
This reverts commit f9860a84b3
. It's a
bit annoying having this scattered around but it's 100% a GLSL thing and
there's no reason why it should go in glsl_types.h. The fact that
glsl_print_type() even uses it is a bit sketchy.
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/24491>
3786 lines
144 KiB
C
3786 lines
144 KiB
C
/*
|
|
* Copyright © 2012 Intel Corporation
|
|
* Copyright © 2021 Valve Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* Linker functions related specifically to linking varyings between shader
|
|
* stages.
|
|
*/
|
|
|
|
#include "main/errors.h"
|
|
#include "main/macros.h"
|
|
#include "main/menums.h"
|
|
#include "main/mtypes.h"
|
|
#include "util/hash_table.h"
|
|
#include "util/u_math.h"
|
|
#include "util/perf/cpu_trace.h"
|
|
|
|
#include "nir.h"
|
|
#include "nir_builder.h"
|
|
#include "nir_deref.h"
|
|
#include "gl_nir.h"
|
|
#include "gl_nir_link_varyings.h"
|
|
#include "gl_nir_linker.h"
|
|
#include "linker_util.h"
|
|
#include "nir_gl_types.h"
|
|
#include "string_to_uint_map.h"
|
|
|
|
#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
|
|
|
|
/* Temporary storage for the set of attributes that need locations assigned. */
|
|
struct temp_attr {
|
|
unsigned slots;
|
|
nir_variable *var;
|
|
};
|
|
|
|
/* Used below in the call to qsort. */
|
|
static int
|
|
compare_attr(const void *a, const void *b)
|
|
{
|
|
const struct temp_attr *const l = (const struct temp_attr *) a;
|
|
const struct temp_attr *const r = (const struct temp_attr *) b;
|
|
|
|
/* Reversed because we want a descending order sort below. */
|
|
return r->slots - l->slots;
|
|
}
|
|
|
|
/**
|
|
* Find a contiguous set of available bits in a bitmask.
|
|
*
|
|
* \param used_mask Bits representing used (1) and unused (0) locations
|
|
* \param needed_count Number of contiguous bits needed.
|
|
*
|
|
* \return
|
|
* Base location of the available bits on success or -1 on failure.
|
|
*/
|
|
static int
|
|
find_available_slots(unsigned used_mask, unsigned needed_count)
|
|
{
|
|
unsigned needed_mask = (1 << needed_count) - 1;
|
|
const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
|
|
|
|
/* The comparison to 32 is redundant, but without it GCC emits "warning:
|
|
* cannot optimize possibly infinite loops" for the loop below.
|
|
*/
|
|
if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
|
|
return -1;
|
|
|
|
for (int i = 0; i <= max_bit_to_test; i++) {
|
|
if ((needed_mask & ~used_mask) == needed_mask)
|
|
return i;
|
|
|
|
needed_mask <<= 1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Find deref based on variable name.
|
|
* Note: This function does not support arrays.
|
|
*/
|
|
static bool
|
|
find_deref(nir_shader *shader, const char *name)
|
|
{
|
|
nir_foreach_function(func, shader) {
|
|
nir_foreach_block(block, func->impl) {
|
|
nir_foreach_instr(instr, block) {
|
|
if (instr->type == nir_instr_type_deref) {
|
|
nir_deref_instr *deref = nir_instr_as_deref(instr);
|
|
if (deref->deref_type == nir_deref_type_var &&
|
|
strcmp(deref->var->name, name) == 0)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Assign locations for either VS inputs or FS outputs.
|
|
*
|
|
* \param mem_ctx Temporary ralloc context used for linking.
|
|
* \param prog Shader program whose variables need locations
|
|
* assigned.
|
|
* \param constants Driver specific constant values for the program.
|
|
* \param target_index Selector for the program target to receive location
|
|
* assignmnets. Must be either \c MESA_SHADER_VERTEX or
|
|
* \c MESA_SHADER_FRAGMENT.
|
|
* \param do_assignment Whether we are actually marking the assignment or we
|
|
* are just doing a dry-run checking.
|
|
*
|
|
* \return
|
|
* If locations are (or can be, in case of dry-running) successfully assigned,
|
|
* true is returned. Otherwise an error is emitted to the shader link log and
|
|
* false is returned.
|
|
*/
|
|
static bool
|
|
assign_attribute_or_color_locations(void *mem_ctx,
|
|
struct gl_shader_program *prog,
|
|
const struct gl_constants *constants,
|
|
unsigned target_index,
|
|
bool do_assignment)
|
|
{
|
|
/* Maximum number of generic locations. This corresponds to either the
|
|
* maximum number of draw buffers or the maximum number of generic
|
|
* attributes.
|
|
*/
|
|
unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
|
|
constants->Program[target_index].MaxAttribs :
|
|
MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
|
|
|
|
assert(max_index <= 32);
|
|
struct temp_attr to_assign[32];
|
|
|
|
/* Mark invalid locations as being used.
|
|
*/
|
|
unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
|
|
unsigned double_storage_locations = 0;
|
|
|
|
assert((target_index == MESA_SHADER_VERTEX)
|
|
|| (target_index == MESA_SHADER_FRAGMENT));
|
|
|
|
if (prog->_LinkedShaders[target_index] == NULL)
|
|
return true;
|
|
|
|
/* Operate in a total of four passes.
|
|
*
|
|
* 1. Invalidate the location assignments for all vertex shader inputs.
|
|
*
|
|
* 2. Assign locations for inputs that have user-defined (via
|
|
* glBindVertexAttribLocation) locations and outputs that have
|
|
* user-defined locations (via glBindFragDataLocation).
|
|
*
|
|
* 3. Sort the attributes without assigned locations by number of slots
|
|
* required in decreasing order. Fragmentation caused by attribute
|
|
* locations assigned by the application may prevent large attributes
|
|
* from having enough contiguous space.
|
|
*
|
|
* 4. Assign locations to any inputs without assigned locations.
|
|
*/
|
|
|
|
const int generic_base = (target_index == MESA_SHADER_VERTEX)
|
|
? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
|
|
|
|
nir_variable_mode io_mode =
|
|
(target_index == MESA_SHADER_VERTEX)
|
|
? nir_var_shader_in : nir_var_shader_out;
|
|
|
|
/* Temporary array for the set of attributes that have locations assigned,
|
|
* for the purpose of checking overlapping slots/components of (non-ES)
|
|
* fragment shader outputs.
|
|
*/
|
|
nir_variable *assigned[FRAG_RESULT_MAX * 4]; /* (max # of FS outputs) * # components */
|
|
unsigned assigned_attr = 0;
|
|
|
|
unsigned num_attr = 0;
|
|
|
|
nir_shader *shader = prog->_LinkedShaders[target_index]->Program->nir;
|
|
nir_foreach_variable_with_modes(var, shader, io_mode) {
|
|
|
|
if (var->data.explicit_location) {
|
|
if ((var->data.location >= (int)(max_index + generic_base))
|
|
|| (var->data.location < 0)) {
|
|
linker_error(prog,
|
|
"invalid explicit location %d specified for `%s'\n",
|
|
(var->data.location < 0)
|
|
? var->data.location
|
|
: var->data.location - generic_base,
|
|
var->name);
|
|
return false;
|
|
}
|
|
} else if (target_index == MESA_SHADER_VERTEX) {
|
|
unsigned binding;
|
|
|
|
if (string_to_uint_map_get(prog->AttributeBindings, &binding, var->name)) {
|
|
assert(binding >= VERT_ATTRIB_GENERIC0);
|
|
var->data.location = binding;
|
|
}
|
|
} else if (target_index == MESA_SHADER_FRAGMENT) {
|
|
unsigned binding;
|
|
unsigned index;
|
|
const char *name = var->name;
|
|
const struct glsl_type *type = var->type;
|
|
|
|
while (type) {
|
|
/* Check if there's a binding for the variable name */
|
|
if (string_to_uint_map_get(prog->FragDataBindings, &binding, name)) {
|
|
assert(binding >= FRAG_RESULT_DATA0);
|
|
var->data.location = binding;
|
|
|
|
if (string_to_uint_map_get(prog->FragDataIndexBindings, &index, name)) {
|
|
var->data.index = index;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* If not, but it's an array type, look for name[0] */
|
|
if (glsl_type_is_array(type)) {
|
|
name = ralloc_asprintf(mem_ctx, "%s[0]", name);
|
|
type = glsl_get_array_element(type);
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (strcmp(var->name, "gl_LastFragData") == 0)
|
|
continue;
|
|
|
|
/* From GL4.5 core spec, section 15.2 (Shader Execution):
|
|
*
|
|
* "Output binding assignments will cause LinkProgram to fail:
|
|
* ...
|
|
* If the program has an active output assigned to a location greater
|
|
* than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
|
|
* an active output assigned an index greater than or equal to one;"
|
|
*/
|
|
if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
|
|
var->data.location - generic_base >=
|
|
(int) constants->MaxDualSourceDrawBuffers) {
|
|
linker_error(prog,
|
|
"output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
|
|
"with index %u for %s\n",
|
|
var->data.location - generic_base, var->data.index,
|
|
var->name);
|
|
return false;
|
|
}
|
|
|
|
const unsigned slots =
|
|
glsl_count_attribute_slots(var->type,
|
|
target_index == MESA_SHADER_VERTEX);
|
|
|
|
/* If the variable is not a built-in and has a location statically
|
|
* assigned in the shader (presumably via a layout qualifier), make sure
|
|
* that it doesn't collide with other assigned locations. Otherwise,
|
|
* add it to the list of variables that need linker-assigned locations.
|
|
*/
|
|
if (var->data.location != -1) {
|
|
if (var->data.location >= generic_base && var->data.index < 1) {
|
|
/* From page 61 of the OpenGL 4.0 spec:
|
|
*
|
|
* "LinkProgram will fail if the attribute bindings assigned
|
|
* by BindAttribLocation do not leave not enough space to
|
|
* assign a location for an active matrix attribute or an
|
|
* active attribute array, both of which require multiple
|
|
* contiguous generic attributes."
|
|
*
|
|
* I think above text prohibits the aliasing of explicit and
|
|
* automatic assignments. But, aliasing is allowed in manual
|
|
* assignments of attribute locations. See below comments for
|
|
* the details.
|
|
*
|
|
* From OpenGL 4.0 spec, page 61:
|
|
*
|
|
* "It is possible for an application to bind more than one
|
|
* attribute name to the same location. This is referred to as
|
|
* aliasing. This will only work if only one of the aliased
|
|
* attributes is active in the executable program, or if no
|
|
* path through the shader consumes more than one attribute of
|
|
* a set of attributes aliased to the same location. A link
|
|
* error can occur if the linker determines that every path
|
|
* through the shader consumes multiple aliased attributes,
|
|
* but implementations are not required to generate an error
|
|
* in this case."
|
|
*
|
|
* From GLSL 4.30 spec, page 54:
|
|
*
|
|
* "A program will fail to link if any two non-vertex shader
|
|
* input variables are assigned to the same location. For
|
|
* vertex shaders, multiple input variables may be assigned
|
|
* to the same location using either layout qualifiers or via
|
|
* the OpenGL API. However, such aliasing is intended only to
|
|
* support vertex shaders where each execution path accesses
|
|
* at most one input per each location. Implementations are
|
|
* permitted, but not required, to generate link-time errors
|
|
* if they detect that every path through the vertex shader
|
|
* executable accesses multiple inputs assigned to any single
|
|
* location. For all shader types, a program will fail to link
|
|
* if explicit location assignments leave the linker unable
|
|
* to find space for other variables without explicit
|
|
* assignments."
|
|
*
|
|
* From OpenGL ES 3.0 spec, page 56:
|
|
*
|
|
* "Binding more than one attribute name to the same location
|
|
* is referred to as aliasing, and is not permitted in OpenGL
|
|
* ES Shading Language 3.00 vertex shaders. LinkProgram will
|
|
* fail when this condition exists. However, aliasing is
|
|
* possible in OpenGL ES Shading Language 1.00 vertex shaders.
|
|
* This will only work if only one of the aliased attributes
|
|
* is active in the executable program, or if no path through
|
|
* the shader consumes more than one attribute of a set of
|
|
* attributes aliased to the same location. A link error can
|
|
* occur if the linker determines that every path through the
|
|
* shader consumes multiple aliased attributes, but implemen-
|
|
* tations are not required to generate an error in this case."
|
|
*
|
|
* After looking at above references from OpenGL, OpenGL ES and
|
|
* GLSL specifications, we allow aliasing of vertex input variables
|
|
* in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
|
|
*
|
|
* NOTE: This is not required by the spec but its worth mentioning
|
|
* here that we're not doing anything to make sure that no path
|
|
* through the vertex shader executable accesses multiple inputs
|
|
* assigned to any single location.
|
|
*/
|
|
|
|
/* Mask representing the contiguous slots that will be used by
|
|
* this attribute.
|
|
*/
|
|
const unsigned attr = var->data.location - generic_base;
|
|
const unsigned use_mask = (1 << slots) - 1;
|
|
const char *const string = (target_index == MESA_SHADER_VERTEX)
|
|
? "vertex shader input" : "fragment shader output";
|
|
|
|
/* Generate a link error if the requested locations for this
|
|
* attribute exceed the maximum allowed attribute location.
|
|
*/
|
|
if (attr + slots > max_index) {
|
|
linker_error(prog,
|
|
"insufficient contiguous locations "
|
|
"available for %s `%s' %d %d %d\n", string,
|
|
var->name, used_locations, use_mask, attr);
|
|
return false;
|
|
}
|
|
|
|
/* Generate a link error if the set of bits requested for this
|
|
* attribute overlaps any previously allocated bits.
|
|
*/
|
|
if ((~(use_mask << attr) & used_locations) != used_locations) {
|
|
if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
|
|
/* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
|
|
* 4.40 spec:
|
|
*
|
|
* "Additionally, for fragment shader outputs, if two
|
|
* variables are placed within the same location, they
|
|
* must have the same underlying type (floating-point or
|
|
* integer). No component aliasing of output variables or
|
|
* members is allowed.
|
|
*/
|
|
for (unsigned i = 0; i < assigned_attr; i++) {
|
|
unsigned assigned_slots =
|
|
glsl_count_attribute_slots(assigned[i]->type, false);
|
|
unsigned assig_attr =
|
|
assigned[i]->data.location - generic_base;
|
|
unsigned assigned_use_mask = (1 << assigned_slots) - 1;
|
|
|
|
if ((assigned_use_mask << assig_attr) &
|
|
(use_mask << attr)) {
|
|
|
|
const struct glsl_type *assigned_type =
|
|
glsl_without_array(assigned[i]->type);
|
|
const struct glsl_type *type =
|
|
glsl_without_array(var->type);
|
|
if (glsl_get_base_type(assigned_type) !=
|
|
glsl_get_base_type(type)) {
|
|
linker_error(prog, "types do not match for aliased"
|
|
" %ss %s and %s\n", string,
|
|
assigned[i]->name, var->name);
|
|
return false;
|
|
}
|
|
|
|
unsigned assigned_component_mask =
|
|
((1 << glsl_get_vector_elements(assigned_type)) - 1) <<
|
|
assigned[i]->data.location_frac;
|
|
unsigned component_mask =
|
|
((1 << glsl_get_vector_elements(type)) - 1) <<
|
|
var->data.location_frac;
|
|
if (assigned_component_mask & component_mask) {
|
|
linker_error(prog, "overlapping component is "
|
|
"assigned to %ss %s and %s "
|
|
"(component=%d)\n",
|
|
string, assigned[i]->name, var->name,
|
|
var->data.location_frac);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
} else if (target_index == MESA_SHADER_FRAGMENT ||
|
|
(prog->IsES && prog->GLSL_Version >= 300)) {
|
|
linker_error(prog, "overlapping location is assigned "
|
|
"to %s `%s' %d %d %d\n", string, var->name,
|
|
used_locations, use_mask, attr);
|
|
return false;
|
|
} else {
|
|
linker_warning(prog, "overlapping location is assigned "
|
|
"to %s `%s' %d %d %d\n", string, var->name,
|
|
used_locations, use_mask, attr);
|
|
}
|
|
}
|
|
|
|
if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
|
|
/* Only track assigned variables for non-ES fragment shaders
|
|
* to avoid overflowing the array.
|
|
*
|
|
* At most one variable per fragment output component should
|
|
* reach this.
|
|
*/
|
|
assert(assigned_attr < ARRAY_SIZE(assigned));
|
|
assigned[assigned_attr] = var;
|
|
assigned_attr++;
|
|
}
|
|
|
|
used_locations |= (use_mask << attr);
|
|
|
|
/* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
|
|
*
|
|
* "A program with more than the value of MAX_VERTEX_ATTRIBS
|
|
* active attribute variables may fail to link, unless
|
|
* device-dependent optimizations are able to make the program
|
|
* fit within available hardware resources. For the purposes
|
|
* of this test, attribute variables of the type dvec3, dvec4,
|
|
* dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
|
|
* count as consuming twice as many attributes as equivalent
|
|
* single-precision types. While these types use the same number
|
|
* of generic attributes as their single-precision equivalents,
|
|
* implementations are permitted to consume two single-precision
|
|
* vectors of internal storage for each three- or four-component
|
|
* double-precision vector."
|
|
*
|
|
* Mark this attribute slot as taking up twice as much space
|
|
* so we can count it properly against limits. According to
|
|
* issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
|
|
* is optional behavior, but it seems preferable.
|
|
*/
|
|
if (glsl_type_is_dual_slot(glsl_without_array(var->type)))
|
|
double_storage_locations |= (use_mask << attr);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (num_attr >= max_index) {
|
|
linker_error(prog, "too many %s (max %u)",
|
|
target_index == MESA_SHADER_VERTEX ?
|
|
"vertex shader inputs" : "fragment shader outputs",
|
|
max_index);
|
|
return false;
|
|
}
|
|
to_assign[num_attr].slots = slots;
|
|
to_assign[num_attr].var = var;
|
|
num_attr++;
|
|
}
|
|
|
|
if (!do_assignment)
|
|
return true;
|
|
|
|
if (target_index == MESA_SHADER_VERTEX) {
|
|
unsigned total_attribs_size =
|
|
util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
|
|
util_bitcount(double_storage_locations);
|
|
if (total_attribs_size > max_index) {
|
|
linker_error(prog,
|
|
"attempt to use %d vertex attribute slots only %d available ",
|
|
total_attribs_size, max_index);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* If all of the attributes were assigned locations by the application (or
|
|
* are built-in attributes with fixed locations), return early. This should
|
|
* be the common case.
|
|
*/
|
|
if (num_attr == 0)
|
|
return true;
|
|
|
|
qsort(to_assign, num_attr, sizeof(to_assign[0]), &compare_attr);
|
|
|
|
if (target_index == MESA_SHADER_VERTEX) {
|
|
/* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can
|
|
* only be explicitly assigned by via glBindAttribLocation. Mark it as
|
|
* reserved to prevent it from being automatically allocated below.
|
|
*/
|
|
if (find_deref(shader, "gl_Vertex"))
|
|
used_locations |= (1 << 0);
|
|
}
|
|
|
|
for (unsigned i = 0; i < num_attr; i++) {
|
|
/* Mask representing the contiguous slots that will be used by this
|
|
* attribute.
|
|
*/
|
|
const unsigned use_mask = (1 << to_assign[i].slots) - 1;
|
|
|
|
int location = find_available_slots(used_locations, to_assign[i].slots);
|
|
|
|
if (location < 0) {
|
|
const char *const string = (target_index == MESA_SHADER_VERTEX)
|
|
? "vertex shader input" : "fragment shader output";
|
|
|
|
linker_error(prog,
|
|
"insufficient contiguous locations "
|
|
"available for %s `%s'\n",
|
|
string, to_assign[i].var->name);
|
|
return false;
|
|
}
|
|
|
|
to_assign[i].var->data.location = generic_base + location;
|
|
used_locations |= (use_mask << location);
|
|
|
|
if (glsl_type_is_dual_slot(glsl_without_array(to_assign[i].var->type)))
|
|
double_storage_locations |= (use_mask << location);
|
|
}
|
|
|
|
/* Now that we have all the locations, from the GL 4.5 core spec, section
|
|
* 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
|
|
* dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
|
|
* as equivalent single-precision types.
|
|
*/
|
|
if (target_index == MESA_SHADER_VERTEX) {
|
|
unsigned total_attribs_size =
|
|
util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
|
|
util_bitcount(double_storage_locations);
|
|
if (total_attribs_size > max_index) {
|
|
linker_error(prog,
|
|
"attempt to use %d vertex attribute slots only %d available ",
|
|
total_attribs_size, max_index);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Get the varying type stripped of the outermost array if we're processing
|
|
* a stage whose varyings are arrays indexed by a vertex number (such as
|
|
* geometry shader inputs).
|
|
*/
|
|
static const struct glsl_type *
|
|
get_varying_type(const nir_variable *var, gl_shader_stage stage)
|
|
{
|
|
const struct glsl_type *type = var->type;
|
|
if (nir_is_arrayed_io(var, stage) || var->data.per_view) {
|
|
assert(glsl_type_is_array(type));
|
|
type = glsl_get_array_element(type);
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
static bool
|
|
varying_has_user_specified_location(const nir_variable *var)
|
|
{
|
|
return var->data.explicit_location &&
|
|
var->data.location >= VARYING_SLOT_VAR0;
|
|
}
|
|
|
|
static void
|
|
create_xfb_varying_names(void *mem_ctx, const struct glsl_type *t, char **name,
|
|
size_t name_length, unsigned *count,
|
|
const char *ifc_member_name,
|
|
const struct glsl_type *ifc_member_t,
|
|
char ***varying_names)
|
|
{
|
|
if (glsl_type_is_interface(t)) {
|
|
size_t new_length = name_length;
|
|
|
|
assert(ifc_member_name && ifc_member_t);
|
|
ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name);
|
|
|
|
create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count,
|
|
NULL, NULL, varying_names);
|
|
} else if (glsl_type_is_struct(t)) {
|
|
for (unsigned i = 0; i < glsl_get_length(t); i++) {
|
|
const char *field = glsl_get_struct_elem_name(t, i);
|
|
size_t new_length = name_length;
|
|
|
|
ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
|
|
|
|
create_xfb_varying_names(mem_ctx, glsl_get_struct_field(t, i), name,
|
|
new_length, count, NULL, NULL,
|
|
varying_names);
|
|
}
|
|
} else if (glsl_type_is_struct(glsl_without_array(t)) ||
|
|
glsl_type_is_interface(glsl_without_array(t)) ||
|
|
(glsl_type_is_array(t) && glsl_type_is_array(glsl_get_array_element(t)))) {
|
|
for (unsigned i = 0; i < glsl_get_length(t); i++) {
|
|
size_t new_length = name_length;
|
|
|
|
/* Append the subscript to the current variable name */
|
|
ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
|
|
|
|
create_xfb_varying_names(mem_ctx, glsl_get_array_element(t), name,
|
|
new_length, count, ifc_member_name,
|
|
ifc_member_t, varying_names);
|
|
}
|
|
} else {
|
|
(*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
process_xfb_layout_qualifiers(void *mem_ctx, const struct gl_linked_shader *sh,
|
|
struct gl_shader_program *prog,
|
|
unsigned *num_xfb_decls,
|
|
char ***varying_names)
|
|
{
|
|
bool has_xfb_qualifiers = false;
|
|
|
|
/* We still need to enable transform feedback mode even if xfb_stride is
|
|
* only applied to a global out. Also we don't bother to propagate
|
|
* xfb_stride to interface block members so this will catch that case also.
|
|
*/
|
|
for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
|
|
if (prog->TransformFeedback.BufferStride[j]) {
|
|
has_xfb_qualifiers = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
nir_foreach_shader_out_variable(var, sh->Program->nir) {
|
|
/* From the ARB_enhanced_layouts spec:
|
|
*
|
|
* "Any shader making any static use (after preprocessing) of any of
|
|
* these *xfb_* qualifiers will cause the shader to be in a
|
|
* transform feedback capturing mode and hence responsible for
|
|
* describing the transform feedback setup. This mode will capture
|
|
* any output selected by *xfb_offset*, directly or indirectly, to
|
|
* a transform feedback buffer."
|
|
*/
|
|
if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) {
|
|
has_xfb_qualifiers = true;
|
|
}
|
|
|
|
if (var->data.explicit_offset) {
|
|
*num_xfb_decls += glsl_varying_count(var->type);
|
|
has_xfb_qualifiers = true;
|
|
}
|
|
}
|
|
|
|
if (*num_xfb_decls == 0)
|
|
return has_xfb_qualifiers;
|
|
|
|
unsigned i = 0;
|
|
*varying_names = ralloc_array(mem_ctx, char *, *num_xfb_decls);
|
|
nir_foreach_shader_out_variable(var, sh->Program->nir) {
|
|
if (var->data.explicit_offset) {
|
|
char *name;
|
|
const struct glsl_type *type, *member_type;
|
|
|
|
if (var->data.from_named_ifc_block) {
|
|
type = var->interface_type;
|
|
|
|
/* Find the member type before it was altered by lowering */
|
|
const struct glsl_type *type_wa = glsl_without_array(type);
|
|
member_type =
|
|
glsl_get_struct_field(type_wa, glsl_get_field_index(type_wa, var->name));
|
|
name = ralloc_strdup(NULL, glsl_get_type_name(type_wa));
|
|
} else {
|
|
type = var->type;
|
|
member_type = NULL;
|
|
name = ralloc_strdup(NULL, var->name);
|
|
}
|
|
create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i,
|
|
var->name, member_type, varying_names);
|
|
ralloc_free(name);
|
|
}
|
|
}
|
|
|
|
assert(i == *num_xfb_decls);
|
|
return has_xfb_qualifiers;
|
|
}
|
|
|
|
/**
|
|
* Initialize this struct based on a string that was passed to
|
|
* glTransformFeedbackVaryings.
|
|
*
|
|
* If the input is mal-formed, this call still succeeds, but it sets
|
|
* this->var_name to a mal-formed input, so xfb_decl_find_output_var()
|
|
* will fail to find any matching variable.
|
|
*/
|
|
static void
|
|
xfb_decl_init(struct xfb_decl *xfb_decl, const struct gl_constants *consts,
|
|
const struct gl_extensions *exts, const void *mem_ctx,
|
|
const char *input)
|
|
{
|
|
/* We don't have to be pedantic about what is a valid GLSL variable name,
|
|
* because any variable with an invalid name can't exist in the IR anyway.
|
|
*/
|
|
xfb_decl->location = -1;
|
|
xfb_decl->orig_name = input;
|
|
xfb_decl->lowered_builtin_array_variable = none;
|
|
xfb_decl->skip_components = 0;
|
|
xfb_decl->next_buffer_separator = false;
|
|
xfb_decl->matched_candidate = NULL;
|
|
xfb_decl->stream_id = 0;
|
|
xfb_decl->buffer = 0;
|
|
xfb_decl->offset = 0;
|
|
|
|
if (exts->ARB_transform_feedback3) {
|
|
/* Parse gl_NextBuffer. */
|
|
if (strcmp(input, "gl_NextBuffer") == 0) {
|
|
xfb_decl->next_buffer_separator = true;
|
|
return;
|
|
}
|
|
|
|
/* Parse gl_SkipComponents. */
|
|
if (strcmp(input, "gl_SkipComponents1") == 0)
|
|
xfb_decl->skip_components = 1;
|
|
else if (strcmp(input, "gl_SkipComponents2") == 0)
|
|
xfb_decl->skip_components = 2;
|
|
else if (strcmp(input, "gl_SkipComponents3") == 0)
|
|
xfb_decl->skip_components = 3;
|
|
else if (strcmp(input, "gl_SkipComponents4") == 0)
|
|
xfb_decl->skip_components = 4;
|
|
|
|
if (xfb_decl->skip_components)
|
|
return;
|
|
}
|
|
|
|
/* Parse a declaration. */
|
|
const char *base_name_end;
|
|
long subscript = link_util_parse_program_resource_name(input, strlen(input),
|
|
&base_name_end);
|
|
xfb_decl->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input);
|
|
if (xfb_decl->var_name == NULL) {
|
|
_mesa_error_no_memory(__func__);
|
|
return;
|
|
}
|
|
|
|
if (subscript >= 0) {
|
|
xfb_decl->array_subscript = subscript;
|
|
xfb_decl->is_subscripted = true;
|
|
} else {
|
|
xfb_decl->is_subscripted = false;
|
|
}
|
|
|
|
/* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this
|
|
* class must behave specially to account for the fact that gl_ClipDistance
|
|
* is converted from a float[8] to a vec4[2].
|
|
*/
|
|
if (consts->ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
|
|
strcmp(xfb_decl->var_name, "gl_ClipDistance") == 0) {
|
|
xfb_decl->lowered_builtin_array_variable = clip_distance;
|
|
}
|
|
if (consts->ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance &&
|
|
strcmp(xfb_decl->var_name, "gl_CullDistance") == 0) {
|
|
xfb_decl->lowered_builtin_array_variable = cull_distance;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Determine whether two xfb_decl structs refer to the same variable and
|
|
* array index (if applicable).
|
|
*/
|
|
static bool
|
|
xfb_decl_is_same(const struct xfb_decl *x, const struct xfb_decl *y)
|
|
{
|
|
assert(xfb_decl_is_varying(x) && xfb_decl_is_varying(y));
|
|
|
|
if (strcmp(x->var_name, y->var_name) != 0)
|
|
return false;
|
|
if (x->is_subscripted != y->is_subscripted)
|
|
return false;
|
|
if (x->is_subscripted && x->array_subscript != y->array_subscript)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* The total number of varying components taken up by this variable. Only
|
|
* valid if assign_location() has been called.
|
|
*/
|
|
static unsigned
|
|
xfb_decl_num_components(struct xfb_decl *xfb_decl)
|
|
{
|
|
if (xfb_decl->lowered_builtin_array_variable)
|
|
return xfb_decl->size;
|
|
else
|
|
return xfb_decl->vector_elements * xfb_decl->matrix_columns *
|
|
xfb_decl->size * (_mesa_gl_datatype_is_64bit(xfb_decl->type) ? 2 : 1);
|
|
}
|
|
|
|
/**
|
|
* Assign a location and stream ID for this xfb_decl object based on the
|
|
* transform feedback candidate found by find_candidate.
|
|
*
|
|
* If an error occurs, the error is reported through linker_error() and false
|
|
* is returned.
|
|
*/
|
|
static bool
|
|
xfb_decl_assign_location(struct xfb_decl *xfb_decl,
|
|
const struct gl_constants *consts,
|
|
struct gl_shader_program *prog,
|
|
bool disable_varying_packing, bool xfb_enabled)
|
|
{
|
|
assert(xfb_decl_is_varying(xfb_decl));
|
|
|
|
unsigned fine_location
|
|
= xfb_decl->matched_candidate->toplevel_var->data.location * 4
|
|
+ xfb_decl->matched_candidate->toplevel_var->data.location_frac
|
|
+ xfb_decl->matched_candidate->struct_offset_floats;
|
|
const unsigned dmul =
|
|
glsl_type_is_64bit(glsl_without_array(xfb_decl->matched_candidate->type)) ? 2 : 1;
|
|
|
|
if (glsl_type_is_array(xfb_decl->matched_candidate->type)) {
|
|
/* Array variable */
|
|
const struct glsl_type *element_type =
|
|
glsl_get_array_element(xfb_decl->matched_candidate->type);
|
|
const unsigned matrix_cols = glsl_get_matrix_columns(element_type);
|
|
const unsigned vector_elements = glsl_get_vector_elements(element_type);
|
|
unsigned actual_array_size;
|
|
switch (xfb_decl->lowered_builtin_array_variable) {
|
|
case clip_distance:
|
|
actual_array_size = prog->last_vert_prog ?
|
|
prog->last_vert_prog->info.clip_distance_array_size : 0;
|
|
break;
|
|
case cull_distance:
|
|
actual_array_size = prog->last_vert_prog ?
|
|
prog->last_vert_prog->info.cull_distance_array_size : 0;
|
|
break;
|
|
case none:
|
|
default:
|
|
actual_array_size = glsl_array_size(xfb_decl->matched_candidate->type);
|
|
break;
|
|
}
|
|
|
|
if (xfb_decl->is_subscripted) {
|
|
/* Check array bounds. */
|
|
if (xfb_decl->array_subscript >= actual_array_size) {
|
|
linker_error(prog, "Transform feedback varying %s has index "
|
|
"%i, but the array size is %u.",
|
|
xfb_decl->orig_name, xfb_decl->array_subscript,
|
|
actual_array_size);
|
|
return false;
|
|
}
|
|
|
|
bool array_will_be_lowered =
|
|
lower_packed_varying_needs_lowering(prog->last_vert_prog->nir,
|
|
xfb_decl->matched_candidate->toplevel_var,
|
|
nir_var_shader_out,
|
|
disable_varying_packing,
|
|
xfb_enabled) ||
|
|
strcmp(xfb_decl->matched_candidate->toplevel_var->name, "gl_ClipDistance") == 0 ||
|
|
strcmp(xfb_decl->matched_candidate->toplevel_var->name, "gl_CullDistance") == 0 ||
|
|
strcmp(xfb_decl->matched_candidate->toplevel_var->name, "gl_TessLevelInner") == 0 ||
|
|
strcmp(xfb_decl->matched_candidate->toplevel_var->name, "gl_TessLevelOuter") == 0;
|
|
|
|
unsigned array_elem_size = xfb_decl->lowered_builtin_array_variable ?
|
|
1 : (array_will_be_lowered ? vector_elements : 4) * matrix_cols * dmul;
|
|
fine_location += array_elem_size * xfb_decl->array_subscript;
|
|
xfb_decl->size = 1;
|
|
} else {
|
|
xfb_decl->size = actual_array_size;
|
|
}
|
|
xfb_decl->vector_elements = vector_elements;
|
|
xfb_decl->matrix_columns = matrix_cols;
|
|
if (xfb_decl->lowered_builtin_array_variable)
|
|
xfb_decl->type = GL_FLOAT;
|
|
else
|
|
xfb_decl->type = glsl_get_gl_type(element_type);
|
|
} else {
|
|
/* Regular variable (scalar, vector, or matrix) */
|
|
if (xfb_decl->is_subscripted) {
|
|
linker_error(prog, "Transform feedback varying %s requested, "
|
|
"but %s is not an array.",
|
|
xfb_decl->orig_name, xfb_decl->var_name);
|
|
return false;
|
|
}
|
|
xfb_decl->size = 1;
|
|
xfb_decl->vector_elements = glsl_get_vector_elements(xfb_decl->matched_candidate->type);
|
|
xfb_decl->matrix_columns = glsl_get_matrix_columns(xfb_decl->matched_candidate->type);
|
|
xfb_decl->type = glsl_get_gl_type(xfb_decl->matched_candidate->type);
|
|
}
|
|
xfb_decl->location = fine_location / 4;
|
|
xfb_decl->location_frac = fine_location % 4;
|
|
|
|
/* From GL_EXT_transform_feedback:
|
|
* A program will fail to link if:
|
|
*
|
|
* * the total number of components to capture in any varying
|
|
* variable in <varyings> is greater than the constant
|
|
* MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the
|
|
* buffer mode is SEPARATE_ATTRIBS_EXT;
|
|
*/
|
|
if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
|
|
xfb_decl_num_components(xfb_decl) >
|
|
consts->MaxTransformFeedbackSeparateComponents) {
|
|
linker_error(prog, "Transform feedback varying %s exceeds "
|
|
"MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.",
|
|
xfb_decl->orig_name);
|
|
return false;
|
|
}
|
|
|
|
/* Only transform feedback varyings can be assigned to non-zero streams,
|
|
* so assign the stream id here.
|
|
*/
|
|
xfb_decl->stream_id = xfb_decl->matched_candidate->toplevel_var->data.stream;
|
|
|
|
unsigned array_offset = xfb_decl->array_subscript * 4 * dmul;
|
|
unsigned struct_offset = xfb_decl->matched_candidate->xfb_offset_floats * 4;
|
|
xfb_decl->buffer = xfb_decl->matched_candidate->toplevel_var->data.xfb.buffer;
|
|
xfb_decl->offset = xfb_decl->matched_candidate->toplevel_var->data.offset +
|
|
array_offset + struct_offset;
|
|
|
|
return true;
|
|
}
|
|
|
|
static unsigned
|
|
xfb_decl_get_num_outputs(struct xfb_decl *xfb_decl)
|
|
{
|
|
if (!xfb_decl_is_varying(xfb_decl)) {
|
|
return 0;
|
|
}
|
|
|
|
if (varying_has_user_specified_location(xfb_decl->matched_candidate->toplevel_var)) {
|
|
unsigned dmul = _mesa_gl_datatype_is_64bit(xfb_decl->type) ? 2 : 1;
|
|
unsigned rows_per_element = DIV_ROUND_UP(xfb_decl->vector_elements * dmul, 4);
|
|
return xfb_decl->size * xfb_decl->matrix_columns * rows_per_element;
|
|
} else {
|
|
return (xfb_decl_num_components(xfb_decl) + xfb_decl->location_frac + 3) / 4;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
xfb_decl_is_varying_written(struct xfb_decl *xfb_decl)
|
|
{
|
|
if (xfb_decl->next_buffer_separator || xfb_decl->skip_components)
|
|
return false;
|
|
|
|
return xfb_decl->matched_candidate->toplevel_var->data.assigned;
|
|
}
|
|
|
|
/**
|
|
* Update gl_transform_feedback_info to reflect this xfb_decl.
|
|
*
|
|
* If an error occurs, the error is reported through linker_error() and false
|
|
* is returned.
|
|
*/
|
|
static bool
|
|
xfb_decl_store(struct xfb_decl *xfb_decl, const struct gl_constants *consts,
|
|
struct gl_shader_program *prog,
|
|
struct gl_transform_feedback_info *info,
|
|
unsigned buffer, unsigned buffer_index,
|
|
const unsigned max_outputs,
|
|
BITSET_WORD *used_components[MAX_FEEDBACK_BUFFERS],
|
|
bool *explicit_stride, unsigned *max_member_alignment,
|
|
bool has_xfb_qualifiers, const void* mem_ctx)
|
|
{
|
|
unsigned xfb_offset = 0;
|
|
unsigned size = xfb_decl->size;
|
|
/* Handle gl_SkipComponents. */
|
|
if (xfb_decl->skip_components) {
|
|
info->Buffers[buffer].Stride += xfb_decl->skip_components;
|
|
size = xfb_decl->skip_components;
|
|
goto store_varying;
|
|
}
|
|
|
|
if (xfb_decl->next_buffer_separator) {
|
|
size = 0;
|
|
goto store_varying;
|
|
}
|
|
|
|
if (has_xfb_qualifiers) {
|
|
xfb_offset = xfb_decl->offset / 4;
|
|
} else {
|
|
xfb_offset = info->Buffers[buffer].Stride;
|
|
}
|
|
info->Varyings[info->NumVarying].Offset = xfb_offset * 4;
|
|
|
|
{
|
|
unsigned location = xfb_decl->location;
|
|
unsigned location_frac = xfb_decl->location_frac;
|
|
unsigned num_components = xfb_decl_num_components(xfb_decl);
|
|
|
|
/* From GL_EXT_transform_feedback:
|
|
*
|
|
* " A program will fail to link if:
|
|
*
|
|
* * the total number of components to capture is greater than the
|
|
* constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT
|
|
* and the buffer mode is INTERLEAVED_ATTRIBS_EXT."
|
|
*
|
|
* From GL_ARB_enhanced_layouts:
|
|
*
|
|
* " The resulting stride (implicit or explicit) must be less than or
|
|
* equal to the implementation-dependent constant
|
|
* gl_MaxTransformFeedbackInterleavedComponents."
|
|
*/
|
|
if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS ||
|
|
has_xfb_qualifiers) &&
|
|
xfb_offset + num_components >
|
|
consts->MaxTransformFeedbackInterleavedComponents) {
|
|
linker_error(prog,
|
|
"The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
|
|
"limit has been exceeded.");
|
|
return false;
|
|
}
|
|
|
|
/* From the OpenGL 4.60.5 spec, section 4.4.2. Output Layout Qualifiers,
|
|
* Page 76, (Transform Feedback Layout Qualifiers):
|
|
*
|
|
* " No aliasing in output buffers is allowed: It is a compile-time or
|
|
* link-time error to specify variables with overlapping transform
|
|
* feedback offsets."
|
|
*/
|
|
const unsigned max_components =
|
|
consts->MaxTransformFeedbackInterleavedComponents;
|
|
const unsigned first_component = xfb_offset;
|
|
const unsigned last_component = xfb_offset + num_components - 1;
|
|
const unsigned start_word = BITSET_BITWORD(first_component);
|
|
const unsigned end_word = BITSET_BITWORD(last_component);
|
|
BITSET_WORD *used;
|
|
assert(last_component < max_components);
|
|
|
|
if (!used_components[buffer]) {
|
|
used_components[buffer] =
|
|
rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(max_components));
|
|
}
|
|
used = used_components[buffer];
|
|
|
|
for (unsigned word = start_word; word <= end_word; word++) {
|
|
unsigned start_range = 0;
|
|
unsigned end_range = BITSET_WORDBITS - 1;
|
|
|
|
if (word == start_word)
|
|
start_range = first_component % BITSET_WORDBITS;
|
|
|
|
if (word == end_word)
|
|
end_range = last_component % BITSET_WORDBITS;
|
|
|
|
if (used[word] & BITSET_RANGE(start_range, end_range)) {
|
|
linker_error(prog,
|
|
"variable '%s', xfb_offset (%d) is causing aliasing.",
|
|
xfb_decl->orig_name, xfb_offset * 4);
|
|
return false;
|
|
}
|
|
used[word] |= BITSET_RANGE(start_range, end_range);
|
|
}
|
|
|
|
const unsigned type_num_components =
|
|
xfb_decl->vector_elements *
|
|
(_mesa_gl_datatype_is_64bit(xfb_decl->type) ? 2 : 1);
|
|
unsigned current_type_components_left = type_num_components;
|
|
|
|
while (num_components > 0) {
|
|
unsigned output_size = 0;
|
|
|
|
/* From GL_ARB_enhanced_layouts:
|
|
*
|
|
* "When an attribute variable declared using an array type is bound to
|
|
* generic attribute index <i>, the active array elements are assigned to
|
|
* consecutive generic attributes beginning with generic attribute <i>. The
|
|
* number of attributes and components assigned to each element are
|
|
* determined according to the data type of array elements and "component"
|
|
* layout qualifier (if any) specified in the declaration of the array."
|
|
*
|
|
* "When an attribute variable declared using a matrix type is bound to a
|
|
* generic attribute index <i>, its values are taken from consecutive generic
|
|
* attributes beginning with generic attribute <i>. Such matrices are
|
|
* treated as an array of column vectors with values taken from the generic
|
|
* attributes.
|
|
* This means there may be gaps in the varyings we are taking values from."
|
|
*
|
|
* Examples:
|
|
*
|
|
* | layout(location=0) dvec3[2] a; | layout(location=4) vec2[4] b; |
|
|
* | | |
|
|
* | 32b 32b 32b 32b | 32b 32b 32b 32b |
|
|
* | 0 X X Y Y | 4 X Y 0 0 |
|
|
* | 1 Z Z 0 0 | 5 X Y 0 0 |
|
|
* | 2 X X Y Y | 6 X Y 0 0 |
|
|
* | 3 Z Z 0 0 | 7 X Y 0 0 |
|
|
*
|
|
*/
|
|
if (varying_has_user_specified_location(xfb_decl->matched_candidate->toplevel_var)) {
|
|
output_size = MIN3(num_components, current_type_components_left, 4);
|
|
current_type_components_left -= output_size;
|
|
if (current_type_components_left == 0) {
|
|
current_type_components_left = type_num_components;
|
|
}
|
|
} else {
|
|
output_size = MIN2(num_components, 4 - location_frac);
|
|
}
|
|
|
|
assert((info->NumOutputs == 0 && max_outputs == 0) ||
|
|
info->NumOutputs < max_outputs);
|
|
|
|
/* From the ARB_enhanced_layouts spec:
|
|
*
|
|
* "If such a block member or variable is not written during a shader
|
|
* invocation, the buffer contents at the assigned offset will be
|
|
* undefined. Even if there are no static writes to a variable or
|
|
* member that is assigned a transform feedback offset, the space is
|
|
* still allocated in the buffer and still affects the stride."
|
|
*/
|
|
if (xfb_decl_is_varying_written(xfb_decl)) {
|
|
info->Outputs[info->NumOutputs].ComponentOffset = location_frac;
|
|
info->Outputs[info->NumOutputs].OutputRegister = location;
|
|
info->Outputs[info->NumOutputs].NumComponents = output_size;
|
|
info->Outputs[info->NumOutputs].StreamId = xfb_decl->stream_id;
|
|
info->Outputs[info->NumOutputs].OutputBuffer = buffer;
|
|
info->Outputs[info->NumOutputs].DstOffset = xfb_offset;
|
|
++info->NumOutputs;
|
|
}
|
|
info->Buffers[buffer].Stream = xfb_decl->stream_id;
|
|
xfb_offset += output_size;
|
|
|
|
num_components -= output_size;
|
|
location++;
|
|
location_frac = 0;
|
|
}
|
|
}
|
|
|
|
if (explicit_stride && explicit_stride[buffer]) {
|
|
if (_mesa_gl_datatype_is_64bit(xfb_decl->type) &&
|
|
info->Buffers[buffer].Stride % 2) {
|
|
linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
|
|
"multiple of 8 as its applied to a type that is or "
|
|
"contains a double.",
|
|
info->Buffers[buffer].Stride * 4);
|
|
return false;
|
|
}
|
|
|
|
if (xfb_offset > info->Buffers[buffer].Stride) {
|
|
linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for "
|
|
"buffer (%d)", xfb_offset * 4,
|
|
info->Buffers[buffer].Stride * 4, buffer);
|
|
return false;
|
|
}
|
|
} else {
|
|
if (max_member_alignment && has_xfb_qualifiers) {
|
|
max_member_alignment[buffer] = MAX2(max_member_alignment[buffer],
|
|
_mesa_gl_datatype_is_64bit(xfb_decl->type) ? 2 : 1);
|
|
info->Buffers[buffer].Stride = ALIGN(xfb_offset,
|
|
max_member_alignment[buffer]);
|
|
} else {
|
|
info->Buffers[buffer].Stride = xfb_offset;
|
|
}
|
|
}
|
|
|
|
store_varying:
|
|
info->Varyings[info->NumVarying].name.string =
|
|
ralloc_strdup(prog, xfb_decl->orig_name);
|
|
resource_name_updated(&info->Varyings[info->NumVarying].name);
|
|
info->Varyings[info->NumVarying].Type = xfb_decl->type;
|
|
info->Varyings[info->NumVarying].Size = size;
|
|
info->Varyings[info->NumVarying].BufferIndex = buffer_index;
|
|
info->NumVarying++;
|
|
info->Buffers[buffer].NumVaryings++;
|
|
|
|
return true;
|
|
}
|
|
|
|
static const struct tfeedback_candidate *
|
|
xfb_decl_find_candidate(struct xfb_decl *xfb_decl,
|
|
struct gl_shader_program *prog,
|
|
struct hash_table *tfeedback_candidates)
|
|
{
|
|
const char *name = xfb_decl->var_name;
|
|
switch (xfb_decl->lowered_builtin_array_variable) {
|
|
case none:
|
|
name = xfb_decl->var_name;
|
|
break;
|
|
case clip_distance:
|
|
case cull_distance:
|
|
name = "gl_ClipDistanceMESA";
|
|
break;
|
|
}
|
|
struct hash_entry *entry =
|
|
_mesa_hash_table_search(tfeedback_candidates, name);
|
|
|
|
xfb_decl->matched_candidate = entry ?
|
|
(struct tfeedback_candidate *) entry->data : NULL;
|
|
|
|
if (!xfb_decl->matched_candidate) {
|
|
/* From GL_EXT_transform_feedback:
|
|
* A program will fail to link if:
|
|
*
|
|
* * any variable name specified in the <varyings> array is not
|
|
* declared as an output in the geometry shader (if present) or
|
|
* the vertex shader (if no geometry shader is present);
|
|
*/
|
|
linker_error(prog, "Transform feedback varying %s undeclared.",
|
|
xfb_decl->orig_name);
|
|
}
|
|
|
|
return xfb_decl->matched_candidate;
|
|
}
|
|
|
|
/**
|
|
* Force a candidate over the previously matched one. It happens when a new
|
|
* varying needs to be created to match the xfb declaration, for example,
|
|
* to fullfil an alignment criteria.
|
|
*/
|
|
static void
|
|
xfb_decl_set_lowered_candidate(struct xfb_decl *xfb_decl,
|
|
struct tfeedback_candidate *candidate)
|
|
{
|
|
xfb_decl->matched_candidate = candidate;
|
|
|
|
/* The subscript part is no longer relevant */
|
|
xfb_decl->is_subscripted = false;
|
|
xfb_decl->array_subscript = 0;
|
|
}
|
|
|
|
/**
|
|
* Parse all the transform feedback declarations that were passed to
|
|
* glTransformFeedbackVaryings() and store them in xfb_decl objects.
|
|
*
|
|
* If an error occurs, the error is reported through linker_error() and false
|
|
* is returned.
|
|
*/
|
|
static bool
|
|
parse_xfb_decls(const struct gl_constants *consts,
|
|
const struct gl_extensions *exts,
|
|
struct gl_shader_program *prog,
|
|
const void *mem_ctx, unsigned num_names,
|
|
char **varying_names, struct xfb_decl *decls)
|
|
{
|
|
for (unsigned i = 0; i < num_names; ++i) {
|
|
xfb_decl_init(&decls[i], consts, exts, mem_ctx, varying_names[i]);
|
|
|
|
if (!xfb_decl_is_varying(&decls[i]))
|
|
continue;
|
|
|
|
/* From GL_EXT_transform_feedback:
|
|
* A program will fail to link if:
|
|
*
|
|
* * any two entries in the <varyings> array specify the same varying
|
|
* variable;
|
|
*
|
|
* We interpret this to mean "any two entries in the <varyings> array
|
|
* specify the same varying variable and array index", since transform
|
|
* feedback of arrays would be useless otherwise.
|
|
*/
|
|
for (unsigned j = 0; j < i; ++j) {
|
|
if (xfb_decl_is_varying(&decls[j])) {
|
|
if (xfb_decl_is_same(&decls[i], &decls[j])) {
|
|
linker_error(prog, "Transform feedback varying %s specified "
|
|
"more than once.", varying_names[i]);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
cmp_xfb_offset(const void * x_generic, const void * y_generic)
|
|
{
|
|
struct xfb_decl *x = (struct xfb_decl *) x_generic;
|
|
struct xfb_decl *y = (struct xfb_decl *) y_generic;
|
|
|
|
if (x->buffer != y->buffer)
|
|
return x->buffer - y->buffer;
|
|
return x->offset - y->offset;
|
|
}
|
|
|
|
/**
|
|
* Store transform feedback location assignments into
|
|
* prog->sh.LinkedTransformFeedback based on the data stored in
|
|
* xfb_decls.
|
|
*
|
|
* If an error occurs, the error is reported through linker_error() and false
|
|
* is returned.
|
|
*/
|
|
static bool
|
|
store_tfeedback_info(const struct gl_constants *consts,
|
|
struct gl_shader_program *prog, unsigned num_xfb_decls,
|
|
struct xfb_decl *xfb_decls, bool has_xfb_qualifiers,
|
|
const void *mem_ctx)
|
|
{
|
|
if (!prog->last_vert_prog)
|
|
return true;
|
|
|
|
/* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for
|
|
* tracking the number of buffers doesn't overflow.
|
|
*/
|
|
assert(consts->MaxTransformFeedbackBuffers < 32);
|
|
|
|
bool separate_attribs_mode =
|
|
prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS;
|
|
|
|
struct gl_program *xfb_prog = prog->last_vert_prog;
|
|
xfb_prog->sh.LinkedTransformFeedback =
|
|
rzalloc(xfb_prog, struct gl_transform_feedback_info);
|
|
|
|
/* The xfb_offset qualifier does not have to be used in increasing order
|
|
* however some drivers expect to receive the list of transform feedback
|
|
* declarations in order so sort it now for convenience.
|
|
*/
|
|
if (has_xfb_qualifiers) {
|
|
qsort(xfb_decls, num_xfb_decls, sizeof(*xfb_decls),
|
|
cmp_xfb_offset);
|
|
}
|
|
|
|
xfb_prog->sh.LinkedTransformFeedback->Varyings =
|
|
rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info,
|
|
num_xfb_decls);
|
|
|
|
unsigned num_outputs = 0;
|
|
for (unsigned i = 0; i < num_xfb_decls; ++i) {
|
|
if (xfb_decl_is_varying_written(&xfb_decls[i]))
|
|
num_outputs += xfb_decl_get_num_outputs(&xfb_decls[i]);
|
|
}
|
|
|
|
xfb_prog->sh.LinkedTransformFeedback->Outputs =
|
|
rzalloc_array(xfb_prog, struct gl_transform_feedback_output,
|
|
num_outputs);
|
|
|
|
unsigned num_buffers = 0;
|
|
unsigned buffers = 0;
|
|
BITSET_WORD *used_components[MAX_FEEDBACK_BUFFERS] = {0};
|
|
|
|
if (!has_xfb_qualifiers && separate_attribs_mode) {
|
|
/* GL_SEPARATE_ATTRIBS */
|
|
for (unsigned i = 0; i < num_xfb_decls; ++i) {
|
|
if (!xfb_decl_store(&xfb_decls[i], consts, prog,
|
|
xfb_prog->sh.LinkedTransformFeedback,
|
|
num_buffers, num_buffers, num_outputs,
|
|
used_components, NULL, NULL, has_xfb_qualifiers,
|
|
mem_ctx))
|
|
return false;
|
|
|
|
buffers |= 1 << num_buffers;
|
|
num_buffers++;
|
|
}
|
|
}
|
|
else {
|
|
/* GL_INVERLEAVED_ATTRIBS */
|
|
int buffer_stream_id = -1;
|
|
unsigned buffer =
|
|
num_xfb_decls ? xfb_decls[0].buffer : 0;
|
|
bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false };
|
|
unsigned max_member_alignment[MAX_FEEDBACK_BUFFERS] = { 1, 1, 1, 1 };
|
|
/* Apply any xfb_stride global qualifiers */
|
|
if (has_xfb_qualifiers) {
|
|
for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
|
|
if (prog->TransformFeedback.BufferStride[j]) {
|
|
explicit_stride[j] = true;
|
|
xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride =
|
|
prog->TransformFeedback.BufferStride[j] / 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < num_xfb_decls; ++i) {
|
|
if (has_xfb_qualifiers &&
|
|
buffer != xfb_decls[i].buffer) {
|
|
/* we have moved to the next buffer so reset stream id */
|
|
buffer_stream_id = -1;
|
|
num_buffers++;
|
|
}
|
|
|
|
if (xfb_decls[i].next_buffer_separator) {
|
|
if (!xfb_decl_store(&xfb_decls[i], consts, prog,
|
|
xfb_prog->sh.LinkedTransformFeedback,
|
|
buffer, num_buffers, num_outputs,
|
|
used_components, explicit_stride,
|
|
max_member_alignment, has_xfb_qualifiers,
|
|
mem_ctx))
|
|
return false;
|
|
num_buffers++;
|
|
buffer_stream_id = -1;
|
|
continue;
|
|
}
|
|
|
|
if (has_xfb_qualifiers) {
|
|
buffer = xfb_decls[i].buffer;
|
|
} else {
|
|
buffer = num_buffers;
|
|
}
|
|
|
|
if (xfb_decl_is_varying(&xfb_decls[i])) {
|
|
if (buffer_stream_id == -1) {
|
|
/* First varying writing to this buffer: remember its stream */
|
|
buffer_stream_id = (int) xfb_decls[i].stream_id;
|
|
|
|
/* Only mark a buffer as active when there is a varying
|
|
* attached to it. This behaviour is based on a revised version
|
|
* of section 13.2.2 of the GL 4.6 spec.
|
|
*/
|
|
buffers |= 1 << buffer;
|
|
} else if (buffer_stream_id !=
|
|
(int) xfb_decls[i].stream_id) {
|
|
/* Varying writes to the same buffer from a different stream */
|
|
linker_error(prog,
|
|
"Transform feedback can't capture varyings belonging "
|
|
"to different vertex streams in a single buffer. "
|
|
"Varying %s writes to buffer from stream %u, other "
|
|
"varyings in the same buffer write from stream %u.",
|
|
xfb_decls[i].orig_name,
|
|
xfb_decls[i].stream_id,
|
|
buffer_stream_id);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!xfb_decl_store(&xfb_decls[i], consts, prog,
|
|
xfb_prog->sh.LinkedTransformFeedback,
|
|
buffer, num_buffers, num_outputs, used_components,
|
|
explicit_stride, max_member_alignment,
|
|
has_xfb_qualifiers, mem_ctx))
|
|
return false;
|
|
}
|
|
}
|
|
assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs);
|
|
|
|
xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Enum representing the order in which varyings are packed within a
|
|
* packing class.
|
|
*
|
|
* Currently we pack vec4's first, then vec2's, then scalar values, then
|
|
* vec3's. This order ensures that the only vectors that are at risk of
|
|
* having to be "double parked" (split between two adjacent varying slots)
|
|
* are the vec3's.
|
|
*/
|
|
enum packing_order_enum {
|
|
PACKING_ORDER_VEC4,
|
|
PACKING_ORDER_VEC2,
|
|
PACKING_ORDER_SCALAR,
|
|
PACKING_ORDER_VEC3,
|
|
};
|
|
|
|
/**
|
|
* Structure recording the relationship between a single producer output
|
|
* and a single consumer input.
|
|
*/
|
|
struct match {
|
|
/**
|
|
* Packing class for this varying, computed by compute_packing_class().
|
|
*/
|
|
unsigned packing_class;
|
|
|
|
/**
|
|
* Packing order for this varying, computed by compute_packing_order().
|
|
*/
|
|
enum packing_order_enum packing_order;
|
|
|
|
/**
|
|
* The output variable in the producer stage.
|
|
*/
|
|
nir_variable *producer_var;
|
|
|
|
/**
|
|
* The input variable in the consumer stage.
|
|
*/
|
|
nir_variable *consumer_var;
|
|
|
|
/**
|
|
* The location which has been assigned for this varying. This is
|
|
* expressed in multiples of a float, with the first generic varying
|
|
* (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the
|
|
* value 0.
|
|
*/
|
|
unsigned generic_location;
|
|
};
|
|
|
|
/**
|
|
* Data structure recording the relationship between outputs of one shader
|
|
* stage (the "producer") and inputs of another (the "consumer").
|
|
*/
|
|
struct varying_matches
|
|
{
|
|
/**
|
|
* If true, this driver disables varying packing, so all varyings need to
|
|
* be aligned on slot boundaries, and take up a number of slots equal to
|
|
* their number of matrix columns times their array size.
|
|
*
|
|
* Packing may also be disabled because our current packing method is not
|
|
* safe in SSO or versions of OpenGL where interpolation qualifiers are not
|
|
* guaranteed to match across stages.
|
|
*/
|
|
bool disable_varying_packing;
|
|
|
|
/**
|
|
* If true, this driver disables packing for varyings used by transform
|
|
* feedback.
|
|
*/
|
|
bool disable_xfb_packing;
|
|
|
|
/**
|
|
* If true, this driver has transform feedback enabled. The transform
|
|
* feedback code usually requires at least some packing be done even
|
|
* when varying packing is disabled, fortunately where transform feedback
|
|
* requires packing it's safe to override the disabled setting. See
|
|
* is_varying_packing_safe().
|
|
*/
|
|
bool xfb_enabled;
|
|
|
|
bool enhanced_layouts_enabled;
|
|
|
|
/**
|
|
* If true, this driver prefers varyings to be aligned to power of two
|
|
* in a slot.
|
|
*/
|
|
bool prefer_pot_aligned_varyings;
|
|
|
|
struct match *matches;
|
|
|
|
/**
|
|
* The number of elements in the \c matches array that are currently in
|
|
* use.
|
|
*/
|
|
unsigned num_matches;
|
|
|
|
/**
|
|
* The number of elements that were set aside for the \c matches array when
|
|
* it was allocated.
|
|
*/
|
|
unsigned matches_capacity;
|
|
|
|
gl_shader_stage producer_stage;
|
|
gl_shader_stage consumer_stage;
|
|
};
|
|
|
|
/**
|
|
* Comparison function passed to qsort() to sort varyings by packing_class and
|
|
* then by packing_order.
|
|
*/
|
|
static int
|
|
varying_matches_match_comparator(const void *x_generic, const void *y_generic)
|
|
{
|
|
const struct match *x = (const struct match *) x_generic;
|
|
const struct match *y = (const struct match *) y_generic;
|
|
|
|
if (x->packing_class != y->packing_class)
|
|
return x->packing_class - y->packing_class;
|
|
return x->packing_order - y->packing_order;
|
|
}
|
|
|
|
/**
|
|
* Comparison function passed to qsort() to sort varyings used only by
|
|
* transform feedback when packing of other varyings is disabled.
|
|
*/
|
|
static int
|
|
varying_matches_xfb_comparator(const void *x_generic, const void *y_generic)
|
|
{
|
|
const struct match *x = (const struct match *) x_generic;
|
|
|
|
if (x->producer_var != NULL && x->producer_var->data.is_xfb_only)
|
|
return varying_matches_match_comparator(x_generic, y_generic);
|
|
|
|
/* FIXME: When the comparator returns 0 it means the elements being
|
|
* compared are equivalent. However the qsort documentation says:
|
|
*
|
|
* "The order of equivalent elements is undefined."
|
|
*
|
|
* In practice the sort ends up reversing the order of the varyings which
|
|
* means locations are also assigned in this reversed order and happens to
|
|
* be what we want. This is also whats happening in
|
|
* varying_matches_match_comparator().
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Comparison function passed to qsort() to sort varyings NOT used by
|
|
* transform feedback when packing of xfb varyings is disabled.
|
|
*/
|
|
static int
|
|
varying_matches_not_xfb_comparator(const void *x_generic, const void *y_generic)
|
|
{
|
|
const struct match *x = (const struct match *) x_generic;
|
|
|
|
if (x->producer_var != NULL && !x->producer_var->data.is_xfb)
|
|
return varying_matches_match_comparator(x_generic, y_generic);
|
|
|
|
/* FIXME: When the comparator returns 0 it means the elements being
|
|
* compared are equivalent. However the qsort documentation says:
|
|
*
|
|
* "The order of equivalent elements is undefined."
|
|
*
|
|
* In practice the sort ends up reversing the order of the varyings which
|
|
* means locations are also assigned in this reversed order and happens to
|
|
* be what we want. This is also whats happening in
|
|
* varying_matches_match_comparator().
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
is_unpackable_tess(gl_shader_stage producer_stage,
|
|
gl_shader_stage consumer_stage)
|
|
{
|
|
if (consumer_stage == MESA_SHADER_TESS_EVAL ||
|
|
consumer_stage == MESA_SHADER_TESS_CTRL ||
|
|
producer_stage == MESA_SHADER_TESS_CTRL)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
init_varying_matches(void *mem_ctx, struct varying_matches *vm,
|
|
const struct gl_constants *consts,
|
|
const struct gl_extensions *exts,
|
|
gl_shader_stage producer_stage,
|
|
gl_shader_stage consumer_stage,
|
|
bool sso)
|
|
{
|
|
/* Tessellation shaders treat inputs and outputs as shared memory and can
|
|
* access inputs and outputs of other invocations.
|
|
* Therefore, they can't be lowered to temps easily (and definitely not
|
|
* efficiently).
|
|
*/
|
|
bool unpackable_tess =
|
|
is_unpackable_tess(producer_stage, consumer_stage);
|
|
|
|
/* Transform feedback code assumes varying arrays are packed, so if the
|
|
* driver has disabled varying packing, make sure to at least enable
|
|
* packing required by transform feedback. See below for exception.
|
|
*/
|
|
bool xfb_enabled = exts->EXT_transform_feedback && !unpackable_tess;
|
|
|
|
/* Some drivers actually requires packing to be explicitly disabled
|
|
* for varyings used by transform feedback.
|
|
*/
|
|
bool disable_xfb_packing = consts->DisableTransformFeedbackPacking;
|
|
|
|
/* Disable packing on outward facing interfaces for SSO because in ES we
|
|
* need to retain the unpacked varying information for draw time
|
|
* validation.
|
|
*
|
|
* Packing is still enabled on individual arrays, structs, and matrices as
|
|
* these are required by the transform feedback code and it is still safe
|
|
* to do so. We also enable packing when a varying is only used for
|
|
* transform feedback and its not a SSO.
|
|
*/
|
|
bool disable_varying_packing =
|
|
consts->DisableVaryingPacking || unpackable_tess;
|
|
if (sso && (producer_stage == MESA_SHADER_NONE || consumer_stage == MESA_SHADER_NONE))
|
|
disable_varying_packing = true;
|
|
|
|
/* Note: this initial capacity is rather arbitrarily chosen to be large
|
|
* enough for many cases without wasting an unreasonable amount of space.
|
|
* varying_matches_record() will resize the array if there are more than
|
|
* this number of varyings.
|
|
*/
|
|
vm->matches_capacity = 8;
|
|
vm->matches = (struct match *)
|
|
ralloc_array(mem_ctx, struct match, vm->matches_capacity);
|
|
vm->num_matches = 0;
|
|
|
|
vm->disable_varying_packing = disable_varying_packing;
|
|
vm->disable_xfb_packing = disable_xfb_packing;
|
|
vm->xfb_enabled = xfb_enabled;
|
|
vm->enhanced_layouts_enabled = exts->ARB_enhanced_layouts;
|
|
vm->prefer_pot_aligned_varyings = consts->PreferPOTAlignedVaryings;
|
|
vm->producer_stage = producer_stage;
|
|
vm->consumer_stage = consumer_stage;
|
|
}
|
|
|
|
/**
|
|
* Packing is always safe on individual arrays, structures, and matrices. It
|
|
* is also safe if the varying is only used for transform feedback.
|
|
*/
|
|
static bool
|
|
is_varying_packing_safe(struct varying_matches *vm,
|
|
const struct glsl_type *type, const nir_variable *var)
|
|
{
|
|
if (is_unpackable_tess(vm->producer_stage, vm->consumer_stage))
|
|
return false;
|
|
|
|
return vm->xfb_enabled && (glsl_type_is_array_or_matrix(type) ||
|
|
glsl_type_is_struct(type) ||
|
|
var->data.is_xfb_only);
|
|
}
|
|
|
|
static bool
|
|
is_packing_disabled(struct varying_matches *vm, const struct glsl_type *type,
|
|
const nir_variable *var)
|
|
{
|
|
return (vm->disable_varying_packing && !is_varying_packing_safe(vm, type, var)) ||
|
|
(vm->disable_xfb_packing && var->data.is_xfb &&
|
|
!(glsl_type_is_array(type) || glsl_type_is_struct(type) ||
|
|
glsl_type_is_matrix(type))) || var->data.must_be_shader_input;
|
|
}
|
|
|
|
/**
|
|
* Compute the "packing class" of the given varying. This is an unsigned
|
|
* integer with the property that two variables in the same packing class can
|
|
* be safely backed into the same vec4.
|
|
*/
|
|
static unsigned
|
|
varying_matches_compute_packing_class(const nir_variable *var)
|
|
{
|
|
/* Without help from the back-end, there is no way to pack together
|
|
* variables with different interpolation types, because
|
|
* lower_packed_varyings must choose exactly one interpolation type for
|
|
* each packed varying it creates.
|
|
*
|
|
* However, we can safely pack together floats, ints, and uints, because:
|
|
*
|
|
* - varyings of base type "int" and "uint" must use the "flat"
|
|
* interpolation type, which can only occur in GLSL 1.30 and above.
|
|
*
|
|
* - On platforms that support GLSL 1.30 and above, lower_packed_varyings
|
|
* can store flat floats as ints without losing any information (using
|
|
* the ir_unop_bitcast_* opcodes).
|
|
*
|
|
* Therefore, the packing class depends only on the interpolation type.
|
|
*/
|
|
bool is_interpolation_flat = var->data.interpolation == INTERP_MODE_FLAT ||
|
|
glsl_contains_integer(var->type) || glsl_contains_double(var->type);
|
|
|
|
const unsigned interp = is_interpolation_flat
|
|
? (unsigned) INTERP_MODE_FLAT : var->data.interpolation;
|
|
|
|
assert(interp < (1 << 3));
|
|
|
|
const unsigned packing_class = (interp << 0) |
|
|
(var->data.centroid << 3) |
|
|
(var->data.sample << 4) |
|
|
(var->data.patch << 5) |
|
|
(var->data.must_be_shader_input << 6);
|
|
|
|
return packing_class;
|
|
}
|
|
|
|
/**
|
|
* Compute the "packing order" of the given varying. This is a sort key we
|
|
* use to determine when to attempt to pack the given varying relative to
|
|
* other varyings in the same packing class.
|
|
*/
|
|
static enum packing_order_enum
|
|
varying_matches_compute_packing_order(const nir_variable *var)
|
|
{
|
|
const struct glsl_type *element_type = glsl_without_array(var->type);
|
|
|
|
switch (glsl_get_component_slots(element_type) % 4) {
|
|
case 1: return PACKING_ORDER_SCALAR;
|
|
case 2: return PACKING_ORDER_VEC2;
|
|
case 3: return PACKING_ORDER_VEC3;
|
|
case 0: return PACKING_ORDER_VEC4;
|
|
default:
|
|
assert(!"Unexpected value of vector_elements");
|
|
return PACKING_ORDER_VEC4;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Built-in / reserved GL variables names start with "gl_"
|
|
*/
|
|
static bool
|
|
is_gl_identifier(const char *s)
|
|
{
|
|
return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
|
|
}
|
|
|
|
/**
|
|
* Record the given producer/consumer variable pair in the list of variables
|
|
* that should later be assigned locations.
|
|
*
|
|
* It is permissible for \c consumer_var to be NULL (this happens if a
|
|
* variable is output by the producer and consumed by transform feedback, but
|
|
* not consumed by the consumer).
|
|
*
|
|
* If \c producer_var has already been paired up with a consumer_var, or
|
|
* producer_var is part of fixed pipeline functionality (and hence already has
|
|
* a location assigned), this function has no effect.
|
|
*
|
|
* Note: as a side effect this function may change the interpolation type of
|
|
* \c producer_var, but only when the change couldn't possibly affect
|
|
* rendering.
|
|
*/
|
|
static void
|
|
varying_matches_record(void *mem_ctx, struct varying_matches *vm,
|
|
nir_variable *producer_var, nir_variable *consumer_var)
|
|
{
|
|
assert(producer_var != NULL || consumer_var != NULL);
|
|
|
|
if ((producer_var &&
|
|
(producer_var->data.explicit_location || producer_var->data.location != -1)) ||
|
|
(consumer_var &&
|
|
(consumer_var->data.explicit_location || consumer_var->data.location != -1))) {
|
|
/* Either a location already exists for this variable (since it is part
|
|
* of fixed functionality), or it has already been assigned explicitly.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* The varyings should not have been matched and assgned previously */
|
|
assert((producer_var == NULL || producer_var->data.location == -1) &&
|
|
(consumer_var == NULL || consumer_var->data.location == -1));
|
|
|
|
bool needs_flat_qualifier = consumer_var == NULL &&
|
|
(glsl_contains_integer(producer_var->type) ||
|
|
glsl_contains_double(producer_var->type));
|
|
|
|
if (!vm->disable_varying_packing &&
|
|
(!vm->disable_xfb_packing || producer_var == NULL || !producer_var->data.is_xfb) &&
|
|
(needs_flat_qualifier ||
|
|
(vm->consumer_stage != MESA_SHADER_NONE && vm->consumer_stage != MESA_SHADER_FRAGMENT))) {
|
|
/* Since this varying is not being consumed by the fragment shader, its
|
|
* interpolation type varying cannot possibly affect rendering.
|
|
* Also, this variable is non-flat and is (or contains) an integer
|
|
* or a double.
|
|
* If the consumer stage is unknown, don't modify the interpolation
|
|
* type as it could affect rendering later with separate shaders.
|
|
*
|
|
* lower_packed_varyings requires all integer varyings to flat,
|
|
* regardless of where they appear. We can trivially satisfy that
|
|
* requirement by changing the interpolation type to flat here.
|
|
*/
|
|
if (producer_var) {
|
|
producer_var->data.centroid = false;
|
|
producer_var->data.sample = false;
|
|
producer_var->data.interpolation = INTERP_MODE_FLAT;
|
|
}
|
|
|
|
if (consumer_var) {
|
|
consumer_var->data.centroid = false;
|
|
consumer_var->data.sample = false;
|
|
consumer_var->data.interpolation = INTERP_MODE_FLAT;
|
|
}
|
|
}
|
|
|
|
if (vm->num_matches == vm->matches_capacity) {
|
|
vm->matches_capacity *= 2;
|
|
vm->matches = (struct match *)
|
|
reralloc(mem_ctx, vm->matches, struct match, vm->matches_capacity);
|
|
}
|
|
|
|
/* We must use the consumer to compute the packing class because in GL4.4+
|
|
* there is no guarantee interpolation qualifiers will match across stages.
|
|
*
|
|
* From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec:
|
|
*
|
|
* "The type and presence of interpolation qualifiers of variables with
|
|
* the same name declared in all linked shaders for the same cross-stage
|
|
* interface must match, otherwise the link command will fail.
|
|
*
|
|
* When comparing an output from one stage to an input of a subsequent
|
|
* stage, the input and output don't match if their interpolation
|
|
* qualifiers (or lack thereof) are not the same."
|
|
*
|
|
* This text was also in at least revison 7 of the 4.40 spec but is no
|
|
* longer in revision 9 and not in the 4.50 spec.
|
|
*/
|
|
const nir_variable *const var = (consumer_var != NULL)
|
|
? consumer_var : producer_var;
|
|
|
|
if (producer_var && consumer_var &&
|
|
consumer_var->data.must_be_shader_input) {
|
|
producer_var->data.must_be_shader_input = 1;
|
|
}
|
|
|
|
vm->matches[vm->num_matches].packing_class
|
|
= varying_matches_compute_packing_class(var);
|
|
vm->matches[vm->num_matches].packing_order
|
|
= varying_matches_compute_packing_order(var);
|
|
|
|
vm->matches[vm->num_matches].producer_var = producer_var;
|
|
vm->matches[vm->num_matches].consumer_var = consumer_var;
|
|
vm->num_matches++;
|
|
}
|
|
|
|
/**
|
|
* Choose locations for all of the variable matches that were previously
|
|
* passed to varying_matches_record().
|
|
* \param components returns array[slot] of number of components used
|
|
* per slot (1, 2, 3 or 4)
|
|
* \param reserved_slots bitmask indicating which varying slots are already
|
|
* allocated
|
|
* \return number of slots (4-element vectors) allocated
|
|
*/
|
|
static unsigned
|
|
varying_matches_assign_locations(struct varying_matches *vm,
|
|
struct gl_shader_program *prog,
|
|
uint8_t components[], uint64_t reserved_slots)
|
|
{
|
|
/* If packing has been disabled then we cannot safely sort the varyings by
|
|
* class as it may mean we are using a version of OpenGL where
|
|
* interpolation qualifiers are not guaranteed to be matching across
|
|
* shaders, sorting in this case could result in mismatching shader
|
|
* interfaces.
|
|
* When packing is disabled the sort orders varyings used by transform
|
|
* feedback first, but also depends on *undefined behaviour* of qsort to
|
|
* reverse the order of the varyings. See: xfb_comparator().
|
|
*
|
|
* If packing is only disabled for xfb varyings (mutually exclusive with
|
|
* disable_varying_packing), we then group varyings depending on if they
|
|
* are captured for transform feedback. The same *undefined behaviour* is
|
|
* taken advantage of.
|
|
*/
|
|
if (vm->disable_varying_packing) {
|
|
/* Only sort varyings that are only used by transform feedback. */
|
|
qsort(vm->matches, vm->num_matches, sizeof(*vm->matches),
|
|
&varying_matches_xfb_comparator);
|
|
} else if (vm->disable_xfb_packing) {
|
|
/* Only sort varyings that are NOT used by transform feedback. */
|
|
qsort(vm->matches, vm->num_matches, sizeof(*vm->matches),
|
|
&varying_matches_not_xfb_comparator);
|
|
} else {
|
|
/* Sort varying matches into an order that makes them easy to pack. */
|
|
qsort(vm->matches, vm->num_matches, sizeof(*vm->matches),
|
|
&varying_matches_match_comparator);
|
|
}
|
|
|
|
unsigned generic_location = 0;
|
|
unsigned generic_patch_location = MAX_VARYING*4;
|
|
bool previous_var_xfb = false;
|
|
bool previous_var_xfb_only = false;
|
|
unsigned previous_packing_class = ~0u;
|
|
|
|
/* For tranform feedback separate mode, we know the number of attributes
|
|
* is <= the number of buffers. So packing isn't critical. In fact,
|
|
* packing vec3 attributes can cause trouble because splitting a vec3
|
|
* effectively creates an additional transform feedback output. The
|
|
* extra TFB output may exceed device driver limits.
|
|
*
|
|
* Also don't pack vec3 if the driver prefers power of two aligned
|
|
* varyings. Packing order guarantees that vec4, vec2 and vec1 will be
|
|
* pot-aligned, we only need to take care of vec3s
|
|
*/
|
|
const bool dont_pack_vec3 =
|
|
(prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS &&
|
|
prog->TransformFeedback.NumVarying > 0) ||
|
|
vm->prefer_pot_aligned_varyings;
|
|
|
|
for (unsigned i = 0; i < vm->num_matches; i++) {
|
|
unsigned *location = &generic_location;
|
|
const nir_variable *var;
|
|
const struct glsl_type *type;
|
|
bool is_vertex_input = false;
|
|
|
|
if (vm->matches[i].consumer_var) {
|
|
var = vm->matches[i].consumer_var;
|
|
type = get_varying_type(var, vm->consumer_stage);
|
|
if (vm->consumer_stage == MESA_SHADER_VERTEX)
|
|
is_vertex_input = true;
|
|
} else {
|
|
if (!vm->matches[i].producer_var)
|
|
continue; /* The varying was optimised away */
|
|
|
|
var = vm->matches[i].producer_var;
|
|
type = get_varying_type(var, vm->producer_stage);
|
|
}
|
|
|
|
if (var->data.patch)
|
|
location = &generic_patch_location;
|
|
|
|
/* Advance to the next slot if this varying has a different packing
|
|
* class than the previous one, and we're not already on a slot
|
|
* boundary.
|
|
*
|
|
* Also advance if varying packing is disabled for transform feedback,
|
|
* and previous or current varying is used for transform feedback.
|
|
*
|
|
* Also advance to the next slot if packing is disabled. This makes sure
|
|
* we don't assign varyings the same locations which is possible
|
|
* because we still pack individual arrays, records and matrices even
|
|
* when packing is disabled. Note we don't advance to the next slot if
|
|
* we can pack varyings together that are only used for transform
|
|
* feedback.
|
|
*/
|
|
if (var->data.must_be_shader_input ||
|
|
(vm->disable_xfb_packing &&
|
|
(previous_var_xfb || var->data.is_xfb)) ||
|
|
(vm->disable_varying_packing &&
|
|
!(previous_var_xfb_only && var->data.is_xfb_only)) ||
|
|
(previous_packing_class != vm->matches[i].packing_class) ||
|
|
(vm->matches[i].packing_order == PACKING_ORDER_VEC3 &&
|
|
dont_pack_vec3)) {
|
|
*location = ALIGN(*location, 4);
|
|
}
|
|
|
|
previous_var_xfb = var->data.is_xfb;
|
|
previous_var_xfb_only = var->data.is_xfb_only;
|
|
previous_packing_class = vm->matches[i].packing_class;
|
|
|
|
/* The number of components taken up by this variable. For vertex shader
|
|
* inputs, we use the number of slots * 4, as they have different
|
|
* counting rules.
|
|
*/
|
|
unsigned num_components = 0;
|
|
if (is_vertex_input) {
|
|
num_components = glsl_count_attribute_slots(type, is_vertex_input) * 4;
|
|
} else {
|
|
if (is_packing_disabled(vm, type, var)) {
|
|
num_components = glsl_count_attribute_slots(type, false) * 4;
|
|
} else {
|
|
num_components = glsl_get_component_slots_aligned(type, *location);
|
|
}
|
|
}
|
|
|
|
/* The last slot for this variable, inclusive. */
|
|
unsigned slot_end = *location + num_components - 1;
|
|
|
|
/* FIXME: We could be smarter in the below code and loop back over
|
|
* trying to fill any locations that we skipped because we couldn't pack
|
|
* the varying between an explicit location. For now just let the user
|
|
* hit the linking error if we run out of room and suggest they use
|
|
* explicit locations.
|
|
*/
|
|
while (slot_end < MAX_VARYING * 4u) {
|
|
const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1;
|
|
const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u);
|
|
|
|
assert(slots > 0);
|
|
|
|
if ((reserved_slots & slot_mask) == 0) {
|
|
break;
|
|
}
|
|
|
|
*location = ALIGN(*location + 1, 4);
|
|
slot_end = *location + num_components - 1;
|
|
}
|
|
|
|
if (!var->data.patch && slot_end >= MAX_VARYING * 4u) {
|
|
linker_error(prog, "insufficient contiguous locations available for "
|
|
"%s it is possible an array or struct could not be "
|
|
"packed between varyings with explicit locations. Try "
|
|
"using an explicit location for arrays and structs.",
|
|
var->name);
|
|
}
|
|
|
|
if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) {
|
|
for (unsigned j = *location / 4u; j < slot_end / 4u; j++)
|
|
components[j] = 4;
|
|
components[slot_end / 4u] = (slot_end & 3) + 1;
|
|
}
|
|
|
|
vm->matches[i].generic_location = *location;
|
|
|
|
*location = slot_end + 1;
|
|
}
|
|
|
|
return (generic_location + 3) / 4;
|
|
}
|
|
|
|
static void
|
|
varying_matches_assign_temp_locations(struct varying_matches *vm,
|
|
struct gl_shader_program *prog,
|
|
uint64_t reserved_slots)
|
|
{
|
|
unsigned tmp_loc = 0;
|
|
for (unsigned i = 0; i < vm->num_matches; i++) {
|
|
nir_variable *producer_var = vm->matches[i].producer_var;
|
|
nir_variable *consumer_var = vm->matches[i].consumer_var;
|
|
|
|
while (tmp_loc < MAX_VARYINGS_INCL_PATCH) {
|
|
if (reserved_slots & (UINT64_C(1) << tmp_loc))
|
|
tmp_loc++;
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (producer_var) {
|
|
assert(producer_var->data.location == -1);
|
|
producer_var->data.location = VARYING_SLOT_VAR0 + tmp_loc;
|
|
}
|
|
|
|
if (consumer_var) {
|
|
assert(consumer_var->data.location == -1);
|
|
consumer_var->data.location = VARYING_SLOT_VAR0 + tmp_loc;
|
|
}
|
|
|
|
tmp_loc++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Update the producer and consumer shaders to reflect the locations
|
|
* assignments that were made by varying_matches_assign_locations().
|
|
*/
|
|
static void
|
|
varying_matches_store_locations(struct varying_matches *vm)
|
|
{
|
|
/* Check is location needs to be packed with lower_packed_varyings() or if
|
|
* we can just use ARB_enhanced_layouts packing.
|
|
*/
|
|
bool pack_loc[MAX_VARYINGS_INCL_PATCH] = {0};
|
|
const struct glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} };
|
|
|
|
for (unsigned i = 0; i < vm->num_matches; i++) {
|
|
nir_variable *producer_var = vm->matches[i].producer_var;
|
|
nir_variable *consumer_var = vm->matches[i].consumer_var;
|
|
unsigned generic_location = vm->matches[i].generic_location;
|
|
unsigned slot = generic_location / 4;
|
|
unsigned offset = generic_location % 4;
|
|
|
|
if (producer_var) {
|
|
producer_var->data.location = VARYING_SLOT_VAR0 + slot;
|
|
producer_var->data.location_frac = offset;
|
|
}
|
|
|
|
if (consumer_var) {
|
|
consumer_var->data.location = VARYING_SLOT_VAR0 + slot;
|
|
consumer_var->data.location_frac = offset;
|
|
}
|
|
|
|
/* Find locations suitable for native packing via
|
|
* ARB_enhanced_layouts.
|
|
*/
|
|
if (vm->enhanced_layouts_enabled) {
|
|
nir_variable *var = producer_var ? producer_var : consumer_var;
|
|
unsigned stage = producer_var ? vm->producer_stage : vm->consumer_stage;
|
|
const struct glsl_type *type =
|
|
get_varying_type(var, stage);
|
|
unsigned comp_slots = glsl_get_component_slots(type) + offset;
|
|
unsigned slots = comp_slots / 4;
|
|
if (comp_slots % 4)
|
|
slots += 1;
|
|
|
|
if (producer_var && consumer_var) {
|
|
if (glsl_type_is_array_or_matrix(type) || glsl_type_is_struct(type) ||
|
|
glsl_type_is_64bit(type)) {
|
|
for (unsigned j = 0; j < slots; j++) {
|
|
pack_loc[slot + j] = true;
|
|
}
|
|
} else if (offset + glsl_get_vector_elements(type) > 4) {
|
|
pack_loc[slot] = true;
|
|
pack_loc[slot + 1] = true;
|
|
} else {
|
|
loc_type[slot][offset] = type;
|
|
}
|
|
} else {
|
|
for (unsigned j = 0; j < slots; j++) {
|
|
pack_loc[slot + j] = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Attempt to use ARB_enhanced_layouts for more efficient packing if
|
|
* suitable.
|
|
*/
|
|
if (vm->enhanced_layouts_enabled) {
|
|
for (unsigned i = 0; i < vm->num_matches; i++) {
|
|
nir_variable *producer_var = vm->matches[i].producer_var;
|
|
nir_variable *consumer_var = vm->matches[i].consumer_var;
|
|
if (!producer_var || !consumer_var)
|
|
continue;
|
|
|
|
unsigned generic_location = vm->matches[i].generic_location;
|
|
unsigned slot = generic_location / 4;
|
|
if (pack_loc[slot])
|
|
continue;
|
|
|
|
const struct glsl_type *type =
|
|
get_varying_type(producer_var, vm->producer_stage);
|
|
bool type_match = true;
|
|
for (unsigned j = 0; j < 4; j++) {
|
|
if (loc_type[slot][j]) {
|
|
if (glsl_get_base_type(type) !=
|
|
glsl_get_base_type(loc_type[slot][j]))
|
|
type_match = false;
|
|
}
|
|
}
|
|
|
|
if (type_match) {
|
|
producer_var->data.explicit_location = 1;
|
|
consumer_var->data.explicit_location = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Is the given variable a varying variable to be counted against the
|
|
* limit in ctx->Const.MaxVarying?
|
|
* This includes variables such as texcoords, colors and generic
|
|
* varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord.
|
|
*/
|
|
static bool
|
|
var_counts_against_varying_limit(gl_shader_stage stage, const nir_variable *var)
|
|
{
|
|
/* Only fragment shaders will take a varying variable as an input */
|
|
if (stage == MESA_SHADER_FRAGMENT &&
|
|
var->data.mode == nir_var_shader_in) {
|
|
switch (var->data.location) {
|
|
case VARYING_SLOT_POS:
|
|
case VARYING_SLOT_FACE:
|
|
case VARYING_SLOT_PNTC:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct tfeedback_candidate_generator_state {
|
|
/**
|
|
* Memory context used to allocate hash table keys and values.
|
|
*/
|
|
void *mem_ctx;
|
|
|
|
/**
|
|
* Hash table in which tfeedback_candidate objects should be stored.
|
|
*/
|
|
struct hash_table *tfeedback_candidates;
|
|
|
|
gl_shader_stage stage;
|
|
|
|
/**
|
|
* Pointer to the toplevel variable that is being traversed.
|
|
*/
|
|
nir_variable *toplevel_var;
|
|
|
|
/**
|
|
* Total number of varying floats that have been visited so far. This is
|
|
* used to determine the offset to each varying within the toplevel
|
|
* variable.
|
|
*/
|
|
unsigned varying_floats;
|
|
|
|
/**
|
|
* Offset within the xfb. Counted in floats.
|
|
*/
|
|
unsigned xfb_offset_floats;
|
|
};
|
|
|
|
/**
|
|
* Generates tfeedback_candidate structs describing all possible targets of
|
|
* transform feedback.
|
|
*
|
|
* tfeedback_candidate structs are stored in the hash table
|
|
* tfeedback_candidates. This hash table maps varying names to instances of the
|
|
* tfeedback_candidate struct.
|
|
*/
|
|
static void
|
|
tfeedback_candidate_generator(struct tfeedback_candidate_generator_state *state,
|
|
char **name, size_t name_length,
|
|
const struct glsl_type *type,
|
|
const struct glsl_struct_field *named_ifc_member)
|
|
{
|
|
switch (glsl_get_base_type(type)) {
|
|
case GLSL_TYPE_INTERFACE:
|
|
if (named_ifc_member) {
|
|
ralloc_asprintf_rewrite_tail(name, &name_length, ".%s",
|
|
named_ifc_member->name);
|
|
tfeedback_candidate_generator(state, name, name_length,
|
|
named_ifc_member->type, NULL);
|
|
return;
|
|
}
|
|
FALLTHROUGH;
|
|
case GLSL_TYPE_STRUCT:
|
|
for (unsigned i = 0; i < glsl_get_length(type); i++) {
|
|
size_t new_length = name_length;
|
|
|
|
/* Append '.field' to the current variable name. */
|
|
if (name) {
|
|
ralloc_asprintf_rewrite_tail(name, &new_length, ".%s",
|
|
glsl_get_struct_elem_name(type, i));
|
|
}
|
|
|
|
tfeedback_candidate_generator(state, name, new_length,
|
|
glsl_get_struct_field(type, i), NULL);
|
|
}
|
|
|
|
return;
|
|
case GLSL_TYPE_ARRAY:
|
|
if (glsl_type_is_struct(glsl_without_array(type)) ||
|
|
glsl_type_is_interface(glsl_without_array(type)) ||
|
|
glsl_type_is_array(glsl_get_array_element(type))) {
|
|
|
|
for (unsigned i = 0; i < glsl_get_length(type); i++) {
|
|
size_t new_length = name_length;
|
|
|
|
/* Append the subscript to the current variable name */
|
|
ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
|
|
|
|
tfeedback_candidate_generator(state, name, new_length,
|
|
glsl_get_array_element(type),
|
|
named_ifc_member);
|
|
}
|
|
|
|
return;
|
|
}
|
|
FALLTHROUGH;
|
|
default:
|
|
assert(!glsl_type_is_struct(glsl_without_array(type)));
|
|
assert(!glsl_type_is_interface(glsl_without_array(type)));
|
|
|
|
struct tfeedback_candidate *candidate
|
|
= rzalloc(state->mem_ctx, struct tfeedback_candidate);
|
|
candidate->toplevel_var = state->toplevel_var;
|
|
candidate->type = type;
|
|
|
|
if (glsl_type_is_64bit(glsl_without_array(type))) {
|
|
/* From ARB_gpu_shader_fp64:
|
|
*
|
|
* If any variable captured in transform feedback has double-precision
|
|
* components, the practical requirements for defined behavior are:
|
|
* ...
|
|
* (c) each double-precision variable captured must be aligned to a
|
|
* multiple of eight bytes relative to the beginning of a vertex.
|
|
*/
|
|
state->xfb_offset_floats = ALIGN(state->xfb_offset_floats, 2);
|
|
/* 64-bit members of structs are also aligned. */
|
|
state->varying_floats = ALIGN(state->varying_floats, 2);
|
|
}
|
|
|
|
candidate->xfb_offset_floats = state->xfb_offset_floats;
|
|
candidate->struct_offset_floats = state->varying_floats;
|
|
|
|
_mesa_hash_table_insert(state->tfeedback_candidates,
|
|
ralloc_strdup(state->mem_ctx, *name),
|
|
candidate);
|
|
|
|
const unsigned component_slots = glsl_get_component_slots(type);
|
|
|
|
if (varying_has_user_specified_location(state->toplevel_var)) {
|
|
state->varying_floats += glsl_count_attribute_slots(type, false) * 4;
|
|
} else {
|
|
state->varying_floats += component_slots;
|
|
}
|
|
|
|
state->xfb_offset_floats += component_slots;
|
|
}
|
|
}
|
|
|
|
static void
|
|
populate_consumer_input_sets(void *mem_ctx, nir_shader *nir,
|
|
struct hash_table *consumer_inputs,
|
|
struct hash_table *consumer_interface_inputs,
|
|
nir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
|
|
{
|
|
memset(consumer_inputs_with_locations, 0,
|
|
sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX);
|
|
|
|
nir_foreach_shader_in_variable(input_var, nir) {
|
|
/* All interface blocks should have been lowered by this point */
|
|
assert(!glsl_type_is_interface(input_var->type));
|
|
|
|
if (input_var->data.explicit_location) {
|
|
/* assign_varying_locations only cares about finding the
|
|
* nir_variable at the start of a contiguous location block.
|
|
*
|
|
* - For !producer, consumer_inputs_with_locations isn't used.
|
|
*
|
|
* - For !consumer, consumer_inputs_with_locations is empty.
|
|
*
|
|
* For consumer && producer, if you were trying to set some
|
|
* nir_variable to the middle of a location block on the other side
|
|
* of producer/consumer, cross_validate_outputs_to_inputs() should
|
|
* be link-erroring due to either type mismatch or location
|
|
* overlaps. If the variables do match up, then they've got a
|
|
* matching data.location and you only looked at
|
|
* consumer_inputs_with_locations[var->data.location], not any
|
|
* following entries for the array/structure.
|
|
*/
|
|
consumer_inputs_with_locations[input_var->data.location] =
|
|
input_var;
|
|
} else if (input_var->interface_type != NULL) {
|
|
char *const iface_field_name =
|
|
ralloc_asprintf(mem_ctx, "%s.%s",
|
|
glsl_get_type_name(glsl_without_array(input_var->interface_type)),
|
|
input_var->name);
|
|
_mesa_hash_table_insert(consumer_interface_inputs,
|
|
iface_field_name, input_var);
|
|
} else {
|
|
_mesa_hash_table_insert(consumer_inputs,
|
|
ralloc_strdup(mem_ctx, input_var->name),
|
|
input_var);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Find a variable from the consumer that "matches" the specified variable
|
|
*
|
|
* This function only finds inputs with names that match. There is no
|
|
* validation (here) that the types, etc. are compatible.
|
|
*/
|
|
static nir_variable *
|
|
get_matching_input(void *mem_ctx,
|
|
const nir_variable *output_var,
|
|
struct hash_table *consumer_inputs,
|
|
struct hash_table *consumer_interface_inputs,
|
|
nir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX])
|
|
{
|
|
nir_variable *input_var;
|
|
|
|
if (output_var->data.explicit_location) {
|
|
input_var = consumer_inputs_with_locations[output_var->data.location];
|
|
} else if (output_var->interface_type != NULL) {
|
|
char *const iface_field_name =
|
|
ralloc_asprintf(mem_ctx, "%s.%s",
|
|
glsl_get_type_name(glsl_without_array(output_var->interface_type)),
|
|
output_var->name);
|
|
struct hash_entry *entry =
|
|
_mesa_hash_table_search(consumer_interface_inputs, iface_field_name);
|
|
input_var = entry ? (nir_variable *) entry->data : NULL;
|
|
} else {
|
|
struct hash_entry *entry =
|
|
_mesa_hash_table_search(consumer_inputs, output_var->name);
|
|
input_var = entry ? (nir_variable *) entry->data : NULL;
|
|
}
|
|
|
|
return (input_var == NULL || input_var->data.mode != nir_var_shader_in)
|
|
? NULL : input_var;
|
|
}
|
|
|
|
static int
|
|
io_variable_cmp(const void *_a, const void *_b)
|
|
{
|
|
const nir_variable *const a = *(const nir_variable **) _a;
|
|
const nir_variable *const b = *(const nir_variable **) _b;
|
|
|
|
if (a->data.explicit_location && b->data.explicit_location)
|
|
return b->data.location - a->data.location;
|
|
|
|
if (a->data.explicit_location && !b->data.explicit_location)
|
|
return 1;
|
|
|
|
if (!a->data.explicit_location && b->data.explicit_location)
|
|
return -1;
|
|
|
|
return -strcmp(a->name, b->name);
|
|
}
|
|
|
|
/**
|
|
* Sort the shader IO variables into canonical order
|
|
*/
|
|
static void
|
|
canonicalize_shader_io(nir_shader *nir, nir_variable_mode io_mode)
|
|
{
|
|
nir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4];
|
|
unsigned num_variables = 0;
|
|
|
|
nir_foreach_variable_with_modes(var, nir, io_mode) {
|
|
/* If we have already encountered more I/O variables that could
|
|
* successfully link, bail.
|
|
*/
|
|
if (num_variables == ARRAY_SIZE(var_table))
|
|
return;
|
|
|
|
var_table[num_variables++] = var;
|
|
}
|
|
|
|
if (num_variables == 0)
|
|
return;
|
|
|
|
/* Sort the list in reverse order (io_variable_cmp handles this). Later
|
|
* we're going to push the variables on to the IR list as a stack, so we
|
|
* want the last variable (in canonical order) to be first in the list.
|
|
*/
|
|
qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp);
|
|
|
|
/* Remove the variable from it's current location in the varible list, and
|
|
* put it at the front.
|
|
*/
|
|
for (unsigned i = 0; i < num_variables; i++) {
|
|
exec_node_remove(&var_table[i]->node);
|
|
exec_list_push_head(&nir->variables, &var_table[i]->node);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate a bitfield map of the explicit locations for shader varyings.
|
|
*
|
|
* Note: For Tessellation shaders we are sitting right on the limits of the
|
|
* 64 bit map. Per-vertex and per-patch both have separate location domains
|
|
* with a max of MAX_VARYING.
|
|
*/
|
|
static uint64_t
|
|
reserved_varying_slot(struct gl_linked_shader *sh,
|
|
nir_variable_mode io_mode)
|
|
{
|
|
assert(io_mode == nir_var_shader_in || io_mode == nir_var_shader_out);
|
|
/* Avoid an overflow of the returned value */
|
|
assert(MAX_VARYINGS_INCL_PATCH <= 64);
|
|
|
|
uint64_t slots = 0;
|
|
int var_slot;
|
|
|
|
if (!sh)
|
|
return slots;
|
|
|
|
nir_foreach_variable_with_modes(var, sh->Program->nir, io_mode) {
|
|
if (!var->data.explicit_location ||
|
|
var->data.location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
|
|
var_slot = var->data.location - VARYING_SLOT_VAR0;
|
|
|
|
bool is_gl_vertex_input = io_mode == nir_var_shader_in &&
|
|
sh->Stage == MESA_SHADER_VERTEX;
|
|
unsigned num_elements =
|
|
glsl_count_attribute_slots(get_varying_type(var, sh->Stage),
|
|
is_gl_vertex_input);
|
|
for (unsigned i = 0; i < num_elements; i++) {
|
|
if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH)
|
|
slots |= UINT64_C(1) << var_slot;
|
|
var_slot += 1;
|
|
}
|
|
}
|
|
|
|
return slots;
|
|
}
|
|
|
|
/**
|
|
* Sets the bits in the inputs_read, or outputs_written
|
|
* bitfield corresponding to this variable.
|
|
*/
|
|
static void
|
|
set_variable_io_mask(BITSET_WORD *bits, nir_variable *var, gl_shader_stage stage)
|
|
{
|
|
assert(var->data.mode == nir_var_shader_in ||
|
|
var->data.mode == nir_var_shader_out);
|
|
assert(var->data.location >= VARYING_SLOT_VAR0);
|
|
|
|
const struct glsl_type *type = var->type;
|
|
if (nir_is_arrayed_io(var, stage) || var->data.per_view) {
|
|
assert(glsl_type_is_array(type));
|
|
type = glsl_get_array_element(type);
|
|
}
|
|
|
|
unsigned location = var->data.location - VARYING_SLOT_VAR0;
|
|
unsigned slots = glsl_count_attribute_slots(type, false);
|
|
for (unsigned i = 0; i < slots; i++) {
|
|
BITSET_SET(bits, location + i);
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
get_num_components(nir_variable *var)
|
|
{
|
|
if (glsl_type_is_struct_or_ifc(glsl_without_array(var->type)))
|
|
return 4;
|
|
|
|
return glsl_get_vector_elements(glsl_without_array(var->type));
|
|
}
|
|
|
|
static void
|
|
tcs_add_output_reads(nir_shader *shader, BITSET_WORD **read)
|
|
{
|
|
nir_foreach_function_impl(impl, shader) {
|
|
nir_foreach_block(block, impl) {
|
|
nir_foreach_instr(instr, block) {
|
|
if (instr->type != nir_instr_type_intrinsic)
|
|
continue;
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
if (intrin->intrinsic != nir_intrinsic_load_deref)
|
|
continue;
|
|
|
|
nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
|
|
if (!nir_deref_mode_is(deref, nir_var_shader_out))
|
|
continue;
|
|
|
|
nir_variable *var = nir_deref_instr_get_variable(deref);
|
|
for (unsigned i = 0; i < get_num_components(var); i++) {
|
|
if (var->data.location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
|
|
unsigned comp = var->data.location_frac;
|
|
set_variable_io_mask(read[comp + i], var, shader->info.stage);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We need to replace any interp intrinsics with undefined (shader_temp) inputs
|
|
* as no further NIR pass expects to see this.
|
|
*/
|
|
static bool
|
|
replace_unused_interpolate_at_with_undef(nir_builder *b, nir_instr *instr,
|
|
void *data)
|
|
{
|
|
if (instr->type == nir_instr_type_intrinsic) {
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
|
|
|
|
if (intrin->intrinsic == nir_intrinsic_interp_deref_at_centroid ||
|
|
intrin->intrinsic == nir_intrinsic_interp_deref_at_sample ||
|
|
intrin->intrinsic == nir_intrinsic_interp_deref_at_offset) {
|
|
nir_variable *var = nir_intrinsic_get_var(intrin, 0);
|
|
if (var->data.mode == nir_var_shader_temp) {
|
|
/* Create undef and rewrite the interp uses */
|
|
nir_ssa_def *undef =
|
|
nir_ssa_undef(b, intrin->dest.ssa.num_components,
|
|
intrin->dest.ssa.bit_size);
|
|
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, undef);
|
|
|
|
nir_instr_remove(&intrin->instr);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
fixup_vars_lowered_to_temp(nir_shader *shader, nir_variable_mode mode)
|
|
{
|
|
/* Remove all interpolate uses of the unset varying and replace with undef. */
|
|
if (mode == nir_var_shader_in && shader->info.stage == MESA_SHADER_FRAGMENT) {
|
|
(void) nir_shader_instructions_pass(shader,
|
|
replace_unused_interpolate_at_with_undef,
|
|
nir_metadata_block_index |
|
|
nir_metadata_dominance,
|
|
NULL);
|
|
}
|
|
|
|
nir_lower_global_vars_to_local(shader);
|
|
nir_fixup_deref_modes(shader);
|
|
}
|
|
|
|
/**
|
|
* Helper for removing unused shader I/O variables, by demoting them to global
|
|
* variables (which may then be dead code eliminated).
|
|
*
|
|
* Example usage is:
|
|
*
|
|
* progress = nir_remove_unused_io_vars(producer, consumer, nir_var_shader_out,
|
|
* read, patches_read) ||
|
|
* progress;
|
|
*
|
|
* The "used" should be an array of 4 BITSET_WORDs representing each
|
|
* .location_frac used. Note that for vector variables, only the first channel
|
|
* (.location_frac) is examined for deciding if the variable is used!
|
|
*/
|
|
static bool
|
|
remove_unused_io_vars(nir_shader *producer, nir_shader *consumer,
|
|
struct gl_shader_program *prog,
|
|
nir_variable_mode mode,
|
|
BITSET_WORD **used_by_other_stage)
|
|
{
|
|
assert(mode == nir_var_shader_in || mode == nir_var_shader_out);
|
|
|
|
bool progress = false;
|
|
nir_shader *shader = mode == nir_var_shader_out ? producer : consumer;
|
|
|
|
BITSET_WORD **used;
|
|
nir_foreach_variable_with_modes_safe(var, shader, mode) {
|
|
used = used_by_other_stage;
|
|
|
|
/* Skip builtins dead builtins are removed elsewhere */
|
|
if (is_gl_identifier(var->name))
|
|
continue;
|
|
|
|
if (var->data.location < VARYING_SLOT_VAR0 && var->data.location >= 0)
|
|
continue;
|
|
|
|
/* Skip xfb varyings and any other type we cannot remove */
|
|
if (var->data.always_active_io)
|
|
continue;
|
|
|
|
if (var->data.explicit_xfb_buffer)
|
|
continue;
|
|
|
|
BITSET_WORD *other_stage = used[var->data.location_frac];
|
|
|
|
/* if location == -1 lower varying to global as it has no match and is not
|
|
* a xfb varying, this must be done after skiping bultins as builtins
|
|
* could be assigned a location of -1.
|
|
* We also lower unused varyings with explicit locations.
|
|
*/
|
|
bool use_found = false;
|
|
if (var->data.location >= 0) {
|
|
unsigned location = var->data.location - VARYING_SLOT_VAR0;
|
|
|
|
const struct glsl_type *type = var->type;
|
|
if (nir_is_arrayed_io(var, shader->info.stage) || var->data.per_view) {
|
|
assert(glsl_type_is_array(type));
|
|
type = glsl_get_array_element(type);
|
|
}
|
|
|
|
unsigned slots = glsl_count_attribute_slots(type, false);
|
|
for (unsigned i = 0; i < slots; i++) {
|
|
if (BITSET_TEST(other_stage, location + i)) {
|
|
use_found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!use_found) {
|
|
/* This one is invalid, make it a global variable instead */
|
|
var->data.location = 0;
|
|
var->data.mode = nir_var_shader_temp;
|
|
|
|
progress = true;
|
|
|
|
if (mode == nir_var_shader_in) {
|
|
if (!prog->IsES && prog->GLSL_Version <= 120) {
|
|
/* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* Only those varying variables used (i.e. read) in
|
|
* the fragment shader executable must be written to
|
|
* by the vertex shader executable; declaring
|
|
* superfluous varying variables in a vertex shader is
|
|
* permissible.
|
|
*
|
|
* We interpret this text as meaning that the VS must
|
|
* write the variable for the FS to read it. See
|
|
* "glsl1-varying read but not written" in piglit.
|
|
*/
|
|
linker_error(prog, "%s shader varying %s not written "
|
|
"by %s shader\n.",
|
|
_mesa_shader_stage_to_string(consumer->info.stage),
|
|
var->name,
|
|
_mesa_shader_stage_to_string(producer->info.stage));
|
|
} else {
|
|
linker_warning(prog, "%s shader varying %s not written "
|
|
"by %s shader\n.",
|
|
_mesa_shader_stage_to_string(consumer->info.stage),
|
|
var->name,
|
|
_mesa_shader_stage_to_string(producer->info.stage));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
fixup_vars_lowered_to_temp(shader, mode);
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool
|
|
remove_unused_varyings(nir_shader *producer, nir_shader *consumer,
|
|
struct gl_shader_program *prog, void *mem_ctx)
|
|
{
|
|
assert(producer->info.stage != MESA_SHADER_FRAGMENT);
|
|
assert(consumer->info.stage != MESA_SHADER_VERTEX);
|
|
|
|
int max_loc_out = 0;
|
|
nir_foreach_shader_out_variable(var, producer) {
|
|
if (var->data.location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
|
|
const struct glsl_type *type = var->type;
|
|
if (nir_is_arrayed_io(var, producer->info.stage) || var->data.per_view) {
|
|
assert(glsl_type_is_array(type));
|
|
type = glsl_get_array_element(type);
|
|
}
|
|
unsigned slots = glsl_count_attribute_slots(type, false);
|
|
|
|
max_loc_out = max_loc_out < (var->data.location - VARYING_SLOT_VAR0) + slots ?
|
|
(var->data.location - VARYING_SLOT_VAR0) + slots : max_loc_out;
|
|
}
|
|
|
|
int max_loc_in = 0;
|
|
nir_foreach_shader_in_variable(var, consumer) {
|
|
if (var->data.location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
|
|
const struct glsl_type *type = var->type;
|
|
if (nir_is_arrayed_io(var, consumer->info.stage) || var->data.per_view) {
|
|
assert(glsl_type_is_array(type));
|
|
type = glsl_get_array_element(type);
|
|
}
|
|
unsigned slots = glsl_count_attribute_slots(type, false);
|
|
|
|
max_loc_in = max_loc_in < (var->data.location - VARYING_SLOT_VAR0) + slots ?
|
|
(var->data.location - VARYING_SLOT_VAR0) + slots : max_loc_in;
|
|
}
|
|
|
|
/* Old glsl shaders that don't use explicit locations can contain greater
|
|
* than 64 varyings before unused varyings are removed so we must count them
|
|
* and make use of the BITSET macros to keep track of used slots. Once we
|
|
* have removed these excess varyings we can make use of further nir varying
|
|
* linking optimimisation passes.
|
|
*/
|
|
BITSET_WORD *read[4];
|
|
BITSET_WORD *written[4];
|
|
int max_loc = MAX2(max_loc_in, max_loc_out);
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
read[i] = rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(max_loc));
|
|
written[i] = rzalloc_array(mem_ctx, BITSET_WORD, BITSET_WORDS(max_loc));
|
|
}
|
|
|
|
nir_foreach_shader_out_variable(var, producer) {
|
|
if (var->data.location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
|
|
for (unsigned i = 0; i < get_num_components(var); i++) {
|
|
unsigned comp = var->data.location_frac;
|
|
set_variable_io_mask(written[comp + i], var, producer->info.stage);
|
|
}
|
|
}
|
|
|
|
nir_foreach_shader_in_variable(var, consumer) {
|
|
if (var->data.location < VARYING_SLOT_VAR0)
|
|
continue;
|
|
|
|
for (unsigned i = 0; i < get_num_components(var); i++) {
|
|
unsigned comp = var->data.location_frac;
|
|
set_variable_io_mask(read[comp + i], var, consumer->info.stage);
|
|
}
|
|
}
|
|
|
|
/* Each TCS invocation can read data written by other TCS invocations,
|
|
* so even if the outputs are not used by the TES we must also make
|
|
* sure they are not read by the TCS before demoting them to globals.
|
|
*/
|
|
if (producer->info.stage == MESA_SHADER_TESS_CTRL)
|
|
tcs_add_output_reads(producer, read);
|
|
|
|
bool progress = false;
|
|
progress =
|
|
remove_unused_io_vars(producer, consumer, prog, nir_var_shader_out, read);
|
|
progress =
|
|
remove_unused_io_vars(producer, consumer, prog, nir_var_shader_in, written) || progress;
|
|
|
|
return progress;
|
|
}
|
|
|
|
static bool
|
|
should_add_varying_match_record(nir_variable *const input_var,
|
|
struct gl_shader_program *prog,
|
|
struct gl_linked_shader *producer,
|
|
struct gl_linked_shader *consumer) {
|
|
|
|
/* If a matching input variable was found, add this output (and the input) to
|
|
* the set. If this is a separable program and there is no consumer stage,
|
|
* add the output.
|
|
*
|
|
* Always add TCS outputs. They are shared by all invocations
|
|
* within a patch and can be used as shared memory.
|
|
*/
|
|
return input_var || (prog->SeparateShader && consumer == NULL) ||
|
|
producer->Stage == MESA_SHADER_TESS_CTRL;
|
|
}
|
|
|
|
/* This assigns some initial unoptimised varying locations so that our nir
|
|
* optimisations can perform some initial optimisations and also does initial
|
|
* processing of
|
|
*/
|
|
static bool
|
|
assign_initial_varying_locations(const struct gl_constants *consts,
|
|
const struct gl_extensions *exts,
|
|
void *mem_ctx,
|
|
struct gl_shader_program *prog,
|
|
struct gl_linked_shader *producer,
|
|
struct gl_linked_shader *consumer,
|
|
unsigned num_xfb_decls,
|
|
struct xfb_decl *xfb_decls,
|
|
struct varying_matches *vm)
|
|
{
|
|
init_varying_matches(mem_ctx, vm, consts, exts,
|
|
producer ? producer->Stage : MESA_SHADER_NONE,
|
|
consumer ? consumer->Stage : MESA_SHADER_NONE,
|
|
prog->SeparateShader);
|
|
|
|
struct hash_table *tfeedback_candidates =
|
|
_mesa_hash_table_create(mem_ctx, _mesa_hash_string,
|
|
_mesa_key_string_equal);
|
|
struct hash_table *consumer_inputs =
|
|
_mesa_hash_table_create(mem_ctx, _mesa_hash_string,
|
|
_mesa_key_string_equal);
|
|
struct hash_table *consumer_interface_inputs =
|
|
_mesa_hash_table_create(mem_ctx, _mesa_hash_string,
|
|
_mesa_key_string_equal);
|
|
nir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = {
|
|
NULL,
|
|
};
|
|
|
|
if (consumer)
|
|
populate_consumer_input_sets(mem_ctx, consumer->Program->nir,
|
|
consumer_inputs, consumer_interface_inputs,
|
|
consumer_inputs_with_locations);
|
|
|
|
if (producer) {
|
|
nir_foreach_shader_out_variable(output_var, producer->Program->nir) {
|
|
/* Only geometry shaders can use non-zero streams */
|
|
assert(output_var->data.stream == 0 ||
|
|
(output_var->data.stream < MAX_VERTEX_STREAMS &&
|
|
producer->Stage == MESA_SHADER_GEOMETRY));
|
|
|
|
if (num_xfb_decls > 0) {
|
|
/* From OpenGL 4.6 (Core Profile) spec, section 11.1.2.1
|
|
* ("Vertex Shader Variables / Output Variables")
|
|
*
|
|
* "Each program object can specify a set of output variables from
|
|
* one shader to be recorded in transform feedback mode (see
|
|
* section 13.3). The variables that can be recorded are those
|
|
* emitted by the first active shader, in order, from the
|
|
* following list:
|
|
*
|
|
* * geometry shader
|
|
* * tessellation evaluation shader
|
|
* * tessellation control shader
|
|
* * vertex shader"
|
|
*
|
|
* But on OpenGL ES 3.2, section 11.1.2.1 ("Vertex Shader
|
|
* Variables / Output Variables") tessellation control shader is
|
|
* not included in the stages list.
|
|
*/
|
|
if (!prog->IsES || producer->Stage != MESA_SHADER_TESS_CTRL) {
|
|
|
|
const struct glsl_type *type = output_var->data.from_named_ifc_block ?
|
|
output_var->interface_type : output_var->type;
|
|
if (!output_var->data.patch && producer->Stage == MESA_SHADER_TESS_CTRL) {
|
|
assert(glsl_type_is_array(type));
|
|
type = glsl_get_array_element(type);
|
|
}
|
|
|
|
const struct glsl_struct_field *ifc_member = NULL;
|
|
if (output_var->data.from_named_ifc_block) {
|
|
ifc_member =
|
|
glsl_get_struct_field_data(glsl_without_array(type),
|
|
glsl_get_field_index(glsl_without_array(type), output_var->name));
|
|
}
|
|
|
|
char *name;
|
|
if (glsl_type_is_struct(glsl_without_array(type)) ||
|
|
(glsl_type_is_array(type) && glsl_type_is_array(glsl_get_array_element(type)))) {
|
|
type = output_var->type;
|
|
name = ralloc_strdup(NULL, output_var->name);
|
|
} else if (glsl_type_is_interface(glsl_without_array(type))) {
|
|
name = ralloc_strdup(NULL, glsl_get_type_name(glsl_without_array(type)));
|
|
} else {
|
|
name = ralloc_strdup(NULL, output_var->name);
|
|
}
|
|
|
|
struct tfeedback_candidate_generator_state state;
|
|
state.mem_ctx = mem_ctx;
|
|
state.tfeedback_candidates = tfeedback_candidates;
|
|
state.stage = producer->Stage;
|
|
state.toplevel_var = output_var;
|
|
state.varying_floats = 0;
|
|
state.xfb_offset_floats = 0;
|
|
|
|
tfeedback_candidate_generator(&state, &name, strlen(name), type,
|
|
ifc_member);
|
|
ralloc_free(name);
|
|
}
|
|
}
|
|
|
|
nir_variable *const input_var =
|
|
get_matching_input(mem_ctx, output_var, consumer_inputs,
|
|
consumer_interface_inputs,
|
|
consumer_inputs_with_locations);
|
|
|
|
if (should_add_varying_match_record(input_var, prog, producer,
|
|
consumer)) {
|
|
varying_matches_record(mem_ctx, vm, output_var, input_var);
|
|
}
|
|
|
|
/* Only stream 0 outputs can be consumed in the next stage */
|
|
if (input_var && output_var->data.stream != 0) {
|
|
linker_error(prog, "output %s is assigned to stream=%d but "
|
|
"is linked to an input, which requires stream=0",
|
|
output_var->name, output_var->data.stream);
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
/* If there's no producer stage, then this must be a separable program.
|
|
* For example, we may have a program that has just a fragment shader.
|
|
* Later this program will be used with some arbitrary vertex (or
|
|
* geometry) shader program. This means that locations must be assigned
|
|
* for all the inputs.
|
|
*/
|
|
nir_foreach_shader_in_variable(input_var, consumer->Program->nir) {
|
|
varying_matches_record(mem_ctx, vm, NULL, input_var);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < num_xfb_decls; ++i) {
|
|
if (!xfb_decl_is_varying(&xfb_decls[i]))
|
|
continue;
|
|
|
|
const struct tfeedback_candidate *matched_candidate
|
|
= xfb_decl_find_candidate(&xfb_decls[i], prog, tfeedback_candidates);
|
|
|
|
if (matched_candidate == NULL)
|
|
return false;
|
|
|
|
/* There are two situations where a new output varying is needed:
|
|
*
|
|
* - If varying packing is disabled for xfb and the current declaration
|
|
* is subscripting an array, whether the subscript is aligned or not.
|
|
* to preserve the rest of the array for the consumer.
|
|
*
|
|
* - If a builtin variable needs to be copied to a new variable
|
|
* before its content is modified by another lowering pass (e.g.
|
|
* \c gl_Position is transformed by \c nir_lower_viewport_transform).
|
|
*/
|
|
const bool lowered =
|
|
(vm->disable_xfb_packing && xfb_decls[i].is_subscripted) ||
|
|
(matched_candidate->toplevel_var->data.explicit_location &&
|
|
matched_candidate->toplevel_var->data.location < VARYING_SLOT_VAR0 &&
|
|
(!consumer || consumer->Stage == MESA_SHADER_FRAGMENT) &&
|
|
(consts->ShaderCompilerOptions[producer->Stage].LowerBuiltinVariablesXfb &
|
|
BITFIELD_BIT(matched_candidate->toplevel_var->data.location)));
|
|
|
|
if (lowered) {
|
|
nir_variable *new_var;
|
|
struct tfeedback_candidate *new_candidate = NULL;
|
|
|
|
new_var = gl_nir_lower_xfb_varying(producer->Program->nir,
|
|
xfb_decls[i].orig_name,
|
|
matched_candidate->toplevel_var);
|
|
if (new_var == NULL)
|
|
return false;
|
|
|
|
/* Create new candidate and replace matched_candidate */
|
|
new_candidate = rzalloc(mem_ctx, struct tfeedback_candidate);
|
|
new_candidate->toplevel_var = new_var;
|
|
new_candidate->type = new_var->type;
|
|
new_candidate->struct_offset_floats = 0;
|
|
new_candidate->xfb_offset_floats = 0;
|
|
_mesa_hash_table_insert(tfeedback_candidates,
|
|
ralloc_strdup(mem_ctx, new_var->name),
|
|
new_candidate);
|
|
|
|
xfb_decl_set_lowered_candidate(&xfb_decls[i], new_candidate);
|
|
matched_candidate = new_candidate;
|
|
}
|
|
|
|
/* Mark as xfb varying */
|
|
matched_candidate->toplevel_var->data.is_xfb = 1;
|
|
|
|
/* Mark xfb varyings as always active */
|
|
matched_candidate->toplevel_var->data.always_active_io = 1;
|
|
|
|
/* Mark any corresponding inputs as always active also. We must do this
|
|
* because we have a NIR pass that lowers vectors to scalars and another
|
|
* that removes unused varyings.
|
|
* We don't split varyings marked as always active because there is no
|
|
* point in doing so. This means we need to mark both sides of the
|
|
* interface as always active otherwise we will have a mismatch and
|
|
* start removing things we shouldn't.
|
|
*/
|
|
nir_variable *const input_var =
|
|
get_matching_input(mem_ctx, matched_candidate->toplevel_var,
|
|
consumer_inputs, consumer_interface_inputs,
|
|
consumer_inputs_with_locations);
|
|
if (input_var) {
|
|
input_var->data.is_xfb = 1;
|
|
input_var->data.always_active_io = 1;
|
|
}
|
|
|
|
/* Add the xfb varying to varying matches if it wasn't already added */
|
|
if ((!should_add_varying_match_record(input_var, prog, producer,
|
|
consumer) &&
|
|
!matched_candidate->toplevel_var->data.is_xfb_only) || lowered) {
|
|
matched_candidate->toplevel_var->data.is_xfb_only = 1;
|
|
varying_matches_record(mem_ctx, vm, matched_candidate->toplevel_var,
|
|
NULL);
|
|
}
|
|
}
|
|
|
|
uint64_t reserved_out_slots = 0;
|
|
if (producer)
|
|
reserved_out_slots = reserved_varying_slot(producer, nir_var_shader_out);
|
|
|
|
uint64_t reserved_in_slots = 0;
|
|
if (consumer)
|
|
reserved_in_slots = reserved_varying_slot(consumer, nir_var_shader_in);
|
|
|
|
/* Assign temporary user varying locations. This is required for our NIR
|
|
* varying optimisations to do their matching.
|
|
*/
|
|
const uint64_t reserved_slots = reserved_out_slots | reserved_in_slots;
|
|
varying_matches_assign_temp_locations(vm, prog, reserved_slots);
|
|
|
|
for (unsigned i = 0; i < num_xfb_decls; ++i) {
|
|
if (!xfb_decl_is_varying(&xfb_decls[i]))
|
|
continue;
|
|
|
|
xfb_decls[i].matched_candidate->initial_location =
|
|
xfb_decls[i].matched_candidate->toplevel_var->data.location;
|
|
xfb_decls[i].matched_candidate->initial_location_frac =
|
|
xfb_decls[i].matched_candidate->toplevel_var->data.location_frac;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
link_shader_opts(struct varying_matches *vm,
|
|
nir_shader *producer, nir_shader *consumer,
|
|
struct gl_shader_program *prog, void *mem_ctx)
|
|
{
|
|
/* If we can't pack the stage using this pass then we can't lower io to
|
|
* scalar just yet. Instead we leave it to a later NIR linking pass that uses
|
|
* ARB_enhanced_layout style packing to pack things further.
|
|
*
|
|
* Otherwise we might end up causing linking errors and perf regressions
|
|
* because the new scalars will be assigned individual slots and can overflow
|
|
* the available slots.
|
|
*/
|
|
if (producer->options->lower_to_scalar && !vm->disable_varying_packing &&
|
|
!vm->disable_xfb_packing) {
|
|
NIR_PASS_V(producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
|
|
NIR_PASS_V(consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
|
|
}
|
|
|
|
gl_nir_opts(producer);
|
|
gl_nir_opts(consumer);
|
|
|
|
if (nir_link_opt_varyings(producer, consumer))
|
|
gl_nir_opts(consumer);
|
|
|
|
NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
|
|
NIR_PASS_V(consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
|
|
|
|
if (remove_unused_varyings(producer, consumer, prog, mem_ctx)) {
|
|
NIR_PASS_V(producer, nir_lower_global_vars_to_local);
|
|
NIR_PASS_V(consumer, nir_lower_global_vars_to_local);
|
|
|
|
gl_nir_opts(producer);
|
|
gl_nir_opts(consumer);
|
|
|
|
/* Optimizations can cause varyings to become unused.
|
|
* nir_compact_varyings() depends on all dead varyings being removed so
|
|
* we need to call nir_remove_dead_variables() again here.
|
|
*/
|
|
NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_out,
|
|
NULL);
|
|
NIR_PASS_V(consumer, nir_remove_dead_variables, nir_var_shader_in,
|
|
NULL);
|
|
}
|
|
|
|
nir_link_varying_precision(producer, consumer);
|
|
}
|
|
|
|
/**
|
|
* Assign locations for all variables that are produced in one pipeline stage
|
|
* (the "producer") and consumed in the next stage (the "consumer").
|
|
*
|
|
* Variables produced by the producer may also be consumed by transform
|
|
* feedback.
|
|
*
|
|
* \param num_xfb_decls is the number of declarations indicating
|
|
* variables that may be consumed by transform feedback.
|
|
*
|
|
* \param xfb_decls is a pointer to an array of xfb_decl objects
|
|
* representing the result of parsing the strings passed to
|
|
* glTransformFeedbackVaryings(). assign_location() will be called for
|
|
* each of these objects that matches one of the outputs of the
|
|
* producer.
|
|
*
|
|
* When num_xfb_decls is nonzero, it is permissible for the consumer to
|
|
* be NULL. In this case, varying locations are assigned solely based on the
|
|
* requirements of transform feedback.
|
|
*/
|
|
static bool
|
|
assign_final_varying_locations(const struct gl_constants *consts,
|
|
const struct gl_extensions *exts,
|
|
void *mem_ctx,
|
|
struct gl_shader_program *prog,
|
|
struct gl_linked_shader *producer,
|
|
struct gl_linked_shader *consumer,
|
|
unsigned num_xfb_decls,
|
|
struct xfb_decl *xfb_decls,
|
|
const uint64_t reserved_slots,
|
|
struct varying_matches *vm)
|
|
{
|
|
init_varying_matches(mem_ctx, vm, consts, exts,
|
|
producer ? producer->Stage : MESA_SHADER_NONE,
|
|
consumer ? consumer->Stage : MESA_SHADER_NONE,
|
|
prog->SeparateShader);
|
|
|
|
/* Regather varying matches as we ran optimisations and the previous pointers
|
|
* are no longer valid.
|
|
*/
|
|
if (producer) {
|
|
nir_foreach_shader_out_variable(var_out, producer->Program->nir) {
|
|
if (var_out->data.location < VARYING_SLOT_VAR0 ||
|
|
var_out->data.explicit_location)
|
|
continue;
|
|
|
|
if (vm->num_matches == vm->matches_capacity) {
|
|
vm->matches_capacity *= 2;
|
|
vm->matches = (struct match *)
|
|
reralloc(mem_ctx, vm->matches, struct match,
|
|
vm->matches_capacity);
|
|
}
|
|
|
|
vm->matches[vm->num_matches].packing_class
|
|
= varying_matches_compute_packing_class(var_out);
|
|
vm->matches[vm->num_matches].packing_order
|
|
= varying_matches_compute_packing_order(var_out);
|
|
|
|
vm->matches[vm->num_matches].producer_var = var_out;
|
|
vm->matches[vm->num_matches].consumer_var = NULL;
|
|
vm->num_matches++;
|
|
}
|
|
|
|
/* Regather xfb varyings too */
|
|
for (unsigned i = 0; i < num_xfb_decls; i++) {
|
|
if (!xfb_decl_is_varying(&xfb_decls[i]))
|
|
continue;
|
|
|
|
/* Varying pointer was already reset */
|
|
if (xfb_decls[i].matched_candidate->initial_location == -1)
|
|
continue;
|
|
|
|
bool UNUSED is_reset = false;
|
|
bool UNUSED no_outputs = true;
|
|
nir_foreach_shader_out_variable(var_out, producer->Program->nir) {
|
|
no_outputs = false;
|
|
assert(var_out->data.location != -1);
|
|
if (var_out->data.location ==
|
|
xfb_decls[i].matched_candidate->initial_location &&
|
|
var_out->data.location_frac ==
|
|
xfb_decls[i].matched_candidate->initial_location_frac) {
|
|
xfb_decls[i].matched_candidate->toplevel_var = var_out;
|
|
xfb_decls[i].matched_candidate->initial_location = -1;
|
|
is_reset = true;
|
|
break;
|
|
}
|
|
}
|
|
assert(is_reset || no_outputs);
|
|
}
|
|
}
|
|
|
|
bool found_match = false;
|
|
if (consumer) {
|
|
nir_foreach_shader_in_variable(var_in, consumer->Program->nir) {
|
|
if (var_in->data.location < VARYING_SLOT_VAR0 ||
|
|
var_in->data.explicit_location)
|
|
continue;
|
|
|
|
found_match = false;
|
|
for (unsigned i = 0; i < vm->num_matches; i++) {
|
|
if (vm->matches[i].producer_var &&
|
|
(vm->matches[i].producer_var->data.location == var_in->data.location &&
|
|
vm->matches[i].producer_var->data.location_frac == var_in->data.location_frac)) {
|
|
|
|
vm->matches[i].consumer_var = var_in;
|
|
found_match = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found_match) {
|
|
if (vm->num_matches == vm->matches_capacity) {
|
|
vm->matches_capacity *= 2;
|
|
vm->matches = (struct match *)
|
|
reralloc(mem_ctx, vm->matches, struct match,
|
|
vm->matches_capacity);
|
|
}
|
|
|
|
vm->matches[vm->num_matches].packing_class
|
|
= varying_matches_compute_packing_class(var_in);
|
|
vm->matches[vm->num_matches].packing_order
|
|
= varying_matches_compute_packing_order(var_in);
|
|
|
|
vm->matches[vm->num_matches].producer_var = NULL;
|
|
vm->matches[vm->num_matches].consumer_var = var_in;
|
|
vm->num_matches++;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0};
|
|
const unsigned slots_used =
|
|
varying_matches_assign_locations(vm, prog, components, reserved_slots);
|
|
varying_matches_store_locations(vm);
|
|
|
|
for (unsigned i = 0; i < num_xfb_decls; ++i) {
|
|
if (xfb_decl_is_varying(&xfb_decls[i])) {
|
|
if (!xfb_decl_assign_location(&xfb_decls[i], consts, prog,
|
|
vm->disable_varying_packing, vm->xfb_enabled))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (producer) {
|
|
gl_nir_lower_packed_varyings(consts, prog, mem_ctx, slots_used, components,
|
|
nir_var_shader_out, 0, producer,
|
|
vm->disable_varying_packing,
|
|
vm->disable_xfb_packing, vm->xfb_enabled);
|
|
nir_lower_pack(producer->Program->nir);
|
|
}
|
|
|
|
if (consumer) {
|
|
unsigned consumer_vertices = 0;
|
|
if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY)
|
|
consumer_vertices = prog->Geom.VerticesIn;
|
|
|
|
gl_nir_lower_packed_varyings(consts, prog, mem_ctx, slots_used, components,
|
|
nir_var_shader_in, consumer_vertices,
|
|
consumer, vm->disable_varying_packing,
|
|
vm->disable_xfb_packing, vm->xfb_enabled);
|
|
nir_lower_pack(consumer->Program->nir);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
check_against_output_limit(const struct gl_constants *consts, gl_api api,
|
|
struct gl_shader_program *prog,
|
|
struct gl_linked_shader *producer,
|
|
unsigned num_explicit_locations)
|
|
{
|
|
unsigned output_vectors = num_explicit_locations;
|
|
nir_foreach_shader_out_variable(var, producer->Program->nir) {
|
|
if (!var->data.explicit_location &&
|
|
var_counts_against_varying_limit(producer->Stage, var)) {
|
|
/* outputs for fragment shader can't be doubles */
|
|
output_vectors += glsl_count_attribute_slots(var->type, false);
|
|
}
|
|
}
|
|
|
|
assert(producer->Stage != MESA_SHADER_FRAGMENT);
|
|
unsigned max_output_components =
|
|
consts->Program[producer->Stage].MaxOutputComponents;
|
|
|
|
const unsigned output_components = output_vectors * 4;
|
|
if (output_components > max_output_components) {
|
|
if (api == API_OPENGLES2 || prog->IsES)
|
|
linker_error(prog, "%s shader uses too many output vectors "
|
|
"(%u > %u)\n",
|
|
_mesa_shader_stage_to_string(producer->Stage),
|
|
output_vectors,
|
|
max_output_components / 4);
|
|
else
|
|
linker_error(prog, "%s shader uses too many output components "
|
|
"(%u > %u)\n",
|
|
_mesa_shader_stage_to_string(producer->Stage),
|
|
output_components,
|
|
max_output_components);
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
check_against_input_limit(const struct gl_constants *consts, gl_api api,
|
|
struct gl_shader_program *prog,
|
|
struct gl_linked_shader *consumer,
|
|
unsigned num_explicit_locations)
|
|
{
|
|
unsigned input_vectors = num_explicit_locations;
|
|
|
|
nir_foreach_shader_in_variable(var, consumer->Program->nir) {
|
|
if (!var->data.explicit_location &&
|
|
var_counts_against_varying_limit(consumer->Stage, var)) {
|
|
/* vertex inputs aren't varying counted */
|
|
input_vectors += glsl_count_attribute_slots(var->type, false);
|
|
}
|
|
}
|
|
|
|
assert(consumer->Stage != MESA_SHADER_VERTEX);
|
|
unsigned max_input_components =
|
|
consts->Program[consumer->Stage].MaxInputComponents;
|
|
|
|
const unsigned input_components = input_vectors * 4;
|
|
if (input_components > max_input_components) {
|
|
if (api == API_OPENGLES2 || prog->IsES)
|
|
linker_error(prog, "%s shader uses too many input vectors "
|
|
"(%u > %u)\n",
|
|
_mesa_shader_stage_to_string(consumer->Stage),
|
|
input_vectors,
|
|
max_input_components / 4);
|
|
else
|
|
linker_error(prog, "%s shader uses too many input components "
|
|
"(%u > %u)\n",
|
|
_mesa_shader_stage_to_string(consumer->Stage),
|
|
input_components,
|
|
max_input_components);
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Lower unset/unused inputs/outputs */
|
|
static void
|
|
remove_unused_shader_inputs_and_outputs(struct gl_shader_program *prog,
|
|
unsigned stage, nir_variable_mode mode)
|
|
{
|
|
bool progress = false;
|
|
nir_shader *shader = prog->_LinkedShaders[stage]->Program->nir;
|
|
|
|
nir_foreach_variable_with_modes_safe(var, shader, mode) {
|
|
if (!var->data.is_xfb_only && var->data.location == -1) {
|
|
var->data.location = 0;
|
|
var->data.mode = nir_var_shader_temp;
|
|
progress = true;
|
|
}
|
|
}
|
|
|
|
if (progress)
|
|
fixup_vars_lowered_to_temp(shader, mode);
|
|
}
|
|
|
|
static bool
|
|
link_varyings(struct gl_shader_program *prog, unsigned first,
|
|
unsigned last, const struct gl_constants *consts,
|
|
const struct gl_extensions *exts, gl_api api, void *mem_ctx)
|
|
{
|
|
bool has_xfb_qualifiers = false;
|
|
unsigned num_xfb_decls = 0;
|
|
char **varying_names = NULL;
|
|
struct xfb_decl *xfb_decls = NULL;
|
|
|
|
if (last > MESA_SHADER_FRAGMENT)
|
|
return true;
|
|
|
|
/* From the ARB_enhanced_layouts spec:
|
|
*
|
|
* "If the shader used to record output variables for transform feedback
|
|
* varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout
|
|
* qualifiers, the values specified by TransformFeedbackVaryings are
|
|
* ignored, and the set of variables captured for transform feedback is
|
|
* instead derived from the specified layout qualifiers."
|
|
*/
|
|
for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) {
|
|
/* Find last stage before fragment shader */
|
|
if (prog->_LinkedShaders[i]) {
|
|
has_xfb_qualifiers =
|
|
process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i],
|
|
prog, &num_xfb_decls,
|
|
&varying_names);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!has_xfb_qualifiers) {
|
|
num_xfb_decls = prog->TransformFeedback.NumVarying;
|
|
varying_names = prog->TransformFeedback.VaryingNames;
|
|
}
|
|
|
|
if (num_xfb_decls != 0) {
|
|
/* From GL_EXT_transform_feedback:
|
|
* A program will fail to link if:
|
|
*
|
|
* * the <count> specified by TransformFeedbackVaryingsEXT is
|
|
* non-zero, but the program object has no vertex or geometry
|
|
* shader;
|
|
*/
|
|
if (first >= MESA_SHADER_FRAGMENT) {
|
|
linker_error(prog, "Transform feedback varyings specified, but "
|
|
"no vertex, tessellation, or geometry shader is "
|
|
"present.\n");
|
|
return false;
|
|
}
|
|
|
|
xfb_decls = rzalloc_array(mem_ctx, struct xfb_decl,
|
|
num_xfb_decls);
|
|
if (!parse_xfb_decls(consts, exts, prog, mem_ctx, num_xfb_decls,
|
|
varying_names, xfb_decls))
|
|
return false;
|
|
}
|
|
|
|
struct gl_linked_shader *linked_shader[MESA_SHADER_STAGES];
|
|
unsigned num_shaders = 0;
|
|
|
|
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
|
|
if (prog->_LinkedShaders[i])
|
|
linked_shader[num_shaders++] = prog->_LinkedShaders[i];
|
|
}
|
|
|
|
struct varying_matches vm;
|
|
if (last < MESA_SHADER_FRAGMENT &&
|
|
(num_xfb_decls != 0 || prog->SeparateShader)) {
|
|
struct gl_linked_shader *producer = prog->_LinkedShaders[last];
|
|
if (!assign_initial_varying_locations(consts, exts, mem_ctx, prog,
|
|
producer, NULL, num_xfb_decls,
|
|
xfb_decls, &vm))
|
|
return false;
|
|
}
|
|
|
|
if (last <= MESA_SHADER_FRAGMENT && !prog->SeparateShader) {
|
|
remove_unused_shader_inputs_and_outputs(prog, first, nir_var_shader_in);
|
|
remove_unused_shader_inputs_and_outputs(prog, last, nir_var_shader_out);
|
|
}
|
|
|
|
if (prog->SeparateShader) {
|
|
struct gl_linked_shader *consumer = linked_shader[0];
|
|
if (!assign_initial_varying_locations(consts, exts, mem_ctx, prog, NULL,
|
|
consumer, 0, NULL, &vm))
|
|
return false;
|
|
}
|
|
|
|
if (num_shaders == 1) {
|
|
/* Linking shaders also optimizes them. Separate shaders, compute shaders
|
|
* and shaders with a fixed-func VS or FS that don't need linking are
|
|
* optimized here.
|
|
*/
|
|
gl_nir_opts(linked_shader[0]->Program->nir);
|
|
} else {
|
|
/* Linking the stages in the opposite order (from fragment to vertex)
|
|
* ensures that inter-shader outputs written to in an earlier stage
|
|
* are eliminated if they are (transitively) not used in a later
|
|
* stage.
|
|
*/
|
|
for (int i = num_shaders - 2; i >= 0; i--) {
|
|
unsigned stage_num_xfb_decls =
|
|
linked_shader[i + 1]->Stage == MESA_SHADER_FRAGMENT ?
|
|
num_xfb_decls : 0;
|
|
|
|
if (!assign_initial_varying_locations(consts, exts, mem_ctx, prog,
|
|
linked_shader[i],
|
|
linked_shader[i + 1],
|
|
stage_num_xfb_decls, xfb_decls,
|
|
&vm))
|
|
return false;
|
|
|
|
/* Now that validation is done its safe to remove unused varyings. As
|
|
* we have both a producer and consumer its safe to remove unused
|
|
* varyings even if the program is a SSO because the stages are being
|
|
* linked together i.e. we have a multi-stage SSO.
|
|
*/
|
|
link_shader_opts(&vm, linked_shader[i]->Program->nir,
|
|
linked_shader[i + 1]->Program->nir,
|
|
prog, mem_ctx);
|
|
|
|
remove_unused_shader_inputs_and_outputs(prog, linked_shader[i]->Stage,
|
|
nir_var_shader_out);
|
|
remove_unused_shader_inputs_and_outputs(prog,
|
|
linked_shader[i + 1]->Stage,
|
|
nir_var_shader_in);
|
|
}
|
|
}
|
|
|
|
if (!prog->SeparateShader) {
|
|
/* If not SSO remove unused varyings from the first/last stage */
|
|
NIR_PASS_V(prog->_LinkedShaders[first]->Program->nir,
|
|
nir_remove_dead_variables, nir_var_shader_in, NULL);
|
|
NIR_PASS_V(prog->_LinkedShaders[last]->Program->nir,
|
|
nir_remove_dead_variables, nir_var_shader_out, NULL);
|
|
} else {
|
|
/* Sort inputs / outputs into a canonical order. This is necessary so
|
|
* that inputs / outputs of separable shaders will be assigned
|
|
* predictable locations regardless of the order in which declarations
|
|
* appeared in the shader source.
|
|
*/
|
|
if (first != MESA_SHADER_VERTEX) {
|
|
canonicalize_shader_io(prog->_LinkedShaders[first]->Program->nir,
|
|
nir_var_shader_in);
|
|
}
|
|
|
|
if (last != MESA_SHADER_FRAGMENT) {
|
|
canonicalize_shader_io(prog->_LinkedShaders[last]->Program->nir,
|
|
nir_var_shader_out);
|
|
}
|
|
}
|
|
|
|
/* If there is no fragment shader we need to set transform feedback.
|
|
*
|
|
* For SSO we also need to assign output locations. We assign them here
|
|
* because we need to do it for both single stage programs and multi stage
|
|
* programs.
|
|
*/
|
|
if (last < MESA_SHADER_FRAGMENT &&
|
|
(num_xfb_decls != 0 || prog->SeparateShader)) {
|
|
const uint64_t reserved_out_slots =
|
|
reserved_varying_slot(prog->_LinkedShaders[last], nir_var_shader_out);
|
|
if (!assign_final_varying_locations(consts, exts, mem_ctx, prog,
|
|
prog->_LinkedShaders[last], NULL,
|
|
num_xfb_decls, xfb_decls,
|
|
reserved_out_slots, &vm))
|
|
return false;
|
|
}
|
|
|
|
if (prog->SeparateShader) {
|
|
struct gl_linked_shader *const sh = prog->_LinkedShaders[first];
|
|
|
|
const uint64_t reserved_slots =
|
|
reserved_varying_slot(sh, nir_var_shader_in);
|
|
|
|
/* Assign input locations for SSO, output locations are already
|
|
* assigned.
|
|
*/
|
|
if (!assign_final_varying_locations(consts, exts, mem_ctx, prog,
|
|
NULL /* producer */,
|
|
sh /* consumer */,
|
|
0 /* num_xfb_decls */,
|
|
NULL /* xfb_decls */,
|
|
reserved_slots, &vm))
|
|
return false;
|
|
}
|
|
|
|
if (num_shaders == 1) {
|
|
gl_nir_opt_dead_builtin_varyings(consts, api, prog, NULL, linked_shader[0],
|
|
0, NULL);
|
|
gl_nir_opt_dead_builtin_varyings(consts, api, prog, linked_shader[0], NULL,
|
|
num_xfb_decls, xfb_decls);
|
|
} else {
|
|
/* Linking the stages in the opposite order (from fragment to vertex)
|
|
* ensures that inter-shader outputs written to in an earlier stage
|
|
* are eliminated if they are (transitively) not used in a later
|
|
* stage.
|
|
*/
|
|
int next = last;
|
|
for (int i = next - 1; i >= 0; i--) {
|
|
if (prog->_LinkedShaders[i] == NULL && i != 0)
|
|
continue;
|
|
|
|
struct gl_linked_shader *const sh_i = prog->_LinkedShaders[i];
|
|
struct gl_linked_shader *const sh_next = prog->_LinkedShaders[next];
|
|
|
|
gl_nir_opt_dead_builtin_varyings(consts, api, prog, sh_i, sh_next,
|
|
next == MESA_SHADER_FRAGMENT ? num_xfb_decls : 0,
|
|
xfb_decls);
|
|
|
|
const uint64_t reserved_out_slots =
|
|
reserved_varying_slot(sh_i, nir_var_shader_out);
|
|
const uint64_t reserved_in_slots =
|
|
reserved_varying_slot(sh_next, nir_var_shader_in);
|
|
|
|
if (!assign_final_varying_locations(consts, exts, mem_ctx, prog, sh_i,
|
|
sh_next, next == MESA_SHADER_FRAGMENT ? num_xfb_decls : 0,
|
|
xfb_decls, reserved_out_slots | reserved_in_slots, &vm))
|
|
return false;
|
|
|
|
/* This must be done after all dead varyings are eliminated. */
|
|
if (sh_i != NULL) {
|
|
unsigned slots_used = util_bitcount64(reserved_out_slots);
|
|
if (!check_against_output_limit(consts, api, prog, sh_i, slots_used))
|
|
return false;
|
|
}
|
|
|
|
unsigned slots_used = util_bitcount64(reserved_in_slots);
|
|
if (!check_against_input_limit(consts, api, prog, sh_next, slots_used))
|
|
return false;
|
|
|
|
next = i;
|
|
}
|
|
}
|
|
|
|
if (!store_tfeedback_info(consts, prog, num_xfb_decls, xfb_decls,
|
|
has_xfb_qualifiers, mem_ctx))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Store the gl_FragDepth layout in the gl_shader_program struct.
|
|
*/
|
|
static void
|
|
store_fragdepth_layout(struct gl_shader_program *prog)
|
|
{
|
|
if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
|
|
return;
|
|
}
|
|
|
|
nir_shader *nir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program->nir;
|
|
nir_foreach_shader_out_variable(var, nir) {
|
|
if (strcmp(var->name, "gl_FragDepth") == 0) {
|
|
switch (var->data.depth_layout) {
|
|
case nir_depth_layout_none:
|
|
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
|
|
return;
|
|
case nir_depth_layout_any:
|
|
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
|
|
return;
|
|
case nir_depth_layout_greater:
|
|
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
|
|
return;
|
|
case nir_depth_layout_less:
|
|
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
|
|
return;
|
|
case nir_depth_layout_unchanged:
|
|
prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
|
|
return;
|
|
default:
|
|
assert(0);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
gl_assign_attribute_or_color_locations(const struct gl_constants *consts,
|
|
struct gl_shader_program *prog)
|
|
{
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
if (!assign_attribute_or_color_locations(mem_ctx, prog, consts,
|
|
MESA_SHADER_VERTEX, true)) {
|
|
ralloc_free(mem_ctx);
|
|
return false;
|
|
}
|
|
|
|
if (!assign_attribute_or_color_locations(mem_ctx, prog, consts,
|
|
MESA_SHADER_FRAGMENT, true)) {
|
|
ralloc_free(mem_ctx);
|
|
return false;
|
|
}
|
|
|
|
ralloc_free(mem_ctx);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
gl_nir_link_varyings(const struct gl_constants *consts,
|
|
const struct gl_extensions *exts,
|
|
gl_api api, struct gl_shader_program *prog)
|
|
{
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
unsigned first, last;
|
|
|
|
MESA_TRACE_FUNC();
|
|
|
|
store_fragdepth_layout(prog);
|
|
|
|
first = MESA_SHADER_STAGES;
|
|
last = 0;
|
|
|
|
/* We need to initialise the program resource list because the varying
|
|
* packing pass my start inserting varyings onto the list.
|
|
*/
|
|
init_program_resource_list(prog);
|
|
|
|
/* Determine first and last stage. */
|
|
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
|
|
if (!prog->_LinkedShaders[i])
|
|
continue;
|
|
if (first == MESA_SHADER_STAGES)
|
|
first = i;
|
|
last = i;
|
|
}
|
|
|
|
bool r = link_varyings(prog, first, last, consts, exts, api, mem_ctx);
|
|
if (r) {
|
|
for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
|
|
if (!prog->_LinkedShaders[i])
|
|
continue;
|
|
|
|
/* Check for transform feedback varyings specified via the API */
|
|
prog->_LinkedShaders[i]->Program->nir->info.has_transform_feedback_varyings =
|
|
prog->TransformFeedback.NumVarying > 0;
|
|
|
|
/* Check for transform feedback varyings specified in the Shader */
|
|
if (prog->last_vert_prog) {
|
|
prog->_LinkedShaders[i]->Program->nir->info.has_transform_feedback_varyings |=
|
|
prog->last_vert_prog->sh.LinkedTransformFeedback->NumVarying > 0;
|
|
}
|
|
}
|
|
|
|
/* Assign NIR XFB info to the last stage before the fragment shader */
|
|
for (int stage = MESA_SHADER_FRAGMENT - 1; stage >= 0; stage--) {
|
|
struct gl_linked_shader *sh = prog->_LinkedShaders[stage];
|
|
if (sh && stage != MESA_SHADER_TESS_CTRL) {
|
|
sh->Program->nir->xfb_info =
|
|
gl_to_nir_xfb_info(sh->Program->sh.LinkedTransformFeedback,
|
|
sh->Program->nir);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ralloc_free(mem_ctx);
|
|
return r;
|
|
}
|