(density * fogcoord))
|
|
*
|
|
* gl_MesaFogParamsOptimized gives us density/ln(2) so we can
|
|
* use EXP2 which is generally the native instruction without
|
|
* having to do any further math on the fog density uniform.
|
|
*/
|
|
f = mul(f, swizzle_z(oparams));
|
|
f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
|
|
f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
|
|
break;
|
|
case FOG_EXP2:
|
|
/* f = e^(-(density * fogcoord)^2)
|
|
*
|
|
* gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
|
|
* can do this like FOG_EXP but with a squaring after the
|
|
* multiply by density.
|
|
*/
|
|
ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
|
|
p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
|
|
|
|
f = mul(temp_var, temp_var);
|
|
f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
|
|
f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
|
|
break;
|
|
}
|
|
|
|
p->emit(assign(f_var, saturate(f)));
|
|
|
|
f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
|
|
temp = new(p->mem_ctx) ir_dereference_variable(params);
|
|
temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
|
|
temp = mul(swizzle_xyz(temp), f);
|
|
|
|
p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
|
|
|
|
return new(p->mem_ctx) ir_dereference_variable(fog_result);
|
|
}
|
|
|
|
static void
|
|
emit_instructions(texenv_fragment_program *p)
|
|
{
|
|
struct state_key *key = p->state;
|
|
GLuint unit;
|
|
|
|
if (key->enabled_units) {
|
|
/* Zeroth pass - bump map textures first */
|
|
for (unit = 0; unit < key->nr_enabled_units; unit++) {
|
|
if (key->unit[unit].enabled &&
|
|
key->unit[unit].ModeRGB == MODE_BUMP_ENVMAP_ATI) {
|
|
load_texunit_bumpmap(p, unit);
|
|
}
|
|
}
|
|
|
|
/* First pass - to support texture_env_crossbar, first identify
|
|
* all referenced texture sources and emit texld instructions
|
|
* for each:
|
|
*/
|
|
for (unit = 0; unit < key->nr_enabled_units; unit++)
|
|
if (key->unit[unit].enabled) {
|
|
load_texunit_sources(p, unit);
|
|
}
|
|
|
|
/* Second pass - emit combine instructions to build final color:
|
|
*/
|
|
for (unit = 0; unit < key->nr_enabled_units; unit++) {
|
|
if (key->unit[unit].enabled) {
|
|
p->src_previous = emit_texenv(p, unit);
|
|
}
|
|
}
|
|
}
|
|
|
|
ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0);
|
|
|
|
if (key->separate_specular) {
|
|
ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
|
|
"specular_add");
|
|
p->emit(assign(spec_result, cf));
|
|
|
|
ir_rvalue *secondary;
|
|
if (p->state->inputs_available & VARYING_BIT_COL1) {
|
|
ir_variable *var =
|
|
p->shader->symbols->get_variable("gl_SecondaryColor");
|
|
assert(var);
|
|
secondary = swizzle_xyz(var);
|
|
} else {
|
|
secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
|
|
}
|
|
|
|
p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
|
|
WRITEMASK_XYZ));
|
|
|
|
cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
|
|
}
|
|
|
|
if (key->fog_enabled) {
|
|
cf = emit_fog_instructions(p, cf);
|
|
}
|
|
|
|
ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
|
|
assert(frag_color);
|
|
p->emit(assign(frag_color, cf));
|
|
}
|
|
|
|
/**
|
|
* Generate a new fragment program which implements the context's
|
|
* current texture env/combine mode.
|
|
*/
|
|
static struct gl_shader_program *
|
|
create_new_program(struct gl_context *ctx, struct state_key *key)
|
|
{
|
|
texenv_fragment_program p;
|
|
unsigned int unit;
|
|
_mesa_glsl_parse_state *state;
|
|
|
|
p.mem_ctx = ralloc_context(NULL);
|
|
p.shader = ctx->Driver.NewShader(ctx, 0, GL_FRAGMENT_SHADER);
|
|
p.shader->ir = new(p.shader) exec_list;
|
|
state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
|
|
p.shader);
|
|
p.shader->symbols = state->symbols;
|
|
p.top_instructions = p.shader->ir;
|
|
p.instructions = p.shader->ir;
|
|
p.state = key;
|
|
p.shader_program = ctx->Driver.NewShaderProgram(ctx, 0);
|
|
|
|
/* Tell the linker to ignore the fact that we're building a
|
|
* separate shader, in case we're in a GLES2 context that would
|
|
* normally reject that. The real problem is that we're building a
|
|
* fixed function program in a GLES2 context at all, but that's a
|
|
* big mess to clean up.
|
|
*/
|
|
p.shader_program->InternalSeparateShader = GL_TRUE;
|
|
|
|
state->language_version = 130;
|
|
state->es_shader = false;
|
|
if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
|
|
state->OES_EGL_image_external_enable = true;
|
|
_mesa_glsl_initialize_types(state);
|
|
_mesa_glsl_initialize_variables(p.instructions, state);
|
|
|
|
for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
|
|
p.src_texture[unit] = NULL;
|
|
p.texcoord_tex[unit] = NULL;
|
|
}
|
|
|
|
p.src_previous = NULL;
|
|
|
|
ir_function *main_f = new(p.mem_ctx) ir_function("main");
|
|
p.emit(main_f);
|
|
state->symbols->add_function(main_f);
|
|
|
|
ir_function_signature *main_sig =
|
|
new(p.mem_ctx) ir_function_signature(p.shader->symbols->get_type("void"));
|
|
main_sig->is_defined = true;
|
|
main_f->add_signature(main_sig);
|
|
|
|
p.instructions = &main_sig->body;
|
|
if (key->num_draw_buffers)
|
|
emit_instructions(&p);
|
|
|
|
validate_ir_tree(p.shader->ir);
|
|
|
|
const struct gl_shader_compiler_options *options =
|
|
&ctx->ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
|
|
|
|
while (do_common_optimization(p.shader->ir, false, false, 32, options))
|
|
;
|
|
reparent_ir(p.shader->ir, p.shader->ir);
|
|
|
|
p.shader->CompileStatus = true;
|
|
p.shader->Version = state->language_version;
|
|
p.shader->uses_builtin_functions = state->uses_builtin_functions;
|
|
p.shader_program->Shaders =
|
|
(gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
|
|
p.shader_program->Shaders[0] = p.shader;
|
|
p.shader_program->NumShaders = 1;
|
|
|
|
_mesa_glsl_link_shader(ctx, p.shader_program);
|
|
|
|
if (!p.shader_program->LinkStatus)
|
|
_mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
|
|
p.shader_program->InfoLog);
|
|
|
|
ralloc_free(p.mem_ctx);
|
|
return p.shader_program;
|
|
}
|
|
|
|
extern "C" {
|
|
|
|
/**
|
|
* Return a fragment program which implements the current
|
|
* fixed-function texture, fog and color-sum operations.
|
|
*/
|
|
struct gl_shader_program *
|
|
_mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
|
|
{
|
|
struct gl_shader_program *shader_program;
|
|
struct state_key key;
|
|
GLuint keySize;
|
|
|
|
keySize = make_state_key(ctx, &key);
|
|
|
|
shader_program = (struct gl_shader_program *)
|
|
_mesa_search_program_cache(ctx->FragmentProgram.Cache,
|
|
&key, keySize);
|
|
|
|
if (!shader_program) {
|
|
shader_program = create_new_program(ctx, &key);
|
|
|
|
_mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
|
|
&key, keySize, shader_program);
|
|
}
|
|
|
|
return shader_program;
|
|
}
|
|
|
|
}
|