
This extension can be supported on SKL+. With this patch, all corresponding tests (6K+) in CTS can pass. No test fails. I verified CTS with the command below: deqp-vk --deqp-case=dEQP-VK.pipeline.sampler.view_type.*reduce* v2: 1) support all depth formats, not depth-only formats, 2) fix a wrong indention (Jason). v3: fix a few nits (Lionel). v4: fix failures in CI: disable sampler reduction when sampler reduction mode is not specified via this extension (Lionel). Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
2971 lines
105 KiB
C
2971 lines
105 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/sysinfo.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <xf86drm.h>
|
|
#include <drm_fourcc.h>
|
|
|
|
#include "anv_private.h"
|
|
#include "util/strtod.h"
|
|
#include "util/debug.h"
|
|
#include "util/build_id.h"
|
|
#include "util/disk_cache.h"
|
|
#include "util/mesa-sha1.h"
|
|
#include "vk_util.h"
|
|
#include "common/gen_defines.h"
|
|
|
|
#include "genxml/gen7_pack.h"
|
|
|
|
static void
|
|
compiler_debug_log(void *data, const char *fmt, ...)
|
|
{ }
|
|
|
|
static void
|
|
compiler_perf_log(void *data, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_PERF))
|
|
intel_logd_v(fmt, args);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
static VkResult
|
|
anv_compute_heap_size(int fd, uint64_t gtt_size, uint64_t *heap_size)
|
|
{
|
|
/* Query the total ram from the system */
|
|
struct sysinfo info;
|
|
sysinfo(&info);
|
|
|
|
uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
|
|
|
|
/* We don't want to burn too much ram with the GPU. If the user has 4GiB
|
|
* or less, we use at most half. If they have more than 4GiB, we use 3/4.
|
|
*/
|
|
uint64_t available_ram;
|
|
if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
|
|
available_ram = total_ram / 2;
|
|
else
|
|
available_ram = total_ram * 3 / 4;
|
|
|
|
/* We also want to leave some padding for things we allocate in the driver,
|
|
* so don't go over 3/4 of the GTT either.
|
|
*/
|
|
uint64_t available_gtt = gtt_size * 3 / 4;
|
|
|
|
*heap_size = MIN2(available_ram, available_gtt);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
|
|
{
|
|
uint64_t gtt_size;
|
|
if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
|
|
>t_size) == -1) {
|
|
/* If, for whatever reason, we can't actually get the GTT size from the
|
|
* kernel (too old?) fall back to the aperture size.
|
|
*/
|
|
anv_perf_warn(NULL, NULL,
|
|
"Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
|
|
|
|
if (anv_gem_get_aperture(fd, >t_size) == -1) {
|
|
return vk_errorf(NULL, NULL, VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get aperture size: %m");
|
|
}
|
|
}
|
|
|
|
device->supports_48bit_addresses = (device->info.gen >= 8) &&
|
|
gtt_size > (4ULL << 30 /* GiB */);
|
|
|
|
uint64_t heap_size = 0;
|
|
VkResult result = anv_compute_heap_size(fd, gtt_size, &heap_size);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
if (heap_size > (2ull << 30) && !device->supports_48bit_addresses) {
|
|
/* When running with an overridden PCI ID, we may get a GTT size from
|
|
* the kernel that is greater than 2 GiB but the execbuf check for 48bit
|
|
* address support can still fail. Just clamp the address space size to
|
|
* 2 GiB if we don't have 48-bit support.
|
|
*/
|
|
intel_logw("%s:%d: The kernel reported a GTT size larger than 2 GiB but "
|
|
"not support for 48-bit addresses",
|
|
__FILE__, __LINE__);
|
|
heap_size = 2ull << 30;
|
|
}
|
|
|
|
if (heap_size <= 3ull * (1ull << 30)) {
|
|
/* In this case, everything fits nicely into the 32-bit address space,
|
|
* so there's no need for supporting 48bit addresses on client-allocated
|
|
* memory objects.
|
|
*/
|
|
device->memory.heap_count = 1;
|
|
device->memory.heaps[0] = (struct anv_memory_heap) {
|
|
.size = heap_size,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
.supports_48bit_addresses = false,
|
|
};
|
|
} else {
|
|
/* Not everything will fit nicely into a 32-bit address space. In this
|
|
* case we need a 64-bit heap. Advertise a small 32-bit heap and a
|
|
* larger 48-bit heap. If we're in this case, then we have a total heap
|
|
* size larger than 3GiB which most likely means they have 8 GiB of
|
|
* video memory and so carving off 1 GiB for the 32-bit heap should be
|
|
* reasonable.
|
|
*/
|
|
const uint64_t heap_size_32bit = 1ull << 30;
|
|
const uint64_t heap_size_48bit = heap_size - heap_size_32bit;
|
|
|
|
assert(device->supports_48bit_addresses);
|
|
|
|
device->memory.heap_count = 2;
|
|
device->memory.heaps[0] = (struct anv_memory_heap) {
|
|
.size = heap_size_48bit,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
.supports_48bit_addresses = true,
|
|
};
|
|
device->memory.heaps[1] = (struct anv_memory_heap) {
|
|
.size = heap_size_32bit,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
.supports_48bit_addresses = false,
|
|
};
|
|
}
|
|
|
|
uint32_t type_count = 0;
|
|
for (uint32_t heap = 0; heap < device->memory.heap_count; heap++) {
|
|
uint32_t valid_buffer_usage = ~0;
|
|
|
|
/* There appears to be a hardware issue in the VF cache where it only
|
|
* considers the bottom 32 bits of memory addresses. If you happen to
|
|
* have two vertex buffers which get placed exactly 4 GiB apart and use
|
|
* them in back-to-back draw calls, you can get collisions. In order to
|
|
* solve this problem, we require vertex and index buffers be bound to
|
|
* memory allocated out of the 32-bit heap.
|
|
*/
|
|
if (device->memory.heaps[heap].supports_48bit_addresses) {
|
|
valid_buffer_usage &= ~(VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
|
|
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
|
|
}
|
|
|
|
if (device->info.has_llc) {
|
|
/* Big core GPUs share LLC with the CPU and thus one memory type can be
|
|
* both cached and coherent at the same time.
|
|
*/
|
|
device->memory.types[type_count++] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = heap,
|
|
.valid_buffer_usage = valid_buffer_usage,
|
|
};
|
|
} else {
|
|
/* The spec requires that we expose a host-visible, coherent memory
|
|
* type, but Atom GPUs don't share LLC. Thus we offer two memory types
|
|
* to give the application a choice between cached, but not coherent and
|
|
* coherent but uncached (WC though).
|
|
*/
|
|
device->memory.types[type_count++] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
.heapIndex = heap,
|
|
.valid_buffer_usage = valid_buffer_usage,
|
|
};
|
|
device->memory.types[type_count++] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = heap,
|
|
.valid_buffer_usage = valid_buffer_usage,
|
|
};
|
|
}
|
|
}
|
|
device->memory.type_count = type_count;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init_uuids(struct anv_physical_device *device)
|
|
{
|
|
const struct build_id_note *note =
|
|
build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
|
|
if (!note) {
|
|
return vk_errorf(device->instance, device,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"Failed to find build-id");
|
|
}
|
|
|
|
unsigned build_id_len = build_id_length(note);
|
|
if (build_id_len < 20) {
|
|
return vk_errorf(device->instance, device,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"build-id too short. It needs to be a SHA");
|
|
}
|
|
|
|
memcpy(device->driver_build_sha1, build_id_data(note), 20);
|
|
|
|
struct mesa_sha1 sha1_ctx;
|
|
uint8_t sha1[20];
|
|
STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
|
|
|
|
/* The pipeline cache UUID is used for determining when a pipeline cache is
|
|
* invalid. It needs both a driver build and the PCI ID of the device.
|
|
*/
|
|
_mesa_sha1_init(&sha1_ctx);
|
|
_mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
|
|
_mesa_sha1_update(&sha1_ctx, &device->chipset_id,
|
|
sizeof(device->chipset_id));
|
|
_mesa_sha1_final(&sha1_ctx, sha1);
|
|
memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
|
|
|
|
/* The driver UUID is used for determining sharability of images and memory
|
|
* between two Vulkan instances in separate processes. People who want to
|
|
* share memory need to also check the device UUID (below) so all this
|
|
* needs to be is the build-id.
|
|
*/
|
|
memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
|
|
|
|
/* The device UUID uniquely identifies the given device within the machine.
|
|
* Since we never have more than one device, this doesn't need to be a real
|
|
* UUID. However, on the off-chance that someone tries to use this to
|
|
* cache pre-tiled images or something of the like, we use the PCI ID and
|
|
* some bits of ISL info to ensure that this is safe.
|
|
*/
|
|
_mesa_sha1_init(&sha1_ctx);
|
|
_mesa_sha1_update(&sha1_ctx, &device->chipset_id,
|
|
sizeof(device->chipset_id));
|
|
_mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
|
|
sizeof(device->isl_dev.has_bit6_swizzling));
|
|
_mesa_sha1_final(&sha1_ctx, sha1);
|
|
memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_init_disk_cache(struct anv_physical_device *device)
|
|
{
|
|
#ifdef ENABLE_SHADER_CACHE
|
|
char renderer[10];
|
|
MAYBE_UNUSED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
|
|
device->chipset_id);
|
|
assert(len == sizeof(renderer) - 2);
|
|
|
|
char timestamp[41];
|
|
_mesa_sha1_format(timestamp, device->driver_build_sha1);
|
|
|
|
const uint64_t driver_flags =
|
|
brw_get_compiler_config_value(device->compiler);
|
|
device->disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
|
|
#else
|
|
device->disk_cache = NULL;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_free_disk_cache(struct anv_physical_device *device)
|
|
{
|
|
#ifdef ENABLE_SHADER_CACHE
|
|
if (device->disk_cache)
|
|
disk_cache_destroy(device->disk_cache);
|
|
#else
|
|
assert(device->disk_cache == NULL);
|
|
#endif
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init(struct anv_physical_device *device,
|
|
struct anv_instance *instance,
|
|
const char *primary_path,
|
|
const char *path)
|
|
{
|
|
VkResult result;
|
|
int fd;
|
|
int master_fd = -1;
|
|
|
|
brw_process_intel_debug_variable();
|
|
|
|
fd = open(path, O_RDWR | O_CLOEXEC);
|
|
if (fd < 0)
|
|
return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
|
|
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
device->instance = instance;
|
|
|
|
assert(strlen(path) < ARRAY_SIZE(device->path));
|
|
snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
|
|
|
|
device->no_hw = getenv("INTEL_NO_HW") != NULL;
|
|
|
|
const int pci_id_override = gen_get_pci_device_id_override();
|
|
if (pci_id_override < 0) {
|
|
device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
|
|
if (!device->chipset_id) {
|
|
result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
goto fail;
|
|
}
|
|
} else {
|
|
device->chipset_id = pci_id_override;
|
|
device->no_hw = true;
|
|
}
|
|
|
|
device->name = gen_get_device_name(device->chipset_id);
|
|
if (!gen_get_device_info(device->chipset_id, &device->info)) {
|
|
result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
goto fail;
|
|
}
|
|
|
|
if (device->info.is_haswell) {
|
|
intel_logw("Haswell Vulkan support is incomplete");
|
|
} else if (device->info.gen == 7 && !device->info.is_baytrail) {
|
|
intel_logw("Ivy Bridge Vulkan support is incomplete");
|
|
} else if (device->info.gen == 7 && device->info.is_baytrail) {
|
|
intel_logw("Bay Trail Vulkan support is incomplete");
|
|
} else if (device->info.gen >= 8 && device->info.gen <= 10) {
|
|
/* Gen8-10 fully supported */
|
|
} else if (device->info.gen == 11) {
|
|
intel_logw("Vulkan is not yet fully supported on gen11.");
|
|
} else {
|
|
result = vk_errorf(device->instance, device,
|
|
VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Vulkan not yet supported on %s", device->name);
|
|
goto fail;
|
|
}
|
|
|
|
device->cmd_parser_version = -1;
|
|
if (device->info.gen == 7) {
|
|
device->cmd_parser_version =
|
|
anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
|
|
if (device->cmd_parser_version == -1) {
|
|
result = vk_errorf(device->instance, device,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get command parser version");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
|
|
result = vk_errorf(device->instance, device,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing gem wait");
|
|
goto fail;
|
|
}
|
|
|
|
if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
|
|
result = vk_errorf(device->instance, device,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing execbuf2");
|
|
goto fail;
|
|
}
|
|
|
|
if (!device->info.has_llc &&
|
|
anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
|
|
result = vk_errorf(device->instance, device,
|
|
VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing wc mmap");
|
|
goto fail;
|
|
}
|
|
|
|
result = anv_physical_device_init_heaps(device, fd);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
|
|
device->has_exec_capture = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CAPTURE);
|
|
device->has_exec_fence = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE);
|
|
device->has_syncobj = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_FENCE_ARRAY);
|
|
device->has_syncobj_wait = device->has_syncobj &&
|
|
anv_gem_supports_syncobj_wait(fd);
|
|
device->has_context_priority = anv_gem_has_context_priority(fd);
|
|
|
|
device->use_softpin = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_SOFTPIN)
|
|
&& device->supports_48bit_addresses;
|
|
|
|
device->has_context_isolation =
|
|
anv_gem_get_param(fd, I915_PARAM_HAS_CONTEXT_ISOLATION);
|
|
|
|
bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
|
|
|
|
/* Starting with Gen10, the timestamp frequency of the command streamer may
|
|
* vary from one part to another. We can query the value from the kernel.
|
|
*/
|
|
if (device->info.gen >= 10) {
|
|
int timestamp_frequency =
|
|
anv_gem_get_param(fd, I915_PARAM_CS_TIMESTAMP_FREQUENCY);
|
|
|
|
if (timestamp_frequency < 0)
|
|
intel_logw("Kernel 4.16-rc1+ required to properly query CS timestamp frequency");
|
|
else
|
|
device->info.timestamp_frequency = timestamp_frequency;
|
|
}
|
|
|
|
/* GENs prior to 8 do not support EU/Subslice info */
|
|
if (device->info.gen >= 8) {
|
|
device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
|
|
device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
|
|
|
|
/* Without this information, we cannot get the right Braswell
|
|
* brandstrings, and we have to use conservative numbers for GPGPU on
|
|
* many platforms, but otherwise, things will just work.
|
|
*/
|
|
if (device->subslice_total < 1 || device->eu_total < 1) {
|
|
intel_logw("Kernel 4.1 required to properly query GPU properties");
|
|
}
|
|
} else if (device->info.gen == 7) {
|
|
device->subslice_total = 1 << (device->info.gt - 1);
|
|
}
|
|
|
|
if (device->info.is_cherryview &&
|
|
device->subslice_total > 0 && device->eu_total > 0) {
|
|
/* Logical CS threads = EUs per subslice * num threads per EU */
|
|
uint32_t max_cs_threads =
|
|
device->eu_total / device->subslice_total * device->info.num_thread_per_eu;
|
|
|
|
/* Fuse configurations may give more threads than expected, never less. */
|
|
if (max_cs_threads > device->info.max_cs_threads)
|
|
device->info.max_cs_threads = max_cs_threads;
|
|
}
|
|
|
|
device->compiler = brw_compiler_create(NULL, &device->info);
|
|
if (device->compiler == NULL) {
|
|
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail;
|
|
}
|
|
device->compiler->shader_debug_log = compiler_debug_log;
|
|
device->compiler->shader_perf_log = compiler_perf_log;
|
|
device->compiler->supports_pull_constants = false;
|
|
device->compiler->constant_buffer_0_is_relative =
|
|
device->info.gen < 8 || !device->has_context_isolation;
|
|
device->compiler->supports_shader_constants = true;
|
|
|
|
isl_device_init(&device->isl_dev, &device->info, swizzled);
|
|
|
|
result = anv_physical_device_init_uuids(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
anv_physical_device_init_disk_cache(device);
|
|
|
|
if (instance->enabled_extensions.KHR_display) {
|
|
master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
|
|
if (master_fd >= 0) {
|
|
/* prod the device with a GETPARAM call which will fail if
|
|
* we don't have permission to even render on this device
|
|
*/
|
|
if (anv_gem_get_param(master_fd, I915_PARAM_CHIPSET_ID) == 0) {
|
|
close(master_fd);
|
|
master_fd = -1;
|
|
}
|
|
}
|
|
}
|
|
device->master_fd = master_fd;
|
|
|
|
result = anv_init_wsi(device);
|
|
if (result != VK_SUCCESS) {
|
|
ralloc_free(device->compiler);
|
|
anv_physical_device_free_disk_cache(device);
|
|
goto fail;
|
|
}
|
|
|
|
anv_physical_device_get_supported_extensions(device,
|
|
&device->supported_extensions);
|
|
|
|
|
|
device->local_fd = fd;
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
close(fd);
|
|
if (master_fd != -1)
|
|
close(master_fd);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_finish(struct anv_physical_device *device)
|
|
{
|
|
anv_finish_wsi(device);
|
|
anv_physical_device_free_disk_cache(device);
|
|
ralloc_free(device->compiler);
|
|
close(device->local_fd);
|
|
if (device->master_fd >= 0)
|
|
close(device->master_fd);
|
|
}
|
|
|
|
static void *
|
|
default_alloc_func(void *pUserData, size_t size, size_t align,
|
|
VkSystemAllocationScope allocationScope)
|
|
{
|
|
return malloc(size);
|
|
}
|
|
|
|
static void *
|
|
default_realloc_func(void *pUserData, void *pOriginal, size_t size,
|
|
size_t align, VkSystemAllocationScope allocationScope)
|
|
{
|
|
return realloc(pOriginal, size);
|
|
}
|
|
|
|
static void
|
|
default_free_func(void *pUserData, void *pMemory)
|
|
{
|
|
free(pMemory);
|
|
}
|
|
|
|
static const VkAllocationCallbacks default_alloc = {
|
|
.pUserData = NULL,
|
|
.pfnAllocation = default_alloc_func,
|
|
.pfnReallocation = default_realloc_func,
|
|
.pfnFree = default_free_func,
|
|
};
|
|
|
|
VkResult anv_EnumerateInstanceExtensionProperties(
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
|
|
|
|
for (int i = 0; i < ANV_INSTANCE_EXTENSION_COUNT; i++) {
|
|
if (anv_instance_extensions_supported.extensions[i]) {
|
|
vk_outarray_append(&out, prop) {
|
|
*prop = anv_instance_extensions[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
VkResult anv_CreateInstance(
|
|
const VkInstanceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkInstance* pInstance)
|
|
{
|
|
struct anv_instance *instance;
|
|
VkResult result;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
|
|
|
|
struct anv_instance_extension_table enabled_extensions = {};
|
|
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
|
|
int idx;
|
|
for (idx = 0; idx < ANV_INSTANCE_EXTENSION_COUNT; idx++) {
|
|
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
|
|
anv_instance_extensions[idx].extensionName) == 0)
|
|
break;
|
|
}
|
|
|
|
if (idx >= ANV_INSTANCE_EXTENSION_COUNT)
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
|
|
if (!anv_instance_extensions_supported.extensions[idx])
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
|
|
enabled_extensions.extensions[idx] = true;
|
|
}
|
|
|
|
instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
if (!instance)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
|
|
if (pAllocator)
|
|
instance->alloc = *pAllocator;
|
|
else
|
|
instance->alloc = default_alloc;
|
|
|
|
if (pCreateInfo->pApplicationInfo &&
|
|
pCreateInfo->pApplicationInfo->apiVersion != 0) {
|
|
instance->apiVersion = pCreateInfo->pApplicationInfo->apiVersion;
|
|
} else {
|
|
anv_EnumerateInstanceVersion(&instance->apiVersion);
|
|
}
|
|
|
|
instance->enabled_extensions = enabled_extensions;
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(instance->dispatch.entrypoints); i++) {
|
|
/* Vulkan requires that entrypoints for extensions which have not been
|
|
* enabled must not be advertised.
|
|
*/
|
|
if (!anv_entrypoint_is_enabled(i, instance->apiVersion,
|
|
&instance->enabled_extensions, NULL)) {
|
|
instance->dispatch.entrypoints[i] = NULL;
|
|
} else if (anv_dispatch_table.entrypoints[i] != NULL) {
|
|
instance->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
|
|
} else {
|
|
instance->dispatch.entrypoints[i] =
|
|
anv_tramp_dispatch_table.entrypoints[i];
|
|
}
|
|
}
|
|
|
|
instance->physicalDeviceCount = -1;
|
|
|
|
result = vk_debug_report_instance_init(&instance->debug_report_callbacks);
|
|
if (result != VK_SUCCESS) {
|
|
vk_free2(&default_alloc, pAllocator, instance);
|
|
return vk_error(result);
|
|
}
|
|
|
|
instance->pipeline_cache_enabled =
|
|
env_var_as_boolean("ANV_ENABLE_PIPELINE_CACHE", true);
|
|
|
|
_mesa_locale_init();
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
|
|
|
|
*pInstance = anv_instance_to_handle(instance);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyInstance(
|
|
VkInstance _instance,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
|
|
if (!instance)
|
|
return;
|
|
|
|
if (instance->physicalDeviceCount > 0) {
|
|
/* We support at most one physical device. */
|
|
assert(instance->physicalDeviceCount == 1);
|
|
anv_physical_device_finish(&instance->physicalDevice);
|
|
}
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(instance));
|
|
|
|
vk_debug_report_instance_destroy(&instance->debug_report_callbacks);
|
|
|
|
_mesa_locale_fini();
|
|
|
|
vk_free(&instance->alloc, instance);
|
|
}
|
|
|
|
static VkResult
|
|
anv_enumerate_devices(struct anv_instance *instance)
|
|
{
|
|
/* TODO: Check for more devices ? */
|
|
drmDevicePtr devices[8];
|
|
VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
|
|
int max_devices;
|
|
|
|
instance->physicalDeviceCount = 0;
|
|
|
|
max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
|
|
if (max_devices < 1)
|
|
return VK_ERROR_INCOMPATIBLE_DRIVER;
|
|
|
|
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
|
|
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
|
|
devices[i]->bustype == DRM_BUS_PCI &&
|
|
devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
|
|
|
|
result = anv_physical_device_init(&instance->physicalDevice,
|
|
instance,
|
|
devices[i]->nodes[DRM_NODE_PRIMARY],
|
|
devices[i]->nodes[DRM_NODE_RENDER]);
|
|
if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
|
|
break;
|
|
}
|
|
}
|
|
drmFreeDevices(devices, max_devices);
|
|
|
|
if (result == VK_SUCCESS)
|
|
instance->physicalDeviceCount = 1;
|
|
|
|
return result;
|
|
}
|
|
|
|
static VkResult
|
|
anv_instance_ensure_physical_device(struct anv_instance *instance)
|
|
{
|
|
if (instance->physicalDeviceCount < 0) {
|
|
VkResult result = anv_enumerate_devices(instance);
|
|
if (result != VK_SUCCESS &&
|
|
result != VK_ERROR_INCOMPATIBLE_DRIVER)
|
|
return result;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_EnumeratePhysicalDevices(
|
|
VkInstance _instance,
|
|
uint32_t* pPhysicalDeviceCount,
|
|
VkPhysicalDevice* pPhysicalDevices)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
|
|
|
|
VkResult result = anv_instance_ensure_physical_device(instance);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
if (instance->physicalDeviceCount == 0)
|
|
return VK_SUCCESS;
|
|
|
|
assert(instance->physicalDeviceCount == 1);
|
|
vk_outarray_append(&out, i) {
|
|
*i = anv_physical_device_to_handle(&instance->physicalDevice);
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
VkResult anv_EnumeratePhysicalDeviceGroups(
|
|
VkInstance _instance,
|
|
uint32_t* pPhysicalDeviceGroupCount,
|
|
VkPhysicalDeviceGroupProperties* pPhysicalDeviceGroupProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
VK_OUTARRAY_MAKE(out, pPhysicalDeviceGroupProperties,
|
|
pPhysicalDeviceGroupCount);
|
|
|
|
VkResult result = anv_instance_ensure_physical_device(instance);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
if (instance->physicalDeviceCount == 0)
|
|
return VK_SUCCESS;
|
|
|
|
assert(instance->physicalDeviceCount == 1);
|
|
|
|
vk_outarray_append(&out, p) {
|
|
p->physicalDeviceCount = 1;
|
|
memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
|
|
p->physicalDevices[0] =
|
|
anv_physical_device_to_handle(&instance->physicalDevice);
|
|
p->subsetAllocation = VK_FALSE;
|
|
|
|
vk_foreach_struct(ext, p->pNext)
|
|
anv_debug_ignored_stype(ext->sType);
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures* pFeatures)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
*pFeatures = (VkPhysicalDeviceFeatures) {
|
|
.robustBufferAccess = true,
|
|
.fullDrawIndexUint32 = true,
|
|
.imageCubeArray = true,
|
|
.independentBlend = true,
|
|
.geometryShader = true,
|
|
.tessellationShader = true,
|
|
.sampleRateShading = true,
|
|
.dualSrcBlend = true,
|
|
.logicOp = true,
|
|
.multiDrawIndirect = true,
|
|
.drawIndirectFirstInstance = true,
|
|
.depthClamp = true,
|
|
.depthBiasClamp = true,
|
|
.fillModeNonSolid = true,
|
|
.depthBounds = false,
|
|
.wideLines = true,
|
|
.largePoints = true,
|
|
.alphaToOne = true,
|
|
.multiViewport = true,
|
|
.samplerAnisotropy = true,
|
|
.textureCompressionETC2 = pdevice->info.gen >= 8 ||
|
|
pdevice->info.is_baytrail,
|
|
.textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
|
|
.textureCompressionBC = true,
|
|
.occlusionQueryPrecise = true,
|
|
.pipelineStatisticsQuery = true,
|
|
.fragmentStoresAndAtomics = true,
|
|
.shaderTessellationAndGeometryPointSize = true,
|
|
.shaderImageGatherExtended = true,
|
|
.shaderStorageImageExtendedFormats = true,
|
|
.shaderStorageImageMultisample = false,
|
|
.shaderStorageImageReadWithoutFormat = false,
|
|
.shaderStorageImageWriteWithoutFormat = true,
|
|
.shaderUniformBufferArrayDynamicIndexing = true,
|
|
.shaderSampledImageArrayDynamicIndexing = true,
|
|
.shaderStorageBufferArrayDynamicIndexing = true,
|
|
.shaderStorageImageArrayDynamicIndexing = true,
|
|
.shaderClipDistance = true,
|
|
.shaderCullDistance = true,
|
|
.shaderFloat64 = pdevice->info.gen >= 8 &&
|
|
pdevice->info.has_64bit_types,
|
|
.shaderInt64 = pdevice->info.gen >= 8 &&
|
|
pdevice->info.has_64bit_types,
|
|
.shaderInt16 = pdevice->info.gen >= 8,
|
|
.shaderResourceMinLod = false,
|
|
.variableMultisampleRate = true,
|
|
.inheritedQueries = true,
|
|
};
|
|
|
|
/* We can't do image stores in vec4 shaders */
|
|
pFeatures->vertexPipelineStoresAndAtomics =
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures2* pFeatures)
|
|
{
|
|
anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
|
|
|
|
vk_foreach_struct(ext, pFeatures->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES: {
|
|
VkPhysicalDeviceProtectedMemoryFeatures *features = (void *)ext;
|
|
features->protectedMemory = VK_FALSE;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
|
|
VkPhysicalDeviceMultiviewFeatures *features =
|
|
(VkPhysicalDeviceMultiviewFeatures *)ext;
|
|
features->multiview = true;
|
|
features->multiviewGeometryShader = true;
|
|
features->multiviewTessellationShader = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES: {
|
|
VkPhysicalDeviceVariablePointerFeatures *features = (void *)ext;
|
|
features->variablePointersStorageBuffer = true;
|
|
features->variablePointers = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES: {
|
|
VkPhysicalDeviceSamplerYcbcrConversionFeatures *features =
|
|
(VkPhysicalDeviceSamplerYcbcrConversionFeatures *) ext;
|
|
features->samplerYcbcrConversion = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DRAW_PARAMETER_FEATURES: {
|
|
VkPhysicalDeviceShaderDrawParameterFeatures *features = (void *)ext;
|
|
features->shaderDrawParameters = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES_KHR: {
|
|
VkPhysicalDevice16BitStorageFeaturesKHR *features =
|
|
(VkPhysicalDevice16BitStorageFeaturesKHR *)ext;
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
features->storageBuffer16BitAccess = pdevice->info.gen >= 8;
|
|
features->uniformAndStorageBuffer16BitAccess = pdevice->info.gen >= 8;
|
|
features->storagePushConstant16 = pdevice->info.gen >= 8;
|
|
features->storageInputOutput16 = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_8BIT_STORAGE_FEATURES_KHR: {
|
|
VkPhysicalDevice8BitStorageFeaturesKHR *features =
|
|
(VkPhysicalDevice8BitStorageFeaturesKHR *)ext;
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
features->storageBuffer8BitAccess = pdevice->info.gen >= 8;
|
|
features->uniformAndStorageBuffer8BitAccess = pdevice->info.gen >= 8;
|
|
features->storagePushConstant8 = pdevice->info.gen >= 8;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
const struct gen_device_info *devinfo = &pdevice->info;
|
|
|
|
/* See assertions made when programming the buffer surface state. */
|
|
const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
|
|
(1ul << 30) : (1ul << 27);
|
|
|
|
const uint32_t max_samplers = (devinfo->gen >= 8 || devinfo->is_haswell) ?
|
|
128 : 16;
|
|
|
|
VkSampleCountFlags sample_counts =
|
|
isl_device_get_sample_counts(&pdevice->isl_dev);
|
|
|
|
VkPhysicalDeviceLimits limits = {
|
|
.maxImageDimension1D = (1 << 14),
|
|
.maxImageDimension2D = (1 << 14),
|
|
.maxImageDimension3D = (1 << 11),
|
|
.maxImageDimensionCube = (1 << 14),
|
|
.maxImageArrayLayers = (1 << 11),
|
|
.maxTexelBufferElements = 128 * 1024 * 1024,
|
|
.maxUniformBufferRange = (1ul << 27),
|
|
.maxStorageBufferRange = max_raw_buffer_sz,
|
|
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
|
|
.maxMemoryAllocationCount = UINT32_MAX,
|
|
.maxSamplerAllocationCount = 64 * 1024,
|
|
.bufferImageGranularity = 64, /* A cache line */
|
|
.sparseAddressSpaceSize = 0,
|
|
.maxBoundDescriptorSets = MAX_SETS,
|
|
.maxPerStageDescriptorSamplers = max_samplers,
|
|
.maxPerStageDescriptorUniformBuffers = 64,
|
|
.maxPerStageDescriptorStorageBuffers = 64,
|
|
.maxPerStageDescriptorSampledImages = max_samplers,
|
|
.maxPerStageDescriptorStorageImages = 64,
|
|
.maxPerStageDescriptorInputAttachments = 64,
|
|
.maxPerStageResources = 250,
|
|
.maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
|
|
.maxDescriptorSetUniformBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorUniformBuffers */
|
|
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
|
.maxDescriptorSetStorageBuffers = 6 * 64, /* number of stages * maxPerStageDescriptorStorageBuffers */
|
|
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
|
.maxDescriptorSetSampledImages = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSampledImages */
|
|
.maxDescriptorSetStorageImages = 6 * 64, /* number of stages * maxPerStageDescriptorStorageImages */
|
|
.maxDescriptorSetInputAttachments = 256,
|
|
.maxVertexInputAttributes = MAX_VBS,
|
|
.maxVertexInputBindings = MAX_VBS,
|
|
.maxVertexInputAttributeOffset = 2047,
|
|
.maxVertexInputBindingStride = 2048,
|
|
.maxVertexOutputComponents = 128,
|
|
.maxTessellationGenerationLevel = 64,
|
|
.maxTessellationPatchSize = 32,
|
|
.maxTessellationControlPerVertexInputComponents = 128,
|
|
.maxTessellationControlPerVertexOutputComponents = 128,
|
|
.maxTessellationControlPerPatchOutputComponents = 128,
|
|
.maxTessellationControlTotalOutputComponents = 2048,
|
|
.maxTessellationEvaluationInputComponents = 128,
|
|
.maxTessellationEvaluationOutputComponents = 128,
|
|
.maxGeometryShaderInvocations = 32,
|
|
.maxGeometryInputComponents = 64,
|
|
.maxGeometryOutputComponents = 128,
|
|
.maxGeometryOutputVertices = 256,
|
|
.maxGeometryTotalOutputComponents = 1024,
|
|
.maxFragmentInputComponents = 112, /* 128 components - (POS, PSIZ, CLIP_DIST0, CLIP_DIST1) */
|
|
.maxFragmentOutputAttachments = 8,
|
|
.maxFragmentDualSrcAttachments = 1,
|
|
.maxFragmentCombinedOutputResources = 8,
|
|
.maxComputeSharedMemorySize = 32768,
|
|
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
|
|
.maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
|
|
.maxComputeWorkGroupSize = {
|
|
16 * devinfo->max_cs_threads,
|
|
16 * devinfo->max_cs_threads,
|
|
16 * devinfo->max_cs_threads,
|
|
},
|
|
.subPixelPrecisionBits = 4 /* FIXME */,
|
|
.subTexelPrecisionBits = 4 /* FIXME */,
|
|
.mipmapPrecisionBits = 4 /* FIXME */,
|
|
.maxDrawIndexedIndexValue = UINT32_MAX,
|
|
.maxDrawIndirectCount = UINT32_MAX,
|
|
.maxSamplerLodBias = 16,
|
|
.maxSamplerAnisotropy = 16,
|
|
.maxViewports = MAX_VIEWPORTS,
|
|
.maxViewportDimensions = { (1 << 14), (1 << 14) },
|
|
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
|
|
.viewportSubPixelBits = 13, /* We take a float? */
|
|
.minMemoryMapAlignment = 4096, /* A page */
|
|
.minTexelBufferOffsetAlignment = 1,
|
|
/* We need 16 for UBO block reads to work and 32 for push UBOs */
|
|
.minUniformBufferOffsetAlignment = 32,
|
|
.minStorageBufferOffsetAlignment = 4,
|
|
.minTexelOffset = -8,
|
|
.maxTexelOffset = 7,
|
|
.minTexelGatherOffset = -32,
|
|
.maxTexelGatherOffset = 31,
|
|
.minInterpolationOffset = -0.5,
|
|
.maxInterpolationOffset = 0.4375,
|
|
.subPixelInterpolationOffsetBits = 4,
|
|
.maxFramebufferWidth = (1 << 14),
|
|
.maxFramebufferHeight = (1 << 14),
|
|
.maxFramebufferLayers = (1 << 11),
|
|
.framebufferColorSampleCounts = sample_counts,
|
|
.framebufferDepthSampleCounts = sample_counts,
|
|
.framebufferStencilSampleCounts = sample_counts,
|
|
.framebufferNoAttachmentsSampleCounts = sample_counts,
|
|
.maxColorAttachments = MAX_RTS,
|
|
.sampledImageColorSampleCounts = sample_counts,
|
|
.sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
|
.sampledImageDepthSampleCounts = sample_counts,
|
|
.sampledImageStencilSampleCounts = sample_counts,
|
|
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
|
.maxSampleMaskWords = 1,
|
|
.timestampComputeAndGraphics = false,
|
|
.timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
|
|
.maxClipDistances = 8,
|
|
.maxCullDistances = 8,
|
|
.maxCombinedClipAndCullDistances = 8,
|
|
.discreteQueuePriorities = 1,
|
|
.pointSizeRange = { 0.125, 255.875 },
|
|
.lineWidthRange = { 0.0, 7.9921875 },
|
|
.pointSizeGranularity = (1.0 / 8.0),
|
|
.lineWidthGranularity = (1.0 / 128.0),
|
|
.strictLines = false, /* FINISHME */
|
|
.standardSampleLocations = true,
|
|
.optimalBufferCopyOffsetAlignment = 128,
|
|
.optimalBufferCopyRowPitchAlignment = 128,
|
|
.nonCoherentAtomSize = 64,
|
|
};
|
|
|
|
*pProperties = (VkPhysicalDeviceProperties) {
|
|
.apiVersion = anv_physical_device_api_version(pdevice),
|
|
.driverVersion = vk_get_driver_version(),
|
|
.vendorID = 0x8086,
|
|
.deviceID = pdevice->chipset_id,
|
|
.deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
|
|
.limits = limits,
|
|
.sparseProperties = {0}, /* Broadwell doesn't do sparse. */
|
|
};
|
|
|
|
snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
|
|
"%s", pdevice->name);
|
|
memcpy(pProperties->pipelineCacheUUID,
|
|
pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties2* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
|
|
|
|
vk_foreach_struct(ext, pProperties->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
|
|
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
|
|
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
|
|
|
|
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
|
|
VkPhysicalDeviceIDProperties *id_props =
|
|
(VkPhysicalDeviceIDProperties *)ext;
|
|
memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
|
|
memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
|
|
/* The LUID is for Windows. */
|
|
id_props->deviceLUIDValid = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_3_PROPERTIES: {
|
|
VkPhysicalDeviceMaintenance3Properties *props =
|
|
(VkPhysicalDeviceMaintenance3Properties *)ext;
|
|
/* This value doesn't matter for us today as our per-stage
|
|
* descriptors are the real limit.
|
|
*/
|
|
props->maxPerSetDescriptors = 1024;
|
|
props->maxMemoryAllocationSize = MAX_MEMORY_ALLOCATION_SIZE;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES: {
|
|
VkPhysicalDeviceMultiviewProperties *properties =
|
|
(VkPhysicalDeviceMultiviewProperties *)ext;
|
|
properties->maxMultiviewViewCount = 16;
|
|
properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_POINT_CLIPPING_PROPERTIES: {
|
|
VkPhysicalDevicePointClippingProperties *properties =
|
|
(VkPhysicalDevicePointClippingProperties *) ext;
|
|
properties->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
|
|
anv_finishme("Implement pop-free point clipping");
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_FILTER_MINMAX_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *properties =
|
|
(VkPhysicalDeviceSamplerFilterMinmaxPropertiesEXT *)ext;
|
|
properties->filterMinmaxImageComponentMapping = pdevice->info.gen >= 9;
|
|
properties->filterMinmaxSingleComponentFormats = true;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES: {
|
|
VkPhysicalDeviceSubgroupProperties *properties = (void *)ext;
|
|
|
|
properties->subgroupSize = BRW_SUBGROUP_SIZE;
|
|
|
|
VkShaderStageFlags scalar_stages = 0;
|
|
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
|
|
if (pdevice->compiler->scalar_stage[stage])
|
|
scalar_stages |= mesa_to_vk_shader_stage(stage);
|
|
}
|
|
properties->supportedStages = scalar_stages;
|
|
|
|
properties->supportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
|
|
VK_SUBGROUP_FEATURE_VOTE_BIT |
|
|
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
|
|
VK_SUBGROUP_FEATURE_BALLOT_BIT |
|
|
VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
|
|
VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
|
|
VK_SUBGROUP_FEATURE_CLUSTERED_BIT |
|
|
VK_SUBGROUP_FEATURE_QUAD_BIT;
|
|
properties->quadOperationsInAllStages = VK_TRUE;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
|
|
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
|
|
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
|
|
/* We have to restrict this a bit for multiview */
|
|
props->maxVertexAttribDivisor = UINT32_MAX / 16;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We support exactly one queue family. */
|
|
static const VkQueueFamilyProperties
|
|
anv_queue_family_properties = {
|
|
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
|
VK_QUEUE_COMPUTE_BIT |
|
|
VK_QUEUE_TRANSFER_BIT,
|
|
.queueCount = 1,
|
|
.timestampValidBits = 36, /* XXX: Real value here */
|
|
.minImageTransferGranularity = { 1, 1, 1 },
|
|
};
|
|
|
|
void anv_GetPhysicalDeviceQueueFamilyProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pCount,
|
|
VkQueueFamilyProperties* pQueueFamilyProperties)
|
|
{
|
|
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
|
|
|
|
vk_outarray_append(&out, p) {
|
|
*p = anv_queue_family_properties;
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceQueueFamilyProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pQueueFamilyPropertyCount,
|
|
VkQueueFamilyProperties2* pQueueFamilyProperties)
|
|
{
|
|
|
|
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
|
|
|
|
vk_outarray_append(&out, p) {
|
|
p->queueFamilyProperties = anv_queue_family_properties;
|
|
|
|
vk_foreach_struct(s, p->pNext) {
|
|
anv_debug_ignored_stype(s->sType);
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
|
|
pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
|
|
for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
|
|
pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
|
|
.propertyFlags = physical_device->memory.types[i].propertyFlags,
|
|
.heapIndex = physical_device->memory.types[i].heapIndex,
|
|
};
|
|
}
|
|
|
|
pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
|
|
for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
|
|
pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
|
|
.size = physical_device->memory.heaps[i].size,
|
|
.flags = physical_device->memory.heaps[i].flags,
|
|
};
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties2(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
|
|
{
|
|
anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
|
|
&pMemoryProperties->memoryProperties);
|
|
|
|
vk_foreach_struct(ext, pMemoryProperties->pNext) {
|
|
switch (ext->sType) {
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
anv_GetDeviceGroupPeerMemoryFeatures(
|
|
VkDevice device,
|
|
uint32_t heapIndex,
|
|
uint32_t localDeviceIndex,
|
|
uint32_t remoteDeviceIndex,
|
|
VkPeerMemoryFeatureFlags* pPeerMemoryFeatures)
|
|
{
|
|
assert(localDeviceIndex == 0 && remoteDeviceIndex == 0);
|
|
*pPeerMemoryFeatures = VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT |
|
|
VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
|
|
VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT |
|
|
VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetInstanceProcAddr(
|
|
VkInstance _instance,
|
|
const char* pName)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
|
|
/* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
|
|
* when we have to return valid function pointers, NULL, or it's left
|
|
* undefined. See the table for exact details.
|
|
*/
|
|
if (pName == NULL)
|
|
return NULL;
|
|
|
|
#define LOOKUP_ANV_ENTRYPOINT(entrypoint) \
|
|
if (strcmp(pName, "vk" #entrypoint) == 0) \
|
|
return (PFN_vkVoidFunction)anv_##entrypoint
|
|
|
|
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
|
|
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceLayerProperties);
|
|
LOOKUP_ANV_ENTRYPOINT(EnumerateInstanceVersion);
|
|
LOOKUP_ANV_ENTRYPOINT(CreateInstance);
|
|
|
|
#undef LOOKUP_ANV_ENTRYPOINT
|
|
|
|
if (instance == NULL)
|
|
return NULL;
|
|
|
|
int idx = anv_get_entrypoint_index(pName);
|
|
if (idx < 0)
|
|
return NULL;
|
|
|
|
return instance->dispatch.entrypoints[idx];
|
|
}
|
|
|
|
/* With version 1+ of the loader interface the ICD should expose
|
|
* vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
|
|
*/
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName);
|
|
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName)
|
|
{
|
|
return anv_GetInstanceProcAddr(instance, pName);
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetDeviceProcAddr(
|
|
VkDevice _device,
|
|
const char* pName)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (!device || !pName)
|
|
return NULL;
|
|
|
|
int idx = anv_get_entrypoint_index(pName);
|
|
if (idx < 0)
|
|
return NULL;
|
|
|
|
return device->dispatch.entrypoints[idx];
|
|
}
|
|
|
|
VkResult
|
|
anv_CreateDebugReportCallbackEXT(VkInstance _instance,
|
|
const VkDebugReportCallbackCreateInfoEXT* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDebugReportCallbackEXT* pCallback)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
return vk_create_debug_report_callback(&instance->debug_report_callbacks,
|
|
pCreateInfo, pAllocator, &instance->alloc,
|
|
pCallback);
|
|
}
|
|
|
|
void
|
|
anv_DestroyDebugReportCallbackEXT(VkInstance _instance,
|
|
VkDebugReportCallbackEXT _callback,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
vk_destroy_debug_report_callback(&instance->debug_report_callbacks,
|
|
_callback, pAllocator, &instance->alloc);
|
|
}
|
|
|
|
void
|
|
anv_DebugReportMessageEXT(VkInstance _instance,
|
|
VkDebugReportFlagsEXT flags,
|
|
VkDebugReportObjectTypeEXT objectType,
|
|
uint64_t object,
|
|
size_t location,
|
|
int32_t messageCode,
|
|
const char* pLayerPrefix,
|
|
const char* pMessage)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
vk_debug_report(&instance->debug_report_callbacks, flags, objectType,
|
|
object, location, messageCode, pLayerPrefix, pMessage);
|
|
}
|
|
|
|
static void
|
|
anv_queue_init(struct anv_device *device, struct anv_queue *queue)
|
|
{
|
|
queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
queue->device = device;
|
|
queue->flags = 0;
|
|
}
|
|
|
|
static void
|
|
anv_queue_finish(struct anv_queue *queue)
|
|
{
|
|
}
|
|
|
|
static struct anv_state
|
|
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
|
|
{
|
|
struct anv_state state;
|
|
|
|
state = anv_state_pool_alloc(pool, size, align);
|
|
memcpy(state.map, p, size);
|
|
|
|
anv_state_flush(pool->block_pool.device, state);
|
|
|
|
return state;
|
|
}
|
|
|
|
struct gen8_border_color {
|
|
union {
|
|
float float32[4];
|
|
uint32_t uint32[4];
|
|
};
|
|
/* Pad out to 64 bytes */
|
|
uint32_t _pad[12];
|
|
};
|
|
|
|
static void
|
|
anv_device_init_border_colors(struct anv_device *device)
|
|
{
|
|
static const struct gen8_border_color border_colors[] = {
|
|
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
|
|
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
|
|
sizeof(border_colors), 64,
|
|
border_colors);
|
|
}
|
|
|
|
static void
|
|
anv_device_init_trivial_batch(struct anv_device *device)
|
|
{
|
|
anv_bo_init_new(&device->trivial_batch_bo, device, 4096);
|
|
|
|
if (device->instance->physicalDevice.has_exec_async)
|
|
device->trivial_batch_bo.flags |= EXEC_OBJECT_ASYNC;
|
|
|
|
if (device->instance->physicalDevice.use_softpin)
|
|
device->trivial_batch_bo.flags |= EXEC_OBJECT_PINNED;
|
|
|
|
anv_vma_alloc(device, &device->trivial_batch_bo);
|
|
|
|
void *map = anv_gem_mmap(device, device->trivial_batch_bo.gem_handle,
|
|
0, 4096, 0);
|
|
|
|
struct anv_batch batch = {
|
|
.start = map,
|
|
.next = map,
|
|
.end = map + 4096,
|
|
};
|
|
|
|
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
|
|
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
|
|
|
|
if (!device->info.has_llc)
|
|
gen_clflush_range(map, batch.next - map);
|
|
|
|
anv_gem_munmap(map, device->trivial_batch_bo.size);
|
|
}
|
|
|
|
VkResult anv_EnumerateDeviceExtensionProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
|
|
VK_OUTARRAY_MAKE(out, pProperties, pPropertyCount);
|
|
|
|
for (int i = 0; i < ANV_DEVICE_EXTENSION_COUNT; i++) {
|
|
if (device->supported_extensions.extensions[i]) {
|
|
vk_outarray_append(&out, prop) {
|
|
*prop = anv_device_extensions[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
static void
|
|
anv_device_init_dispatch(struct anv_device *device)
|
|
{
|
|
const struct anv_dispatch_table *genX_table;
|
|
switch (device->info.gen) {
|
|
case 11:
|
|
genX_table = &gen11_dispatch_table;
|
|
break;
|
|
case 10:
|
|
genX_table = &gen10_dispatch_table;
|
|
break;
|
|
case 9:
|
|
genX_table = &gen9_dispatch_table;
|
|
break;
|
|
case 8:
|
|
genX_table = &gen8_dispatch_table;
|
|
break;
|
|
case 7:
|
|
if (device->info.is_haswell)
|
|
genX_table = &gen75_dispatch_table;
|
|
else
|
|
genX_table = &gen7_dispatch_table;
|
|
break;
|
|
default:
|
|
unreachable("unsupported gen\n");
|
|
}
|
|
|
|
for (unsigned i = 0; i < ARRAY_SIZE(device->dispatch.entrypoints); i++) {
|
|
/* Vulkan requires that entrypoints for extensions which have not been
|
|
* enabled must not be advertised.
|
|
*/
|
|
if (!anv_entrypoint_is_enabled(i, device->instance->apiVersion,
|
|
&device->instance->enabled_extensions,
|
|
&device->enabled_extensions)) {
|
|
device->dispatch.entrypoints[i] = NULL;
|
|
} else if (genX_table->entrypoints[i]) {
|
|
device->dispatch.entrypoints[i] = genX_table->entrypoints[i];
|
|
} else {
|
|
device->dispatch.entrypoints[i] = anv_dispatch_table.entrypoints[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
vk_priority_to_gen(int priority)
|
|
{
|
|
switch (priority) {
|
|
case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
|
|
return GEN_CONTEXT_LOW_PRIORITY;
|
|
case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
|
|
return GEN_CONTEXT_MEDIUM_PRIORITY;
|
|
case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
|
|
return GEN_CONTEXT_HIGH_PRIORITY;
|
|
case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
|
|
return GEN_CONTEXT_REALTIME_PRIORITY;
|
|
default:
|
|
unreachable("Invalid priority");
|
|
}
|
|
}
|
|
|
|
static void
|
|
anv_device_init_hiz_clear_batch(struct anv_device *device)
|
|
{
|
|
anv_bo_init_new(&device->hiz_clear_bo, device, 4096);
|
|
uint32_t *map = anv_gem_mmap(device, device->hiz_clear_bo.gem_handle,
|
|
0, 4096, 0);
|
|
|
|
union isl_color_value hiz_clear = { .u32 = { 0, } };
|
|
hiz_clear.f32[0] = ANV_HZ_FC_VAL;
|
|
|
|
memcpy(map, hiz_clear.u32, sizeof(hiz_clear.u32));
|
|
anv_gem_munmap(map, device->hiz_clear_bo.size);
|
|
}
|
|
|
|
VkResult anv_CreateDevice(
|
|
VkPhysicalDevice physicalDevice,
|
|
const VkDeviceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDevice* pDevice)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
VkResult result;
|
|
struct anv_device *device;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
|
|
|
|
struct anv_device_extension_table enabled_extensions = { };
|
|
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
|
|
int idx;
|
|
for (idx = 0; idx < ANV_DEVICE_EXTENSION_COUNT; idx++) {
|
|
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
|
|
anv_device_extensions[idx].extensionName) == 0)
|
|
break;
|
|
}
|
|
|
|
if (idx >= ANV_DEVICE_EXTENSION_COUNT)
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
|
|
if (!physical_device->supported_extensions.extensions[idx])
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
|
|
enabled_extensions.extensions[idx] = true;
|
|
}
|
|
|
|
/* Check enabled features */
|
|
if (pCreateInfo->pEnabledFeatures) {
|
|
VkPhysicalDeviceFeatures supported_features;
|
|
anv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
|
|
VkBool32 *supported_feature = (VkBool32 *)&supported_features;
|
|
VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
|
|
unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
|
|
for (uint32_t i = 0; i < num_features; i++) {
|
|
if (enabled_feature[i] && !supported_feature[i])
|
|
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
}
|
|
|
|
/* Check requested queues and fail if we are requested to create any
|
|
* queues with flags we don't support.
|
|
*/
|
|
assert(pCreateInfo->queueCreateInfoCount > 0);
|
|
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
|
|
if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
|
|
return vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
}
|
|
|
|
/* Check if client specified queue priority. */
|
|
const VkDeviceQueueGlobalPriorityCreateInfoEXT *queue_priority =
|
|
vk_find_struct_const(pCreateInfo->pQueueCreateInfos[0].pNext,
|
|
DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
|
|
|
|
VkQueueGlobalPriorityEXT priority =
|
|
queue_priority ? queue_priority->globalPriority :
|
|
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT;
|
|
|
|
device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
|
|
sizeof(*device), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
if (!device)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
device->instance = physical_device->instance;
|
|
device->chipset_id = physical_device->chipset_id;
|
|
device->no_hw = physical_device->no_hw;
|
|
device->lost = false;
|
|
|
|
if (pAllocator)
|
|
device->alloc = *pAllocator;
|
|
else
|
|
device->alloc = physical_device->instance->alloc;
|
|
|
|
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
|
|
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
|
|
if (device->fd == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_device;
|
|
}
|
|
|
|
device->context_id = anv_gem_create_context(device);
|
|
if (device->context_id == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
if (physical_device->use_softpin) {
|
|
if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
/* keep the page with address zero out of the allocator */
|
|
util_vma_heap_init(&device->vma_lo, LOW_HEAP_MIN_ADDRESS, LOW_HEAP_SIZE);
|
|
device->vma_lo_available =
|
|
physical_device->memory.heaps[physical_device->memory.heap_count - 1].size;
|
|
|
|
/* Leave the last 4GiB out of the high vma range, so that no state base
|
|
* address + size can overflow 48 bits. For more information see the
|
|
* comment about Wa32bitGeneralStateOffset in anv_allocator.c
|
|
*/
|
|
util_vma_heap_init(&device->vma_hi, HIGH_HEAP_MIN_ADDRESS,
|
|
HIGH_HEAP_SIZE);
|
|
device->vma_hi_available = physical_device->memory.heap_count == 1 ? 0 :
|
|
physical_device->memory.heaps[0].size;
|
|
}
|
|
|
|
/* As per spec, the driver implementation may deny requests to acquire
|
|
* a priority above the default priority (MEDIUM) if the caller does not
|
|
* have sufficient privileges. In this scenario VK_ERROR_NOT_PERMITTED_EXT
|
|
* is returned.
|
|
*/
|
|
if (physical_device->has_context_priority) {
|
|
int err = anv_gem_set_context_param(device->fd, device->context_id,
|
|
I915_CONTEXT_PARAM_PRIORITY,
|
|
vk_priority_to_gen(priority));
|
|
if (err != 0 && priority > VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT) {
|
|
result = vk_error(VK_ERROR_NOT_PERMITTED_EXT);
|
|
goto fail_fd;
|
|
}
|
|
}
|
|
|
|
device->info = physical_device->info;
|
|
device->isl_dev = physical_device->isl_dev;
|
|
|
|
/* On Broadwell and later, we can use batch chaining to more efficiently
|
|
* implement growing command buffers. Prior to Haswell, the kernel
|
|
* command parser gets in the way and we have to fall back to growing
|
|
* the batch.
|
|
*/
|
|
device->can_chain_batches = device->info.gen >= 8;
|
|
|
|
device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
|
|
pCreateInfo->pEnabledFeatures->robustBufferAccess;
|
|
device->enabled_extensions = enabled_extensions;
|
|
|
|
anv_device_init_dispatch(device);
|
|
|
|
if (pthread_mutex_init(&device->mutex, NULL) != 0) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_context_id;
|
|
}
|
|
|
|
pthread_condattr_t condattr;
|
|
if (pthread_condattr_init(&condattr) != 0) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
|
|
pthread_condattr_destroy(&condattr);
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
|
|
pthread_condattr_destroy(&condattr);
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
pthread_condattr_destroy(&condattr);
|
|
|
|
uint64_t bo_flags =
|
|
(physical_device->supports_48bit_addresses ? EXEC_OBJECT_SUPPORTS_48B_ADDRESS : 0) |
|
|
(physical_device->has_exec_async ? EXEC_OBJECT_ASYNC : 0) |
|
|
(physical_device->has_exec_capture ? EXEC_OBJECT_CAPTURE : 0) |
|
|
(physical_device->use_softpin ? EXEC_OBJECT_PINNED : 0);
|
|
|
|
anv_bo_pool_init(&device->batch_bo_pool, device, bo_flags);
|
|
|
|
result = anv_bo_cache_init(&device->bo_cache);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_batch_bo_pool;
|
|
|
|
if (!physical_device->use_softpin)
|
|
bo_flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
|
|
|
|
result = anv_state_pool_init(&device->dynamic_state_pool, device,
|
|
DYNAMIC_STATE_POOL_MIN_ADDRESS,
|
|
16384,
|
|
bo_flags);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_bo_cache;
|
|
|
|
result = anv_state_pool_init(&device->instruction_state_pool, device,
|
|
INSTRUCTION_STATE_POOL_MIN_ADDRESS,
|
|
16384,
|
|
bo_flags);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_dynamic_state_pool;
|
|
|
|
result = anv_state_pool_init(&device->surface_state_pool, device,
|
|
SURFACE_STATE_POOL_MIN_ADDRESS,
|
|
4096,
|
|
bo_flags);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_instruction_state_pool;
|
|
|
|
if (physical_device->use_softpin) {
|
|
result = anv_state_pool_init(&device->binding_table_pool, device,
|
|
BINDING_TABLE_POOL_MIN_ADDRESS,
|
|
4096,
|
|
bo_flags);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_surface_state_pool;
|
|
}
|
|
|
|
result = anv_bo_init_new(&device->workaround_bo, device, 1024);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_binding_table_pool;
|
|
|
|
if (physical_device->use_softpin)
|
|
device->workaround_bo.flags |= EXEC_OBJECT_PINNED;
|
|
|
|
if (!anv_vma_alloc(device, &device->workaround_bo))
|
|
goto fail_workaround_bo;
|
|
|
|
anv_device_init_trivial_batch(device);
|
|
|
|
if (device->info.gen >= 10)
|
|
anv_device_init_hiz_clear_batch(device);
|
|
|
|
anv_scratch_pool_init(device, &device->scratch_pool);
|
|
|
|
anv_queue_init(device, &device->queue);
|
|
|
|
switch (device->info.gen) {
|
|
case 7:
|
|
if (!device->info.is_haswell)
|
|
result = gen7_init_device_state(device);
|
|
else
|
|
result = gen75_init_device_state(device);
|
|
break;
|
|
case 8:
|
|
result = gen8_init_device_state(device);
|
|
break;
|
|
case 9:
|
|
result = gen9_init_device_state(device);
|
|
break;
|
|
case 10:
|
|
result = gen10_init_device_state(device);
|
|
break;
|
|
case 11:
|
|
result = gen11_init_device_state(device);
|
|
break;
|
|
default:
|
|
/* Shouldn't get here as we don't create physical devices for any other
|
|
* gens. */
|
|
unreachable("unhandled gen");
|
|
}
|
|
if (result != VK_SUCCESS)
|
|
goto fail_workaround_bo;
|
|
|
|
anv_pipeline_cache_init(&device->default_pipeline_cache, device, true);
|
|
|
|
anv_device_init_blorp(device);
|
|
|
|
anv_device_init_border_colors(device);
|
|
|
|
*pDevice = anv_device_to_handle(device);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_workaround_bo:
|
|
anv_queue_finish(&device->queue);
|
|
anv_scratch_pool_finish(device, &device->scratch_pool);
|
|
anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
|
|
anv_gem_close(device, device->workaround_bo.gem_handle);
|
|
fail_binding_table_pool:
|
|
if (physical_device->use_softpin)
|
|
anv_state_pool_finish(&device->binding_table_pool);
|
|
fail_surface_state_pool:
|
|
anv_state_pool_finish(&device->surface_state_pool);
|
|
fail_instruction_state_pool:
|
|
anv_state_pool_finish(&device->instruction_state_pool);
|
|
fail_dynamic_state_pool:
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
fail_bo_cache:
|
|
anv_bo_cache_finish(&device->bo_cache);
|
|
fail_batch_bo_pool:
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
pthread_cond_destroy(&device->queue_submit);
|
|
fail_mutex:
|
|
pthread_mutex_destroy(&device->mutex);
|
|
fail_context_id:
|
|
anv_gem_destroy_context(device, device->context_id);
|
|
fail_fd:
|
|
close(device->fd);
|
|
fail_device:
|
|
vk_free(&device->alloc, device);
|
|
|
|
return result;
|
|
}
|
|
|
|
void anv_DestroyDevice(
|
|
VkDevice _device,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *physical_device;
|
|
|
|
if (!device)
|
|
return;
|
|
|
|
physical_device = &device->instance->physicalDevice;
|
|
|
|
anv_device_finish_blorp(device);
|
|
|
|
anv_pipeline_cache_finish(&device->default_pipeline_cache);
|
|
|
|
anv_queue_finish(&device->queue);
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
/* We only need to free these to prevent valgrind errors. The backing
|
|
* BO will go away in a couple of lines so we don't actually leak.
|
|
*/
|
|
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
|
|
#endif
|
|
|
|
anv_scratch_pool_finish(device, &device->scratch_pool);
|
|
|
|
anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
|
|
anv_vma_free(device, &device->workaround_bo);
|
|
anv_gem_close(device, device->workaround_bo.gem_handle);
|
|
|
|
anv_vma_free(device, &device->trivial_batch_bo);
|
|
anv_gem_close(device, device->trivial_batch_bo.gem_handle);
|
|
if (device->info.gen >= 10)
|
|
anv_gem_close(device, device->hiz_clear_bo.gem_handle);
|
|
|
|
if (physical_device->use_softpin)
|
|
anv_state_pool_finish(&device->binding_table_pool);
|
|
anv_state_pool_finish(&device->surface_state_pool);
|
|
anv_state_pool_finish(&device->instruction_state_pool);
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
|
|
anv_bo_cache_finish(&device->bo_cache);
|
|
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
|
|
pthread_cond_destroy(&device->queue_submit);
|
|
pthread_mutex_destroy(&device->mutex);
|
|
|
|
anv_gem_destroy_context(device, device->context_id);
|
|
|
|
close(device->fd);
|
|
|
|
vk_free(&device->alloc, device);
|
|
}
|
|
|
|
VkResult anv_EnumerateInstanceLayerProperties(
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
VkResult anv_EnumerateDeviceLayerProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
void anv_GetDeviceQueue(
|
|
VkDevice _device,
|
|
uint32_t queueNodeIndex,
|
|
uint32_t queueIndex,
|
|
VkQueue* pQueue)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
assert(queueIndex == 0);
|
|
|
|
*pQueue = anv_queue_to_handle(&device->queue);
|
|
}
|
|
|
|
void anv_GetDeviceQueue2(
|
|
VkDevice _device,
|
|
const VkDeviceQueueInfo2* pQueueInfo,
|
|
VkQueue* pQueue)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
assert(pQueueInfo->queueIndex == 0);
|
|
|
|
if (pQueueInfo->flags == device->queue.flags)
|
|
*pQueue = anv_queue_to_handle(&device->queue);
|
|
else
|
|
*pQueue = NULL;
|
|
}
|
|
|
|
VkResult
|
|
anv_device_query_status(struct anv_device *device)
|
|
{
|
|
/* This isn't likely as most of the callers of this function already check
|
|
* for it. However, it doesn't hurt to check and it potentially lets us
|
|
* avoid an ioctl.
|
|
*/
|
|
if (unlikely(device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
uint32_t active, pending;
|
|
int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
|
|
if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
device->lost = true;
|
|
return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
|
|
"get_reset_stats failed: %m");
|
|
}
|
|
|
|
if (active) {
|
|
device->lost = true;
|
|
return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
|
|
"GPU hung on one of our command buffers");
|
|
} else if (pending) {
|
|
device->lost = true;
|
|
return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
|
|
"GPU hung with commands in-flight");
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
|
|
{
|
|
/* Note: This only returns whether or not the BO is in use by an i915 GPU.
|
|
* Other usages of the BO (such as on different hardware) will not be
|
|
* flagged as "busy" by this ioctl. Use with care.
|
|
*/
|
|
int ret = anv_gem_busy(device, bo->gem_handle);
|
|
if (ret == 1) {
|
|
return VK_NOT_READY;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
device->lost = true;
|
|
return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
|
|
"gem wait failed: %m");
|
|
}
|
|
|
|
/* Query for device status after the busy call. If the BO we're checking
|
|
* got caught in a GPU hang we don't want to return VK_SUCCESS to the
|
|
* client because it clearly doesn't have valid data. Yes, this most
|
|
* likely means an ioctl, but we just did an ioctl to query the busy status
|
|
* so it's no great loss.
|
|
*/
|
|
return anv_device_query_status(device);
|
|
}
|
|
|
|
VkResult
|
|
anv_device_wait(struct anv_device *device, struct anv_bo *bo,
|
|
int64_t timeout)
|
|
{
|
|
int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
|
|
if (ret == -1 && errno == ETIME) {
|
|
return VK_TIMEOUT;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
device->lost = true;
|
|
return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
|
|
"gem wait failed: %m");
|
|
}
|
|
|
|
/* Query for device status after the wait. If the BO we're waiting on got
|
|
* caught in a GPU hang we don't want to return VK_SUCCESS to the client
|
|
* because it clearly doesn't have valid data. Yes, this most likely means
|
|
* an ioctl, but we just did an ioctl to wait so it's no great loss.
|
|
*/
|
|
return anv_device_query_status(device);
|
|
}
|
|
|
|
VkResult anv_DeviceWaitIdle(
|
|
VkDevice _device)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
if (unlikely(device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
struct anv_batch batch;
|
|
|
|
uint32_t cmds[8];
|
|
batch.start = batch.next = cmds;
|
|
batch.end = (void *) cmds + sizeof(cmds);
|
|
|
|
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
|
|
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
|
|
|
|
return anv_device_submit_simple_batch(device, &batch);
|
|
}
|
|
|
|
bool
|
|
anv_vma_alloc(struct anv_device *device, struct anv_bo *bo)
|
|
{
|
|
if (!(bo->flags & EXEC_OBJECT_PINNED))
|
|
return true;
|
|
|
|
pthread_mutex_lock(&device->vma_mutex);
|
|
|
|
bo->offset = 0;
|
|
|
|
if (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS &&
|
|
device->vma_hi_available >= bo->size) {
|
|
uint64_t addr = util_vma_heap_alloc(&device->vma_hi, bo->size, 4096);
|
|
if (addr) {
|
|
bo->offset = gen_canonical_address(addr);
|
|
assert(addr == gen_48b_address(bo->offset));
|
|
device->vma_hi_available -= bo->size;
|
|
}
|
|
}
|
|
|
|
if (bo->offset == 0 && device->vma_lo_available >= bo->size) {
|
|
uint64_t addr = util_vma_heap_alloc(&device->vma_lo, bo->size, 4096);
|
|
if (addr) {
|
|
bo->offset = gen_canonical_address(addr);
|
|
assert(addr == gen_48b_address(bo->offset));
|
|
device->vma_lo_available -= bo->size;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&device->vma_mutex);
|
|
|
|
return bo->offset != 0;
|
|
}
|
|
|
|
void
|
|
anv_vma_free(struct anv_device *device, struct anv_bo *bo)
|
|
{
|
|
if (!(bo->flags & EXEC_OBJECT_PINNED))
|
|
return;
|
|
|
|
const uint64_t addr_48b = gen_48b_address(bo->offset);
|
|
|
|
pthread_mutex_lock(&device->vma_mutex);
|
|
|
|
if (addr_48b >= LOW_HEAP_MIN_ADDRESS &&
|
|
addr_48b <= LOW_HEAP_MAX_ADDRESS) {
|
|
util_vma_heap_free(&device->vma_lo, addr_48b, bo->size);
|
|
device->vma_lo_available += bo->size;
|
|
} else {
|
|
assert(addr_48b >= HIGH_HEAP_MIN_ADDRESS &&
|
|
addr_48b <= HIGH_HEAP_MAX_ADDRESS);
|
|
util_vma_heap_free(&device->vma_hi, addr_48b, bo->size);
|
|
device->vma_hi_available += bo->size;
|
|
}
|
|
|
|
pthread_mutex_unlock(&device->vma_mutex);
|
|
|
|
bo->offset = 0;
|
|
}
|
|
|
|
VkResult
|
|
anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
|
|
{
|
|
uint32_t gem_handle = anv_gem_create(device, size);
|
|
if (!gem_handle)
|
|
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
anv_bo_init(bo, gem_handle, size);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_AllocateMemory(
|
|
VkDevice _device,
|
|
const VkMemoryAllocateInfo* pAllocateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDeviceMemory* pMem)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
struct anv_device_memory *mem;
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
|
|
|
|
/* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
|
|
assert(pAllocateInfo->allocationSize > 0);
|
|
|
|
if (pAllocateInfo->allocationSize > MAX_MEMORY_ALLOCATION_SIZE)
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
|
/* FINISHME: Fail if allocation request exceeds heap size. */
|
|
|
|
mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (mem == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
|
|
mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
|
|
mem->map = NULL;
|
|
mem->map_size = 0;
|
|
|
|
uint64_t bo_flags = 0;
|
|
|
|
assert(mem->type->heapIndex < pdevice->memory.heap_count);
|
|
if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
|
|
bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
|
|
|
|
const struct wsi_memory_allocate_info *wsi_info =
|
|
vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
|
|
if (wsi_info && wsi_info->implicit_sync) {
|
|
/* We need to set the WRITE flag on window system buffers so that GEM
|
|
* will know we're writing to them and synchronize uses on other rings
|
|
* (eg if the display server uses the blitter ring).
|
|
*/
|
|
bo_flags |= EXEC_OBJECT_WRITE;
|
|
} else if (pdevice->has_exec_async) {
|
|
bo_flags |= EXEC_OBJECT_ASYNC;
|
|
}
|
|
|
|
if (pdevice->use_softpin)
|
|
bo_flags |= EXEC_OBJECT_PINNED;
|
|
|
|
const VkImportMemoryFdInfoKHR *fd_info =
|
|
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
|
|
|
|
/* The Vulkan spec permits handleType to be 0, in which case the struct is
|
|
* ignored.
|
|
*/
|
|
if (fd_info && fd_info->handleType) {
|
|
/* At the moment, we support only the below handle types. */
|
|
assert(fd_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
|
fd_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
|
|
|
result = anv_bo_cache_import(device, &device->bo_cache,
|
|
fd_info->fd, bo_flags, &mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
VkDeviceSize aligned_alloc_size =
|
|
align_u64(pAllocateInfo->allocationSize, 4096);
|
|
|
|
/* For security purposes, we reject importing the bo if it's smaller
|
|
* than the requested allocation size. This prevents a malicious client
|
|
* from passing a buffer to a trusted client, lying about the size, and
|
|
* telling the trusted client to try and texture from an image that goes
|
|
* out-of-bounds. This sort of thing could lead to GPU hangs or worse
|
|
* in the trusted client. The trusted client can protect itself against
|
|
* this sort of attack but only if it can trust the buffer size.
|
|
*/
|
|
if (mem->bo->size < aligned_alloc_size) {
|
|
result = vk_errorf(device->instance, device,
|
|
VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR,
|
|
"aligned allocationSize too large for "
|
|
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR: "
|
|
"%"PRIu64"B > %"PRIu64"B",
|
|
aligned_alloc_size, mem->bo->size);
|
|
anv_bo_cache_release(device, &device->bo_cache, mem->bo);
|
|
goto fail;
|
|
}
|
|
|
|
/* From the Vulkan spec:
|
|
*
|
|
* "Importing memory from a file descriptor transfers ownership of
|
|
* the file descriptor from the application to the Vulkan
|
|
* implementation. The application must not perform any operations on
|
|
* the file descriptor after a successful import."
|
|
*
|
|
* If the import fails, we leave the file descriptor open.
|
|
*/
|
|
close(fd_info->fd);
|
|
} else {
|
|
result = anv_bo_cache_alloc(device, &device->bo_cache,
|
|
pAllocateInfo->allocationSize, bo_flags,
|
|
&mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
const VkMemoryDedicatedAllocateInfoKHR *dedicated_info =
|
|
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
|
|
if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
|
|
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
|
|
|
|
/* Some legacy (non-modifiers) consumers need the tiling to be set on
|
|
* the BO. In this case, we have a dedicated allocation.
|
|
*/
|
|
if (image->needs_set_tiling) {
|
|
const uint32_t i915_tiling =
|
|
isl_tiling_to_i915_tiling(image->planes[0].surface.isl.tiling);
|
|
int ret = anv_gem_set_tiling(device, mem->bo->gem_handle,
|
|
image->planes[0].surface.isl.row_pitch,
|
|
i915_tiling);
|
|
if (ret) {
|
|
anv_bo_cache_release(device, &device->bo_cache, mem->bo);
|
|
return vk_errorf(device->instance, NULL,
|
|
VK_ERROR_OUT_OF_DEVICE_MEMORY,
|
|
"failed to set BO tiling: %m");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*pMem = anv_device_memory_to_handle(mem);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
vk_free2(&device->alloc, pAllocator, mem);
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult anv_GetMemoryFdKHR(
|
|
VkDevice device_h,
|
|
const VkMemoryGetFdInfoKHR* pGetFdInfo,
|
|
int* pFd)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, dev, device_h);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
|
|
|
|
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
|
|
|
|
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
|
|
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
|
|
|
|
return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
|
|
}
|
|
|
|
VkResult anv_GetMemoryFdPropertiesKHR(
|
|
VkDevice _device,
|
|
VkExternalMemoryHandleTypeFlagBitsKHR handleType,
|
|
int fd,
|
|
VkMemoryFdPropertiesKHR* pMemoryFdProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
|
|
switch (handleType) {
|
|
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
|
|
/* dma-buf can be imported as any memory type */
|
|
pMemoryFdProperties->memoryTypeBits =
|
|
(1 << pdevice->memory.type_count) - 1;
|
|
return VK_SUCCESS;
|
|
|
|
default:
|
|
/* The valid usage section for this function says:
|
|
*
|
|
* "handleType must not be one of the handle types defined as
|
|
* opaque."
|
|
*
|
|
* So opaque handle types fall into the default "unsupported" case.
|
|
*/
|
|
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE);
|
|
}
|
|
}
|
|
|
|
void anv_FreeMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _mem,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
|
|
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
if (mem->map)
|
|
anv_UnmapMemory(_device, _mem);
|
|
|
|
anv_bo_cache_release(device, &device->bo_cache, mem->bo);
|
|
|
|
vk_free2(&device->alloc, pAllocator, mem);
|
|
}
|
|
|
|
VkResult anv_MapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size,
|
|
VkMemoryMapFlags flags,
|
|
void** ppData)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL) {
|
|
*ppData = NULL;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
if (size == VK_WHOLE_SIZE)
|
|
size = mem->bo->size - offset;
|
|
|
|
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
|
|
*
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
|
|
* assert(size != 0);
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be less than or
|
|
* equal to the size of the memory minus offset
|
|
*/
|
|
assert(size > 0);
|
|
assert(offset + size <= mem->bo->size);
|
|
|
|
/* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
|
|
* takes a VkDeviceMemory pointer, it seems like only one map of the memory
|
|
* at a time is valid. We could just mmap up front and return an offset
|
|
* pointer here, but that may exhaust virtual memory on 32 bit
|
|
* userspace. */
|
|
|
|
uint32_t gem_flags = 0;
|
|
|
|
if (!device->info.has_llc &&
|
|
(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
|
|
gem_flags |= I915_MMAP_WC;
|
|
|
|
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
|
|
uint64_t map_offset = offset & ~4095ull;
|
|
assert(offset >= map_offset);
|
|
uint64_t map_size = (offset + size) - map_offset;
|
|
|
|
/* Let's map whole pages */
|
|
map_size = align_u64(map_size, 4096);
|
|
|
|
void *map = anv_gem_mmap(device, mem->bo->gem_handle,
|
|
map_offset, map_size, gem_flags);
|
|
if (map == MAP_FAILED)
|
|
return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
|
|
|
|
mem->map = map;
|
|
mem->map_size = map_size;
|
|
|
|
*ppData = mem->map + (offset - map_offset);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_UnmapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
anv_gem_munmap(mem->map, mem->map_size);
|
|
|
|
mem->map = NULL;
|
|
mem->map_size = 0;
|
|
}
|
|
|
|
static void
|
|
clflush_mapped_ranges(struct anv_device *device,
|
|
uint32_t count,
|
|
const VkMappedMemoryRange *ranges)
|
|
{
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
|
|
if (ranges[i].offset >= mem->map_size)
|
|
continue;
|
|
|
|
gen_clflush_range(mem->map + ranges[i].offset,
|
|
MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
|
|
}
|
|
}
|
|
|
|
VkResult anv_FlushMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (device->info.has_llc)
|
|
return VK_SUCCESS;
|
|
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
|
|
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_InvalidateMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (device->info.has_llc)
|
|
return VK_SUCCESS;
|
|
|
|
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
|
|
|
|
/* Make sure no reads get moved up above the invalidate. */
|
|
__builtin_ia32_mfence();
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_GetBufferMemoryRequirements(
|
|
VkDevice _device,
|
|
VkBuffer _buffer,
|
|
VkMemoryRequirements* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*/
|
|
uint32_t memory_types = 0;
|
|
for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
|
|
uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
|
|
if ((valid_usage & buffer->usage) == buffer->usage)
|
|
memory_types |= (1u << i);
|
|
}
|
|
|
|
/* Base alignment requirement of a cache line */
|
|
uint32_t alignment = 16;
|
|
|
|
/* We need an alignment of 32 for pushing UBOs */
|
|
if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)
|
|
alignment = MAX2(alignment, 32);
|
|
|
|
pMemoryRequirements->size = buffer->size;
|
|
pMemoryRequirements->alignment = alignment;
|
|
|
|
/* Storage and Uniform buffers should have their size aligned to
|
|
* 32-bits to avoid boundary checks when last DWord is not complete.
|
|
* This would ensure that not internal padding would be needed for
|
|
* 16-bit types.
|
|
*/
|
|
if (device->robust_buffer_access &&
|
|
(buffer->usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
|
|
buffer->usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
|
|
pMemoryRequirements->size = align_u64(buffer->size, 4);
|
|
|
|
pMemoryRequirements->memoryTypeBits = memory_types;
|
|
}
|
|
|
|
void anv_GetBufferMemoryRequirements2(
|
|
VkDevice _device,
|
|
const VkBufferMemoryRequirementsInfo2* pInfo,
|
|
VkMemoryRequirements2* pMemoryRequirements)
|
|
{
|
|
anv_GetBufferMemoryRequirements(_device, pInfo->buffer,
|
|
&pMemoryRequirements->memoryRequirements);
|
|
|
|
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
|
|
VkMemoryDedicatedRequirements *requirements = (void *)ext;
|
|
requirements->prefersDedicatedAllocation = VK_FALSE;
|
|
requirements->requiresDedicatedAllocation = VK_FALSE;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetImageMemoryRequirements(
|
|
VkDevice _device,
|
|
VkImage _image,
|
|
VkMemoryRequirements* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_image, image, _image);
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*
|
|
* All types are currently supported for images.
|
|
*/
|
|
uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
|
|
|
|
pMemoryRequirements->size = image->size;
|
|
pMemoryRequirements->alignment = image->alignment;
|
|
pMemoryRequirements->memoryTypeBits = memory_types;
|
|
}
|
|
|
|
void anv_GetImageMemoryRequirements2(
|
|
VkDevice _device,
|
|
const VkImageMemoryRequirementsInfo2* pInfo,
|
|
VkMemoryRequirements2* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_image, image, pInfo->image);
|
|
|
|
anv_GetImageMemoryRequirements(_device, pInfo->image,
|
|
&pMemoryRequirements->memoryRequirements);
|
|
|
|
vk_foreach_struct_const(ext, pInfo->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
|
|
struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
const VkImagePlaneMemoryRequirementsInfoKHR *plane_reqs =
|
|
(const VkImagePlaneMemoryRequirementsInfoKHR *) ext;
|
|
uint32_t plane = anv_image_aspect_to_plane(image->aspects,
|
|
plane_reqs->planeAspect);
|
|
|
|
assert(image->planes[plane].offset == 0);
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set
|
|
* if and only if the memory type `i` in the
|
|
* VkPhysicalDeviceMemoryProperties structure for the physical
|
|
* device is supported.
|
|
*
|
|
* All types are currently supported for images.
|
|
*/
|
|
pMemoryRequirements->memoryRequirements.memoryTypeBits =
|
|
(1ull << pdevice->memory.type_count) - 1;
|
|
|
|
pMemoryRequirements->memoryRequirements.size = image->planes[plane].size;
|
|
pMemoryRequirements->memoryRequirements.alignment =
|
|
image->planes[plane].alignment;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
|
|
VkMemoryDedicatedRequirements *requirements = (void *)ext;
|
|
if (image->needs_set_tiling) {
|
|
/* If we need to set the tiling for external consumers, we need a
|
|
* dedicated allocation.
|
|
*
|
|
* See also anv_AllocateMemory.
|
|
*/
|
|
requirements->prefersDedicatedAllocation = VK_TRUE;
|
|
requirements->requiresDedicatedAllocation = VK_TRUE;
|
|
} else {
|
|
requirements->prefersDedicatedAllocation = VK_FALSE;
|
|
requirements->requiresDedicatedAllocation = VK_FALSE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetImageSparseMemoryRequirements(
|
|
VkDevice device,
|
|
VkImage image,
|
|
uint32_t* pSparseMemoryRequirementCount,
|
|
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
|
|
{
|
|
*pSparseMemoryRequirementCount = 0;
|
|
}
|
|
|
|
void anv_GetImageSparseMemoryRequirements2(
|
|
VkDevice device,
|
|
const VkImageSparseMemoryRequirementsInfo2* pInfo,
|
|
uint32_t* pSparseMemoryRequirementCount,
|
|
VkSparseImageMemoryRequirements2* pSparseMemoryRequirements)
|
|
{
|
|
*pSparseMemoryRequirementCount = 0;
|
|
}
|
|
|
|
void anv_GetDeviceMemoryCommitment(
|
|
VkDevice device,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize* pCommittedMemoryInBytes)
|
|
{
|
|
*pCommittedMemoryInBytes = 0;
|
|
}
|
|
|
|
static void
|
|
anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
|
|
|
|
assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
|
|
|
|
if (mem) {
|
|
assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
|
|
buffer->address = (struct anv_address) {
|
|
.bo = mem->bo,
|
|
.offset = pBindInfo->memoryOffset,
|
|
};
|
|
} else {
|
|
buffer->address = ANV_NULL_ADDRESS;
|
|
}
|
|
}
|
|
|
|
VkResult anv_BindBufferMemory(
|
|
VkDevice device,
|
|
VkBuffer buffer,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize memoryOffset)
|
|
{
|
|
anv_bind_buffer_memory(
|
|
&(VkBindBufferMemoryInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
|
|
.buffer = buffer,
|
|
.memory = memory,
|
|
.memoryOffset = memoryOffset,
|
|
});
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_BindBufferMemory2(
|
|
VkDevice device,
|
|
uint32_t bindInfoCount,
|
|
const VkBindBufferMemoryInfo* pBindInfos)
|
|
{
|
|
for (uint32_t i = 0; i < bindInfoCount; i++)
|
|
anv_bind_buffer_memory(&pBindInfos[i]);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_QueueBindSparse(
|
|
VkQueue _queue,
|
|
uint32_t bindInfoCount,
|
|
const VkBindSparseInfo* pBindInfo,
|
|
VkFence fence)
|
|
{
|
|
ANV_FROM_HANDLE(anv_queue, queue, _queue);
|
|
if (unlikely(queue->device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
|
|
// Event functions
|
|
|
|
VkResult anv_CreateEvent(
|
|
VkDevice _device,
|
|
const VkEventCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkEvent* pEvent)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_state state;
|
|
struct anv_event *event;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
|
|
|
|
state = anv_state_pool_alloc(&device->dynamic_state_pool,
|
|
sizeof(*event), 8);
|
|
event = state.map;
|
|
event->state = state;
|
|
event->semaphore = VK_EVENT_RESET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
*pEvent = anv_event_to_handle(event);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyEvent(
|
|
VkDevice _device,
|
|
VkEvent _event,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (!event)
|
|
return;
|
|
|
|
anv_state_pool_free(&device->dynamic_state_pool, event->state);
|
|
}
|
|
|
|
VkResult anv_GetEventStatus(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (unlikely(device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Invalidate read cache before reading event written by GPU. */
|
|
__builtin_ia32_clflush(event);
|
|
__builtin_ia32_mfence();
|
|
|
|
}
|
|
|
|
return event->semaphore;
|
|
}
|
|
|
|
VkResult anv_SetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
event->semaphore = VK_EVENT_SET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_ResetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
event->semaphore = VK_EVENT_RESET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Buffer functions
|
|
|
|
VkResult anv_CreateBuffer(
|
|
VkDevice _device,
|
|
const VkBufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkBuffer* pBuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_buffer *buffer;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
|
|
|
|
buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (buffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
buffer->size = pCreateInfo->size;
|
|
buffer->usage = pCreateInfo->usage;
|
|
buffer->address = ANV_NULL_ADDRESS;
|
|
|
|
*pBuffer = anv_buffer_to_handle(buffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyBuffer(
|
|
VkDevice _device,
|
|
VkBuffer _buffer,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
|
|
if (!buffer)
|
|
return;
|
|
|
|
vk_free2(&device->alloc, pAllocator, buffer);
|
|
}
|
|
|
|
void
|
|
anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
|
|
enum isl_format format,
|
|
struct anv_address address,
|
|
uint32_t range, uint32_t stride)
|
|
{
|
|
isl_buffer_fill_state(&device->isl_dev, state.map,
|
|
.address = anv_address_physical(address),
|
|
.mocs = device->default_mocs,
|
|
.size = range,
|
|
.format = format,
|
|
.stride = stride);
|
|
|
|
anv_state_flush(device, state);
|
|
}
|
|
|
|
void anv_DestroySampler(
|
|
VkDevice _device,
|
|
VkSampler _sampler,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
|
|
|
|
if (!sampler)
|
|
return;
|
|
|
|
vk_free2(&device->alloc, pAllocator, sampler);
|
|
}
|
|
|
|
VkResult anv_CreateFramebuffer(
|
|
VkDevice _device,
|
|
const VkFramebufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkFramebuffer* pFramebuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_framebuffer *framebuffer;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
|
|
|
|
size_t size = sizeof(*framebuffer) +
|
|
sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
|
|
framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (framebuffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
framebuffer->attachment_count = pCreateInfo->attachmentCount;
|
|
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
|
|
VkImageView _iview = pCreateInfo->pAttachments[i];
|
|
framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
|
|
}
|
|
|
|
framebuffer->width = pCreateInfo->width;
|
|
framebuffer->height = pCreateInfo->height;
|
|
framebuffer->layers = pCreateInfo->layers;
|
|
|
|
*pFramebuffer = anv_framebuffer_to_handle(framebuffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyFramebuffer(
|
|
VkDevice _device,
|
|
VkFramebuffer _fb,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
|
|
|
|
if (!fb)
|
|
return;
|
|
|
|
vk_free2(&device->alloc, pAllocator, fb);
|
|
}
|
|
|
|
/* vk_icd.h does not declare this function, so we declare it here to
|
|
* suppress Wmissing-prototypes.
|
|
*/
|
|
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
|
|
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
|
|
|
|
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
|
|
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
|
|
{
|
|
/* For the full details on loader interface versioning, see
|
|
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
|
|
* What follows is a condensed summary, to help you navigate the large and
|
|
* confusing official doc.
|
|
*
|
|
* - Loader interface v0 is incompatible with later versions. We don't
|
|
* support it.
|
|
*
|
|
* - In loader interface v1:
|
|
* - The first ICD entrypoint called by the loader is
|
|
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
|
|
* entrypoint.
|
|
* - The ICD must statically expose no other Vulkan symbol unless it is
|
|
* linked with -Bsymbolic.
|
|
* - Each dispatchable Vulkan handle created by the ICD must be
|
|
* a pointer to a struct whose first member is VK_LOADER_DATA. The
|
|
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
|
|
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
|
|
* vkDestroySurfaceKHR(). The ICD must be capable of working with
|
|
* such loader-managed surfaces.
|
|
*
|
|
* - Loader interface v2 differs from v1 in:
|
|
* - The first ICD entrypoint called by the loader is
|
|
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
|
|
* statically expose this entrypoint.
|
|
*
|
|
* - Loader interface v3 differs from v2 in:
|
|
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
|
|
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
|
|
* because the loader no longer does so.
|
|
*/
|
|
*pSupportedVersion = MIN2(*pSupportedVersion, 3u);
|
|
return VK_SUCCESS;
|
|
}
|