Files
third_party_mesa3d/src/amd/vulkan/radv_pipeline_graphics.c
Timur Kristóf be49b02f05 radv: Properly link TCS->TES IO again.
This commit makes RADV TCS->TES IO great again.

Fossil DB stats on Navi 21:

Totals from 2634 (3.32% of 79395) affected shaders:
MaxWaves: 56336 -> 56450 (+0.20%)
Instrs: 1670370 -> 1667819 (-0.15%); split: -0.22%, +0.06%
CodeSize: 8675476 -> 8643176 (-0.37%); split: -0.39%, +0.01%
VGPRs: 126776 -> 126608 (-0.13%)
LDS: 10444288 -> 10617856 (+1.66%)
Inputs: 30910 -> 25426 (-17.74%)
Outputs: 27000 -> 21516 (-20.31%)
Latency: 9403584 -> 9391648 (-0.13%); split: -0.25%, +0.12%
InvThroughput: 2127488 -> 2127180 (-0.01%); split: -0.13%, +0.12%
VClause: 33495 -> 34413 (+2.74%); split: -0.32%, +3.06%
SClause: 27905 -> 27879 (-0.09%); split: -0.30%, +0.20%
Copies: 82562 -> 83007 (+0.54%); split: -0.32%, +0.86%
PreSGPRs: 91029 -> 91014 (-0.02%)
PreVGPRs: 108505 -> 108473 (-0.03%); split: -0.06%, +0.03%
VALU: 1088113 -> 1087730 (-0.04%); split: -0.18%, +0.14%
SALU: 182853 -> 179541 (-1.81%); split: -1.82%, +0.01%

Signed-off-by: Timur Kristóf <timur.kristof@gmail.com>
Reviewed-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/29436>
2024-05-30 12:28:51 +00:00

3330 lines
134 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* SPDX-License-Identifier: MIT
*/
#include "meta/radv_meta.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "nir/nir_serialize.h"
#include "nir/radv_nir.h"
#include "spirv/nir_spirv.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/os_time.h"
#include "util/u_atomic.h"
#include "radv_cs.h"
#include "radv_debug.h"
#include "radv_entrypoints.h"
#include "radv_formats.h"
#include "radv_pipeline_cache.h"
#include "radv_rmv.h"
#include "radv_shader.h"
#include "radv_shader_args.h"
#include "vk_nir_convert_ycbcr.h"
#include "vk_pipeline.h"
#include "vk_render_pass.h"
#include "vk_util.h"
#include "util/u_debug.h"
#include "ac_binary.h"
#include "ac_formats.h"
#include "ac_nir.h"
#include "ac_shader_util.h"
#include "aco_interface.h"
#include "sid.h"
static bool
radv_is_static_vrs_enabled(const struct vk_graphics_pipeline_state *state)
{
if (!state->fsr)
return false;
return state->fsr->fragment_size.width != 1 || state->fsr->fragment_size.height != 1 ||
state->fsr->combiner_ops[0] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR ||
state->fsr->combiner_ops[1] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR;
}
static bool
radv_is_vrs_enabled(const struct vk_graphics_pipeline_state *state)
{
return radv_is_static_vrs_enabled(state) || BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_FSR);
}
static bool
radv_pipeline_has_ds_attachments(const struct vk_render_pass_state *rp)
{
return rp->depth_attachment_format != VK_FORMAT_UNDEFINED || rp->stencil_attachment_format != VK_FORMAT_UNDEFINED;
}
static bool
radv_pipeline_has_color_attachments(const struct vk_render_pass_state *rp)
{
for (uint32_t i = 0; i < rp->color_attachment_count; ++i) {
if (rp->color_attachment_formats[i] != VK_FORMAT_UNDEFINED)
return true;
}
return false;
}
static bool
radv_pipeline_has_ngg(const struct radv_graphics_pipeline *pipeline)
{
struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage];
return shader->info.is_ngg;
}
/**
* Get rid of DST in the blend factors by commuting the operands:
* func(src * DST, dst * 0) ---> func(src * 0, dst * SRC)
*/
void
radv_blend_remove_dst(VkBlendOp *func, VkBlendFactor *src_factor, VkBlendFactor *dst_factor, VkBlendFactor expected_dst,
VkBlendFactor replacement_src)
{
if (*src_factor == expected_dst && *dst_factor == VK_BLEND_FACTOR_ZERO) {
*src_factor = VK_BLEND_FACTOR_ZERO;
*dst_factor = replacement_src;
/* Commuting the operands requires reversing subtractions. */
if (*func == VK_BLEND_OP_SUBTRACT)
*func = VK_BLEND_OP_REVERSE_SUBTRACT;
else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT)
*func = VK_BLEND_OP_SUBTRACT;
}
}
static unsigned
radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format, bool blend_enable,
bool blend_need_alpha)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct util_format_description *desc = vk_format_description(vk_format);
bool use_rbplus = pdev->info.rbplus_allowed;
struct ac_spi_color_formats formats = {0};
unsigned format, ntype, swap;
format = ac_get_cb_format(pdev->info.gfx_level, desc->format);
ntype = ac_get_cb_number_type(desc->format);
swap = ac_translate_colorswap(pdev->info.gfx_level, desc->format, false);
ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats);
if (blend_enable && blend_need_alpha)
return formats.blend_alpha;
else if (blend_need_alpha)
return formats.alpha;
else if (blend_enable)
return formats.blend;
else
return formats.normal;
}
static bool
format_is_int8(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8;
}
static bool
format_is_int10(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
if (desc->nr_channels != 4)
return false;
for (unsigned i = 0; i < 4; i++) {
if (desc->channel[i].pure_integer && desc->channel[i].size == 10)
return true;
}
return false;
}
static bool
format_is_float32(VkFormat format)
{
const struct util_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].type == UTIL_FORMAT_TYPE_FLOAT && desc->channel[channel].size == 32;
}
unsigned
radv_compact_spi_shader_col_format(uint32_t spi_shader_col_format)
{
unsigned value = 0, num_mrts = 0;
unsigned i, num_targets;
/* Compute the number of MRTs. */
num_targets = DIV_ROUND_UP(util_last_bit(spi_shader_col_format), 4);
/* Remove holes in spi_shader_col_format. */
for (i = 0; i < num_targets; i++) {
unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
if (spi_format) {
value |= spi_format << (num_mrts * 4);
num_mrts++;
}
}
return value;
}
/*
* Ordered so that for each i,
* radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i.
*/
const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = {
VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT,
VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R8G8B8A8_UINT,
VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_SINT_PACK32,
};
unsigned
radv_format_meta_fs_key(struct radv_device *device, VkFormat format)
{
unsigned col_format = radv_choose_spi_color_format(device, format, false, false);
assert(col_format != V_028714_SPI_SHADER_32_AR);
bool is_int8 = format_is_int8(format);
bool is_int10 = format_is_int10(format);
if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8)
return 8;
else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8)
return 9;
else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10)
return 10;
else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10)
return 11;
else {
if (col_format >= V_028714_SPI_SHADER_32_AR)
--col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */
--col_format; /* Skip V_028714_SPI_SHADER_ZERO */
return col_format;
}
}
static bool
radv_pipeline_needs_ps_epilog(const struct vk_graphics_pipeline_state *state,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
{
/* Use a PS epilog when the fragment shader is compiled without the fragment output interface. */
if ((state->shader_stages & VK_SHADER_STAGE_FRAGMENT_BIT) &&
(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT))
return true;
/* These dynamic states need to compile PS epilogs on-demand. */
if (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_CB_BLEND_ENABLES) ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_CB_WRITE_MASKS) ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_CB_BLEND_EQUATIONS) ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) ||
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_ONE_ENABLE))
return true;
return false;
}
static bool
radv_pipeline_uses_vrs_attachment(const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
VkPipelineCreateFlags2KHR create_flags = pipeline->base.create_flags;
if (state->rp)
create_flags |= state->pipeline_flags;
return (create_flags & VK_PIPELINE_CREATE_2_RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR) != 0;
}
static void
radv_pipeline_init_multisample_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct vk_graphics_pipeline_state *state)
{
struct radv_multisample_state *ms = &pipeline->ms;
/* From the Vulkan 1.1.129 spec, 26.7. Sample Shading:
*
* "Sample shading is enabled for a graphics pipeline:
*
* - If the interface of the fragment shader entry point of the
* graphics pipeline includes an input variable decorated
* with SampleId or SamplePosition. In this case
* minSampleShadingFactor takes the value 1.0.
* - Else if the sampleShadingEnable member of the
* VkPipelineMultisampleStateCreateInfo structure specified
* when creating the graphics pipeline is set to VK_TRUE. In
* this case minSampleShadingFactor takes the value of
* VkPipelineMultisampleStateCreateInfo::minSampleShading.
*
* Otherwise, sample shading is considered disabled."
*/
if (state->ms && state->ms->sample_shading_enable) {
ms->sample_shading_enable = true;
ms->min_sample_shading = state->ms->min_sample_shading;
}
}
static uint32_t
radv_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim)
{
switch (prim) {
case TESS_PRIMITIVE_TRIANGLES:
case TESS_PRIMITIVE_QUADS:
return V_028A6C_TRISTRIP;
case TESS_PRIMITIVE_ISOLINES:
return V_028A6C_LINESTRIP;
default:
assert(0);
return 0;
}
}
static uint64_t
radv_dynamic_state_mask(VkDynamicState state)
{
switch (state) {
case VK_DYNAMIC_STATE_VIEWPORT:
case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT:
return RADV_DYNAMIC_VIEWPORT;
case VK_DYNAMIC_STATE_SCISSOR:
case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT:
return RADV_DYNAMIC_SCISSOR;
case VK_DYNAMIC_STATE_LINE_WIDTH:
return RADV_DYNAMIC_LINE_WIDTH;
case VK_DYNAMIC_STATE_DEPTH_BIAS:
return RADV_DYNAMIC_DEPTH_BIAS;
case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
return RADV_DYNAMIC_BLEND_CONSTANTS;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
return RADV_DYNAMIC_DEPTH_BOUNDS;
case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
return RADV_DYNAMIC_STENCIL_COMPARE_MASK;
case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
return RADV_DYNAMIC_STENCIL_WRITE_MASK;
case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
return RADV_DYNAMIC_STENCIL_REFERENCE;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT:
return RADV_DYNAMIC_SAMPLE_LOCATIONS;
case VK_DYNAMIC_STATE_LINE_STIPPLE_KHR:
return RADV_DYNAMIC_LINE_STIPPLE;
case VK_DYNAMIC_STATE_CULL_MODE:
return RADV_DYNAMIC_CULL_MODE;
case VK_DYNAMIC_STATE_FRONT_FACE:
return RADV_DYNAMIC_FRONT_FACE;
case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY:
return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY;
case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE:
return RADV_DYNAMIC_DEPTH_TEST_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE:
return RADV_DYNAMIC_DEPTH_WRITE_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP:
return RADV_DYNAMIC_DEPTH_COMPARE_OP;
case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE:
return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE:
return RADV_DYNAMIC_STENCIL_TEST_ENABLE;
case VK_DYNAMIC_STATE_STENCIL_OP:
return RADV_DYNAMIC_STENCIL_OP;
case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE:
return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE;
case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR:
return RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT:
return RADV_DYNAMIC_PATCH_CONTROL_POINTS;
case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE:
return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE:
return RADV_DYNAMIC_DEPTH_BIAS_ENABLE;
case VK_DYNAMIC_STATE_LOGIC_OP_EXT:
return RADV_DYNAMIC_LOGIC_OP;
case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE:
return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE;
case VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT:
return RADV_DYNAMIC_COLOR_WRITE_ENABLE;
case VK_DYNAMIC_STATE_VERTEX_INPUT_EXT:
return RADV_DYNAMIC_VERTEX_INPUT;
case VK_DYNAMIC_STATE_POLYGON_MODE_EXT:
return RADV_DYNAMIC_POLYGON_MODE;
case VK_DYNAMIC_STATE_TESSELLATION_DOMAIN_ORIGIN_EXT:
return RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
case VK_DYNAMIC_STATE_LOGIC_OP_ENABLE_EXT:
return RADV_DYNAMIC_LOGIC_OP_ENABLE;
case VK_DYNAMIC_STATE_LINE_STIPPLE_ENABLE_EXT:
return RADV_DYNAMIC_LINE_STIPPLE_ENABLE;
case VK_DYNAMIC_STATE_ALPHA_TO_COVERAGE_ENABLE_EXT:
return RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE;
case VK_DYNAMIC_STATE_SAMPLE_MASK_EXT:
return RADV_DYNAMIC_SAMPLE_MASK;
case VK_DYNAMIC_STATE_DEPTH_CLIP_ENABLE_EXT:
return RADV_DYNAMIC_DEPTH_CLIP_ENABLE;
case VK_DYNAMIC_STATE_CONSERVATIVE_RASTERIZATION_MODE_EXT:
return RADV_DYNAMIC_CONSERVATIVE_RAST_MODE;
case VK_DYNAMIC_STATE_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE_EXT:
return RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE;
case VK_DYNAMIC_STATE_PROVOKING_VERTEX_MODE_EXT:
return RADV_DYNAMIC_PROVOKING_VERTEX_MODE;
case VK_DYNAMIC_STATE_DEPTH_CLAMP_ENABLE_EXT:
return RADV_DYNAMIC_DEPTH_CLAMP_ENABLE;
case VK_DYNAMIC_STATE_COLOR_WRITE_MASK_EXT:
return RADV_DYNAMIC_COLOR_WRITE_MASK;
case VK_DYNAMIC_STATE_COLOR_BLEND_ENABLE_EXT:
return RADV_DYNAMIC_COLOR_BLEND_ENABLE;
case VK_DYNAMIC_STATE_RASTERIZATION_SAMPLES_EXT:
return RADV_DYNAMIC_RASTERIZATION_SAMPLES;
case VK_DYNAMIC_STATE_LINE_RASTERIZATION_MODE_EXT:
return RADV_DYNAMIC_LINE_RASTERIZATION_MODE;
case VK_DYNAMIC_STATE_COLOR_BLEND_EQUATION_EXT:
return RADV_DYNAMIC_COLOR_BLEND_EQUATION;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_ENABLE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE;
case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_MODE_EXT:
return RADV_DYNAMIC_DISCARD_RECTANGLE_MODE;
case VK_DYNAMIC_STATE_ATTACHMENT_FEEDBACK_LOOP_ENABLE_EXT:
return RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE;
case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_ENABLE_EXT:
return RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE;
case VK_DYNAMIC_STATE_ALPHA_TO_ONE_ENABLE_EXT:
return RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE;
default:
unreachable("Unhandled dynamic state");
}
}
#define RADV_DYNAMIC_CB_STATES \
(RADV_DYNAMIC_LOGIC_OP_ENABLE | RADV_DYNAMIC_LOGIC_OP | RADV_DYNAMIC_COLOR_WRITE_ENABLE | \
RADV_DYNAMIC_COLOR_WRITE_MASK | RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_BLEND_EQUATION | \
RADV_DYNAMIC_BLEND_CONSTANTS)
static bool
radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline *pipeline, const struct vk_color_blend_state *cb)
{
/* If we don't know then we have to assume that blend may be enabled. cb may also be NULL in this
* case.
*/
if (pipeline->dynamic_states & (RADV_DYNAMIC_COLOR_BLEND_ENABLE | RADV_DYNAMIC_COLOR_WRITE_MASK))
return true;
/* If we have the blend enable state, then cb being NULL indicates no attachments are written. */
if (cb) {
for (uint32_t i = 0; i < cb->attachment_count; i++) {
if (cb->attachments[i].write_mask && cb->attachments[i].blend_enable)
return true;
}
}
return false;
}
static uint64_t
radv_pipeline_needed_dynamic_state(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
bool has_color_att = radv_pipeline_has_color_attachments(state->rp);
bool raster_enabled =
!state->rs->rasterizer_discard_enable || (pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE);
uint64_t states = RADV_DYNAMIC_ALL;
if (pdev->info.gfx_level < GFX10_3)
states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE;
/* Disable dynamic states that are useless to mesh shading. */
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) {
if (!raster_enabled)
return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE;
states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY);
}
/* Disable dynamic states that are useless when rasterization is disabled. */
if (!raster_enabled) {
states = RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE |
RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE |
RADV_DYNAMIC_VERTEX_INPUT;
if (pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT)
states |= RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN;
return states;
}
if (!state->rs->depth_bias.enable && !(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE))
states &= ~RADV_DYNAMIC_DEPTH_BIAS;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) &&
(!state->ds || !state->ds->depth.bounds_test.enable))
states &= ~RADV_DYNAMIC_DEPTH_BOUNDS;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) &&
(!state->ds || !state->ds->stencil.test_enable))
states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK | RADV_DYNAMIC_STENCIL_REFERENCE |
RADV_DYNAMIC_STENCIL_OP);
if (!(pipeline->dynamic_states & RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE) && !state->dr->rectangle_count)
states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE;
if (!(pipeline->dynamic_states & RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE) &&
(!state->ms || !state->ms->sample_locations_enable))
states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS;
if (!has_color_att || !radv_pipeline_is_blend_enabled(pipeline, state->cb))
states &= ~RADV_DYNAMIC_BLEND_CONSTANTS;
if (!(pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT))
states &= ~(RADV_DYNAMIC_PATCH_CONTROL_POINTS | RADV_DYNAMIC_TESS_DOMAIN_ORIGIN);
return states;
}
struct radv_ia_multi_vgt_param_helpers
radv_compute_ia_multi_vgt_param(const struct radv_device *device, struct radv_shader *const *shaders)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0};
ia_multi_vgt_param.ia_switch_on_eoi = false;
if (shaders[MESA_SHADER_FRAGMENT] && shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (shaders[MESA_SHADER_GEOMETRY] && shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id)
ia_multi_vgt_param.ia_switch_on_eoi = true;
if (shaders[MESA_SHADER_TESS_CTRL]) {
const struct radv_shader *tes = radv_get_shader(shaders, MESA_SHADER_TESS_EVAL);
/* SWITCH_ON_EOI must be set if PrimID is used. */
if (shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || tes->info.uses_prim_id ||
(tes->info.merged_shader_compiled_separately && shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id))
ia_multi_vgt_param.ia_switch_on_eoi = true;
}
ia_multi_vgt_param.partial_vs_wave = false;
if (shaders[MESA_SHADER_TESS_CTRL]) {
/* Bug with tessellation and GS on Bonaire and older 2 SE chips. */
if ((pdev->info.family == CHIP_TAHITI || pdev->info.family == CHIP_PITCAIRN ||
pdev->info.family == CHIP_BONAIRE) &&
shaders[MESA_SHADER_GEOMETRY])
ia_multi_vgt_param.partial_vs_wave = true;
/* Needed for 028B6C_DISTRIBUTION_MODE != 0 */
if (pdev->info.has_distributed_tess) {
if (shaders[MESA_SHADER_GEOMETRY]) {
if (pdev->info.gfx_level <= GFX8)
ia_multi_vgt_param.partial_es_wave = true;
} else {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
}
if (shaders[MESA_SHADER_GEOMETRY]) {
/* On these chips there is the possibility of a hang if the
* pipeline uses a GS and partial_vs_wave is not set.
*
* This mostly does not hit 4-SE chips, as those typically set
* ia_switch_on_eoi and then partial_vs_wave is set for pipelines
* with GS due to another workaround.
*
* Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242
*/
if (pdev->info.family == CHIP_TONGA || pdev->info.family == CHIP_FIJI || pdev->info.family == CHIP_POLARIS10 ||
pdev->info.family == CHIP_POLARIS11 || pdev->info.family == CHIP_POLARIS12 ||
pdev->info.family == CHIP_VEGAM) {
ia_multi_vgt_param.partial_vs_wave = true;
}
}
ia_multi_vgt_param.base =
/* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */
S_028AA8_MAX_PRIMGRP_IN_WAVE(pdev->info.gfx_level == GFX8 ? 2 : 0) |
S_030960_EN_INST_OPT_BASIC(pdev->info.gfx_level >= GFX9) | S_030960_EN_INST_OPT_ADV(pdev->info.gfx_level >= GFX9);
return ia_multi_vgt_param;
}
static uint32_t
radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *vi, uint32_t attrib_binding)
{
for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *input_binding = &vi->pVertexBindingDescriptions[i];
if (input_binding->binding == attrib_binding)
return input_binding->stride;
}
return 0;
}
#define ALL_GRAPHICS_LIB_FLAGS \
(VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT | \
VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_OUTPUT_INTERFACE_BIT_EXT)
static VkGraphicsPipelineLibraryFlagBitsEXT
shader_stage_to_pipeline_library_flags(VkShaderStageFlagBits stage)
{
assert(util_bitcount(stage) == 1);
switch (stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
case VK_SHADER_STAGE_GEOMETRY_BIT:
case VK_SHADER_STAGE_TASK_BIT_EXT:
case VK_SHADER_STAGE_MESH_BIT_EXT:
return VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT;
case VK_SHADER_STAGE_FRAGMENT_BIT:
return VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT;
default:
unreachable("Invalid shader stage");
}
}
static void
radv_graphics_pipeline_import_layout(struct radv_pipeline_layout *dst, const struct radv_pipeline_layout *src)
{
for (uint32_t s = 0; s < src->num_sets; s++) {
if (!src->set[s].layout)
continue;
radv_pipeline_layout_add_set(dst, s, src->set[s].layout);
}
dst->independent_sets |= src->independent_sets;
dst->push_constant_size = MAX2(dst->push_constant_size, src->push_constant_size);
}
static VkResult
radv_pipeline_import_graphics_info(struct radv_device *device, struct radv_graphics_pipeline *pipeline,
struct vk_graphics_pipeline_state *state,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
VkResult result;
/* Mark all states declared dynamic at pipeline creation. */
if (pCreateInfo->pDynamicState) {
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++) {
pipeline->dynamic_states |= radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]);
}
}
/* Mark all active stages at pipeline creation. */
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
pipeline->active_stages |= sinfo->stage;
}
result = vk_graphics_pipeline_state_fill(&device->vk, state, pCreateInfo, NULL, 0, NULL, NULL,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT, &pipeline->state_data);
if (result != VK_SUCCESS)
return result;
if (pipeline->active_stages & VK_SHADER_STAGE_MESH_BIT_EXT) {
pipeline->last_vgt_api_stage = MESA_SHADER_MESH;
} else {
pipeline->last_vgt_api_stage = util_last_bit(pipeline->active_stages & BITFIELD_MASK(MESA_SHADER_FRAGMENT)) - 1;
}
return result;
}
static void
radv_graphics_pipeline_import_lib(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
struct vk_graphics_pipeline_state *state, struct radv_graphics_lib_pipeline *lib,
bool link_optimize)
{
bool import_binaries = false;
/* There should be no common blocks between a lib we import and the current
* pipeline we're building.
*/
assert((pipeline->active_stages & lib->base.active_stages) == 0);
pipeline->dynamic_states |= lib->base.dynamic_states;
pipeline->active_stages |= lib->base.active_stages;
vk_graphics_pipeline_state_merge(state, &lib->graphics_state);
/* Import binaries when LTO is disabled and when the library doesn't retain any shaders. */
if (!link_optimize && !pipeline->retain_shaders) {
import_binaries = true;
}
if (import_binaries) {
/* Import the compiled shaders. */
for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) {
if (!lib->base.base.shaders[s])
continue;
pipeline->base.shaders[s] = radv_shader_ref(lib->base.base.shaders[s]);
}
/* Import the GS copy shader if present. */
if (lib->base.base.gs_copy_shader) {
assert(!pipeline->base.gs_copy_shader);
pipeline->base.gs_copy_shader = radv_shader_ref(lib->base.base.gs_copy_shader);
}
}
/* Import the pipeline layout. */
radv_graphics_pipeline_import_layout(&pipeline->layout, &lib->base.layout);
}
static void
radv_pipeline_init_input_assembly_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline)
{
pipeline->ia_multi_vgt_param = radv_compute_ia_multi_vgt_param(device, pipeline->base.shaders);
}
static bool
radv_pipeline_uses_ds_feedback_loop(const struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
VkPipelineCreateFlags2KHR create_flags = pipeline->base.create_flags;
if (state->rp)
create_flags |= state->pipeline_flags;
return (create_flags & VK_PIPELINE_CREATE_2_DEPTH_STENCIL_ATTACHMENT_FEEDBACK_LOOP_BIT_EXT) != 0;
}
void
radv_get_viewport_xform(const VkViewport *viewport, float scale[3], float translate[3])
{
float x = viewport->x;
float y = viewport->y;
float half_width = 0.5f * viewport->width;
float half_height = 0.5f * viewport->height;
double n = viewport->minDepth;
double f = viewport->maxDepth;
scale[0] = half_width;
translate[0] = half_width + x;
scale[1] = half_height;
translate[1] = half_height + y;
scale[2] = (f - n);
translate[2] = n;
}
static void
radv_pipeline_init_dynamic_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
uint64_t needed_states = radv_pipeline_needed_dynamic_state(device, pipeline, state);
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
uint64_t states = needed_states;
/* Initialize non-zero values for default dynamic state. */
dynamic->vk.rs.line.width = 1.0f;
dynamic->vk.fsr.fragment_size.width = 1u;
dynamic->vk.fsr.fragment_size.height = 1u;
dynamic->vk.ds.depth.bounds_test.max = 1.0f;
dynamic->vk.ds.stencil.front.compare_mask = ~0;
dynamic->vk.ds.stencil.front.write_mask = ~0;
dynamic->vk.ds.stencil.back.compare_mask = ~0;
dynamic->vk.ds.stencil.back.write_mask = ~0;
dynamic->vk.ms.rasterization_samples = VK_SAMPLE_COUNT_1_BIT;
pipeline->needed_dynamic_state = needed_states;
states &= ~pipeline->dynamic_states;
/* Input assembly. */
if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) {
dynamic->vk.ia.primitive_topology = radv_translate_prim(state->ia->primitive_topology);
}
if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) {
dynamic->vk.ia.primitive_restart_enable = state->ia->primitive_restart_enable;
}
/* Tessellation. */
if (states & RADV_DYNAMIC_PATCH_CONTROL_POINTS) {
dynamic->vk.ts.patch_control_points = state->ts->patch_control_points;
}
if (states & RADV_DYNAMIC_TESS_DOMAIN_ORIGIN) {
dynamic->vk.ts.domain_origin = state->ts->domain_origin;
}
/* Viewport. */
if (needed_states & RADV_DYNAMIC_VIEWPORT) {
dynamic->vk.vp.viewport_count = state->vp->viewport_count;
if (states & RADV_DYNAMIC_VIEWPORT) {
typed_memcpy(dynamic->vk.vp.viewports, state->vp->viewports, state->vp->viewport_count);
for (unsigned i = 0; i < dynamic->vk.vp.viewport_count; i++)
radv_get_viewport_xform(&dynamic->vk.vp.viewports[i], dynamic->hw_vp.xform[i].scale,
dynamic->hw_vp.xform[i].translate);
}
}
if (needed_states & RADV_DYNAMIC_SCISSOR) {
dynamic->vk.vp.scissor_count = state->vp->scissor_count;
if (states & RADV_DYNAMIC_SCISSOR) {
typed_memcpy(dynamic->vk.vp.scissors, state->vp->scissors, state->vp->scissor_count);
}
}
if (states & RADV_DYNAMIC_DEPTH_CLIP_NEGATIVE_ONE_TO_ONE) {
dynamic->vk.vp.depth_clip_negative_one_to_one = state->vp->depth_clip_negative_one_to_one;
}
/* Discard rectangles. */
if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
dynamic->vk.dr.rectangle_count = state->dr->rectangle_count;
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) {
typed_memcpy(dynamic->vk.dr.rectangles, state->dr->rectangles, state->dr->rectangle_count);
}
}
/* Rasterization. */
if (states & RADV_DYNAMIC_LINE_WIDTH) {
dynamic->vk.rs.line.width = state->rs->line.width;
}
if (states & RADV_DYNAMIC_DEPTH_BIAS) {
dynamic->vk.rs.depth_bias.constant = state->rs->depth_bias.constant;
dynamic->vk.rs.depth_bias.clamp = state->rs->depth_bias.clamp;
dynamic->vk.rs.depth_bias.slope = state->rs->depth_bias.slope;
dynamic->vk.rs.depth_bias.representation = state->rs->depth_bias.representation;
}
if (states & RADV_DYNAMIC_CULL_MODE) {
dynamic->vk.rs.cull_mode = state->rs->cull_mode;
}
if (states & RADV_DYNAMIC_FRONT_FACE) {
dynamic->vk.rs.front_face = state->rs->front_face;
}
if (states & RADV_DYNAMIC_LINE_STIPPLE) {
dynamic->vk.rs.line.stipple.factor = state->rs->line.stipple.factor;
dynamic->vk.rs.line.stipple.pattern = state->rs->line.stipple.pattern;
}
if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) {
dynamic->vk.rs.depth_bias.enable = state->rs->depth_bias.enable;
}
if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) {
dynamic->vk.rs.rasterizer_discard_enable = state->rs->rasterizer_discard_enable;
}
if (states & RADV_DYNAMIC_POLYGON_MODE) {
dynamic->vk.rs.polygon_mode = radv_translate_fill(state->rs->polygon_mode);
}
if (states & RADV_DYNAMIC_LINE_STIPPLE_ENABLE) {
dynamic->vk.rs.line.stipple.enable = state->rs->line.stipple.enable;
}
if (states & RADV_DYNAMIC_DEPTH_CLIP_ENABLE) {
dynamic->vk.rs.depth_clip_enable = state->rs->depth_clip_enable;
}
if (states & RADV_DYNAMIC_CONSERVATIVE_RAST_MODE) {
dynamic->vk.rs.conservative_mode = state->rs->conservative_mode;
}
if (states & RADV_DYNAMIC_PROVOKING_VERTEX_MODE) {
dynamic->vk.rs.provoking_vertex = state->rs->provoking_vertex;
}
if (states & RADV_DYNAMIC_DEPTH_CLAMP_ENABLE) {
dynamic->vk.rs.depth_clamp_enable = state->rs->depth_clamp_enable;
}
if (states & RADV_DYNAMIC_LINE_RASTERIZATION_MODE) {
dynamic->vk.rs.line.mode = state->rs->line.mode;
}
/* Fragment shading rate. */
if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) {
dynamic->vk.fsr = *state->fsr;
}
/* Multisample. */
if (states & RADV_DYNAMIC_ALPHA_TO_COVERAGE_ENABLE) {
dynamic->vk.ms.alpha_to_coverage_enable = state->ms->alpha_to_coverage_enable;
}
if (states & RADV_DYNAMIC_ALPHA_TO_ONE_ENABLE) {
dynamic->vk.ms.alpha_to_one_enable = state->ms->alpha_to_one_enable;
}
if (states & RADV_DYNAMIC_SAMPLE_MASK) {
dynamic->vk.ms.sample_mask = state->ms->sample_mask & 0xffff;
}
if (states & RADV_DYNAMIC_RASTERIZATION_SAMPLES) {
dynamic->vk.ms.rasterization_samples = state->ms->rasterization_samples;
}
if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS_ENABLE) {
dynamic->vk.ms.sample_locations_enable = state->ms->sample_locations_enable;
}
if (states & RADV_DYNAMIC_SAMPLE_LOCATIONS) {
unsigned count = state->ms->sample_locations->per_pixel * state->ms->sample_locations->grid_size.width *
state->ms->sample_locations->grid_size.height;
dynamic->sample_location.per_pixel = state->ms->sample_locations->per_pixel;
dynamic->sample_location.grid_size = state->ms->sample_locations->grid_size;
dynamic->sample_location.count = count;
typed_memcpy(&dynamic->sample_location.locations[0], state->ms->sample_locations->locations, count);
}
/* Depth stencil. */
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* radv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (needed_states && radv_pipeline_has_ds_attachments(state->rp)) {
if (states & RADV_DYNAMIC_DEPTH_BOUNDS) {
dynamic->vk.ds.depth.bounds_test.min = state->ds->depth.bounds_test.min;
dynamic->vk.ds.depth.bounds_test.max = state->ds->depth.bounds_test.max;
}
if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) {
dynamic->vk.ds.stencil.front.compare_mask = state->ds->stencil.front.compare_mask;
dynamic->vk.ds.stencil.back.compare_mask = state->ds->stencil.back.compare_mask;
}
if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) {
dynamic->vk.ds.stencil.front.write_mask = state->ds->stencil.front.write_mask;
dynamic->vk.ds.stencil.back.write_mask = state->ds->stencil.back.write_mask;
}
if (states & RADV_DYNAMIC_STENCIL_REFERENCE) {
dynamic->vk.ds.stencil.front.reference = state->ds->stencil.front.reference;
dynamic->vk.ds.stencil.back.reference = state->ds->stencil.back.reference;
}
if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) {
dynamic->vk.ds.depth.test_enable = state->ds->depth.test_enable;
}
if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) {
dynamic->vk.ds.depth.write_enable = state->ds->depth.write_enable;
}
if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) {
dynamic->vk.ds.depth.compare_op = state->ds->depth.compare_op;
}
if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) {
dynamic->vk.ds.depth.bounds_test.enable = state->ds->depth.bounds_test.enable;
}
if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) {
dynamic->vk.ds.stencil.test_enable = state->ds->stencil.test_enable;
}
if (states & RADV_DYNAMIC_STENCIL_OP) {
dynamic->vk.ds.stencil.front.op.compare = state->ds->stencil.front.op.compare;
dynamic->vk.ds.stencil.front.op.fail = state->ds->stencil.front.op.fail;
dynamic->vk.ds.stencil.front.op.pass = state->ds->stencil.front.op.pass;
dynamic->vk.ds.stencil.front.op.depth_fail = state->ds->stencil.front.op.depth_fail;
dynamic->vk.ds.stencil.back.op.compare = state->ds->stencil.back.op.compare;
dynamic->vk.ds.stencil.back.op.fail = state->ds->stencil.back.op.fail;
dynamic->vk.ds.stencil.back.op.pass = state->ds->stencil.back.op.pass;
dynamic->vk.ds.stencil.back.op.depth_fail = state->ds->stencil.back.op.depth_fail;
}
}
/* Color blend. */
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
if (states & RADV_DYNAMIC_BLEND_CONSTANTS) {
typed_memcpy(dynamic->vk.cb.blend_constants, state->cb->blend_constants, 4);
}
if (radv_pipeline_has_color_attachments(state->rp)) {
if (states & RADV_DYNAMIC_LOGIC_OP) {
if ((pipeline->dynamic_states & RADV_DYNAMIC_LOGIC_OP_ENABLE) || state->cb->logic_op_enable) {
dynamic->vk.cb.logic_op = radv_translate_blend_logic_op(state->cb->logic_op);
}
}
if (states & RADV_DYNAMIC_COLOR_WRITE_ENABLE) {
dynamic->vk.cb.color_write_enables = state->cb->color_write_enables;
}
if (states & RADV_DYNAMIC_LOGIC_OP_ENABLE) {
dynamic->vk.cb.logic_op_enable = state->cb->logic_op_enable;
}
if (states & RADV_DYNAMIC_COLOR_WRITE_MASK) {
for (unsigned i = 0; i < state->cb->attachment_count; i++) {
dynamic->vk.cb.attachments[i].write_mask = state->cb->attachments[i].write_mask;
}
}
if (states & RADV_DYNAMIC_COLOR_BLEND_ENABLE) {
for (unsigned i = 0; i < state->cb->attachment_count; i++) {
dynamic->vk.cb.attachments[i].blend_enable = state->cb->attachments[i].blend_enable;
}
}
if (states & RADV_DYNAMIC_COLOR_BLEND_EQUATION) {
for (unsigned i = 0; i < state->cb->attachment_count; i++) {
const struct vk_color_blend_attachment_state *att = &state->cb->attachments[i];
dynamic->vk.cb.attachments[i].src_color_blend_factor = att->src_color_blend_factor;
dynamic->vk.cb.attachments[i].dst_color_blend_factor = att->dst_color_blend_factor;
dynamic->vk.cb.attachments[i].color_blend_op = att->color_blend_op;
dynamic->vk.cb.attachments[i].src_alpha_blend_factor = att->src_alpha_blend_factor;
dynamic->vk.cb.attachments[i].dst_alpha_blend_factor = att->dst_alpha_blend_factor;
dynamic->vk.cb.attachments[i].alpha_blend_op = att->alpha_blend_op;
}
}
}
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE_ENABLE) {
dynamic->vk.dr.enable = state->dr->rectangle_count > 0;
}
if (states & RADV_DYNAMIC_DISCARD_RECTANGLE_MODE) {
dynamic->vk.dr.mode = state->dr->mode;
}
if (states & RADV_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE) {
bool uses_ds_feedback_loop = radv_pipeline_uses_ds_feedback_loop(pipeline, state);
dynamic->feedback_loop_aspects =
uses_ds_feedback_loop ? (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) : VK_IMAGE_ASPECT_NONE;
}
for (uint32_t i = 0; i < MAX_RTS; i++) {
dynamic->vk.cal.color_map[i] = state->cal ? state->cal->color_map[i] : i;
}
pipeline->dynamic_state.mask = states;
}
struct radv_shader *
radv_get_shader(struct radv_shader *const *shaders, gl_shader_stage stage)
{
if (stage == MESA_SHADER_VERTEX) {
if (shaders[MESA_SHADER_VERTEX])
return shaders[MESA_SHADER_VERTEX];
if (shaders[MESA_SHADER_TESS_CTRL])
return shaders[MESA_SHADER_TESS_CTRL];
if (shaders[MESA_SHADER_GEOMETRY])
return shaders[MESA_SHADER_GEOMETRY];
} else if (stage == MESA_SHADER_TESS_EVAL) {
if (!shaders[MESA_SHADER_TESS_CTRL])
return NULL;
if (shaders[MESA_SHADER_TESS_EVAL])
return shaders[MESA_SHADER_TESS_EVAL];
if (shaders[MESA_SHADER_GEOMETRY])
return shaders[MESA_SHADER_GEOMETRY];
}
return shaders[stage];
}
static const struct radv_shader *
radv_get_last_vgt_shader(const struct radv_graphics_pipeline *pipeline)
{
if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
if (radv_pipeline_has_ngg(pipeline))
return pipeline->base.shaders[MESA_SHADER_GEOMETRY];
else
return pipeline->base.gs_copy_shader;
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL))
return pipeline->base.shaders[MESA_SHADER_TESS_EVAL];
else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
return pipeline->base.shaders[MESA_SHADER_MESH];
else
return pipeline->base.shaders[MESA_SHADER_VERTEX];
}
static const struct radv_vs_output_info *
get_vs_output_info(const struct radv_graphics_pipeline *pipeline)
{
return &radv_get_last_vgt_shader(pipeline)->info.outinfo;
}
static bool
radv_should_export_multiview(const struct radv_shader_stage *stage, const struct radv_graphics_state_key *gfx_state)
{
/* Export the layer in the last VGT stage if multiview is used.
* Also checks for NONE stage, which happens when we have depth-only rendering.
* When the next stage is unknown (with GPL or ESO), the layer is exported unconditionally.
*/
return gfx_state->has_multiview_view_index && radv_is_last_vgt_stage(stage) &&
!(stage->nir->info.outputs_written & VARYING_BIT_LAYER);
}
static void
radv_remove_point_size(const struct radv_graphics_state_key *gfx_state, nir_shader *producer, nir_shader *consumer)
{
if ((consumer->info.inputs_read & VARYING_BIT_PSIZ) || !(producer->info.outputs_written & VARYING_BIT_PSIZ))
return;
/* Do not remove PSIZ if the shader uses XFB because it might be stored. */
if (producer->xfb_info)
return;
/* Do not remove PSIZ if the rasterization primitive uses points. */
if (consumer->info.stage == MESA_SHADER_FRAGMENT &&
((producer->info.stage == MESA_SHADER_TESS_EVAL && producer->info.tess.point_mode) ||
(producer->info.stage == MESA_SHADER_GEOMETRY && producer->info.gs.output_primitive == MESA_PRIM_POINTS) ||
(producer->info.stage == MESA_SHADER_MESH && producer->info.mesh.primitive_type == MESA_PRIM_POINTS)))
return;
nir_variable *var = nir_find_variable_with_location(producer, nir_var_shader_out, VARYING_SLOT_PSIZ);
assert(var);
/* Change PSIZ to a global variable which allows it to be DCE'd. */
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
producer->info.outputs_written &= ~VARYING_BIT_PSIZ;
NIR_PASS_V(producer, nir_fixup_deref_modes);
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, producer, nir_opt_dce);
}
static void
radv_remove_color_exports(const struct radv_graphics_state_key *gfx_state, nir_shader *nir)
{
uint8_t color_remap[MAX_RTS];
bool fixup_derefs = false;
/* Do not remove color exports when a PS epilog is used because the format isn't known and the color write mask can
* be dynamic. */
if (gfx_state->ps.has_epilog)
return;
/* Shader output locations to color attachment mappings. */
memset(color_remap, MESA_VK_ATTACHMENT_UNUSED, sizeof(color_remap));
for (uint32_t i = 0; i < MAX_RTS; i++) {
if (gfx_state->ps.epilog.color_map[i] != MESA_VK_ATTACHMENT_UNUSED)
color_remap[gfx_state->ps.epilog.color_map[i]] = i;
}
nir_foreach_shader_out_variable (var, nir) {
int idx = var->data.location;
idx -= FRAG_RESULT_DATA0;
if (idx < 0)
continue;
const uint8_t cb_idx = color_remap[idx];
unsigned col_format = (gfx_state->ps.epilog.spi_shader_col_format >> (4 * cb_idx)) & 0xf;
if (col_format == V_028714_SPI_SHADER_ZERO) {
/* Remove the color export if it's unused or in presence of holes. */
nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location);
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
fixup_derefs = true;
}
}
if (fixup_derefs) {
NIR_PASS_V(nir, nir_fixup_deref_modes);
NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, nir, nir_opt_dce);
}
}
static void
merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info)
{
/* The Vulkan 1.0.38 spec, section 21.1 Tessellator says:
*
* "PointMode. Controls generation of points rather than triangles
* or lines. This functionality defaults to disabled, and is
* enabled if either shader stage includes the execution mode.
*
* and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw,
* PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd,
* and OutputVertices, it says:
*
* "One mode must be set in at least one of the tessellation
* shader stages."
*
* So, the fields can be set in either the TCS or TES, but they must
* agree if set in both. Our backend looks at TES, so bitwise-or in
* the values from the TCS.
*/
assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 ||
tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out);
tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out;
assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED ||
tcs_info->tess.spacing == tes_info->tess.spacing);
tes_info->tess.spacing |= tcs_info->tess.spacing;
assert(tcs_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
tes_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED ||
tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode);
tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode;
tes_info->tess.ccw |= tcs_info->tess.ccw;
tes_info->tess.point_mode |= tcs_info->tess.point_mode;
/* Copy the merged info back to the TCS */
tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out;
tcs_info->tess._primitive_mode = tes_info->tess._primitive_mode;
}
static void
radv_link_shaders(const struct radv_device *device, struct radv_shader_stage *producer_stage,
struct radv_shader_stage *consumer_stage, const struct radv_graphics_state_key *gfx_state)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
nir_shader *producer = producer_stage->nir;
nir_shader *consumer = consumer_stage->nir;
bool progress;
if (consumer->info.stage == MESA_SHADER_FRAGMENT) {
/* Lower the viewport index to zero when the last vertex stage doesn't export it. */
if ((consumer->info.inputs_read & VARYING_BIT_VIEWPORT) &&
!(producer->info.outputs_written & VARYING_BIT_VIEWPORT)) {
NIR_PASS(_, consumer, radv_nir_lower_viewport_to_zero);
}
/* Lower the view index to map on the layer. */
NIR_PASS(_, consumer, radv_nir_lower_view_index, producer->info.stage == MESA_SHADER_MESH);
}
if (producer_stage->key.optimisations_disabled || consumer_stage->key.optimisations_disabled)
return;
if (consumer->info.stage == MESA_SHADER_FRAGMENT && producer->info.has_transform_feedback_varyings) {
nir_link_xfb_varyings(producer, consumer);
}
unsigned array_deref_of_vec_options =
nir_lower_direct_array_deref_of_vec_load | nir_lower_indirect_array_deref_of_vec_load |
nir_lower_direct_array_deref_of_vec_store | nir_lower_indirect_array_deref_of_vec_store;
NIR_PASS(progress, producer, nir_lower_array_deref_of_vec, nir_var_shader_out, array_deref_of_vec_options);
NIR_PASS(progress, consumer, nir_lower_array_deref_of_vec, nir_var_shader_in, array_deref_of_vec_options);
nir_lower_io_arrays_to_elements(producer, consumer);
nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
radv_nir_lower_io_to_scalar_early(producer, nir_var_shader_out);
radv_nir_lower_io_to_scalar_early(consumer, nir_var_shader_in);
/* Remove PSIZ from shaders when it's not needed.
* This is typically produced by translation layers like Zink or D9VK.
*/
if (gfx_state->enable_remove_point_size)
radv_remove_point_size(gfx_state, producer, consumer);
if (nir_link_opt_varyings(producer, consumer)) {
nir_validate_shader(producer, "after nir_link_opt_varyings");
nir_validate_shader(consumer, "after nir_link_opt_varyings");
NIR_PASS(_, consumer, nir_opt_constant_folding);
NIR_PASS(_, consumer, nir_opt_algebraic);
NIR_PASS(_, consumer, nir_opt_dce);
}
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
progress = nir_remove_unused_varyings(producer, consumer);
nir_compact_varyings(producer, consumer, true);
/* nir_compact_varyings changes deleted varyings into shader_temp.
* We need to remove these otherwise we risk them being lowered to scratch.
* This can especially happen to arrayed outputs.
*/
NIR_PASS(_, producer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, consumer, nir_remove_dead_variables, nir_var_shader_temp, NULL);
nir_validate_shader(producer, "after nir_compact_varyings");
nir_validate_shader(consumer, "after nir_compact_varyings");
if (producer->info.stage == MESA_SHADER_MESH) {
/* nir_compact_varyings can change the location of per-vertex and per-primitive outputs */
nir_shader_gather_info(producer, nir_shader_get_entrypoint(producer));
}
const bool has_geom_or_tess =
consumer->info.stage == MESA_SHADER_GEOMETRY || consumer->info.stage == MESA_SHADER_TESS_CTRL;
const bool merged_gs = consumer->info.stage == MESA_SHADER_GEOMETRY && gfx_level >= GFX9;
if (producer->info.stage == MESA_SHADER_TESS_CTRL || producer->info.stage == MESA_SHADER_MESH ||
(producer->info.stage == MESA_SHADER_VERTEX && has_geom_or_tess) ||
(producer->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) {
NIR_PASS(_, producer, nir_lower_io_to_vector, nir_var_shader_out);
if (producer->info.stage == MESA_SHADER_TESS_CTRL)
NIR_PASS(_, producer, nir_vectorize_tess_levels);
NIR_PASS(_, producer, nir_opt_combine_stores, nir_var_shader_out);
}
if (consumer->info.stage == MESA_SHADER_GEOMETRY || consumer->info.stage == MESA_SHADER_TESS_CTRL ||
consumer->info.stage == MESA_SHADER_TESS_EVAL) {
NIR_PASS(_, consumer, nir_lower_io_to_vector, nir_var_shader_in);
}
if (progress) {
progress = false;
NIR_PASS(progress, producer, nir_lower_global_vars_to_local);
if (progress) {
ac_nir_lower_indirect_derefs(producer, gfx_level);
/* remove dead writes, which can remove input loads */
NIR_PASS(_, producer, nir_lower_vars_to_ssa);
NIR_PASS(_, producer, nir_opt_dce);
}
progress = false;
NIR_PASS(progress, consumer, nir_lower_global_vars_to_local);
if (progress) {
ac_nir_lower_indirect_derefs(consumer, gfx_level);
}
}
}
static const gl_shader_stage graphics_shader_order[] = {
MESA_SHADER_VERTEX, MESA_SHADER_TESS_CTRL, MESA_SHADER_TESS_EVAL, MESA_SHADER_GEOMETRY,
MESA_SHADER_TASK, MESA_SHADER_MESH,
MESA_SHADER_FRAGMENT,
};
static void
radv_link_vs(const struct radv_device *device, struct radv_shader_stage *vs_stage, struct radv_shader_stage *next_stage,
const struct radv_graphics_state_key *gfx_state)
{
assert(vs_stage->nir->info.stage == MESA_SHADER_VERTEX);
if (radv_should_export_multiview(vs_stage, gfx_state)) {
NIR_PASS(_, vs_stage->nir, radv_nir_export_multiview);
}
if (next_stage) {
assert(next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL ||
next_stage->nir->info.stage == MESA_SHADER_GEOMETRY ||
next_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_link_shaders(device, vs_stage, next_stage, gfx_state);
}
if (next_stage && next_stage->nir->info.stage == MESA_SHADER_TESS_CTRL) {
nir_linked_io_var_info vs2tcs = nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir);
vs_stage->info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars;
vs_stage->info.outputs_linked = true;
next_stage->info.tcs.num_linked_inputs = vs2tcs.num_linked_io_vars;
next_stage->info.inputs_linked = true;
} else if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) {
nir_linked_io_var_info vs2gs = nir_assign_linked_io_var_locations(vs_stage->nir, next_stage->nir);
vs_stage->info.vs.num_linked_outputs = vs2gs.num_linked_io_vars;
vs_stage->info.outputs_linked = true;
next_stage->info.gs.num_linked_inputs = vs2gs.num_linked_io_vars;
next_stage->info.inputs_linked = true;
}
}
static void
radv_link_tcs(const struct radv_device *device, struct radv_shader_stage *tcs_stage,
struct radv_shader_stage *tes_stage, const struct radv_graphics_state_key *gfx_state)
{
if (!tes_stage)
return;
assert(tcs_stage->nir->info.stage == MESA_SHADER_TESS_CTRL);
assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL);
radv_link_shaders(device, tcs_stage, tes_stage, gfx_state);
/* Copy TCS info into the TES info */
merge_tess_info(&tes_stage->nir->info, &tcs_stage->nir->info);
/* Count the number of per-vertex output slots we need to reserve for the TCS and TES. */
const uint64_t nir_mask = tcs_stage->nir->info.outputs_written & tes_stage->nir->info.inputs_read &
~(VARYING_BIT_TESS_LEVEL_OUTER | VARYING_BIT_TESS_LEVEL_INNER);
const uint64_t io_mask = radv_gather_unlinked_io_mask(nir_mask);
const unsigned num_reserved_outputs = util_bitcount64(io_mask);
/* Count the number of per-patch output slots we need to reserve for the TCS and TES.
* This is necessary because we need it to determine the patch size in VRAM.
*/
const uint64_t patch_io_mask = radv_gather_unlinked_patch_io_mask(
tcs_stage->nir->info.outputs_written & tes_stage->nir->info.inputs_read,
tcs_stage->nir->info.patch_outputs_written & tes_stage->nir->info.patch_inputs_read);
const unsigned num_reserved_patch_outputs = util_bitcount64(patch_io_mask);
tcs_stage->info.tcs.num_linked_outputs = num_reserved_outputs;
tcs_stage->info.tcs.num_linked_patch_outputs = num_reserved_patch_outputs;
tcs_stage->info.outputs_linked = true;
tes_stage->info.tes.num_linked_inputs = num_reserved_outputs;
tes_stage->info.tes.num_linked_patch_inputs = num_reserved_patch_outputs;
tes_stage->info.inputs_linked = true;
}
static void
radv_link_tes(const struct radv_device *device, struct radv_shader_stage *tes_stage,
struct radv_shader_stage *next_stage, const struct radv_graphics_state_key *gfx_state)
{
assert(tes_stage->nir->info.stage == MESA_SHADER_TESS_EVAL);
if (radv_should_export_multiview(tes_stage, gfx_state)) {
NIR_PASS(_, tes_stage->nir, radv_nir_export_multiview);
}
if (next_stage) {
assert(next_stage->nir->info.stage == MESA_SHADER_GEOMETRY ||
next_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_link_shaders(device, tes_stage, next_stage, gfx_state);
}
if (next_stage && next_stage->nir->info.stage == MESA_SHADER_GEOMETRY) {
nir_linked_io_var_info tes2gs = nir_assign_linked_io_var_locations(tes_stage->nir, next_stage->nir);
tes_stage->info.tes.num_linked_outputs = tes2gs.num_linked_io_vars;
tes_stage->info.outputs_linked = true;
next_stage->info.gs.num_linked_inputs = tes2gs.num_linked_io_vars;
next_stage->info.inputs_linked = true;
}
}
static void
radv_link_gs(const struct radv_device *device, struct radv_shader_stage *gs_stage, struct radv_shader_stage *fs_stage,
const struct radv_graphics_state_key *gfx_state)
{
assert(gs_stage->nir->info.stage == MESA_SHADER_GEOMETRY);
if (radv_should_export_multiview(gs_stage, gfx_state)) {
NIR_PASS(_, gs_stage->nir, radv_nir_export_multiview);
}
if (fs_stage) {
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_link_shaders(device, gs_stage, fs_stage, gfx_state);
}
}
static void
radv_link_task(const struct radv_device *device, struct radv_shader_stage *task_stage,
struct radv_shader_stage *mesh_stage, const struct radv_graphics_state_key *gfx_state)
{
assert(task_stage->nir->info.stage == MESA_SHADER_TASK);
if (mesh_stage) {
assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH);
/* Linking task and mesh shaders shouldn't do anything for now but keep it for consistency. */
radv_link_shaders(device, task_stage, mesh_stage, gfx_state);
}
}
static void
radv_link_mesh(const struct radv_device *device, struct radv_shader_stage *mesh_stage,
struct radv_shader_stage *fs_stage, const struct radv_graphics_state_key *gfx_state)
{
assert(mesh_stage->nir->info.stage == MESA_SHADER_MESH);
if (fs_stage) {
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
nir_foreach_shader_in_variable (var, fs_stage->nir) {
/* These variables are per-primitive when used with a mesh shader. */
if (var->data.location == VARYING_SLOT_PRIMITIVE_ID || var->data.location == VARYING_SLOT_VIEWPORT ||
var->data.location == VARYING_SLOT_LAYER) {
var->data.per_primitive = true;
}
}
radv_link_shaders(device, mesh_stage, fs_stage, gfx_state);
}
/* Lower mesh shader draw ID to zero prevent app bugs from triggering undefined behaviour. */
if (mesh_stage->info.ms.has_task && BITSET_TEST(mesh_stage->nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID))
radv_nir_lower_draw_id_to_zero(mesh_stage->nir);
}
static void
radv_link_fs(struct radv_shader_stage *fs_stage, const struct radv_graphics_state_key *gfx_state)
{
assert(fs_stage->nir->info.stage == MESA_SHADER_FRAGMENT);
radv_remove_color_exports(gfx_state, fs_stage->nir);
}
static bool
radv_pipeline_needs_noop_fs(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_state_key *gfx_state)
{
if (pipeline->base.type == RADV_PIPELINE_GRAPHICS &&
!(radv_pipeline_to_graphics(&pipeline->base)->active_stages & VK_SHADER_STAGE_FRAGMENT_BIT))
return true;
if (pipeline->base.type == RADV_PIPELINE_GRAPHICS_LIB &&
(gfx_state->lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
!(radv_pipeline_to_graphics_lib(&pipeline->base)->base.active_stages & VK_SHADER_STAGE_FRAGMENT_BIT))
return true;
return false;
}
static void
radv_remove_varyings(nir_shader *nir)
{
/* We can't demote mesh outputs to nir_var_shader_temp yet, because
* they don't support array derefs of vectors.
*/
if (nir->info.stage == MESA_SHADER_MESH)
return;
bool fixup_derefs = false;
nir_foreach_shader_out_variable (var, nir) {
if (var->data.always_active_io)
continue;
if (var->data.location < VARYING_SLOT_VAR0)
continue;
nir->info.outputs_written &= ~BITFIELD64_BIT(var->data.location);
var->data.location = 0;
var->data.mode = nir_var_shader_temp;
fixup_derefs = true;
}
if (fixup_derefs) {
NIR_PASS_V(nir, nir_fixup_deref_modes);
NIR_PASS(_, nir, nir_remove_dead_variables, nir_var_shader_temp, NULL);
NIR_PASS(_, nir, nir_opt_dce);
}
}
static void
radv_graphics_shaders_link(const struct radv_device *device, const struct radv_graphics_state_key *gfx_state,
struct radv_shader_stage *stages)
{
/* Walk backwards to link */
struct radv_shader_stage *next_stage = NULL;
for (int i = ARRAY_SIZE(graphics_shader_order) - 1; i >= 0; i--) {
gl_shader_stage s = graphics_shader_order[i];
if (!stages[s].nir)
continue;
switch (s) {
case MESA_SHADER_VERTEX:
radv_link_vs(device, &stages[s], next_stage, gfx_state);
break;
case MESA_SHADER_TESS_CTRL:
radv_link_tcs(device, &stages[s], next_stage, gfx_state);
break;
case MESA_SHADER_TESS_EVAL:
radv_link_tes(device, &stages[s], next_stage, gfx_state);
break;
case MESA_SHADER_GEOMETRY:
radv_link_gs(device, &stages[s], next_stage, gfx_state);
break;
case MESA_SHADER_TASK:
radv_link_task(device, &stages[s], next_stage, gfx_state);
break;
case MESA_SHADER_MESH:
radv_link_mesh(device, &stages[s], next_stage, gfx_state);
break;
case MESA_SHADER_FRAGMENT:
radv_link_fs(&stages[s], gfx_state);
break;
default:
unreachable("Invalid graphics shader stage");
}
next_stage = &stages[s];
}
}
struct radv_ps_epilog_key
radv_generate_ps_epilog_key(const struct radv_device *device, const struct radv_ps_epilog_state *state)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
unsigned col_format = 0, is_int8 = 0, is_int10 = 0, is_float32 = 0, z_format = 0;
struct radv_ps_epilog_key key;
memset(&key, 0, sizeof(key));
memset(key.color_map, MESA_VK_ATTACHMENT_UNUSED, sizeof(key.color_map));
for (unsigned i = 0; i < state->color_attachment_count; ++i) {
unsigned cf;
unsigned cb_idx = state->color_attachment_mappings[i];
VkFormat fmt = state->color_attachment_formats[i];
if (fmt == VK_FORMAT_UNDEFINED || !(state->color_write_mask & (0xfu << (i * 4))) ||
cb_idx == MESA_VK_ATTACHMENT_UNUSED) {
cf = V_028714_SPI_SHADER_ZERO;
} else {
bool blend_enable = state->color_blend_enable & (0xfu << (i * 4));
cf = radv_choose_spi_color_format(device, fmt, blend_enable, state->need_src_alpha & (1 << i));
if (format_is_int8(fmt))
is_int8 |= 1 << i;
if (format_is_int10(fmt))
is_int10 |= 1 << i;
if (format_is_float32(fmt))
is_float32 |= 1 << i;
}
col_format |= cf << (4 * i);
key.color_map[i] = state->color_attachment_mappings[i];
}
if (!(col_format & 0xf) && state->need_src_alpha & (1 << 0)) {
/* When a subpass doesn't have any color attachments, write the alpha channel of MRT0 when
* alpha coverage is enabled because the depth attachment needs it.
*/
col_format |= V_028714_SPI_SHADER_32_AR;
key.color_map[0] = 0;
}
/* The output for dual source blending should have the same format as the first output. */
if (state->mrt0_is_dual_src) {
assert(!(col_format >> 4));
col_format |= (col_format & 0xf) << 4;
key.color_map[1] = 1;
}
if (state->alpha_to_coverage_via_mrtz)
z_format = ac_get_spi_shader_z_format(state->export_depth, state->export_stencil, state->export_sample_mask,
state->alpha_to_coverage_via_mrtz);
key.spi_shader_col_format = col_format;
key.color_is_int8 = pdev->info.gfx_level < GFX8 ? is_int8 : 0;
key.color_is_int10 = pdev->info.gfx_level < GFX8 ? is_int10 : 0;
key.enable_mrt_output_nan_fixup = instance->drirc.enable_mrt_output_nan_fixup ? is_float32 : 0;
key.colors_written = state->colors_written;
key.mrt0_is_dual_src = state->mrt0_is_dual_src;
key.export_depth = state->export_depth;
key.export_stencil = state->export_stencil;
key.export_sample_mask = state->export_sample_mask;
key.alpha_to_coverage_via_mrtz = state->alpha_to_coverage_via_mrtz;
key.spi_shader_z_format = z_format;
key.alpha_to_one = state->alpha_to_one;
return key;
}
static struct radv_ps_epilog_key
radv_pipeline_generate_ps_epilog_key(const struct radv_device *device, const struct vk_graphics_pipeline_state *state)
{
struct radv_ps_epilog_state ps_epilog = {0};
if (state->ms && state->ms->alpha_to_coverage_enable)
ps_epilog.need_src_alpha |= 0x1;
if (state->cb) {
for (uint32_t i = 0; i < state->cb->attachment_count; i++) {
VkBlendOp eqRGB = state->cb->attachments[i].color_blend_op;
VkBlendFactor srcRGB = state->cb->attachments[i].src_color_blend_factor;
VkBlendFactor dstRGB = state->cb->attachments[i].dst_color_blend_factor;
/* Ignore other blend targets if dual-source blending is enabled to prevent wrong
* behaviour.
*/
if (i > 0 && ps_epilog.mrt0_is_dual_src)
continue;
ps_epilog.color_write_mask |= (unsigned)state->cb->attachments[i].write_mask << (4 * i);
if (!((ps_epilog.color_write_mask >> (i * 4)) & 0xf))
continue;
if (state->cb->attachments[i].blend_enable)
ps_epilog.color_blend_enable |= 0xfu << (i * 4);
if (!((ps_epilog.color_blend_enable >> (i * 4)) & 0xf))
continue;
if (i == 0 && radv_can_enable_dual_src(&state->cb->attachments[i])) {
ps_epilog.mrt0_is_dual_src = true;
}
if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
srcRGB = VK_BLEND_FACTOR_ONE;
dstRGB = VK_BLEND_FACTOR_ONE;
}
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
ps_epilog.need_src_alpha |= 1 << i;
}
}
if (state->rp) {
ps_epilog.color_attachment_count = state->rp->color_attachment_count;
for (uint32_t i = 0; i < ps_epilog.color_attachment_count; i++) {
ps_epilog.color_attachment_formats[i] = state->rp->color_attachment_formats[i];
}
}
if (state->ms)
ps_epilog.alpha_to_one = state->ms->alpha_to_one_enable;
for (uint32_t i = 0; i < MAX_RTS; i++) {
ps_epilog.color_attachment_mappings[i] = state->cal ? state->cal->color_map[i] : i;
}
return radv_generate_ps_epilog_key(device, &ps_epilog);
}
static struct radv_graphics_state_key
radv_generate_graphics_state_key(const struct radv_device *device, const struct vk_graphics_pipeline_state *state,
enum radv_pipeline_type pipeline_type, VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radv_graphics_state_key key;
memset(&key, 0, sizeof(key));
key.lib_flags = lib_flags;
key.has_multiview_view_index = state->rp ? !!state->rp->view_mask : 0;
if (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI)) {
key.vs.has_prolog = true;
}
/* Compile the pre-rasterization stages only when the vertex input interface is missing. */
if ((lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT) &&
!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT)) {
key.vs.has_prolog = true;
}
/* Vertex input state */
if (state->vi) {
u_foreach_bit (i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format);
key.vi.vertex_attribute_formats[i] = format;
key.vi.vertex_attribute_bindings[i] = binding;
key.vi.vertex_attribute_offsets[i] = offset;
key.vi.instance_rate_divisors[i] = state->vi->bindings[binding].divisor;
/* vertex_attribute_strides is only needed to workaround GFX6/7 offset>=stride checks. */
if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_VI_BINDING_STRIDES) && pdev->info.gfx_level < GFX8) {
/* From the Vulkan spec 1.2.157:
*
* "If the bound pipeline state object was created with the
* VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE dynamic state enabled then pStrides[i]
* specifies the distance in bytes between two consecutive elements within the
* corresponding buffer. In this case the VkVertexInputBindingDescription::stride state
* from the pipeline state object is ignored."
*
* Make sure the vertex attribute stride is zero to avoid computing a wrong offset if
* it's initialized to something else than zero.
*/
key.vi.vertex_attribute_strides[i] = state->vi->bindings[binding].stride;
}
if (state->vi->bindings[binding].input_rate) {
key.vi.instance_rate_inputs |= 1u << i;
}
const struct ac_vtx_format_info *vtx_info =
ac_get_vtx_format_info(pdev->info.gfx_level, pdev->info.family, format);
unsigned attrib_align = vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size;
/* If offset is misaligned, then the buffer offset must be too. Just skip updating
* vertex_binding_align in this case.
*/
if (offset % attrib_align == 0) {
key.vi.vertex_binding_align[binding] = MAX2(key.vi.vertex_binding_align[binding], attrib_align);
}
}
}
if (state->ts)
key.ts.patch_control_points = state->ts->patch_control_points;
if (state->ms) {
key.ms.sample_shading_enable = state->ms->sample_shading_enable;
if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) &&
state->ms->rasterization_samples > 1) {
key.ms.rasterization_samples = state->ms->rasterization_samples;
}
}
if (pdev->info.gfx_level >= GFX11 && state->ms) {
key.ms.alpha_to_coverage_via_mrtz = state->ms->alpha_to_coverage_enable;
}
if (state->ia) {
key.ia.topology = radv_translate_prim(state->ia->primitive_topology);
}
if (pipeline_type == RADV_PIPELINE_GRAPHICS_LIB &&
(!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_VERTEX_INPUT_INTERFACE_BIT_EXT) ||
!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT))) {
key.unknown_rast_prim = true;
}
if (pdev->info.gfx_level >= GFX10 && state->rs) {
key.rs.provoking_vtx_last = state->rs->provoking_vertex == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
}
key.ps.force_vrs_enabled = device->force_vrs_enabled && !radv_is_static_vrs_enabled(state);
if ((radv_is_vrs_enabled(state) || key.ps.force_vrs_enabled) &&
(pdev->info.family == CHIP_NAVI21 || pdev->info.family == CHIP_NAVI22 || pdev->info.family == CHIP_VANGOGH))
key.adjust_frag_coord_z = true;
if (radv_pipeline_needs_ps_epilog(state, lib_flags))
key.ps.has_epilog = true;
key.ps.epilog = radv_pipeline_generate_ps_epilog_key(device, state);
if (pdev->info.gfx_level >= GFX11) {
/* On GFX11, alpha to coverage is exported via MRTZ when depth/stencil/samplemask are also
* exported. Though, when a PS epilog is needed and the MS state is NULL (with dynamic
* rendering), it's not possible to know the info at compile time and MRTZ needs to be
* exported in the epilog.
*/
key.ps.exports_mrtz_via_epilog =
key.ps.has_epilog && (!state->ms || BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE));
}
key.dynamic_rasterization_samples = BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
(!!(state->shader_stages & VK_SHADER_STAGE_FRAGMENT_BIT) && !state->ms);
if (pdev->use_ngg) {
VkShaderStageFlags ngg_stage;
if (state->shader_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
ngg_stage = VK_SHADER_STAGE_GEOMETRY_BIT;
} else if (state->shader_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
ngg_stage = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else {
ngg_stage = VK_SHADER_STAGE_VERTEX_BIT;
}
key.dynamic_provoking_vtx_mode =
BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX) &&
(ngg_stage == VK_SHADER_STAGE_VERTEX_BIT || ngg_stage == VK_SHADER_STAGE_GEOMETRY_BIT);
}
if (!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) && state->ia &&
state->ia->primitive_topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST &&
!BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_POLYGON_MODE) && state->rs &&
state->rs->polygon_mode != VK_POLYGON_MODE_POINT) {
key.enable_remove_point_size = true;
}
if (device->vk.enabled_features.smoothLines) {
/* For GPL, when the fragment shader is compiled without any pre-rasterization information,
* ensure the line rasterization mode is considered dynamic because we can't know if it's
* going to draw lines or not.
*/
if (BITSET_TEST(state->dynamic, MESA_VK_DYNAMIC_RS_LINE_MODE) ||
((lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_FRAGMENT_SHADER_BIT_EXT) &&
!(lib_flags & VK_GRAPHICS_PIPELINE_LIBRARY_PRE_RASTERIZATION_SHADERS_BIT_EXT))) {
key.dynamic_line_rast_mode = true;
} else {
key.rs.line_smooth_enabled =
state->rs && state->rs->line.mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_KHR;
}
}
return key;
}
static struct radv_graphics_pipeline_key
radv_generate_graphics_pipeline_key(const struct radv_device *device, const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct vk_graphics_pipeline_state *state,
enum radv_pipeline_type pipeline_type,
VkGraphicsPipelineLibraryFlagBitsEXT lib_flags)
{
VkPipelineCreateFlags2KHR create_flags = vk_graphics_pipeline_create_flags(pCreateInfo);
struct radv_graphics_pipeline_key key = {0};
key.gfx_state = radv_generate_graphics_state_key(device, state, pipeline_type, lib_flags);
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->pStages[i];
gl_shader_stage s = vk_to_mesa_shader_stage(stage->stage);
key.stage_info[s] = radv_pipeline_get_shader_key(device, stage, create_flags, pCreateInfo->pNext);
if (s == MESA_SHADER_MESH && (state->shader_stages & VK_SHADER_STAGE_TASK_BIT_EXT))
key.stage_info[s].has_task_shader = true;
}
return key;
}
static void
radv_fill_shader_info_ngg(struct radv_device *device, struct radv_shader_stage *stages,
VkShaderStageFlagBits active_nir_stages)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
if (!pdev->cache_key.use_ngg)
return;
if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.next_stage != MESA_SHADER_TESS_CTRL) {
stages[MESA_SHADER_VERTEX].info.is_ngg = true;
} else if (stages[MESA_SHADER_TESS_EVAL].nir) {
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = true;
} else if (stages[MESA_SHADER_MESH].nir) {
stages[MESA_SHADER_MESH].info.is_ngg = true;
}
if (pdev->info.gfx_level >= GFX11) {
if (stages[MESA_SHADER_GEOMETRY].nir)
stages[MESA_SHADER_GEOMETRY].info.is_ngg = true;
} else {
/* GFX10/GFX10.3 can't always enable NGG due to HW bugs/limitations. */
if (stages[MESA_SHADER_TESS_EVAL].nir && stages[MESA_SHADER_GEOMETRY].nir &&
stages[MESA_SHADER_GEOMETRY].nir->info.gs.invocations *
stages[MESA_SHADER_GEOMETRY].nir->info.gs.vertices_out >
256) {
/* Fallback to the legacy path if tessellation is
* enabled with extreme geometry because
* EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it
* might hang.
*/
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
}
struct radv_shader_stage *last_vgt_stage = NULL;
radv_foreach_stage(i, active_nir_stages)
{
if (radv_is_last_vgt_stage(&stages[i])) {
last_vgt_stage = &stages[i];
}
}
if ((last_vgt_stage && last_vgt_stage->nir->xfb_info) ||
((instance->debug_flags & RADV_DEBUG_NO_NGG_GS) && stages[MESA_SHADER_GEOMETRY].nir)) {
/* NGG needs to be disabled on GFX10/GFX10.3 when:
* - streamout is used because NGG streamout isn't supported
* - NGG GS is explictly disabled to workaround performance issues
*/
if (stages[MESA_SHADER_TESS_EVAL].nir)
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
else
stages[MESA_SHADER_VERTEX].info.is_ngg = false;
}
if (stages[MESA_SHADER_GEOMETRY].nir) {
if (stages[MESA_SHADER_TESS_EVAL].nir)
stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[MESA_SHADER_TESS_EVAL].info.is_ngg;
else
stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[MESA_SHADER_VERTEX].info.is_ngg;
}
/* When pre-rasterization stages are compiled separately with shader objects, NGG GS needs to
* be disabled because if the next stage of VS/TES is GS and GS is unknown, it might use
* streamout but it's not possible to know that when compiling VS or TES only.
*/
if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.next_stage == MESA_SHADER_GEOMETRY &&
!stages[MESA_SHADER_GEOMETRY].nir) {
stages[MESA_SHADER_VERTEX].info.is_ngg = false;
} else if (stages[MESA_SHADER_TESS_EVAL].nir &&
stages[MESA_SHADER_TESS_EVAL].info.next_stage == MESA_SHADER_GEOMETRY &&
!stages[MESA_SHADER_GEOMETRY].nir) {
stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false;
} else if (stages[MESA_SHADER_GEOMETRY].nir &&
(!stages[MESA_SHADER_VERTEX].nir && !stages[MESA_SHADER_TESS_EVAL].nir)) {
stages[MESA_SHADER_GEOMETRY].info.is_ngg = false;
}
}
}
static bool
radv_consider_force_vrs(const struct radv_graphics_state_key *gfx_state, const struct radv_shader_stage *last_vgt_stage,
const struct radv_shader_stage *fs_stage)
{
if (!gfx_state->ps.force_vrs_enabled)
return false;
/* Mesh shaders aren't considered. */
if (last_vgt_stage->info.stage == MESA_SHADER_MESH)
return false;
if (last_vgt_stage->nir->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE))
return false;
/* VRS has no effect if there is no pixel shader. */
if (last_vgt_stage->info.next_stage == MESA_SHADER_NONE)
return false;
/* Do not enable if the PS uses gl_FragCoord because it breaks postprocessing in some games, or with Primitive
* Ordered Pixel Shading (regardless of whether per-pixel data is addressed with gl_FragCoord or a custom
* interpolator) as that'd result in races between adjacent primitives with no common fine pixels.
*/
nir_shader *fs_shader = fs_stage->nir;
if (fs_shader && (BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
fs_shader->info.fs.sample_interlock_ordered || fs_shader->info.fs.sample_interlock_unordered ||
fs_shader->info.fs.pixel_interlock_ordered || fs_shader->info.fs.pixel_interlock_unordered)) {
return false;
}
return true;
}
static gl_shader_stage
radv_get_next_stage(gl_shader_stage stage, VkShaderStageFlagBits active_nir_stages)
{
switch (stage) {
case MESA_SHADER_VERTEX:
if (active_nir_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
return MESA_SHADER_TESS_CTRL;
} else if (active_nir_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
return MESA_SHADER_GEOMETRY;
} else if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
return MESA_SHADER_FRAGMENT;
} else {
return MESA_SHADER_NONE;
}
case MESA_SHADER_TESS_CTRL:
return MESA_SHADER_TESS_EVAL;
case MESA_SHADER_TESS_EVAL:
if (active_nir_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
return MESA_SHADER_GEOMETRY;
} else if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
return MESA_SHADER_FRAGMENT;
} else {
return MESA_SHADER_NONE;
}
case MESA_SHADER_GEOMETRY:
case MESA_SHADER_MESH:
if (active_nir_stages & VK_SHADER_STAGE_FRAGMENT_BIT) {
return MESA_SHADER_FRAGMENT;
} else {
return MESA_SHADER_NONE;
}
case MESA_SHADER_TASK:
return MESA_SHADER_MESH;
case MESA_SHADER_FRAGMENT:
return MESA_SHADER_NONE;
default:
unreachable("invalid graphics shader stage");
}
}
static void
radv_fill_shader_info(struct radv_device *device, const enum radv_pipeline_type pipeline_type,
const struct radv_graphics_state_key *gfx_state, struct radv_shader_stage *stages,
VkShaderStageFlagBits active_nir_stages)
{
radv_foreach_stage(i, active_nir_stages)
{
bool consider_force_vrs = false;
if (radv_is_last_vgt_stage(&stages[i])) {
consider_force_vrs = radv_consider_force_vrs(gfx_state, &stages[i], &stages[MESA_SHADER_FRAGMENT]);
}
radv_nir_shader_info_pass(device, stages[i].nir, &stages[i].layout, &stages[i].key, gfx_state, pipeline_type,
consider_force_vrs, &stages[i].info);
}
radv_nir_shader_info_link(device, gfx_state, stages);
}
static void
radv_declare_pipeline_args(struct radv_device *device, struct radv_shader_stage *stages,
const struct radv_graphics_state_key *gfx_state, VkShaderStageFlagBits active_nir_stages)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
enum amd_gfx_level gfx_level = pdev->info.gfx_level;
if (gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) {
radv_declare_shader_args(device, gfx_state, &stages[MESA_SHADER_TESS_CTRL].info, MESA_SHADER_TESS_CTRL,
MESA_SHADER_VERTEX, &stages[MESA_SHADER_TESS_CTRL].args);
stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].args.user_sgprs_locs;
stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask =
stages[MESA_SHADER_TESS_CTRL].args.ac.inline_push_const_mask;
stages[MESA_SHADER_VERTEX].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs;
stages[MESA_SHADER_VERTEX].info.inline_push_constant_mask =
stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask;
stages[MESA_SHADER_VERTEX].args = stages[MESA_SHADER_TESS_CTRL].args;
active_nir_stages &= ~(1 << MESA_SHADER_VERTEX);
active_nir_stages &= ~(1 << MESA_SHADER_TESS_CTRL);
}
if (gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) {
gl_shader_stage pre_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX;
radv_declare_shader_args(device, gfx_state, &stages[MESA_SHADER_GEOMETRY].info, MESA_SHADER_GEOMETRY, pre_stage,
&stages[MESA_SHADER_GEOMETRY].args);
stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].args.user_sgprs_locs;
stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask =
stages[MESA_SHADER_GEOMETRY].args.ac.inline_push_const_mask;
stages[pre_stage].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs;
stages[pre_stage].info.inline_push_constant_mask = stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask;
stages[pre_stage].args = stages[MESA_SHADER_GEOMETRY].args;
active_nir_stages &= ~(1 << pre_stage);
active_nir_stages &= ~(1 << MESA_SHADER_GEOMETRY);
}
u_foreach_bit (i, active_nir_stages) {
radv_declare_shader_args(device, gfx_state, &stages[i].info, i, MESA_SHADER_NONE, &stages[i].args);
stages[i].info.user_sgprs_locs = stages[i].args.user_sgprs_locs;
stages[i].info.inline_push_constant_mask = stages[i].args.ac.inline_push_const_mask;
}
}
static struct radv_shader *
radv_create_gs_copy_shader(struct radv_device *device, struct vk_pipeline_cache *cache,
struct radv_shader_stage *gs_stage, const struct radv_graphics_state_key *gfx_state,
bool keep_executable_info, bool keep_statistic_info,
struct radv_shader_binary **gs_copy_binary)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_shader_info *gs_info = &gs_stage->info;
ac_nir_gs_output_info output_info = {
.streams = gs_info->gs.output_streams,
.usage_mask = gs_info->gs.output_usage_mask,
};
nir_shader *nir = ac_nir_create_gs_copy_shader(
gs_stage->nir, pdev->info.gfx_level, gs_info->outinfo.clip_dist_mask | gs_info->outinfo.cull_dist_mask,
gs_info->outinfo.vs_output_param_offset, gs_info->outinfo.param_exports, false, false, false,
gs_info->force_vrs_per_vertex, &output_info);
nir_validate_shader(nir, "after ac_nir_create_gs_copy_shader");
nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir));
struct radv_shader_stage gs_copy_stage = {
.stage = MESA_SHADER_VERTEX,
.shader_sha1 = {0},
.key =
{
.optimisations_disabled = gs_stage->key.optimisations_disabled,
},
};
radv_nir_shader_info_init(gs_copy_stage.stage, MESA_SHADER_FRAGMENT, &gs_copy_stage.info);
radv_nir_shader_info_pass(device, nir, &gs_stage->layout, &gs_stage->key, gfx_state, RADV_PIPELINE_GRAPHICS, false,
&gs_copy_stage.info);
gs_copy_stage.info.wave_size = 64; /* Wave32 not supported. */
gs_copy_stage.info.workgroup_size = 64; /* HW VS: separate waves, no workgroups */
gs_copy_stage.info.so = gs_info->so;
gs_copy_stage.info.outinfo = gs_info->outinfo;
gs_copy_stage.info.force_vrs_per_vertex = gs_info->force_vrs_per_vertex;
gs_copy_stage.info.type = RADV_SHADER_TYPE_GS_COPY;
radv_declare_shader_args(device, gfx_state, &gs_copy_stage.info, MESA_SHADER_VERTEX, MESA_SHADER_NONE,
&gs_copy_stage.args);
gs_copy_stage.info.user_sgprs_locs = gs_copy_stage.args.user_sgprs_locs;
gs_copy_stage.info.inline_push_constant_mask = gs_copy_stage.args.ac.inline_push_const_mask;
NIR_PASS_V(nir, ac_nir_lower_intrinsics_to_args, pdev->info.gfx_level, AC_HW_VERTEX_SHADER, &gs_copy_stage.args.ac);
NIR_PASS_V(nir, radv_nir_lower_abi, pdev->info.gfx_level, &gs_copy_stage, gfx_state, pdev->info.address32_hi);
struct radv_graphics_pipeline_key key = {0};
bool dump_shader = radv_can_dump_shader(device, nir, true);
*gs_copy_binary = radv_shader_nir_to_asm(device, &gs_copy_stage, &nir, 1, &key.gfx_state, keep_executable_info,
keep_statistic_info);
struct radv_shader *copy_shader =
radv_shader_create(device, cache, *gs_copy_binary, keep_executable_info || dump_shader);
if (copy_shader)
radv_shader_generate_debug_info(device, dump_shader, keep_executable_info, *gs_copy_binary, copy_shader, &nir, 1,
&gs_copy_stage.info);
return copy_shader;
}
static void
radv_graphics_shaders_nir_to_asm(struct radv_device *device, struct vk_pipeline_cache *cache,
struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state,
bool keep_executable_info, bool keep_statistic_info,
VkShaderStageFlagBits active_nir_stages, struct radv_shader **shaders,
struct radv_shader_binary **binaries, struct radv_shader **gs_copy_shader,
struct radv_shader_binary **gs_copy_binary)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
for (int s = MESA_VULKAN_SHADER_STAGES - 1; s >= 0; s--) {
if (!(active_nir_stages & (1 << s)))
continue;
nir_shader *nir_shaders[2] = {stages[s].nir, NULL};
unsigned shader_count = 1;
/* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */
if (pdev->info.gfx_level >= GFX9 &&
((s == MESA_SHADER_GEOMETRY &&
(active_nir_stages & (VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT))) ||
(s == MESA_SHADER_TESS_CTRL && (active_nir_stages & VK_SHADER_STAGE_VERTEX_BIT)))) {
gl_shader_stage pre_stage;
if (s == MESA_SHADER_GEOMETRY && (active_nir_stages & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT)) {
pre_stage = MESA_SHADER_TESS_EVAL;
} else {
pre_stage = MESA_SHADER_VERTEX;
}
nir_shaders[0] = stages[pre_stage].nir;
nir_shaders[1] = stages[s].nir;
shader_count = 2;
}
int64_t stage_start = os_time_get_nano();
bool dump_shader = radv_can_dump_shader(device, nir_shaders[0], false);
binaries[s] = radv_shader_nir_to_asm(device, &stages[s], nir_shaders, shader_count, gfx_state,
keep_executable_info, keep_statistic_info);
shaders[s] = radv_shader_create(device, cache, binaries[s], keep_executable_info || dump_shader);
radv_shader_generate_debug_info(device, dump_shader, keep_executable_info, binaries[s], shaders[s], nir_shaders,
shader_count, &stages[s].info);
if (s == MESA_SHADER_GEOMETRY && !stages[s].info.is_ngg) {
*gs_copy_shader = radv_create_gs_copy_shader(device, cache, &stages[MESA_SHADER_GEOMETRY], gfx_state,
keep_executable_info, keep_statistic_info, gs_copy_binary);
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
active_nir_stages &= ~(1 << nir_shaders[0]->info.stage);
if (nir_shaders[1])
active_nir_stages &= ~(1 << nir_shaders[1]->info.stage);
}
}
static void
radv_pipeline_retain_shaders(struct radv_retained_shaders *retained_shaders, struct radv_shader_stage *stages)
{
for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
/* Serialize the NIR shader to reduce memory pressure. */
struct blob blob;
blob_init(&blob);
nir_serialize(&blob, stages[s].nir, true);
blob_finish_get_buffer(&blob, &retained_shaders->stages[s].serialized_nir,
&retained_shaders->stages[s].serialized_nir_size);
memcpy(retained_shaders->stages[s].shader_sha1, stages[s].shader_sha1, sizeof(stages[s].shader_sha1));
memcpy(&retained_shaders->stages[s].key, &stages[s].key, sizeof(stages[s].key));
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
}
static void
radv_pipeline_import_retained_shaders(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
struct radv_graphics_lib_pipeline *lib, struct radv_shader_stage *stages)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
struct radv_retained_shaders *retained_shaders = &lib->retained_shaders;
/* Import the stages (SPIR-V only in case of cache hits). */
for (uint32_t i = 0; i < lib->stage_count; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &lib->stages[i];
gl_shader_stage s = vk_to_mesa_shader_stage(sinfo->stage);
radv_pipeline_stage_init(sinfo, &lib->base.layout, &lib->stage_keys[s], &stages[s]);
}
/* Import the NIR shaders (after SPIRV->NIR). */
for (uint32_t s = 0; s < ARRAY_SIZE(lib->base.base.shaders); s++) {
if (!retained_shaders->stages[s].serialized_nir_size)
continue;
int64_t stage_start = os_time_get_nano();
/* Deserialize the NIR shader. */
const struct nir_shader_compiler_options *options = &pdev->nir_options[s];
struct blob_reader blob_reader;
blob_reader_init(&blob_reader, retained_shaders->stages[s].serialized_nir,
retained_shaders->stages[s].serialized_nir_size);
stages[s].stage = s;
stages[s].nir = nir_deserialize(NULL, options, &blob_reader);
stages[s].entrypoint = nir_shader_get_entrypoint(stages[s].nir)->function->name;
memcpy(stages[s].shader_sha1, retained_shaders->stages[s].shader_sha1, sizeof(stages[s].shader_sha1));
memcpy(&stages[s].key, &retained_shaders->stages[s].key, sizeof(stages[s].key));
radv_shader_layout_init(&lib->base.layout, s, &stages[s].layout);
stages[s].feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT;
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
}
static void
radv_pipeline_load_retained_shaders(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo, struct radv_shader_stage *stages)
{
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
const bool link_optimize = (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
/* Nothing to load if no libs are imported. */
if (!libs_info)
return;
/* Nothing to load if fast-linking is enabled and if there is no retained shaders. */
if (!link_optimize && !pipeline->retain_shaders)
return;
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
radv_pipeline_import_retained_shaders(device, pipeline, gfx_pipeline_lib, stages);
}
}
static unsigned
radv_get_rasterization_prim(const struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state)
{
unsigned rast_prim;
if (gfx_state->unknown_rast_prim)
return -1;
if (stages[MESA_SHADER_GEOMETRY].nir) {
rast_prim = radv_conv_gl_prim_to_gs_out(stages[MESA_SHADER_GEOMETRY].nir->info.gs.output_primitive);
} else if (stages[MESA_SHADER_TESS_EVAL].nir) {
if (stages[MESA_SHADER_TESS_EVAL].nir->info.tess.point_mode) {
rast_prim = V_028A6C_POINTLIST;
} else {
rast_prim = radv_conv_tess_prim_to_gs_out(stages[MESA_SHADER_TESS_EVAL].nir->info.tess._primitive_mode);
}
} else if (stages[MESA_SHADER_MESH].nir) {
rast_prim = radv_conv_gl_prim_to_gs_out(stages[MESA_SHADER_MESH].nir->info.mesh.primitive_type);
} else {
rast_prim = radv_conv_prim_to_gs_out(gfx_state->ia.topology, false);
}
return rast_prim;
}
static bool
radv_skip_graphics_pipeline_compile(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
bool fast_linking_enabled)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
VkShaderStageFlagBits binary_stages = 0;
/* Do not skip when fast-linking isn't enabled. */
if (!fast_linking_enabled)
return false;
/* Determine which shader stages have been imported. */
if (pipeline->base.shaders[MESA_SHADER_MESH]) {
binary_stages |= VK_SHADER_STAGE_MESH_BIT_EXT;
if (pipeline->base.shaders[MESA_SHADER_TASK]) {
binary_stages |= VK_SHADER_STAGE_TASK_BIT_EXT;
}
} else {
for (uint32_t i = 0; i < MESA_SHADER_COMPUTE; i++) {
if (!pipeline->base.shaders[i])
continue;
binary_stages |= mesa_to_vk_shader_stage(i);
}
if (pdev->info.gfx_level >= GFX9) {
/* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */
if (binary_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
binary_stages |= VK_SHADER_STAGE_VERTEX_BIT;
}
if (binary_stages & VK_SHADER_STAGE_GEOMETRY_BIT) {
if (binary_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT) {
binary_stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else {
binary_stages |= VK_SHADER_STAGE_VERTEX_BIT;
}
}
}
}
/* Only skip compilation when all binaries have been imported. */
return binary_stages == pipeline->active_stages;
}
void
radv_graphics_shaders_compile(struct radv_device *device, struct vk_pipeline_cache *cache,
struct radv_shader_stage *stages, const struct radv_graphics_state_key *gfx_state,
bool keep_executable_info, bool keep_statistic_info, bool is_internal,
struct radv_retained_shaders *retained_shaders, bool noop_fs,
struct radv_shader **shaders, struct radv_shader_binary **binaries,
struct radv_shader **gs_copy_shader, struct radv_shader_binary **gs_copy_binary)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
const bool nir_cache = instance->perftest_flags & RADV_PERFTEST_NIR_CACHE;
for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) {
if (!stages[s].entrypoint)
continue;
int64_t stage_start = os_time_get_nano();
/* NIR might already have been imported from a library. */
if (!stages[s].nir) {
struct radv_spirv_to_nir_options options = {
.lower_view_index_to_zero = !gfx_state->has_multiview_view_index,
.fix_dual_src_mrt1_export =
gfx_state->ps.epilog.mrt0_is_dual_src && instance->drirc.dual_color_blend_by_location,
};
blake3_hash key;
if (nir_cache) {
radv_hash_graphics_spirv_to_nir(key, &stages[s], &options);
stages[s].nir = radv_pipeline_cache_lookup_nir(device, cache, s, key);
}
if (!stages[s].nir) {
stages[s].nir = radv_shader_spirv_to_nir(device, &stages[s], &options, is_internal);
if (nir_cache)
radv_pipeline_cache_insert_nir(device, cache, key, stages[s].nir);
}
}
stages[s].feedback.duration += os_time_get_nano() - stage_start;
}
if (retained_shaders) {
radv_pipeline_retain_shaders(retained_shaders, stages);
}
VkShaderStageFlagBits active_nir_stages = 0;
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].nir)
active_nir_stages |= mesa_to_vk_shader_stage(i);
}
if (!pdev->mesh_fast_launch_2 && stages[MESA_SHADER_MESH].nir &&
BITSET_TEST(stages[MESA_SHADER_MESH].nir->info.system_values_read, SYSTEM_VALUE_WORKGROUP_ID)) {
nir_shader *mesh = stages[MESA_SHADER_MESH].nir;
nir_shader *task = stages[MESA_SHADER_TASK].nir;
/* Mesh shaders only have a 1D "vertex index" which we use
* as "workgroup index" to emulate the 3D workgroup ID.
*/
nir_lower_compute_system_values_options o = {
.lower_workgroup_id_to_index = true,
.shortcut_1d_workgroup_id = true,
.num_workgroups[0] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[0] : 0,
.num_workgroups[1] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[1] : 0,
.num_workgroups[2] = task ? task->info.mesh.ts_mesh_dispatch_dimensions[2] : 0,
};
NIR_PASS(_, mesh, nir_lower_compute_system_values, &o);
}
radv_foreach_stage(i, active_nir_stages)
{
gl_shader_stage next_stage;
if (stages[i].next_stage != MESA_SHADER_NONE) {
next_stage = stages[i].next_stage;
} else {
next_stage = radv_get_next_stage(i, active_nir_stages);
}
radv_nir_shader_info_init(i, next_stage, &stages[i].info);
}
/* Determine if shaders uses NGG before linking because it's needed for some NIR pass. */
radv_fill_shader_info_ngg(device, stages, active_nir_stages);
if (stages[MESA_SHADER_GEOMETRY].nir) {
unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream;
if (stages[MESA_SHADER_GEOMETRY].info.is_ngg) {
nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives |
nir_lower_gs_intrinsics_count_vertices_per_primitive |
nir_lower_gs_intrinsics_overwrite_incomplete;
}
NIR_PASS(_, stages[MESA_SHADER_GEOMETRY].nir, nir_lower_gs_intrinsics, nir_gs_flags);
}
/* Remove all varyings when the fragment shader is a noop. */
if (noop_fs) {
radv_foreach_stage(i, active_nir_stages)
{
if (radv_is_last_vgt_stage(&stages[i])) {
radv_remove_varyings(stages[i].nir);
break;
}
}
}
radv_graphics_shaders_link(device, gfx_state, stages);
if (stages[MESA_SHADER_FRAGMENT].nir) {
unsigned rast_prim = radv_get_rasterization_prim(stages, gfx_state);
NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_nir_lower_fs_barycentric, gfx_state, rast_prim);
}
radv_foreach_stage(i, active_nir_stages)
{
int64_t stage_start = os_time_get_nano();
radv_optimize_nir(stages[i].nir, stages[i].key.optimisations_disabled);
/* Gather info again, information such as outputs_read can be out-of-date. */
nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir));
radv_nir_lower_io(device, stages[i].nir);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
}
if (stages[MESA_SHADER_FRAGMENT].nir) {
radv_nir_lower_poly_line_smooth(stages[MESA_SHADER_FRAGMENT].nir, gfx_state);
if (!gfx_state->ps.has_epilog)
radv_nir_remap_color_attachment(stages[MESA_SHADER_FRAGMENT].nir, gfx_state);
}
radv_fill_shader_info(device, RADV_PIPELINE_GRAPHICS, gfx_state, stages, active_nir_stages);
radv_declare_pipeline_args(device, stages, gfx_state, active_nir_stages);
radv_foreach_stage(i, active_nir_stages)
{
int64_t stage_start = os_time_get_nano();
radv_postprocess_nir(device, gfx_state, &stages[i]);
stages[i].feedback.duration += os_time_get_nano() - stage_start;
if (radv_can_dump_shader(device, stages[i].nir, false))
nir_print_shader(stages[i].nir, stderr);
}
/* Compile NIR shaders to AMD assembly. */
radv_graphics_shaders_nir_to_asm(device, cache, stages, gfx_state, keep_executable_info, keep_statistic_info,
active_nir_stages, shaders, binaries, gs_copy_shader, gs_copy_binary);
if (keep_executable_info) {
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
struct radv_shader *shader = shaders[i];
if (!shader)
continue;
if (!stages[i].spirv.size)
continue;
shader->spirv = malloc(stages[i].spirv.size);
memcpy(shader->spirv, stages[i].spirv.data, stages[i].spirv.size);
shader->spirv_size = stages[i].spirv.size;
}
}
}
static bool
radv_should_compute_pipeline_hash(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline,
bool fast_linking_enabled)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
/* Skip computing the pipeline hash when GPL fast-linking is enabled because these shaders aren't
* supposed to be cached and computing the hash is costly. Though, make sure it's always computed
* when RGP is enabled, otherwise ISA isn't reported.
*/
return !fast_linking_enabled ||
((instance->vk.trace_mode & RADV_TRACE_MODE_RGP) && pipeline->base.type == RADV_PIPELINE_GRAPHICS);
}
static VkResult
radv_graphics_pipeline_compile(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo,
struct radv_pipeline_layout *pipeline_layout, struct radv_device *device,
struct vk_pipeline_cache *cache, const struct radv_graphics_pipeline_key *pipeline_key,
bool fast_linking_enabled)
{
struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL};
struct radv_shader_binary *gs_copy_binary = NULL;
bool keep_executable_info = radv_pipeline_capture_shaders(device, pipeline->base.create_flags);
bool keep_statistic_info = radv_pipeline_capture_shader_stats(device, pipeline->base.create_flags);
struct radv_shader_stage *stages = malloc(sizeof(struct radv_shader_stage) * MESA_VULKAN_SHADER_STAGES);
const VkPipelineCreationFeedbackCreateInfo *creation_feedback =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO);
VkPipelineCreationFeedback pipeline_feedback = {
.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT,
};
bool skip_shaders_cache = false;
VkResult result = VK_SUCCESS;
const bool retain_shaders =
!!(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT);
struct radv_retained_shaders *retained_shaders = NULL;
if (!stages)
return VK_ERROR_OUT_OF_HOST_MEMORY;
int64_t pipeline_start = os_time_get_nano();
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
stages[i].entrypoint = NULL;
stages[i].nir = NULL;
stages[i].spirv.size = 0;
stages[i].next_stage = MESA_SHADER_NONE;
}
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i];
gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage);
radv_pipeline_stage_init(sinfo, pipeline_layout, &pipeline_key->stage_info[stage], &stages[stage]);
}
radv_pipeline_load_retained_shaders(device, pipeline, pCreateInfo, stages);
if (radv_should_compute_pipeline_hash(device, pipeline, fast_linking_enabled)) {
radv_hash_shaders(device, pipeline->base.sha1, stages, MESA_VULKAN_SHADER_STAGES, pipeline_layout,
&pipeline_key->gfx_state);
pipeline->base.pipeline_hash = *(uint64_t *)pipeline->base.sha1;
}
/* Skip the shaders cache when any of the below are true:
* - fast-linking is enabled because it's useless to cache unoptimized pipelines
* - shaders are captured because it's for debugging purposes
* - graphics pipeline libraries are created with the RETAIN_LINK_TIME_OPTIMIZATION flag and
* module identifiers are used (ie. no SPIR-V provided).
*/
if (fast_linking_enabled || keep_executable_info) {
skip_shaders_cache = true;
} else if (retain_shaders) {
assert(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR);
for (uint32_t i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
if (stages[i].entrypoint && !stages[i].spirv.size) {
skip_shaders_cache = true;
break;
}
}
}
bool found_in_application_cache = true;
if (!skip_shaders_cache &&
radv_graphics_pipeline_cache_search(device, cache, pipeline, &found_in_application_cache)) {
if (found_in_application_cache)
pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT;
if (retain_shaders) {
/* For graphics pipeline libraries created with the RETAIN_LINK_TIME_OPTIMIZATION flag, we
* need to retain the stage info because we can't know if the LTO pipelines will
* be find in the shaders cache.
*/
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(&pipeline->base);
gfx_pipeline_lib->stages = radv_copy_shader_stage_create_info(device, pCreateInfo->stageCount,
pCreateInfo->pStages, gfx_pipeline_lib->mem_ctx);
if (!gfx_pipeline_lib->stages) {
free(stages);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
gfx_pipeline_lib->stage_count = pCreateInfo->stageCount;
for (unsigned i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(pCreateInfo->pStages[i].stage);
gfx_pipeline_lib->stage_keys[s] = pipeline_key->stage_info[s];
}
}
result = VK_SUCCESS;
goto done;
}
if (pipeline->base.create_flags & VK_PIPELINE_CREATE_2_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT_KHR) {
free(stages);
return VK_PIPELINE_COMPILE_REQUIRED;
}
if (retain_shaders) {
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(&pipeline->base);
retained_shaders = &gfx_pipeline_lib->retained_shaders;
}
const bool noop_fs = radv_pipeline_needs_noop_fs(pipeline, &pipeline_key->gfx_state);
radv_graphics_shaders_compile(device, cache, stages, &pipeline_key->gfx_state, keep_executable_info,
keep_statistic_info, pipeline->base.is_internal, retained_shaders, noop_fs,
pipeline->base.shaders, binaries, &pipeline->base.gs_copy_shader, &gs_copy_binary);
if (!skip_shaders_cache) {
radv_pipeline_cache_insert(device, cache, &pipeline->base);
}
free(gs_copy_binary);
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
free(binaries[i]);
if (stages[i].nir) {
if (radv_can_dump_shader_stats(device, stages[i].nir) && pipeline->base.shaders[i]) {
radv_dump_shader_stats(device, &pipeline->base, pipeline->base.shaders[i], i, stderr);
}
}
}
done:
for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
ralloc_free(stages[i].nir);
}
pipeline_feedback.duration = os_time_get_nano() - pipeline_start;
if (creation_feedback) {
*creation_feedback->pPipelineCreationFeedback = pipeline_feedback;
if (creation_feedback->pipelineStageCreationFeedbackCount > 0) {
uint32_t num_feedbacks = 0;
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage s = vk_to_mesa_shader_stage(pCreateInfo->pStages[i].stage);
creation_feedback->pPipelineStageCreationFeedbacks[num_feedbacks++] = stages[s].feedback;
}
/* Stages imported from graphics pipeline libraries are defined as additional entries in the
* order they were imported.
*/
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
if (libs_info) {
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
if (!gfx_pipeline_lib->base.active_stages)
continue;
radv_foreach_stage(s, gfx_pipeline_lib->base.active_stages)
{
creation_feedback->pPipelineStageCreationFeedbacks[num_feedbacks++] = stages[s].feedback;
}
}
}
assert(num_feedbacks == creation_feedback->pipelineStageCreationFeedbackCount);
}
}
free(stages);
return result;
}
struct radv_vgt_shader_key
radv_get_vgt_shader_key(const struct radv_device *device, struct radv_shader **shaders,
const struct radv_shader *gs_copy_shader)
{
uint8_t hs_size = 64, gs_size = 64, vs_size = 64;
struct radv_shader *last_vgt_shader = NULL;
struct radv_vgt_shader_key key;
memset(&key, 0, sizeof(key));
if (shaders[MESA_SHADER_GEOMETRY]) {
last_vgt_shader = shaders[MESA_SHADER_GEOMETRY];
} else if (shaders[MESA_SHADER_TESS_EVAL]) {
last_vgt_shader = shaders[MESA_SHADER_TESS_EVAL];
} else if (shaders[MESA_SHADER_VERTEX]) {
last_vgt_shader = shaders[MESA_SHADER_VERTEX];
} else {
assert(shaders[MESA_SHADER_MESH]);
last_vgt_shader = shaders[MESA_SHADER_MESH];
}
vs_size = gs_size = last_vgt_shader->info.wave_size;
if (gs_copy_shader)
vs_size = gs_copy_shader->info.wave_size;
if (shaders[MESA_SHADER_TESS_CTRL])
hs_size = shaders[MESA_SHADER_TESS_CTRL]->info.wave_size;
key.tess = !!shaders[MESA_SHADER_TESS_CTRL];
key.gs = !!shaders[MESA_SHADER_GEOMETRY];
if (last_vgt_shader->info.is_ngg) {
key.ngg = 1;
key.ngg_passthrough = last_vgt_shader->info.is_ngg_passthrough;
key.ngg_streamout = last_vgt_shader->info.so.num_outputs > 0;
}
if (shaders[MESA_SHADER_MESH]) {
key.mesh = 1;
key.mesh_scratch_ring = shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring;
}
key.hs_wave32 = hs_size == 32;
key.vs_wave32 = vs_size == 32;
key.gs_wave32 = gs_size == 32;
return key;
}
static bool
gfx103_pipeline_vrs_coarse_shading(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_instance *instance = radv_physical_device_instance(pdev);
struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
if (pdev->info.gfx_level != GFX10_3)
return false;
if (instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING)
return false;
if (ps && !ps->info.ps.allow_flat_shading)
return false;
return true;
}
static void
radv_pipeline_init_vertex_input_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline,
const struct vk_graphics_pipeline_state *state)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const struct radv_shader_info *vs_info = &radv_get_shader(pipeline->base.shaders, MESA_SHADER_VERTEX)->info;
if (state->vi) {
u_foreach_bit (i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
VkFormat format = state->vi->attributes[i].format;
pipeline->attrib_ends[i] = offset + vk_format_get_blocksize(format);
pipeline->attrib_bindings[i] = binding;
if (state->vi->bindings[binding].stride) {
pipeline->attrib_index_offset[i] = offset / state->vi->bindings[binding].stride;
}
}
u_foreach_bit (i, state->vi->bindings_valid) {
pipeline->binding_stride[i] = state->vi->bindings[i].stride;
}
}
/* Prepare the VS input state for prologs created inside a library. */
if (vs_info->vs.has_prolog && !(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT)) {
const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
const enum radeon_family family = pdev->info.family;
const struct ac_vtx_format_info *vtx_info_table = ac_get_vtx_format_info_table(gfx_level, family);
pipeline->vs_input_state.bindings_match_attrib = true;
u_foreach_bit (i, state->vi->attributes_valid) {
uint32_t binding = state->vi->attributes[i].binding;
uint32_t offset = state->vi->attributes[i].offset;
pipeline->vs_input_state.attribute_mask |= BITFIELD_BIT(i);
pipeline->vs_input_state.bindings[i] = binding;
pipeline->vs_input_state.bindings_match_attrib &= binding == i;
if (state->vi->bindings[binding].input_rate) {
pipeline->vs_input_state.instance_rate_inputs |= BITFIELD_BIT(i);
pipeline->vs_input_state.divisors[i] = state->vi->bindings[binding].divisor;
if (state->vi->bindings[binding].divisor == 0) {
pipeline->vs_input_state.zero_divisors |= BITFIELD_BIT(i);
} else if (state->vi->bindings[binding].divisor > 1) {
pipeline->vs_input_state.nontrivial_divisors |= BITFIELD_BIT(i);
}
}
pipeline->vs_input_state.offsets[i] = offset;
enum pipe_format format = vk_format_to_pipe_format(state->vi->attributes[i].format);
const struct ac_vtx_format_info *vtx_info = &vtx_info_table[format];
pipeline->vs_input_state.formats[i] = format;
uint8_t format_align_req_minus_1 = vtx_info->chan_byte_size >= 4 ? 3 : (vtx_info->element_size - 1);
pipeline->vs_input_state.format_align_req_minus_1[i] = format_align_req_minus_1;
uint8_t component_align_req_minus_1 =
MIN2(vtx_info->chan_byte_size ? vtx_info->chan_byte_size : vtx_info->element_size, 4) - 1;
pipeline->vs_input_state.component_align_req_minus_1[i] = component_align_req_minus_1;
pipeline->vs_input_state.format_sizes[i] = vtx_info->element_size;
pipeline->vs_input_state.alpha_adjust_lo |= (vtx_info->alpha_adjust & 0x1) << i;
pipeline->vs_input_state.alpha_adjust_hi |= (vtx_info->alpha_adjust >> 1) << i;
if (G_008F0C_DST_SEL_X(vtx_info->dst_sel) == V_008F0C_SQ_SEL_Z) {
pipeline->vs_input_state.post_shuffle |= BITFIELD_BIT(i);
}
if (!(vtx_info->has_hw_format & BITFIELD_BIT(vtx_info->num_channels - 1))) {
pipeline->vs_input_state.nontrivial_formats |= BITFIELD_BIT(i);
}
}
}
}
static void
radv_pipeline_init_shader_stages_state(const struct radv_device *device, struct radv_graphics_pipeline *pipeline)
{
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) {
bool shader_exists = !!pipeline->base.shaders[i];
if (shader_exists || i < MESA_SHADER_COMPUTE) {
if (shader_exists)
pipeline->base.need_indirect_descriptor_sets |=
radv_shader_need_indirect_descriptor_sets(pipeline->base.shaders[i]);
}
}
gl_shader_stage first_stage =
radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : MESA_SHADER_VERTEX;
const struct radv_shader *shader = radv_get_shader(pipeline->base.shaders, first_stage);
const struct radv_userdata_info *loc = radv_get_user_sgpr(shader, AC_UD_VS_BASE_VERTEX_START_INSTANCE);
if (loc->sgpr_idx != -1) {
pipeline->vtx_base_sgpr = shader->info.user_data_0;
pipeline->vtx_base_sgpr += loc->sgpr_idx * 4;
pipeline->vtx_emit_num = loc->num_sgprs;
pipeline->uses_drawid = radv_get_shader(pipeline->base.shaders, first_stage)->info.vs.needs_draw_id;
pipeline->uses_baseinstance = radv_get_shader(pipeline->base.shaders, first_stage)->info.vs.needs_base_instance;
assert(first_stage != MESA_SHADER_MESH || !pipeline->uses_baseinstance);
}
}
uint32_t
radv_get_vgt_gs_out(struct radv_shader **shaders, uint32_t primitive_topology)
{
uint32_t gs_out;
if (shaders[MESA_SHADER_GEOMETRY]) {
gs_out = radv_conv_gl_prim_to_gs_out(shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim);
} else if (shaders[MESA_SHADER_TESS_CTRL]) {
if (shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) {
gs_out = V_028A6C_POINTLIST;
} else {
gs_out = radv_conv_tess_prim_to_gs_out(shaders[MESA_SHADER_TESS_EVAL]->info.tes._primitive_mode);
}
} else if (shaders[MESA_SHADER_MESH]) {
gs_out = radv_conv_gl_prim_to_gs_out(shaders[MESA_SHADER_MESH]->info.ms.output_prim);
} else {
gs_out = radv_conv_prim_to_gs_out(primitive_topology, false);
}
return gs_out;
}
static uint32_t
radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline *pipeline, const struct vk_graphics_pipeline_state *state)
{
uint32_t primitive_topology = 0;
if (pipeline->last_vgt_api_stage == MESA_SHADER_VERTEX)
primitive_topology = radv_translate_prim(state->ia->primitive_topology);
return radv_get_vgt_gs_out(pipeline->base.shaders, primitive_topology);
}
static void
radv_pipeline_init_extra(struct radv_graphics_pipeline *pipeline,
const struct radv_graphics_pipeline_create_info *extra,
const struct vk_graphics_pipeline_state *state)
{
if (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR ||
extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS ||
extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX8 ||
extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 ||
extra->custom_blend_mode == V_028808_CB_RESOLVE) {
/* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four
* channels of MRT0.
*/
pipeline->cb_shader_mask = 0xf;
pipeline->custom_blend_mode = extra->custom_blend_mode;
}
if (extra->use_rectlist) {
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
dynamic->vk.ia.primitive_topology = V_008958_DI_PT_RECTLIST;
pipeline->rast_prim =
radv_conv_prim_to_gs_out(dynamic->vk.ia.primitive_topology, radv_pipeline_has_ngg(pipeline));
}
if (radv_pipeline_has_ds_attachments(state->rp)) {
pipeline->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
pipeline->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
pipeline->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable);
pipeline->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable);
pipeline->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable);
}
}
static bool
radv_is_fast_linking_enabled(const struct radv_graphics_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
if (!libs_info)
return false;
return !(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT);
}
bool
radv_needs_null_export_workaround(const struct radv_device *device, const struct radv_shader *ps,
unsigned custom_blend_mode)
{
const struct radv_physical_device *pdev = radv_device_physical(device);
const enum amd_gfx_level gfx_level = pdev->info.gfx_level;
if (!ps)
return false;
/* Ensure that some export memory is always allocated, for two reasons:
*
* 1) Correctness: The hardware ignores the EXEC mask if no export
* memory is allocated, so KILL and alpha test do not work correctly
* without this.
* 2) Performance: Every shader needs at least a NULL export, even when
* it writes no color/depth output. The NULL export instruction
* stalls without this setting.
*
* Don't add this to CB_SHADER_MASK.
*
* GFX10 supports pixel shaders without exports by setting both the
* color and Z formats to SPI_SHADER_ZERO. The hw will skip export
* instructions if any are present.
*
* GFX11 requires one color output, otherwise the DCC decompression does nothing.
*
* Primitive Ordered Pixel Shading also requires an export, otherwise interlocking doesn't work
* correctly before GFX11, and a hang happens on GFX11.
*/
return (gfx_level <= GFX9 || ps->info.ps.can_discard || ps->info.ps.pops ||
(custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 && gfx_level >= GFX11)) &&
!ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask;
}
static VkResult
radv_graphics_pipeline_init(struct radv_graphics_pipeline *pipeline, struct radv_device *device,
struct vk_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
VK_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
VkGraphicsPipelineLibraryFlagBitsEXT needed_lib_flags = ALL_GRAPHICS_LIB_FLAGS;
bool fast_linking_enabled = radv_is_fast_linking_enabled(pipeline, pCreateInfo);
struct vk_graphics_pipeline_state state = {0};
VkResult result = VK_SUCCESS;
pipeline->last_vgt_api_stage = MESA_SHADER_NONE;
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
radv_pipeline_layout_init(device, &pipeline->layout, false);
/* If we have libraries, import them first. */
if (libs_info) {
const bool link_optimize =
(pipeline->base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
assert(pipeline_lib->type == RADV_PIPELINE_GRAPHICS_LIB);
/* If we have link time optimization, all libraries must be created with
* VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT.
*/
assert(!link_optimize || gfx_pipeline_lib->base.retain_shaders);
radv_graphics_pipeline_import_lib(device, pipeline, &state, gfx_pipeline_lib, link_optimize);
needed_lib_flags &= ~gfx_pipeline_lib->lib_flags;
}
}
/* Import graphics pipeline info that was not included in the libraries. */
result = radv_pipeline_import_graphics_info(device, pipeline, &state, pCreateInfo);
if (result != VK_SUCCESS)
return result;
if (pipeline_layout)
radv_graphics_pipeline_import_layout(&pipeline->layout, pipeline_layout);
if (radv_should_compute_pipeline_hash(device, pipeline, fast_linking_enabled))
radv_pipeline_layout_hash(&pipeline->layout);
if (!radv_skip_graphics_pipeline_compile(device, pipeline, fast_linking_enabled)) {
struct radv_graphics_pipeline_key key =
radv_generate_graphics_pipeline_key(device, pCreateInfo, &state, pipeline->base.type, needed_lib_flags);
result = radv_graphics_pipeline_compile(pipeline, pCreateInfo, &pipeline->layout, device, cache, &key,
fast_linking_enabled);
if (result != VK_SUCCESS)
return result;
}
uint32_t vgt_gs_out_prim_type = radv_pipeline_init_vgt_gs_out(pipeline, &state);
radv_pipeline_init_multisample_state(device, pipeline, pCreateInfo, &state);
if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
radv_pipeline_init_input_assembly_state(device, pipeline);
radv_pipeline_init_dynamic_state(device, pipeline, &state, pCreateInfo);
const struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT];
if (ps && !ps->info.has_epilog) {
pipeline->spi_shader_col_format = ps->info.ps.spi_shader_col_format;
pipeline->cb_shader_mask = ps->info.ps.cb_shader_mask;
}
unsigned custom_blend_mode = extra ? extra->custom_blend_mode : 0;
if (radv_needs_null_export_workaround(device, ps, custom_blend_mode) && !pipeline->spi_shader_col_format) {
pipeline->spi_shader_col_format = V_028714_SPI_SHADER_32_R;
}
if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH))
radv_pipeline_init_vertex_input_state(device, pipeline, &state);
radv_pipeline_init_shader_stages_state(device, pipeline);
pipeline->is_ngg = radv_pipeline_has_ngg(pipeline);
pipeline->has_ngg_culling =
pipeline->is_ngg && pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.has_ngg_culling;
pipeline->force_vrs_per_vertex = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.force_vrs_per_vertex;
pipeline->rast_prim = vgt_gs_out_prim_type;
pipeline->uses_out_of_order_rast = state.rs->rasterization_order_amd == VK_RASTERIZATION_ORDER_RELAXED_AMD;
pipeline->uses_vrs = radv_is_vrs_enabled(&state);
pipeline->uses_vrs_attachment = radv_pipeline_uses_vrs_attachment(pipeline, &state);
pipeline->uses_vrs_coarse_shading = !pipeline->uses_vrs && gfx103_pipeline_vrs_coarse_shading(device, pipeline);
pipeline->base.push_constant_size = pipeline->layout.push_constant_size;
pipeline->base.dynamic_offset_count = pipeline->layout.dynamic_offset_count;
if (extra) {
radv_pipeline_init_extra(pipeline, extra, &state);
}
return result;
}
VkResult
radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
{
VK_FROM_HANDLE(radv_device, device, _device);
VK_FROM_HANDLE(vk_pipeline_cache, cache, _cache);
struct radv_graphics_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_GRAPHICS);
pipeline->base.create_flags = vk_graphics_pipeline_create_flags(pCreateInfo);
pipeline->base.is_internal = _cache == device->meta_state.cache;
result = radv_graphics_pipeline_init(pipeline, device, cache, pCreateInfo, extra);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(&pipeline->base);
radv_rmv_log_graphics_pipeline_create(device, &pipeline->base, pipeline->base.is_internal);
return VK_SUCCESS;
}
void
radv_destroy_graphics_pipeline(struct radv_device *device, struct radv_graphics_pipeline *pipeline)
{
radv_pipeline_layout_finish(device, &pipeline->layout);
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
if (pipeline->base.shaders[i])
radv_shader_unref(device, pipeline->base.shaders[i]);
}
if (pipeline->base.gs_copy_shader)
radv_shader_unref(device, pipeline->base.gs_copy_shader);
vk_free(&device->vk.alloc, pipeline->state_data);
}
static VkResult
radv_graphics_lib_pipeline_init(struct radv_graphics_lib_pipeline *pipeline, struct radv_device *device,
struct vk_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
VK_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout);
VkResult result;
const VkGraphicsPipelineLibraryCreateInfoEXT *lib_info =
vk_find_struct_const(pCreateInfo->pNext, GRAPHICS_PIPELINE_LIBRARY_CREATE_INFO_EXT);
VkGraphicsPipelineLibraryFlagBitsEXT needed_lib_flags = lib_info ? lib_info->flags : 0;
const VkPipelineLibraryCreateInfoKHR *libs_info =
vk_find_struct_const(pCreateInfo->pNext, PIPELINE_LIBRARY_CREATE_INFO_KHR);
bool fast_linking_enabled = radv_is_fast_linking_enabled(&pipeline->base, pCreateInfo);
struct vk_graphics_pipeline_state *state = &pipeline->graphics_state;
pipeline->base.last_vgt_api_stage = MESA_SHADER_NONE;
pipeline->base.retain_shaders =
(pipeline->base.base.create_flags & VK_PIPELINE_CREATE_2_RETAIN_LINK_TIME_OPTIMIZATION_INFO_BIT_EXT) != 0;
pipeline->lib_flags = needed_lib_flags;
radv_pipeline_layout_init(device, &pipeline->base.layout, false);
/* If we have libraries, import them first. */
if (libs_info) {
const bool link_optimize =
(pipeline->base.base.create_flags & VK_PIPELINE_CREATE_2_LINK_TIME_OPTIMIZATION_BIT_EXT) != 0;
for (uint32_t i = 0; i < libs_info->libraryCount; i++) {
VK_FROM_HANDLE(radv_pipeline, pipeline_lib, libs_info->pLibraries[i]);
struct radv_graphics_lib_pipeline *gfx_pipeline_lib = radv_pipeline_to_graphics_lib(pipeline_lib);
radv_graphics_pipeline_import_lib(device, &pipeline->base, state, gfx_pipeline_lib, link_optimize);
pipeline->lib_flags |= gfx_pipeline_lib->lib_flags;
needed_lib_flags &= ~gfx_pipeline_lib->lib_flags;
}
}
result = radv_pipeline_import_graphics_info(device, &pipeline->base, state, pCreateInfo);
if (result != VK_SUCCESS)
return result;
if (pipeline_layout)
radv_graphics_pipeline_import_layout(&pipeline->base.layout, pipeline_layout);
if (radv_should_compute_pipeline_hash(device, &pipeline->base, fast_linking_enabled))
radv_pipeline_layout_hash(&pipeline->base.layout);
struct radv_graphics_pipeline_key key =
radv_generate_graphics_pipeline_key(device, pCreateInfo, state, pipeline->base.base.type, needed_lib_flags);
return radv_graphics_pipeline_compile(&pipeline->base, pCreateInfo, &pipeline->base.layout, device, cache, &key,
fast_linking_enabled);
}
static VkResult
radv_graphics_lib_pipeline_create(VkDevice _device, VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline)
{
VK_FROM_HANDLE(vk_pipeline_cache, cache, _cache);
VK_FROM_HANDLE(radv_device, device, _device);
struct radv_graphics_lib_pipeline *pipeline;
VkResult result;
pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
radv_pipeline_init(device, &pipeline->base.base, RADV_PIPELINE_GRAPHICS_LIB);
pipeline->base.base.create_flags = vk_graphics_pipeline_create_flags(pCreateInfo);
pipeline->mem_ctx = ralloc_context(NULL);
result = radv_graphics_lib_pipeline_init(pipeline, device, cache, pCreateInfo);
if (result != VK_SUCCESS) {
radv_pipeline_destroy(device, &pipeline->base.base, pAllocator);
return result;
}
*pPipeline = radv_pipeline_to_handle(&pipeline->base.base);
return VK_SUCCESS;
}
void
radv_destroy_graphics_lib_pipeline(struct radv_device *device, struct radv_graphics_lib_pipeline *pipeline)
{
struct radv_retained_shaders *retained_shaders = &pipeline->retained_shaders;
for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) {
free(retained_shaders->stages[i].serialized_nir);
}
ralloc_free(pipeline->mem_ctx);
radv_destroy_graphics_pipeline(device, &pipeline->base);
}
VKAPI_ATTR VkResult VKAPI_CALL
radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
const VkPipelineCreateFlagBits2KHR create_flags = vk_graphics_pipeline_create_flags(&pCreateInfos[i]);
VkResult r;
if (create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR) {
r = radv_graphics_lib_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, &pPipelines[i]);
} else {
r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator, &pPipelines[i]);
}
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
if (create_flags & VK_PIPELINE_CREATE_2_EARLY_RETURN_ON_FAILURE_BIT_KHR)
break;
}
}
for (; i < count; ++i)
pPipelines[i] = VK_NULL_HANDLE;
return result;
}