
This enables tessellation shaders and sets some values for the maximums. Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl> Signed-off-by: Dave Airlie <airlied@redhat.com>
2310 lines
77 KiB
C
2310 lines
77 KiB
C
/*
|
|
* Copyright © 2016 Red Hat.
|
|
* Copyright © 2016 Bas Nieuwenhuizen
|
|
*
|
|
* based in part on anv driver which is:
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "util/mesa-sha1.h"
|
|
#include "radv_private.h"
|
|
#include "nir/nir.h"
|
|
#include "nir/nir_builder.h"
|
|
#include "spirv/nir_spirv.h"
|
|
|
|
#include <llvm-c/Core.h>
|
|
#include <llvm-c/TargetMachine.h>
|
|
|
|
#include "sid.h"
|
|
#include "r600d_common.h"
|
|
#include "ac_binary.h"
|
|
#include "ac_llvm_util.h"
|
|
#include "ac_nir_to_llvm.h"
|
|
#include "vk_format.h"
|
|
#include "util/debug.h"
|
|
|
|
void radv_shader_variant_destroy(struct radv_device *device,
|
|
struct radv_shader_variant *variant);
|
|
|
|
static const struct nir_shader_compiler_options nir_options = {
|
|
.vertex_id_zero_based = true,
|
|
.lower_scmp = true,
|
|
.lower_flrp32 = true,
|
|
.lower_fsat = true,
|
|
.lower_pack_snorm_2x16 = true,
|
|
.lower_pack_snorm_4x8 = true,
|
|
.lower_pack_unorm_2x16 = true,
|
|
.lower_pack_unorm_4x8 = true,
|
|
.lower_unpack_snorm_2x16 = true,
|
|
.lower_unpack_snorm_4x8 = true,
|
|
.lower_unpack_unorm_2x16 = true,
|
|
.lower_unpack_unorm_4x8 = true,
|
|
.lower_extract_byte = true,
|
|
.lower_extract_word = true,
|
|
};
|
|
|
|
VkResult radv_CreateShaderModule(
|
|
VkDevice _device,
|
|
const VkShaderModuleCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkShaderModule* pShaderModule)
|
|
{
|
|
RADV_FROM_HANDLE(radv_device, device, _device);
|
|
struct radv_shader_module *module;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
|
|
assert(pCreateInfo->flags == 0);
|
|
|
|
module = vk_alloc2(&device->alloc, pAllocator,
|
|
sizeof(*module) + pCreateInfo->codeSize, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (module == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
module->nir = NULL;
|
|
module->size = pCreateInfo->codeSize;
|
|
memcpy(module->data, pCreateInfo->pCode, module->size);
|
|
|
|
_mesa_sha1_compute(module->data, module->size, module->sha1);
|
|
|
|
*pShaderModule = radv_shader_module_to_handle(module);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void radv_DestroyShaderModule(
|
|
VkDevice _device,
|
|
VkShaderModule _module,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
RADV_FROM_HANDLE(radv_device, device, _device);
|
|
RADV_FROM_HANDLE(radv_shader_module, module, _module);
|
|
|
|
if (!module)
|
|
return;
|
|
|
|
vk_free2(&device->alloc, pAllocator, module);
|
|
}
|
|
|
|
|
|
static void
|
|
radv_pipeline_destroy(struct radv_device *device,
|
|
struct radv_pipeline *pipeline,
|
|
const VkAllocationCallbacks* allocator)
|
|
{
|
|
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
|
|
if (pipeline->shaders[i])
|
|
radv_shader_variant_destroy(device, pipeline->shaders[i]);
|
|
|
|
if (pipeline->gs_copy_shader)
|
|
radv_shader_variant_destroy(device, pipeline->gs_copy_shader);
|
|
|
|
vk_free2(&device->alloc, allocator, pipeline);
|
|
}
|
|
|
|
void radv_DestroyPipeline(
|
|
VkDevice _device,
|
|
VkPipeline _pipeline,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
RADV_FROM_HANDLE(radv_device, device, _device);
|
|
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
|
|
|
|
if (!_pipeline)
|
|
return;
|
|
|
|
radv_pipeline_destroy(device, pipeline, pAllocator);
|
|
}
|
|
|
|
|
|
static void
|
|
radv_optimize_nir(struct nir_shader *shader)
|
|
{
|
|
bool progress;
|
|
|
|
do {
|
|
progress = false;
|
|
|
|
NIR_PASS_V(shader, nir_lower_vars_to_ssa);
|
|
NIR_PASS_V(shader, nir_lower_alu_to_scalar);
|
|
NIR_PASS_V(shader, nir_lower_phis_to_scalar);
|
|
|
|
NIR_PASS(progress, shader, nir_copy_prop);
|
|
NIR_PASS(progress, shader, nir_opt_remove_phis);
|
|
NIR_PASS(progress, shader, nir_opt_dce);
|
|
NIR_PASS(progress, shader, nir_opt_dead_cf);
|
|
NIR_PASS(progress, shader, nir_opt_cse);
|
|
NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
|
|
NIR_PASS(progress, shader, nir_opt_algebraic);
|
|
NIR_PASS(progress, shader, nir_opt_constant_folding);
|
|
NIR_PASS(progress, shader, nir_opt_undef);
|
|
NIR_PASS(progress, shader, nir_opt_conditional_discard);
|
|
} while (progress);
|
|
}
|
|
|
|
static nir_shader *
|
|
radv_shader_compile_to_nir(struct radv_device *device,
|
|
struct radv_shader_module *module,
|
|
const char *entrypoint_name,
|
|
gl_shader_stage stage,
|
|
const VkSpecializationInfo *spec_info,
|
|
bool dump)
|
|
{
|
|
if (strcmp(entrypoint_name, "main") != 0) {
|
|
radv_finishme("Multiple shaders per module not really supported");
|
|
}
|
|
|
|
nir_shader *nir;
|
|
nir_function *entry_point;
|
|
if (module->nir) {
|
|
/* Some things such as our meta clear/blit code will give us a NIR
|
|
* shader directly. In that case, we just ignore the SPIR-V entirely
|
|
* and just use the NIR shader */
|
|
nir = module->nir;
|
|
nir->options = &nir_options;
|
|
nir_validate_shader(nir);
|
|
|
|
assert(exec_list_length(&nir->functions) == 1);
|
|
struct exec_node *node = exec_list_get_head(&nir->functions);
|
|
entry_point = exec_node_data(nir_function, node, node);
|
|
} else {
|
|
uint32_t *spirv = (uint32_t *) module->data;
|
|
assert(module->size % 4 == 0);
|
|
|
|
uint32_t num_spec_entries = 0;
|
|
struct nir_spirv_specialization *spec_entries = NULL;
|
|
if (spec_info && spec_info->mapEntryCount > 0) {
|
|
num_spec_entries = spec_info->mapEntryCount;
|
|
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
|
|
for (uint32_t i = 0; i < num_spec_entries; i++) {
|
|
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
|
|
const void *data = spec_info->pData + entry.offset;
|
|
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
|
|
|
|
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
|
|
if (spec_info->dataSize == 8)
|
|
spec_entries[i].data64 = *(const uint64_t *)data;
|
|
else
|
|
spec_entries[i].data32 = *(const uint32_t *)data;
|
|
}
|
|
}
|
|
const struct nir_spirv_supported_extensions supported_ext = {
|
|
.draw_parameters = true,
|
|
.float64 = true,
|
|
.image_read_without_format = true,
|
|
.image_write_without_format = true,
|
|
.tessellation = true,
|
|
};
|
|
entry_point = spirv_to_nir(spirv, module->size / 4,
|
|
spec_entries, num_spec_entries,
|
|
stage, entrypoint_name, &supported_ext, &nir_options);
|
|
nir = entry_point->shader;
|
|
assert(nir->stage == stage);
|
|
nir_validate_shader(nir);
|
|
|
|
free(spec_entries);
|
|
|
|
/* We have to lower away local constant initializers right before we
|
|
* inline functions. That way they get properly initialized at the top
|
|
* of the function and not at the top of its caller.
|
|
*/
|
|
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
|
|
NIR_PASS_V(nir, nir_lower_returns);
|
|
NIR_PASS_V(nir, nir_inline_functions);
|
|
|
|
/* Pick off the single entrypoint that we want */
|
|
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
|
|
if (func != entry_point)
|
|
exec_node_remove(&func->node);
|
|
}
|
|
assert(exec_list_length(&nir->functions) == 1);
|
|
entry_point->name = ralloc_strdup(entry_point, "main");
|
|
|
|
NIR_PASS_V(nir, nir_remove_dead_variables,
|
|
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
|
|
|
|
/* Now that we've deleted all but the main function, we can go ahead and
|
|
* lower the rest of the constant initializers.
|
|
*/
|
|
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
|
|
NIR_PASS_V(nir, nir_lower_system_values);
|
|
NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays);
|
|
}
|
|
|
|
/* Vulkan uses the separate-shader linking model */
|
|
nir->info->separate_shader = true;
|
|
|
|
nir_shader_gather_info(nir, entry_point->impl);
|
|
|
|
nir_variable_mode indirect_mask = 0;
|
|
indirect_mask |= nir_var_shader_in;
|
|
indirect_mask |= nir_var_local;
|
|
|
|
nir_lower_indirect_derefs(nir, indirect_mask);
|
|
|
|
static const nir_lower_tex_options tex_options = {
|
|
.lower_txp = ~0,
|
|
};
|
|
|
|
nir_lower_tex(nir, &tex_options);
|
|
|
|
nir_lower_vars_to_ssa(nir);
|
|
nir_lower_var_copies(nir);
|
|
nir_lower_global_vars_to_local(nir);
|
|
nir_remove_dead_variables(nir, nir_var_local);
|
|
radv_optimize_nir(nir);
|
|
|
|
if (dump)
|
|
nir_print_shader(nir, stderr);
|
|
|
|
return nir;
|
|
}
|
|
|
|
static const char *radv_get_shader_name(struct radv_shader_variant *var,
|
|
gl_shader_stage stage)
|
|
{
|
|
switch (stage) {
|
|
case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS";
|
|
case MESA_SHADER_GEOMETRY: return "Geometry Shader";
|
|
case MESA_SHADER_FRAGMENT: return "Pixel Shader";
|
|
case MESA_SHADER_COMPUTE: return "Compute Shader";
|
|
case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader";
|
|
case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS";
|
|
default:
|
|
return "Unknown shader";
|
|
};
|
|
|
|
}
|
|
static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline)
|
|
{
|
|
unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
|
|
struct radv_shader_variant *var;
|
|
struct ac_shader_config *conf;
|
|
int i;
|
|
FILE *file = stderr;
|
|
unsigned max_simd_waves = 10;
|
|
unsigned lds_per_wave = 0;
|
|
|
|
for (i = 0; i < MESA_SHADER_STAGES; i++) {
|
|
if (!pipeline->shaders[i])
|
|
continue;
|
|
var = pipeline->shaders[i];
|
|
|
|
conf = &var->config;
|
|
|
|
if (i == MESA_SHADER_FRAGMENT) {
|
|
lds_per_wave = conf->lds_size * lds_increment +
|
|
align(var->info.fs.num_interp * 48, lds_increment);
|
|
}
|
|
|
|
if (conf->num_sgprs) {
|
|
if (device->physical_device->rad_info.chip_class >= VI)
|
|
max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
|
|
else
|
|
max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
|
|
}
|
|
|
|
if (conf->num_vgprs)
|
|
max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
|
|
|
|
/* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
|
|
* that PS can use.
|
|
*/
|
|
if (lds_per_wave)
|
|
max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
|
|
|
|
fprintf(file, "\n%s:\n",
|
|
radv_get_shader_name(var, i));
|
|
if (i == MESA_SHADER_FRAGMENT) {
|
|
fprintf(file, "*** SHADER CONFIG ***\n"
|
|
"SPI_PS_INPUT_ADDR = 0x%04x\n"
|
|
"SPI_PS_INPUT_ENA = 0x%04x\n",
|
|
conf->spi_ps_input_addr, conf->spi_ps_input_ena);
|
|
}
|
|
fprintf(file, "*** SHADER STATS ***\n"
|
|
"SGPRS: %d\n"
|
|
"VGPRS: %d\n"
|
|
"Spilled SGPRs: %d\n"
|
|
"Spilled VGPRs: %d\n"
|
|
"Code Size: %d bytes\n"
|
|
"LDS: %d blocks\n"
|
|
"Scratch: %d bytes per wave\n"
|
|
"Max Waves: %d\n"
|
|
"********************\n\n\n",
|
|
conf->num_sgprs, conf->num_vgprs,
|
|
conf->spilled_sgprs, conf->spilled_vgprs, var->code_size,
|
|
conf->lds_size, conf->scratch_bytes_per_wave,
|
|
max_simd_waves);
|
|
}
|
|
}
|
|
|
|
void radv_shader_variant_destroy(struct radv_device *device,
|
|
struct radv_shader_variant *variant)
|
|
{
|
|
if (__sync_fetch_and_sub(&variant->ref_count, 1) != 1)
|
|
return;
|
|
|
|
device->ws->buffer_destroy(variant->bo);
|
|
free(variant);
|
|
}
|
|
|
|
static void radv_fill_shader_variant(struct radv_device *device,
|
|
struct radv_shader_variant *variant,
|
|
struct ac_shader_binary *binary,
|
|
gl_shader_stage stage)
|
|
{
|
|
bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
|
|
unsigned vgpr_comp_cnt = 0;
|
|
|
|
if (scratch_enabled && !device->llvm_supports_spill)
|
|
radv_finishme("shader scratch support only available with LLVM 4.0");
|
|
|
|
variant->code_size = binary->code_size;
|
|
variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
|
|
S_00B12C_SCRATCH_EN(scratch_enabled);
|
|
|
|
switch (stage) {
|
|
case MESA_SHADER_TESS_EVAL:
|
|
vgpr_comp_cnt = 3;
|
|
/* fallthrough */
|
|
case MESA_SHADER_TESS_CTRL:
|
|
variant->rsrc2 |= S_00B42C_OC_LDS_EN(1);
|
|
break;
|
|
case MESA_SHADER_VERTEX:
|
|
case MESA_SHADER_GEOMETRY:
|
|
vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
|
|
break;
|
|
case MESA_SHADER_FRAGMENT:
|
|
break;
|
|
case MESA_SHADER_COMPUTE:
|
|
variant->rsrc2 |=
|
|
S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
|
|
S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
|
|
S_00B84C_TG_SIZE_EN(1) |
|
|
S_00B84C_LDS_SIZE(variant->config.lds_size);
|
|
break;
|
|
default:
|
|
unreachable("unsupported shader type");
|
|
break;
|
|
}
|
|
|
|
variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
|
|
S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
|
|
S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
|
|
S_00B848_DX10_CLAMP(1) |
|
|
S_00B848_FLOAT_MODE(variant->config.float_mode);
|
|
|
|
variant->bo = device->ws->buffer_create(device->ws, binary->code_size, 256,
|
|
RADEON_DOMAIN_VRAM, RADEON_FLAG_CPU_ACCESS);
|
|
|
|
void *ptr = device->ws->buffer_map(variant->bo);
|
|
memcpy(ptr, binary->code, binary->code_size);
|
|
device->ws->buffer_unmap(variant->bo);
|
|
|
|
|
|
}
|
|
|
|
static struct radv_shader_variant *radv_shader_variant_create(struct radv_device *device,
|
|
struct nir_shader *shader,
|
|
struct radv_pipeline_layout *layout,
|
|
const union ac_shader_variant_key *key,
|
|
void** code_out,
|
|
unsigned *code_size_out,
|
|
bool dump)
|
|
{
|
|
struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
|
|
enum radeon_family chip_family = device->physical_device->rad_info.family;
|
|
LLVMTargetMachineRef tm;
|
|
if (!variant)
|
|
return NULL;
|
|
|
|
struct ac_nir_compiler_options options = {0};
|
|
options.layout = layout;
|
|
if (key)
|
|
options.key = *key;
|
|
|
|
struct ac_shader_binary binary;
|
|
|
|
options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
|
|
options.family = chip_family;
|
|
options.chip_class = device->physical_device->rad_info.chip_class;
|
|
options.supports_spill = device->llvm_supports_spill;
|
|
tm = ac_create_target_machine(chip_family, options.supports_spill);
|
|
ac_compile_nir_shader(tm, &binary, &variant->config,
|
|
&variant->info, shader, &options, dump);
|
|
LLVMDisposeTargetMachine(tm);
|
|
|
|
radv_fill_shader_variant(device, variant, &binary, shader->stage);
|
|
|
|
if (code_out) {
|
|
*code_out = binary.code;
|
|
*code_size_out = binary.code_size;
|
|
} else
|
|
free(binary.code);
|
|
free(binary.config);
|
|
free(binary.rodata);
|
|
free(binary.global_symbol_offsets);
|
|
free(binary.relocs);
|
|
free(binary.disasm_string);
|
|
variant->ref_count = 1;
|
|
return variant;
|
|
}
|
|
|
|
static struct radv_shader_variant *
|
|
radv_pipeline_create_gs_copy_shader(struct radv_pipeline *pipeline,
|
|
struct nir_shader *nir,
|
|
void** code_out,
|
|
unsigned *code_size_out,
|
|
bool dump_shader)
|
|
{
|
|
struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
|
|
enum radeon_family chip_family = pipeline->device->physical_device->rad_info.family;
|
|
LLVMTargetMachineRef tm;
|
|
if (!variant)
|
|
return NULL;
|
|
|
|
struct ac_nir_compiler_options options = {0};
|
|
struct ac_shader_binary binary;
|
|
options.family = chip_family;
|
|
options.chip_class = pipeline->device->physical_device->rad_info.chip_class;
|
|
options.supports_spill = pipeline->device->llvm_supports_spill;
|
|
tm = ac_create_target_machine(chip_family, options.supports_spill);
|
|
ac_create_gs_copy_shader(tm, nir, &binary, &variant->config, &variant->info, &options, dump_shader);
|
|
LLVMDisposeTargetMachine(tm);
|
|
|
|
radv_fill_shader_variant(pipeline->device, variant, &binary, MESA_SHADER_VERTEX);
|
|
|
|
if (code_out) {
|
|
*code_out = binary.code;
|
|
*code_size_out = binary.code_size;
|
|
} else
|
|
free(binary.code);
|
|
free(binary.config);
|
|
free(binary.rodata);
|
|
free(binary.global_symbol_offsets);
|
|
free(binary.relocs);
|
|
free(binary.disasm_string);
|
|
variant->ref_count = 1;
|
|
return variant;
|
|
}
|
|
|
|
static struct radv_shader_variant *
|
|
radv_pipeline_compile(struct radv_pipeline *pipeline,
|
|
struct radv_pipeline_cache *cache,
|
|
struct radv_shader_module *module,
|
|
const char *entrypoint,
|
|
gl_shader_stage stage,
|
|
const VkSpecializationInfo *spec_info,
|
|
struct radv_pipeline_layout *layout,
|
|
const union ac_shader_variant_key *key)
|
|
{
|
|
unsigned char sha1[20];
|
|
unsigned char gs_copy_sha1[20];
|
|
struct radv_shader_variant *variant;
|
|
nir_shader *nir;
|
|
void *code = NULL;
|
|
unsigned code_size = 0;
|
|
bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS);
|
|
|
|
if (module->nir)
|
|
_mesa_sha1_compute(module->nir->info->name,
|
|
strlen(module->nir->info->name),
|
|
module->sha1);
|
|
|
|
radv_hash_shader(sha1, module, entrypoint, spec_info, layout, key, 0);
|
|
if (stage == MESA_SHADER_GEOMETRY)
|
|
radv_hash_shader(gs_copy_sha1, module, entrypoint, spec_info,
|
|
layout, key, 1);
|
|
|
|
variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device,
|
|
cache,
|
|
sha1);
|
|
|
|
if (stage == MESA_SHADER_GEOMETRY) {
|
|
pipeline->gs_copy_shader =
|
|
radv_create_shader_variant_from_pipeline_cache(
|
|
pipeline->device,
|
|
cache,
|
|
gs_copy_sha1);
|
|
}
|
|
|
|
if (variant &&
|
|
(stage != MESA_SHADER_GEOMETRY || pipeline->gs_copy_shader))
|
|
return variant;
|
|
|
|
nir = radv_shader_compile_to_nir(pipeline->device,
|
|
module, entrypoint, stage,
|
|
spec_info, dump);
|
|
if (nir == NULL)
|
|
return NULL;
|
|
|
|
if (!variant) {
|
|
variant = radv_shader_variant_create(pipeline->device, nir,
|
|
layout, key, &code,
|
|
&code_size, dump);
|
|
}
|
|
|
|
if (stage == MESA_SHADER_GEOMETRY && !pipeline->gs_copy_shader) {
|
|
void *gs_copy_code = NULL;
|
|
unsigned gs_copy_code_size = 0;
|
|
pipeline->gs_copy_shader = radv_pipeline_create_gs_copy_shader(
|
|
pipeline, nir, &gs_copy_code, &gs_copy_code_size, dump);
|
|
|
|
if (pipeline->gs_copy_shader) {
|
|
pipeline->gs_copy_shader =
|
|
radv_pipeline_cache_insert_shader(cache,
|
|
gs_copy_sha1,
|
|
pipeline->gs_copy_shader,
|
|
gs_copy_code,
|
|
gs_copy_code_size);
|
|
}
|
|
}
|
|
if (!module->nir)
|
|
ralloc_free(nir);
|
|
|
|
if (variant)
|
|
variant = radv_pipeline_cache_insert_shader(cache, sha1, variant,
|
|
code, code_size);
|
|
|
|
if (code)
|
|
free(code);
|
|
return variant;
|
|
}
|
|
|
|
static union ac_shader_variant_key
|
|
radv_compute_tes_key(bool as_es)
|
|
{
|
|
union ac_shader_variant_key key;
|
|
memset(&key, 0, sizeof(key));
|
|
key.tes.as_es = as_es;
|
|
return key;
|
|
}
|
|
|
|
static union ac_shader_variant_key
|
|
radv_compute_tcs_key(unsigned primitive_mode, unsigned input_vertices)
|
|
{
|
|
union ac_shader_variant_key key;
|
|
memset(&key, 0, sizeof(key));
|
|
key.tcs.primitive_mode = primitive_mode;
|
|
key.tcs.input_vertices = input_vertices;
|
|
return key;
|
|
}
|
|
|
|
static void
|
|
radv_tess_pipeline_compile(struct radv_pipeline *pipeline,
|
|
struct radv_pipeline_cache *cache,
|
|
struct radv_shader_module *tcs_module,
|
|
struct radv_shader_module *tes_module,
|
|
const char *tcs_entrypoint,
|
|
const char *tes_entrypoint,
|
|
const VkSpecializationInfo *tcs_spec_info,
|
|
const VkSpecializationInfo *tes_spec_info,
|
|
struct radv_pipeline_layout *layout,
|
|
unsigned input_vertices)
|
|
{
|
|
unsigned char tcs_sha1[20], tes_sha1[20];
|
|
struct radv_shader_variant *tes_variant = NULL, *tcs_variant = NULL;
|
|
nir_shader *tes_nir, *tcs_nir;
|
|
void *tes_code = NULL, *tcs_code = NULL;
|
|
unsigned tes_code_size = 0, tcs_code_size = 0;
|
|
union ac_shader_variant_key tes_key = radv_compute_tes_key(radv_pipeline_has_gs(pipeline));
|
|
union ac_shader_variant_key tcs_key;
|
|
bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS);
|
|
|
|
if (tes_module->nir)
|
|
_mesa_sha1_compute(tes_module->nir->info->name,
|
|
strlen(tes_module->nir->info->name),
|
|
tes_module->sha1);
|
|
radv_hash_shader(tes_sha1, tes_module, tes_entrypoint, tes_spec_info, layout, &tes_key, 0);
|
|
|
|
tes_variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device,
|
|
cache,
|
|
tes_sha1);
|
|
|
|
if (tes_variant) {
|
|
tcs_key = radv_compute_tcs_key(tes_variant->info.tes.primitive_mode, input_vertices);
|
|
|
|
if (tcs_module->nir)
|
|
_mesa_sha1_compute(tcs_module->nir->info->name,
|
|
strlen(tcs_module->nir->info->name),
|
|
tcs_module->sha1);
|
|
|
|
radv_hash_shader(tcs_sha1, tcs_module, tcs_entrypoint, tcs_spec_info, layout, &tcs_key, 0);
|
|
|
|
tcs_variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device,
|
|
cache,
|
|
tcs_sha1);
|
|
}
|
|
|
|
if (tcs_variant && tes_variant) {
|
|
pipeline->shaders[MESA_SHADER_TESS_CTRL] = tcs_variant;
|
|
pipeline->shaders[MESA_SHADER_TESS_EVAL] = tes_variant;
|
|
return;
|
|
}
|
|
|
|
tes_nir = radv_shader_compile_to_nir(pipeline->device,
|
|
tes_module, tes_entrypoint, MESA_SHADER_TESS_EVAL,
|
|
tes_spec_info, dump);
|
|
if (tes_nir == NULL)
|
|
return;
|
|
|
|
tcs_nir = radv_shader_compile_to_nir(pipeline->device,
|
|
tcs_module, tcs_entrypoint, MESA_SHADER_TESS_CTRL,
|
|
tcs_spec_info, dump);
|
|
if (tcs_nir == NULL)
|
|
return;
|
|
|
|
nir_lower_tes_patch_vertices(tes_nir,
|
|
tcs_nir->info->tess.tcs_vertices_out);
|
|
|
|
tes_variant = radv_shader_variant_create(pipeline->device, tes_nir,
|
|
layout, &tes_key, &tes_code,
|
|
&tes_code_size, dump);
|
|
|
|
tcs_key = radv_compute_tcs_key(tes_nir->info->tess.primitive_mode, input_vertices);
|
|
if (tcs_module->nir)
|
|
_mesa_sha1_compute(tcs_module->nir->info->name,
|
|
strlen(tcs_module->nir->info->name),
|
|
tcs_module->sha1);
|
|
|
|
radv_hash_shader(tcs_sha1, tcs_module, tcs_entrypoint, tcs_spec_info, layout, &tcs_key, 0);
|
|
|
|
tcs_variant = radv_shader_variant_create(pipeline->device, tcs_nir,
|
|
layout, &tcs_key, &tcs_code,
|
|
&tcs_code_size, dump);
|
|
|
|
if (!tes_module->nir)
|
|
ralloc_free(tes_nir);
|
|
|
|
if (!tcs_module->nir)
|
|
ralloc_free(tcs_nir);
|
|
|
|
if (tes_variant)
|
|
tes_variant = radv_pipeline_cache_insert_shader(cache, tes_sha1, tes_variant,
|
|
tes_code, tes_code_size);
|
|
|
|
if (tcs_variant)
|
|
tcs_variant = radv_pipeline_cache_insert_shader(cache, tcs_sha1, tcs_variant,
|
|
tcs_code, tcs_code_size);
|
|
|
|
if (tes_code)
|
|
free(tes_code);
|
|
if (tcs_code)
|
|
free(tcs_code);
|
|
pipeline->shaders[MESA_SHADER_TESS_CTRL] = tcs_variant;
|
|
pipeline->shaders[MESA_SHADER_TESS_EVAL] = tes_variant;
|
|
return;
|
|
}
|
|
|
|
static VkResult
|
|
radv_pipeline_scratch_init(struct radv_device *device,
|
|
struct radv_pipeline *pipeline)
|
|
{
|
|
unsigned scratch_bytes_per_wave = 0;
|
|
unsigned max_waves = 0;
|
|
unsigned min_waves = 1;
|
|
|
|
for (int i = 0; i < MESA_SHADER_STAGES; ++i) {
|
|
if (pipeline->shaders[i]) {
|
|
unsigned max_stage_waves = device->scratch_waves;
|
|
|
|
scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave,
|
|
pipeline->shaders[i]->config.scratch_bytes_per_wave);
|
|
|
|
max_stage_waves = MIN2(max_stage_waves,
|
|
4 * device->physical_device->rad_info.num_good_compute_units *
|
|
(256 / pipeline->shaders[i]->config.num_vgprs));
|
|
max_waves = MAX2(max_waves, max_stage_waves);
|
|
}
|
|
}
|
|
|
|
if (pipeline->shaders[MESA_SHADER_COMPUTE]) {
|
|
unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] *
|
|
pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] *
|
|
pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2];
|
|
min_waves = MAX2(min_waves, round_up_u32(group_size, 64));
|
|
}
|
|
|
|
if (scratch_bytes_per_wave)
|
|
max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave);
|
|
|
|
if (scratch_bytes_per_wave && max_waves < min_waves) {
|
|
/* Not really true at this moment, but will be true on first
|
|
* execution. Avoid having hanging shaders. */
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
}
|
|
pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave;
|
|
pipeline->max_waves = max_waves;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static uint32_t si_translate_blend_function(VkBlendOp op)
|
|
{
|
|
switch (op) {
|
|
case VK_BLEND_OP_ADD:
|
|
return V_028780_COMB_DST_PLUS_SRC;
|
|
case VK_BLEND_OP_SUBTRACT:
|
|
return V_028780_COMB_SRC_MINUS_DST;
|
|
case VK_BLEND_OP_REVERSE_SUBTRACT:
|
|
return V_028780_COMB_DST_MINUS_SRC;
|
|
case VK_BLEND_OP_MIN:
|
|
return V_028780_COMB_MIN_DST_SRC;
|
|
case VK_BLEND_OP_MAX:
|
|
return V_028780_COMB_MAX_DST_SRC;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static uint32_t si_translate_blend_factor(VkBlendFactor factor)
|
|
{
|
|
switch (factor) {
|
|
case VK_BLEND_FACTOR_ZERO:
|
|
return V_028780_BLEND_ZERO;
|
|
case VK_BLEND_FACTOR_ONE:
|
|
return V_028780_BLEND_ONE;
|
|
case VK_BLEND_FACTOR_SRC_COLOR:
|
|
return V_028780_BLEND_SRC_COLOR;
|
|
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
|
|
return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
|
|
case VK_BLEND_FACTOR_DST_COLOR:
|
|
return V_028780_BLEND_DST_COLOR;
|
|
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
|
|
return V_028780_BLEND_ONE_MINUS_DST_COLOR;
|
|
case VK_BLEND_FACTOR_SRC_ALPHA:
|
|
return V_028780_BLEND_SRC_ALPHA;
|
|
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
|
|
return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
|
|
case VK_BLEND_FACTOR_DST_ALPHA:
|
|
return V_028780_BLEND_DST_ALPHA;
|
|
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
|
|
return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
|
|
case VK_BLEND_FACTOR_CONSTANT_COLOR:
|
|
return V_028780_BLEND_CONSTANT_COLOR;
|
|
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
|
|
return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
|
|
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
|
|
return V_028780_BLEND_CONSTANT_ALPHA;
|
|
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
|
|
return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
|
|
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
|
|
return V_028780_BLEND_SRC_ALPHA_SATURATE;
|
|
case VK_BLEND_FACTOR_SRC1_COLOR:
|
|
return V_028780_BLEND_SRC1_COLOR;
|
|
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
|
|
return V_028780_BLEND_INV_SRC1_COLOR;
|
|
case VK_BLEND_FACTOR_SRC1_ALPHA:
|
|
return V_028780_BLEND_SRC1_ALPHA;
|
|
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
|
|
return V_028780_BLEND_INV_SRC1_ALPHA;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static bool is_dual_src(VkBlendFactor factor)
|
|
{
|
|
switch (factor) {
|
|
case VK_BLEND_FACTOR_SRC1_COLOR:
|
|
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
|
|
case VK_BLEND_FACTOR_SRC1_ALPHA:
|
|
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static unsigned si_choose_spi_color_format(VkFormat vk_format,
|
|
bool blend_enable,
|
|
bool blend_need_alpha)
|
|
{
|
|
const struct vk_format_description *desc = vk_format_description(vk_format);
|
|
unsigned format, ntype, swap;
|
|
|
|
/* Alpha is needed for alpha-to-coverage.
|
|
* Blending may be with or without alpha.
|
|
*/
|
|
unsigned normal = 0; /* most optimal, may not support blending or export alpha */
|
|
unsigned alpha = 0; /* exports alpha, but may not support blending */
|
|
unsigned blend = 0; /* supports blending, but may not export alpha */
|
|
unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
|
|
|
|
format = radv_translate_colorformat(vk_format);
|
|
ntype = radv_translate_color_numformat(vk_format, desc,
|
|
vk_format_get_first_non_void_channel(vk_format));
|
|
swap = radv_translate_colorswap(vk_format, false);
|
|
|
|
/* Choose the SPI color formats. These are required values for Stoney/RB+.
|
|
* Other chips have multiple choices, though they are not necessarily better.
|
|
*/
|
|
switch (format) {
|
|
case V_028C70_COLOR_5_6_5:
|
|
case V_028C70_COLOR_1_5_5_5:
|
|
case V_028C70_COLOR_5_5_5_1:
|
|
case V_028C70_COLOR_4_4_4_4:
|
|
case V_028C70_COLOR_10_11_11:
|
|
case V_028C70_COLOR_11_11_10:
|
|
case V_028C70_COLOR_8:
|
|
case V_028C70_COLOR_8_8:
|
|
case V_028C70_COLOR_8_8_8_8:
|
|
case V_028C70_COLOR_10_10_10_2:
|
|
case V_028C70_COLOR_2_10_10_10:
|
|
if (ntype == V_028C70_NUMBER_UINT)
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
|
|
else if (ntype == V_028C70_NUMBER_SINT)
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
|
|
else
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
|
|
break;
|
|
|
|
case V_028C70_COLOR_16:
|
|
case V_028C70_COLOR_16_16:
|
|
case V_028C70_COLOR_16_16_16_16:
|
|
if (ntype == V_028C70_NUMBER_UNORM ||
|
|
ntype == V_028C70_NUMBER_SNORM) {
|
|
/* UNORM16 and SNORM16 don't support blending */
|
|
if (ntype == V_028C70_NUMBER_UNORM)
|
|
normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
|
|
else
|
|
normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
|
|
|
|
/* Use 32 bits per channel for blending. */
|
|
if (format == V_028C70_COLOR_16) {
|
|
if (swap == V_028C70_SWAP_STD) { /* R */
|
|
blend = V_028714_SPI_SHADER_32_R;
|
|
blend_alpha = V_028714_SPI_SHADER_32_AR;
|
|
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
|
|
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
|
|
else
|
|
assert(0);
|
|
} else if (format == V_028C70_COLOR_16_16) {
|
|
if (swap == V_028C70_SWAP_STD) { /* RG */
|
|
blend = V_028714_SPI_SHADER_32_GR;
|
|
blend_alpha = V_028714_SPI_SHADER_32_ABGR;
|
|
} else if (swap == V_028C70_SWAP_ALT) /* RA */
|
|
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
|
|
else
|
|
assert(0);
|
|
} else /* 16_16_16_16 */
|
|
blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
|
|
} else if (ntype == V_028C70_NUMBER_UINT)
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
|
|
else if (ntype == V_028C70_NUMBER_SINT)
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
|
|
else if (ntype == V_028C70_NUMBER_FLOAT)
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
|
|
else
|
|
assert(0);
|
|
break;
|
|
|
|
case V_028C70_COLOR_32:
|
|
if (swap == V_028C70_SWAP_STD) { /* R */
|
|
blend = normal = V_028714_SPI_SHADER_32_R;
|
|
alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
|
|
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
|
|
else
|
|
assert(0);
|
|
break;
|
|
|
|
case V_028C70_COLOR_32_32:
|
|
if (swap == V_028C70_SWAP_STD) { /* RG */
|
|
blend = normal = V_028714_SPI_SHADER_32_GR;
|
|
alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
|
|
} else if (swap == V_028C70_SWAP_ALT) /* RA */
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
|
|
else
|
|
assert(0);
|
|
break;
|
|
|
|
case V_028C70_COLOR_32_32_32_32:
|
|
case V_028C70_COLOR_8_24:
|
|
case V_028C70_COLOR_24_8:
|
|
case V_028C70_COLOR_X24_8_32_FLOAT:
|
|
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
|
|
break;
|
|
|
|
default:
|
|
unreachable("unhandled blend format");
|
|
}
|
|
|
|
if (blend_enable && blend_need_alpha)
|
|
return blend_alpha;
|
|
else if(blend_need_alpha)
|
|
return alpha;
|
|
else if(blend_enable)
|
|
return blend;
|
|
else
|
|
return normal;
|
|
}
|
|
|
|
static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
|
|
{
|
|
unsigned i, cb_shader_mask = 0;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
|
|
case V_028714_SPI_SHADER_ZERO:
|
|
break;
|
|
case V_028714_SPI_SHADER_32_R:
|
|
cb_shader_mask |= 0x1 << (i * 4);
|
|
break;
|
|
case V_028714_SPI_SHADER_32_GR:
|
|
cb_shader_mask |= 0x3 << (i * 4);
|
|
break;
|
|
case V_028714_SPI_SHADER_32_AR:
|
|
cb_shader_mask |= 0x9 << (i * 4);
|
|
break;
|
|
case V_028714_SPI_SHADER_FP16_ABGR:
|
|
case V_028714_SPI_SHADER_UNORM16_ABGR:
|
|
case V_028714_SPI_SHADER_SNORM16_ABGR:
|
|
case V_028714_SPI_SHADER_UINT16_ABGR:
|
|
case V_028714_SPI_SHADER_SINT16_ABGR:
|
|
case V_028714_SPI_SHADER_32_ABGR:
|
|
cb_shader_mask |= 0xf << (i * 4);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
return cb_shader_mask;
|
|
}
|
|
|
|
static void
|
|
radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo,
|
|
uint32_t blend_enable,
|
|
uint32_t blend_need_alpha,
|
|
bool single_cb_enable,
|
|
bool blend_mrt0_is_dual_src)
|
|
{
|
|
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
|
|
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
|
|
struct radv_blend_state *blend = &pipeline->graphics.blend;
|
|
unsigned col_format = 0;
|
|
|
|
for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) {
|
|
struct radv_render_pass_attachment *attachment;
|
|
unsigned cf;
|
|
|
|
attachment = pass->attachments + subpass->color_attachments[i].attachment;
|
|
|
|
cf = si_choose_spi_color_format(attachment->format,
|
|
blend_enable & (1 << i),
|
|
blend_need_alpha & (1 << i));
|
|
|
|
col_format |= cf << (4 * i);
|
|
}
|
|
|
|
blend->cb_shader_mask = si_get_cb_shader_mask(col_format);
|
|
|
|
if (blend_mrt0_is_dual_src)
|
|
col_format |= (col_format & 0xf) << 4;
|
|
blend->spi_shader_col_format = col_format;
|
|
}
|
|
|
|
static bool
|
|
format_is_int8(VkFormat format)
|
|
{
|
|
const struct vk_format_description *desc = vk_format_description(format);
|
|
int channel = vk_format_get_first_non_void_channel(format);
|
|
|
|
return channel >= 0 && desc->channel[channel].pure_integer &&
|
|
desc->channel[channel].size == 8;
|
|
}
|
|
|
|
unsigned radv_format_meta_fs_key(VkFormat format)
|
|
{
|
|
unsigned col_format = si_choose_spi_color_format(format, false, false) - 1;
|
|
bool is_int8 = format_is_int8(format);
|
|
|
|
return col_format + (is_int8 ? 3 : 0);
|
|
}
|
|
|
|
static unsigned
|
|
radv_pipeline_compute_is_int8(const VkGraphicsPipelineCreateInfo *pCreateInfo)
|
|
{
|
|
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
|
|
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
|
|
unsigned is_int8 = 0;
|
|
|
|
for (unsigned i = 0; i < subpass->color_count; ++i) {
|
|
struct radv_render_pass_attachment *attachment;
|
|
|
|
attachment = pass->attachments + subpass->color_attachments[i].attachment;
|
|
|
|
if (format_is_int8(attachment->format))
|
|
is_int8 |= 1 << i;
|
|
}
|
|
|
|
return is_int8;
|
|
}
|
|
|
|
static void
|
|
radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo,
|
|
const struct radv_graphics_pipeline_create_info *extra)
|
|
{
|
|
const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
|
|
struct radv_blend_state *blend = &pipeline->graphics.blend;
|
|
unsigned mode = V_028808_CB_NORMAL;
|
|
uint32_t blend_enable = 0, blend_need_alpha = 0;
|
|
bool blend_mrt0_is_dual_src = false;
|
|
int i;
|
|
bool single_cb_enable = false;
|
|
|
|
if (!vkblend)
|
|
return;
|
|
|
|
if (extra && extra->custom_blend_mode) {
|
|
single_cb_enable = true;
|
|
mode = extra->custom_blend_mode;
|
|
}
|
|
blend->cb_color_control = 0;
|
|
if (vkblend->logicOpEnable)
|
|
blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4));
|
|
else
|
|
blend->cb_color_control |= S_028808_ROP3(0xcc);
|
|
|
|
blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) |
|
|
S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
|
|
S_028B70_ALPHA_TO_MASK_OFFSET2(2) |
|
|
S_028B70_ALPHA_TO_MASK_OFFSET3(2);
|
|
|
|
blend->cb_target_mask = 0;
|
|
for (i = 0; i < vkblend->attachmentCount; i++) {
|
|
const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
|
|
unsigned blend_cntl = 0;
|
|
VkBlendOp eqRGB = att->colorBlendOp;
|
|
VkBlendFactor srcRGB = att->srcColorBlendFactor;
|
|
VkBlendFactor dstRGB = att->dstColorBlendFactor;
|
|
VkBlendOp eqA = att->alphaBlendOp;
|
|
VkBlendFactor srcA = att->srcAlphaBlendFactor;
|
|
VkBlendFactor dstA = att->dstAlphaBlendFactor;
|
|
|
|
blend->sx_mrt0_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
|
|
|
|
if (!att->colorWriteMask)
|
|
continue;
|
|
|
|
blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
|
|
if (!att->blendEnable) {
|
|
blend->cb_blend_control[i] = blend_cntl;
|
|
continue;
|
|
}
|
|
|
|
if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
|
|
if (i == 0)
|
|
blend_mrt0_is_dual_src = true;
|
|
|
|
if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
|
|
srcRGB = VK_BLEND_FACTOR_ONE;
|
|
dstRGB = VK_BLEND_FACTOR_ONE;
|
|
}
|
|
if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
|
|
srcA = VK_BLEND_FACTOR_ONE;
|
|
dstA = VK_BLEND_FACTOR_ONE;
|
|
}
|
|
|
|
blend_cntl |= S_028780_ENABLE(1);
|
|
|
|
blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
|
|
blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
|
|
blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
|
|
if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
|
|
blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
|
|
blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
|
|
blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
|
|
blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
|
|
}
|
|
blend->cb_blend_control[i] = blend_cntl;
|
|
|
|
blend_enable |= 1 << i;
|
|
|
|
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
|
|
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
|
|
srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
|
|
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
|
|
srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
|
|
dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
|
|
blend_need_alpha |= 1 << i;
|
|
}
|
|
for (i = vkblend->attachmentCount; i < 8; i++)
|
|
blend->cb_blend_control[i] = 0;
|
|
|
|
if (blend->cb_target_mask)
|
|
blend->cb_color_control |= S_028808_MODE(mode);
|
|
else
|
|
blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
|
|
|
|
radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo,
|
|
blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src);
|
|
}
|
|
|
|
static uint32_t si_translate_stencil_op(enum VkStencilOp op)
|
|
{
|
|
switch (op) {
|
|
case VK_STENCIL_OP_KEEP:
|
|
return V_02842C_STENCIL_KEEP;
|
|
case VK_STENCIL_OP_ZERO:
|
|
return V_02842C_STENCIL_ZERO;
|
|
case VK_STENCIL_OP_REPLACE:
|
|
return V_02842C_STENCIL_REPLACE_TEST;
|
|
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
|
|
return V_02842C_STENCIL_ADD_CLAMP;
|
|
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
|
|
return V_02842C_STENCIL_SUB_CLAMP;
|
|
case VK_STENCIL_OP_INVERT:
|
|
return V_02842C_STENCIL_INVERT;
|
|
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
|
|
return V_02842C_STENCIL_ADD_WRAP;
|
|
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
|
|
return V_02842C_STENCIL_SUB_WRAP;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
static void
|
|
radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo,
|
|
const struct radv_graphics_pipeline_create_info *extra)
|
|
{
|
|
const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState;
|
|
struct radv_depth_stencil_state *ds = &pipeline->graphics.ds;
|
|
|
|
memset(ds, 0, sizeof(*ds));
|
|
if (!vkds)
|
|
return;
|
|
ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
|
|
S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
|
|
S_028800_ZFUNC(vkds->depthCompareOp) |
|
|
S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
|
|
|
|
if (vkds->stencilTestEnable) {
|
|
ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
|
|
ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
|
|
ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
|
|
ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
|
|
ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
|
|
|
|
ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
|
|
ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
|
|
ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
|
|
ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
|
|
}
|
|
|
|
if (extra) {
|
|
|
|
ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
|
|
ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
|
|
|
|
ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize);
|
|
ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace);
|
|
ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace);
|
|
ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
|
|
ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
|
|
}
|
|
}
|
|
|
|
static uint32_t si_translate_fill(VkPolygonMode func)
|
|
{
|
|
switch(func) {
|
|
case VK_POLYGON_MODE_FILL:
|
|
return V_028814_X_DRAW_TRIANGLES;
|
|
case VK_POLYGON_MODE_LINE:
|
|
return V_028814_X_DRAW_LINES;
|
|
case VK_POLYGON_MODE_POINT:
|
|
return V_028814_X_DRAW_POINTS;
|
|
default:
|
|
assert(0);
|
|
return V_028814_X_DRAW_POINTS;
|
|
}
|
|
}
|
|
static void
|
|
radv_pipeline_init_raster_state(struct radv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo)
|
|
{
|
|
const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
|
|
struct radv_raster_state *raster = &pipeline->graphics.raster;
|
|
|
|
memset(raster, 0, sizeof(*raster));
|
|
|
|
raster->spi_interp_control =
|
|
S_0286D4_FLAT_SHADE_ENA(1) |
|
|
S_0286D4_PNT_SPRITE_ENA(1) |
|
|
S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
|
|
S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
|
|
S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
|
|
S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
|
|
S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom
|
|
|
|
|
|
raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) |
|
|
S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
|
|
S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
|
|
S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
|
|
S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
|
|
S_028810_DX_LINEAR_ATTR_CLIP_ENA(1);
|
|
|
|
raster->pa_su_vtx_cntl =
|
|
S_028BE4_PIX_CENTER(1) | // TODO verify
|
|
S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
|
|
S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH);
|
|
|
|
raster->pa_su_sc_mode_cntl =
|
|
S_028814_FACE(vkraster->frontFace) |
|
|
S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
|
|
S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
|
|
S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
|
|
S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
|
|
S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
|
|
S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
|
|
S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
|
|
S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0);
|
|
|
|
}
|
|
|
|
static void
|
|
radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo)
|
|
{
|
|
const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
|
|
struct radv_blend_state *blend = &pipeline->graphics.blend;
|
|
struct radv_multisample_state *ms = &pipeline->graphics.ms;
|
|
unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
|
|
int ps_iter_samples = 1;
|
|
uint32_t mask = 0xffff;
|
|
|
|
if (vkms)
|
|
ms->num_samples = vkms->rasterizationSamples;
|
|
else
|
|
ms->num_samples = 1;
|
|
|
|
if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.force_persample) {
|
|
ps_iter_samples = ms->num_samples;
|
|
}
|
|
|
|
ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
|
|
ms->pa_sc_aa_config = 0;
|
|
ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
|
|
S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
|
|
ms->pa_sc_mode_cntl_1 =
|
|
S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
|
|
S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
|
|
/* always 1: */
|
|
S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
|
|
S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
|
|
S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
|
|
S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
|
|
EG_S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
|
|
EG_S_028A4C_FORCE_EOV_REZ_ENABLE(1);
|
|
|
|
if (ms->num_samples > 1) {
|
|
unsigned log_samples = util_logbase2(ms->num_samples);
|
|
unsigned log_ps_iter_samples = util_logbase2(util_next_power_of_two(ps_iter_samples));
|
|
ms->pa_sc_mode_cntl_0 = S_028A48_MSAA_ENABLE(1);
|
|
ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
|
|
ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) |
|
|
S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
|
|
S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
|
|
S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
|
|
ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
|
|
S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) |
|
|
S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
|
|
ms->pa_sc_mode_cntl_1 |= EG_S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
|
|
}
|
|
|
|
if (vkms) {
|
|
if (vkms->alphaToCoverageEnable)
|
|
blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
|
|
|
|
if (vkms->pSampleMask)
|
|
mask = vkms->pSampleMask[0] & 0xffff;
|
|
}
|
|
|
|
ms->pa_sc_aa_mask[0] = mask | (mask << 16);
|
|
ms->pa_sc_aa_mask[1] = mask | (mask << 16);
|
|
}
|
|
|
|
static bool
|
|
radv_prim_can_use_guardband(enum VkPrimitiveTopology topology)
|
|
{
|
|
switch (topology) {
|
|
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
|
|
return false;
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
|
|
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
|
|
return true;
|
|
default:
|
|
unreachable("unhandled primitive type");
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
si_translate_prim(enum VkPrimitiveTopology topology)
|
|
{
|
|
switch (topology) {
|
|
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
|
|
return V_008958_DI_PT_POINTLIST;
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
|
|
return V_008958_DI_PT_LINELIST;
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
|
|
return V_008958_DI_PT_LINESTRIP;
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
|
|
return V_008958_DI_PT_TRILIST;
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
|
|
return V_008958_DI_PT_TRISTRIP;
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
|
|
return V_008958_DI_PT_TRIFAN;
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
|
|
return V_008958_DI_PT_LINELIST_ADJ;
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
|
|
return V_008958_DI_PT_LINESTRIP_ADJ;
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
|
|
return V_008958_DI_PT_TRILIST_ADJ;
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
|
|
return V_008958_DI_PT_TRISTRIP_ADJ;
|
|
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
|
|
return V_008958_DI_PT_PATCH;
|
|
default:
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
si_conv_gl_prim_to_gs_out(unsigned gl_prim)
|
|
{
|
|
switch (gl_prim) {
|
|
case 0: /* GL_POINTS */
|
|
return V_028A6C_OUTPRIM_TYPE_POINTLIST;
|
|
case 1: /* GL_LINES */
|
|
case 3: /* GL_LINE_STRIP */
|
|
case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */
|
|
case 0x8E7A: /* GL_ISOLINES */
|
|
return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
|
|
|
|
case 4: /* GL_TRIANGLES */
|
|
case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */
|
|
case 5: /* GL_TRIANGLE_STRIP */
|
|
case 7: /* GL_QUADS */
|
|
return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
|
|
default:
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
|
|
{
|
|
switch (topology) {
|
|
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
|
|
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
|
|
return V_028A6C_OUTPRIM_TYPE_POINTLIST;
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
|
|
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
|
|
return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
|
|
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
|
|
return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
|
|
default:
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static unsigned si_map_swizzle(unsigned swizzle)
|
|
{
|
|
switch (swizzle) {
|
|
case VK_SWIZZLE_Y:
|
|
return V_008F0C_SQ_SEL_Y;
|
|
case VK_SWIZZLE_Z:
|
|
return V_008F0C_SQ_SEL_Z;
|
|
case VK_SWIZZLE_W:
|
|
return V_008F0C_SQ_SEL_W;
|
|
case VK_SWIZZLE_0:
|
|
return V_008F0C_SQ_SEL_0;
|
|
case VK_SWIZZLE_1:
|
|
return V_008F0C_SQ_SEL_1;
|
|
default: /* VK_SWIZZLE_X */
|
|
return V_008F0C_SQ_SEL_X;
|
|
}
|
|
}
|
|
|
|
static void
|
|
radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo)
|
|
{
|
|
radv_cmd_dirty_mask_t states = RADV_CMD_DIRTY_DYNAMIC_ALL;
|
|
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
|
|
struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
|
|
|
|
pipeline->dynamic_state = default_dynamic_state;
|
|
|
|
if (pCreateInfo->pDynamicState) {
|
|
/* Remove all of the states that are marked as dynamic */
|
|
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
|
|
for (uint32_t s = 0; s < count; s++)
|
|
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
|
|
}
|
|
|
|
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
|
|
|
|
/* Section 9.2 of the Vulkan 1.0.15 spec says:
|
|
*
|
|
* pViewportState is [...] NULL if the pipeline
|
|
* has rasterization disabled.
|
|
*/
|
|
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
|
|
assert(pCreateInfo->pViewportState);
|
|
|
|
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
|
|
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
|
|
typed_memcpy(dynamic->viewport.viewports,
|
|
pCreateInfo->pViewportState->pViewports,
|
|
pCreateInfo->pViewportState->viewportCount);
|
|
}
|
|
|
|
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
|
|
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
|
|
typed_memcpy(dynamic->scissor.scissors,
|
|
pCreateInfo->pViewportState->pScissors,
|
|
pCreateInfo->pViewportState->scissorCount);
|
|
}
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
|
|
assert(pCreateInfo->pRasterizationState);
|
|
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
|
|
assert(pCreateInfo->pRasterizationState);
|
|
dynamic->depth_bias.bias =
|
|
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
|
|
dynamic->depth_bias.clamp =
|
|
pCreateInfo->pRasterizationState->depthBiasClamp;
|
|
dynamic->depth_bias.slope =
|
|
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
|
|
}
|
|
|
|
/* Section 9.2 of the Vulkan 1.0.15 spec says:
|
|
*
|
|
* pColorBlendState is [...] NULL if the pipeline has rasterization
|
|
* disabled or if the subpass of the render pass the pipeline is
|
|
* created against does not use any color attachments.
|
|
*/
|
|
bool uses_color_att = false;
|
|
for (unsigned i = 0; i < subpass->color_count; ++i) {
|
|
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
|
|
uses_color_att = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (uses_color_att && states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
|
|
assert(pCreateInfo->pColorBlendState);
|
|
typed_memcpy(dynamic->blend_constants,
|
|
pCreateInfo->pColorBlendState->blendConstants, 4);
|
|
}
|
|
|
|
/* If there is no depthstencil attachment, then don't read
|
|
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
|
|
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
|
|
* no need to override the depthstencil defaults in
|
|
* radv_pipeline::dynamic_state when there is no depthstencil attachment.
|
|
*
|
|
* Section 9.2 of the Vulkan 1.0.15 spec says:
|
|
*
|
|
* pDepthStencilState is [...] NULL if the pipeline has rasterization
|
|
* disabled or if the subpass of the render pass the pipeline is created
|
|
* against does not use a depth/stencil attachment.
|
|
*/
|
|
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
|
|
subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
|
|
assert(pCreateInfo->pDepthStencilState);
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
|
|
dynamic->depth_bounds.min =
|
|
pCreateInfo->pDepthStencilState->minDepthBounds;
|
|
dynamic->depth_bounds.max =
|
|
pCreateInfo->pDepthStencilState->maxDepthBounds;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
|
|
dynamic->stencil_compare_mask.front =
|
|
pCreateInfo->pDepthStencilState->front.compareMask;
|
|
dynamic->stencil_compare_mask.back =
|
|
pCreateInfo->pDepthStencilState->back.compareMask;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
|
|
dynamic->stencil_write_mask.front =
|
|
pCreateInfo->pDepthStencilState->front.writeMask;
|
|
dynamic->stencil_write_mask.back =
|
|
pCreateInfo->pDepthStencilState->back.writeMask;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
|
|
dynamic->stencil_reference.front =
|
|
pCreateInfo->pDepthStencilState->front.reference;
|
|
dynamic->stencil_reference.back =
|
|
pCreateInfo->pDepthStencilState->back.reference;
|
|
}
|
|
}
|
|
|
|
pipeline->dynamic_state_mask = states;
|
|
}
|
|
|
|
static union ac_shader_variant_key
|
|
radv_compute_vs_key(const VkGraphicsPipelineCreateInfo *pCreateInfo, bool as_es, bool as_ls)
|
|
{
|
|
union ac_shader_variant_key key;
|
|
const VkPipelineVertexInputStateCreateInfo *input_state =
|
|
pCreateInfo->pVertexInputState;
|
|
|
|
memset(&key, 0, sizeof(key));
|
|
key.vs.instance_rate_inputs = 0;
|
|
key.vs.as_es = as_es;
|
|
key.vs.as_ls = as_ls;
|
|
|
|
for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
|
|
unsigned binding;
|
|
binding = input_state->pVertexAttributeDescriptions[i].binding;
|
|
if (input_state->pVertexBindingDescriptions[binding].inputRate)
|
|
key.vs.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location;
|
|
}
|
|
return key;
|
|
}
|
|
|
|
static void
|
|
calculate_gs_ring_sizes(struct radv_pipeline *pipeline)
|
|
{
|
|
struct radv_device *device = pipeline->device;
|
|
unsigned num_se = device->physical_device->rad_info.max_se;
|
|
unsigned wave_size = 64;
|
|
unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
|
|
unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */
|
|
unsigned alignment = 256 * num_se;
|
|
/* The maximum size is 63.999 MB per SE. */
|
|
unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
|
|
struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info;
|
|
struct ac_es_output_info *es_info = radv_pipeline_has_tess(pipeline) ?
|
|
&pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.es_info :
|
|
&pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.es_info;
|
|
|
|
/* Calculate the minimum size. */
|
|
unsigned min_esgs_ring_size = align(es_info->esgs_itemsize * gs_vertex_reuse *
|
|
wave_size, alignment);
|
|
/* These are recommended sizes, not minimum sizes. */
|
|
unsigned esgs_ring_size = max_gs_waves * 2 * wave_size *
|
|
es_info->esgs_itemsize * gs_info->gs.vertices_in;
|
|
unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size *
|
|
gs_info->gs.max_gsvs_emit_size * 1; // no streams in VK (gs->max_gs_stream + 1);
|
|
|
|
min_esgs_ring_size = align(min_esgs_ring_size, alignment);
|
|
esgs_ring_size = align(esgs_ring_size, alignment);
|
|
gsvs_ring_size = align(gsvs_ring_size, alignment);
|
|
|
|
pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
|
|
pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
|
|
}
|
|
|
|
static void si_multiwave_lds_size_workaround(struct radv_device *device,
|
|
unsigned *lds_size)
|
|
{
|
|
/* SPI barrier management bug:
|
|
* Make sure we have at least 4k of LDS in use to avoid the bug.
|
|
* It applies to workgroup sizes of more than one wavefront.
|
|
*/
|
|
if (device->physical_device->rad_info.family == CHIP_BONAIRE ||
|
|
device->physical_device->rad_info.family == CHIP_KABINI ||
|
|
device->physical_device->rad_info.family == CHIP_MULLINS)
|
|
*lds_size = MAX2(*lds_size, 8);
|
|
}
|
|
|
|
static void
|
|
calculate_tess_state(struct radv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo)
|
|
{
|
|
unsigned num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints;
|
|
unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs;
|
|
unsigned num_tcs_patch_outputs;
|
|
unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size;
|
|
unsigned input_patch_size, output_patch_size, output_patch0_offset;
|
|
unsigned lds_size, hardware_lds_size;
|
|
unsigned perpatch_output_offset;
|
|
unsigned num_patches;
|
|
struct radv_tessellation_state *tess = &pipeline->graphics.tess;
|
|
|
|
/* This calculates how shader inputs and outputs among VS, TCS, and TES
|
|
* are laid out in LDS. */
|
|
num_tcs_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outputs_written);
|
|
|
|
num_tcs_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written); //tcs->outputs_written
|
|
num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT
|
|
num_tcs_patch_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.patch_outputs_written);
|
|
|
|
/* Ensure that we only need one wave per SIMD so we don't need to check
|
|
* resource usage. Also ensures that the number of tcs in and out
|
|
* vertices per threadgroup are at most 256.
|
|
*/
|
|
input_vertex_size = num_tcs_inputs * 16;
|
|
output_vertex_size = num_tcs_outputs * 16;
|
|
|
|
input_patch_size = num_tcs_input_cp * input_vertex_size;
|
|
|
|
pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size;
|
|
output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16;
|
|
/* Ensure that we only need one wave per SIMD so we don't need to check
|
|
* resource usage. Also ensures that the number of tcs in and out
|
|
* vertices per threadgroup are at most 256.
|
|
*/
|
|
num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4;
|
|
|
|
/* Make sure that the data fits in LDS. This assumes the shaders only
|
|
* use LDS for the inputs and outputs.
|
|
*/
|
|
hardware_lds_size = pipeline->device->physical_device->rad_info.chip_class >= CIK ? 65536 : 32768;
|
|
num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size));
|
|
|
|
/* Make sure the output data fits in the offchip buffer */
|
|
num_patches = MIN2(num_patches,
|
|
(pipeline->device->tess_offchip_block_dw_size * 4) /
|
|
output_patch_size);
|
|
|
|
/* Not necessary for correctness, but improves performance. The
|
|
* specific value is taken from the proprietary driver.
|
|
*/
|
|
num_patches = MIN2(num_patches, 40);
|
|
|
|
/* SI bug workaround - limit LS-HS threadgroups to only one wave. */
|
|
if (pipeline->device->physical_device->rad_info.chip_class == SI) {
|
|
unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp);
|
|
num_patches = MIN2(num_patches, one_wave);
|
|
}
|
|
|
|
output_patch0_offset = input_patch_size * num_patches;
|
|
perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size;
|
|
|
|
lds_size = output_patch0_offset + output_patch_size * num_patches;
|
|
|
|
if (pipeline->device->physical_device->rad_info.chip_class >= CIK) {
|
|
assert(lds_size <= 65536);
|
|
lds_size = align(lds_size, 512) / 512;
|
|
} else {
|
|
assert(lds_size <= 32768);
|
|
lds_size = align(lds_size, 256) / 256;
|
|
}
|
|
si_multiwave_lds_size_workaround(pipeline->device, &lds_size);
|
|
|
|
tess->lds_size = lds_size;
|
|
|
|
tess->tcs_in_layout = (input_patch_size / 4) |
|
|
((input_vertex_size / 4) << 13);
|
|
tess->tcs_out_layout = (output_patch_size / 4) |
|
|
((output_vertex_size / 4) << 13);
|
|
tess->tcs_out_offsets = (output_patch0_offset / 16) |
|
|
((perpatch_output_offset / 16) << 16);
|
|
tess->offchip_layout = (pervertex_output_patch_size * num_patches << 16) |
|
|
(num_tcs_output_cp << 9) | num_patches;
|
|
|
|
tess->ls_hs_config = S_028B58_NUM_PATCHES(num_patches) |
|
|
S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) |
|
|
S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
|
|
tess->num_patches = num_patches;
|
|
tess->num_tcs_input_cp = num_tcs_input_cp;
|
|
|
|
struct radv_shader_variant *tes = pipeline->shaders[MESA_SHADER_TESS_EVAL];
|
|
unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0;
|
|
|
|
switch (tes->info.tes.primitive_mode) {
|
|
case GL_TRIANGLES:
|
|
type = V_028B6C_TESS_TRIANGLE;
|
|
break;
|
|
case GL_QUADS:
|
|
type = V_028B6C_TESS_QUAD;
|
|
break;
|
|
case GL_ISOLINES:
|
|
type = V_028B6C_TESS_ISOLINE;
|
|
break;
|
|
}
|
|
|
|
switch (tes->info.tes.spacing) {
|
|
case TESS_SPACING_EQUAL:
|
|
partitioning = V_028B6C_PART_INTEGER;
|
|
break;
|
|
case TESS_SPACING_FRACTIONAL_ODD:
|
|
partitioning = V_028B6C_PART_FRAC_ODD;
|
|
break;
|
|
case TESS_SPACING_FRACTIONAL_EVEN:
|
|
partitioning = V_028B6C_PART_FRAC_EVEN;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (tes->info.tes.point_mode)
|
|
topology = V_028B6C_OUTPUT_POINT;
|
|
else if (tes->info.tes.primitive_mode == GL_ISOLINES)
|
|
topology = V_028B6C_OUTPUT_LINE;
|
|
else if (tes->info.tes.ccw)
|
|
topology = V_028B6C_OUTPUT_TRIANGLE_CW;
|
|
else
|
|
topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
|
|
|
|
if (pipeline->device->has_distributed_tess) {
|
|
if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI ||
|
|
pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10)
|
|
distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS;
|
|
else
|
|
distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS;
|
|
} else
|
|
distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST;
|
|
|
|
tess->tf_param = S_028B6C_TYPE(type) |
|
|
S_028B6C_PARTITIONING(partitioning) |
|
|
S_028B6C_TOPOLOGY(topology) |
|
|
S_028B6C_DISTRIBUTION_MODE(distribution_mode);
|
|
}
|
|
|
|
static const struct radv_prim_vertex_count prim_size_table[] = {
|
|
[V_008958_DI_PT_NONE] = {0, 0},
|
|
[V_008958_DI_PT_POINTLIST] = {1, 1},
|
|
[V_008958_DI_PT_LINELIST] = {2, 2},
|
|
[V_008958_DI_PT_LINESTRIP] = {2, 1},
|
|
[V_008958_DI_PT_TRILIST] = {3, 3},
|
|
[V_008958_DI_PT_TRIFAN] = {3, 1},
|
|
[V_008958_DI_PT_TRISTRIP] = {3, 1},
|
|
[V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
|
|
[V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
|
|
[V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
|
|
[V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
|
|
[V_008958_DI_PT_RECTLIST] = {3, 3},
|
|
[V_008958_DI_PT_LINELOOP] = {2, 1},
|
|
[V_008958_DI_PT_POLYGON] = {3, 1},
|
|
[V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
|
|
};
|
|
|
|
static uint32_t si_vgt_gs_mode(struct radv_shader_variant *gs)
|
|
{
|
|
unsigned gs_max_vert_out = gs->info.gs.vertices_out;
|
|
unsigned cut_mode;
|
|
|
|
if (gs_max_vert_out <= 128) {
|
|
cut_mode = V_028A40_GS_CUT_128;
|
|
} else if (gs_max_vert_out <= 256) {
|
|
cut_mode = V_028A40_GS_CUT_256;
|
|
} else if (gs_max_vert_out <= 512) {
|
|
cut_mode = V_028A40_GS_CUT_512;
|
|
} else {
|
|
assert(gs_max_vert_out <= 1024);
|
|
cut_mode = V_028A40_GS_CUT_1024;
|
|
}
|
|
|
|
return S_028A40_MODE(V_028A40_GS_SCENARIO_G) |
|
|
S_028A40_CUT_MODE(cut_mode)|
|
|
S_028A40_ES_WRITE_OPTIMIZE(1) |
|
|
S_028A40_GS_WRITE_OPTIMIZE(1);
|
|
}
|
|
|
|
static void calculate_pa_cl_vs_out_cntl(struct radv_pipeline *pipeline)
|
|
{
|
|
struct radv_shader_variant *vs;
|
|
vs = radv_pipeline_has_gs(pipeline) ? pipeline->gs_copy_shader : (radv_pipeline_has_tess(pipeline) ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]);
|
|
|
|
struct ac_vs_output_info *outinfo = &vs->info.vs.outinfo;
|
|
|
|
unsigned clip_dist_mask, cull_dist_mask, total_mask;
|
|
clip_dist_mask = outinfo->clip_dist_mask;
|
|
cull_dist_mask = outinfo->cull_dist_mask;
|
|
total_mask = clip_dist_mask | cull_dist_mask;
|
|
|
|
bool misc_vec_ena = outinfo->writes_pointsize ||
|
|
outinfo->writes_layer ||
|
|
outinfo->writes_viewport_index;
|
|
pipeline->graphics.pa_cl_vs_out_cntl =
|
|
S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) |
|
|
S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) |
|
|
S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) |
|
|
S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
|
|
S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) |
|
|
S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) |
|
|
S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) |
|
|
cull_dist_mask << 8 |
|
|
clip_dist_mask;
|
|
|
|
}
|
|
static void calculate_ps_inputs(struct radv_pipeline *pipeline)
|
|
{
|
|
struct radv_shader_variant *ps, *vs;
|
|
struct ac_vs_output_info *outinfo;
|
|
|
|
ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
|
|
vs = radv_pipeline_has_gs(pipeline) ? pipeline->gs_copy_shader : (radv_pipeline_has_tess(pipeline) ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]);
|
|
|
|
outinfo = &vs->info.vs.outinfo;
|
|
|
|
unsigned ps_offset = 0;
|
|
if (ps->info.fs.has_pcoord) {
|
|
unsigned val;
|
|
val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20);
|
|
pipeline->graphics.ps_input_cntl[ps_offset] = val;
|
|
ps_offset++;
|
|
}
|
|
|
|
if (ps->info.fs.prim_id_input && (outinfo->prim_id_output != 0xffffffff)) {
|
|
unsigned vs_offset, flat_shade;
|
|
unsigned val;
|
|
vs_offset = outinfo->prim_id_output;
|
|
flat_shade = true;
|
|
val = S_028644_OFFSET(vs_offset) | S_028644_FLAT_SHADE(flat_shade);
|
|
pipeline->graphics.ps_input_cntl[ps_offset] = val;
|
|
++ps_offset;
|
|
}
|
|
|
|
if (ps->info.fs.layer_input && (outinfo->layer_output != 0xffffffff)) {
|
|
unsigned vs_offset, flat_shade;
|
|
unsigned val;
|
|
vs_offset = outinfo->layer_output;
|
|
flat_shade = true;
|
|
val = S_028644_OFFSET(vs_offset) | S_028644_FLAT_SHADE(flat_shade);
|
|
pipeline->graphics.ps_input_cntl[ps_offset] = val;
|
|
++ps_offset;
|
|
}
|
|
|
|
for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.fs.input_mask; ++i) {
|
|
unsigned vs_offset, flat_shade;
|
|
unsigned val;
|
|
|
|
if (!(ps->info.fs.input_mask & (1u << i)))
|
|
continue;
|
|
|
|
if (!(outinfo->export_mask & (1u << i))) {
|
|
pipeline->graphics.ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20);
|
|
++ps_offset;
|
|
continue;
|
|
}
|
|
|
|
vs_offset = util_bitcount(outinfo->export_mask & ((1u << i) - 1));
|
|
if (outinfo->prim_id_output != 0xffffffff) {
|
|
if (vs_offset >= outinfo->prim_id_output)
|
|
vs_offset++;
|
|
}
|
|
if (outinfo->layer_output != 0xffffffff) {
|
|
if (vs_offset >= outinfo->layer_output)
|
|
vs_offset++;
|
|
}
|
|
flat_shade = !!(ps->info.fs.flat_shaded_mask & (1u << ps_offset));
|
|
|
|
val = S_028644_OFFSET(vs_offset) | S_028644_FLAT_SHADE(flat_shade);
|
|
pipeline->graphics.ps_input_cntl[ps_offset] = val;
|
|
++ps_offset;
|
|
}
|
|
|
|
pipeline->graphics.ps_input_cntl_num = ps_offset;
|
|
}
|
|
|
|
VkResult
|
|
radv_pipeline_init(struct radv_pipeline *pipeline,
|
|
struct radv_device *device,
|
|
struct radv_pipeline_cache *cache,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo,
|
|
const struct radv_graphics_pipeline_create_info *extra,
|
|
const VkAllocationCallbacks *alloc)
|
|
{
|
|
struct radv_shader_module fs_m = {0};
|
|
VkResult result;
|
|
|
|
if (alloc == NULL)
|
|
alloc = &device->alloc;
|
|
|
|
pipeline->device = device;
|
|
pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
|
|
|
|
radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
|
|
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
|
|
struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
|
|
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
|
|
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
|
|
pStages[stage] = &pCreateInfo->pStages[i];
|
|
modules[stage] = radv_shader_module_from_handle(pStages[stage]->module);
|
|
}
|
|
|
|
radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
|
|
|
|
if (modules[MESA_SHADER_VERTEX]) {
|
|
bool as_es = false;
|
|
bool as_ls = false;
|
|
if (modules[MESA_SHADER_TESS_CTRL])
|
|
as_ls = true;
|
|
else if (modules[MESA_SHADER_GEOMETRY])
|
|
as_es = true;
|
|
union ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo, as_es, as_ls);
|
|
|
|
pipeline->shaders[MESA_SHADER_VERTEX] =
|
|
radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_VERTEX],
|
|
pStages[MESA_SHADER_VERTEX]->pName,
|
|
MESA_SHADER_VERTEX,
|
|
pStages[MESA_SHADER_VERTEX]->pSpecializationInfo,
|
|
pipeline->layout, &key);
|
|
|
|
pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_VERTEX);
|
|
}
|
|
|
|
if (modules[MESA_SHADER_GEOMETRY]) {
|
|
union ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo, false, false);
|
|
|
|
pipeline->shaders[MESA_SHADER_GEOMETRY] =
|
|
radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_GEOMETRY],
|
|
pStages[MESA_SHADER_GEOMETRY]->pName,
|
|
MESA_SHADER_GEOMETRY,
|
|
pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo,
|
|
pipeline->layout, &key);
|
|
|
|
pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_GEOMETRY);
|
|
|
|
pipeline->graphics.vgt_gs_mode = si_vgt_gs_mode(pipeline->shaders[MESA_SHADER_GEOMETRY]);
|
|
} else
|
|
pipeline->graphics.vgt_gs_mode = 0;
|
|
|
|
if (modules[MESA_SHADER_TESS_EVAL]) {
|
|
assert(modules[MESA_SHADER_TESS_CTRL]);
|
|
|
|
radv_tess_pipeline_compile(pipeline,
|
|
cache,
|
|
modules[MESA_SHADER_TESS_CTRL],
|
|
modules[MESA_SHADER_TESS_EVAL],
|
|
pStages[MESA_SHADER_TESS_CTRL]->pName,
|
|
pStages[MESA_SHADER_TESS_EVAL]->pName,
|
|
pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo,
|
|
pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo,
|
|
pipeline->layout,
|
|
pCreateInfo->pTessellationState->patchControlPoints);
|
|
pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_TESS_EVAL) |
|
|
mesa_to_vk_shader_stage(MESA_SHADER_TESS_CTRL);
|
|
}
|
|
|
|
if (!modules[MESA_SHADER_FRAGMENT]) {
|
|
nir_builder fs_b;
|
|
nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
|
|
fs_b.shader->info->name = ralloc_strdup(fs_b.shader, "noop_fs");
|
|
fs_m.nir = fs_b.shader;
|
|
modules[MESA_SHADER_FRAGMENT] = &fs_m;
|
|
}
|
|
|
|
if (modules[MESA_SHADER_FRAGMENT]) {
|
|
union ac_shader_variant_key key;
|
|
key.fs.col_format = pipeline->graphics.blend.spi_shader_col_format;
|
|
key.fs.is_int8 = radv_pipeline_compute_is_int8(pCreateInfo);
|
|
|
|
const VkPipelineShaderStageCreateInfo *stage = pStages[MESA_SHADER_FRAGMENT];
|
|
|
|
pipeline->shaders[MESA_SHADER_FRAGMENT] =
|
|
radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_FRAGMENT],
|
|
stage ? stage->pName : "main",
|
|
MESA_SHADER_FRAGMENT,
|
|
stage ? stage->pSpecializationInfo : NULL,
|
|
pipeline->layout, &key);
|
|
pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_FRAGMENT);
|
|
}
|
|
|
|
if (fs_m.nir)
|
|
ralloc_free(fs_m.nir);
|
|
|
|
radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra);
|
|
radv_pipeline_init_raster_state(pipeline, pCreateInfo);
|
|
radv_pipeline_init_multisample_state(pipeline, pCreateInfo);
|
|
pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
|
|
pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology);
|
|
|
|
if (radv_pipeline_has_gs(pipeline)) {
|
|
pipeline->graphics.gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
|
|
pipeline->graphics.can_use_guardband = pipeline->graphics.gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP;
|
|
} else {
|
|
pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
|
|
}
|
|
if (extra && extra->use_rectlist) {
|
|
pipeline->graphics.prim = V_008958_DI_PT_RECTLIST;
|
|
pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
|
|
pipeline->graphics.can_use_guardband = true;
|
|
}
|
|
pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
|
|
/* prim vertex count will need TESS changes */
|
|
pipeline->graphics.prim_vertex_count = prim_size_table[pipeline->graphics.prim];
|
|
|
|
/* Ensure that some export memory is always allocated, for two reasons:
|
|
*
|
|
* 1) Correctness: The hardware ignores the EXEC mask if no export
|
|
* memory is allocated, so KILL and alpha test do not work correctly
|
|
* without this.
|
|
* 2) Performance: Every shader needs at least a NULL export, even when
|
|
* it writes no color/depth output. The NULL export instruction
|
|
* stalls without this setting.
|
|
*
|
|
* Don't add this to CB_SHADER_MASK.
|
|
*/
|
|
struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT];
|
|
if (!pipeline->graphics.blend.spi_shader_col_format) {
|
|
if (!ps->info.fs.writes_z &&
|
|
!ps->info.fs.writes_stencil &&
|
|
!ps->info.fs.writes_sample_mask)
|
|
pipeline->graphics.blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
|
|
}
|
|
|
|
unsigned z_order;
|
|
pipeline->graphics.db_shader_control = 0;
|
|
if (ps->info.fs.early_fragment_test || !ps->info.fs.writes_memory)
|
|
z_order = V_02880C_EARLY_Z_THEN_LATE_Z;
|
|
else
|
|
z_order = V_02880C_LATE_Z;
|
|
|
|
pipeline->graphics.db_shader_control =
|
|
S_02880C_Z_EXPORT_ENABLE(ps->info.fs.writes_z) |
|
|
S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.fs.writes_stencil) |
|
|
S_02880C_KILL_ENABLE(!!ps->info.fs.can_discard) |
|
|
S_02880C_MASK_EXPORT_ENABLE(ps->info.fs.writes_sample_mask) |
|
|
S_02880C_Z_ORDER(z_order) |
|
|
S_02880C_DEPTH_BEFORE_SHADER(ps->info.fs.early_fragment_test) |
|
|
S_02880C_EXEC_ON_HIER_FAIL(ps->info.fs.writes_memory) |
|
|
S_02880C_EXEC_ON_NOOP(ps->info.fs.writes_memory);
|
|
|
|
pipeline->graphics.shader_z_format =
|
|
ps->info.fs.writes_sample_mask ? V_028710_SPI_SHADER_32_ABGR :
|
|
ps->info.fs.writes_stencil ? V_028710_SPI_SHADER_32_GR :
|
|
ps->info.fs.writes_z ? V_028710_SPI_SHADER_32_R :
|
|
V_028710_SPI_SHADER_ZERO;
|
|
|
|
calculate_pa_cl_vs_out_cntl(pipeline);
|
|
calculate_ps_inputs(pipeline);
|
|
|
|
uint32_t stages = 0;
|
|
if (radv_pipeline_has_tess(pipeline)) {
|
|
stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) |
|
|
S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1);
|
|
|
|
if (radv_pipeline_has_gs(pipeline))
|
|
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) |
|
|
S_028B54_GS_EN(1) |
|
|
S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
|
|
else
|
|
stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS);
|
|
} else if (radv_pipeline_has_gs(pipeline))
|
|
stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) |
|
|
S_028B54_GS_EN(1) |
|
|
S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER);
|
|
pipeline->graphics.vgt_shader_stages_en = stages;
|
|
|
|
if (radv_pipeline_has_gs(pipeline))
|
|
calculate_gs_ring_sizes(pipeline);
|
|
|
|
if (radv_pipeline_has_tess(pipeline)) {
|
|
if (pipeline->graphics.prim == V_008958_DI_PT_PATCH) {
|
|
pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints;
|
|
pipeline->graphics.prim_vertex_count.incr = 1;
|
|
}
|
|
calculate_tess_state(pipeline, pCreateInfo);
|
|
}
|
|
|
|
const VkPipelineVertexInputStateCreateInfo *vi_info =
|
|
pCreateInfo->pVertexInputState;
|
|
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
|
|
const VkVertexInputAttributeDescription *desc =
|
|
&vi_info->pVertexAttributeDescriptions[i];
|
|
unsigned loc = desc->location;
|
|
const struct vk_format_description *format_desc;
|
|
int first_non_void;
|
|
uint32_t num_format, data_format;
|
|
format_desc = vk_format_description(desc->format);
|
|
first_non_void = vk_format_get_first_non_void_channel(desc->format);
|
|
|
|
num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
|
|
data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
|
|
|
|
pipeline->va_rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) |
|
|
S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) |
|
|
S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) |
|
|
S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) |
|
|
S_008F0C_NUM_FORMAT(num_format) |
|
|
S_008F0C_DATA_FORMAT(data_format);
|
|
pipeline->va_format_size[loc] = format_desc->block.bits / 8;
|
|
pipeline->va_offset[loc] = desc->offset;
|
|
pipeline->va_binding[loc] = desc->binding;
|
|
pipeline->num_vertex_attribs = MAX2(pipeline->num_vertex_attribs, loc + 1);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
|
|
const VkVertexInputBindingDescription *desc =
|
|
&vi_info->pVertexBindingDescriptions[i];
|
|
|
|
pipeline->binding_stride[desc->binding] = desc->stride;
|
|
}
|
|
|
|
if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
|
|
radv_dump_pipeline_stats(device, pipeline);
|
|
}
|
|
|
|
result = radv_pipeline_scratch_init(device, pipeline);
|
|
return result;
|
|
}
|
|
|
|
VkResult
|
|
radv_graphics_pipeline_create(
|
|
VkDevice _device,
|
|
VkPipelineCache _cache,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo,
|
|
const struct radv_graphics_pipeline_create_info *extra,
|
|
const VkAllocationCallbacks *pAllocator,
|
|
VkPipeline *pPipeline)
|
|
{
|
|
RADV_FROM_HANDLE(radv_device, device, _device);
|
|
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
|
|
struct radv_pipeline *pipeline;
|
|
VkResult result;
|
|
|
|
pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (pipeline == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
memset(pipeline, 0, sizeof(*pipeline));
|
|
result = radv_pipeline_init(pipeline, device, cache,
|
|
pCreateInfo, extra, pAllocator);
|
|
if (result != VK_SUCCESS) {
|
|
radv_pipeline_destroy(device, pipeline, pAllocator);
|
|
return result;
|
|
}
|
|
|
|
*pPipeline = radv_pipeline_to_handle(pipeline);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult radv_CreateGraphicsPipelines(
|
|
VkDevice _device,
|
|
VkPipelineCache pipelineCache,
|
|
uint32_t count,
|
|
const VkGraphicsPipelineCreateInfo* pCreateInfos,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipelines)
|
|
{
|
|
VkResult result = VK_SUCCESS;
|
|
unsigned i = 0;
|
|
|
|
for (; i < count; i++) {
|
|
VkResult r;
|
|
r = radv_graphics_pipeline_create(_device,
|
|
pipelineCache,
|
|
&pCreateInfos[i],
|
|
NULL, pAllocator, &pPipelines[i]);
|
|
if (r != VK_SUCCESS) {
|
|
result = r;
|
|
pPipelines[i] = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static VkResult radv_compute_pipeline_create(
|
|
VkDevice _device,
|
|
VkPipelineCache _cache,
|
|
const VkComputePipelineCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipeline)
|
|
{
|
|
RADV_FROM_HANDLE(radv_device, device, _device);
|
|
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
|
|
RADV_FROM_HANDLE(radv_shader_module, module, pCreateInfo->stage.module);
|
|
struct radv_pipeline *pipeline;
|
|
VkResult result;
|
|
|
|
pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (pipeline == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
memset(pipeline, 0, sizeof(*pipeline));
|
|
pipeline->device = device;
|
|
pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
|
|
|
|
pipeline->shaders[MESA_SHADER_COMPUTE] =
|
|
radv_pipeline_compile(pipeline, cache, module,
|
|
pCreateInfo->stage.pName,
|
|
MESA_SHADER_COMPUTE,
|
|
pCreateInfo->stage.pSpecializationInfo,
|
|
pipeline->layout, NULL);
|
|
|
|
|
|
result = radv_pipeline_scratch_init(device, pipeline);
|
|
if (result != VK_SUCCESS) {
|
|
radv_pipeline_destroy(device, pipeline, pAllocator);
|
|
return result;
|
|
}
|
|
|
|
*pPipeline = radv_pipeline_to_handle(pipeline);
|
|
|
|
if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
|
|
radv_dump_pipeline_stats(device, pipeline);
|
|
}
|
|
return VK_SUCCESS;
|
|
}
|
|
VkResult radv_CreateComputePipelines(
|
|
VkDevice _device,
|
|
VkPipelineCache pipelineCache,
|
|
uint32_t count,
|
|
const VkComputePipelineCreateInfo* pCreateInfos,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipelines)
|
|
{
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
unsigned i = 0;
|
|
for (; i < count; i++) {
|
|
VkResult r;
|
|
r = radv_compute_pipeline_create(_device, pipelineCache,
|
|
&pCreateInfos[i],
|
|
pAllocator, &pPipelines[i]);
|
|
if (r != VK_SUCCESS) {
|
|
result = r;
|
|
pPipelines[i] = VK_NULL_HANDLE;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|