Files
third_party_mesa3d/src/intel/vulkan/anv_device.c
Chris Spencer bda4eb18dd anv: Advertise Vulkan 1.3 on Android 13
Older versions of Android rejected newer versions of Vulkan,[1] but Android
13 devices are 'strongly recommended' to support Vulkan 1.3.[2]

[1] https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4781
[2] https://source.android.com/docs/compatibility/13/android-13-cdd#7142_vulkan

Signed-off-by: Chris Spencer <spencercw@gmail.com>
Reviewed-by: José Roberto de Souza <jose.souza@intel.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/24816>
2023-08-23 14:31:26 +00:00

4774 lines
186 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#ifdef MAJOR_IN_MKDEV
#include <sys/mkdev.h>
#endif
#ifdef MAJOR_IN_SYSMACROS
#include <sys/sysmacros.h>
#endif
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include "drm-uapi/drm_fourcc.h"
#include "drm-uapi/drm.h"
#include <xf86drm.h>
#include "anv_private.h"
#include "anv_measure.h"
#include "util/u_debug.h"
#include "util/build_id.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "util/os_file.h"
#include "util/os_misc.h"
#include "util/u_atomic.h"
#include "util/u_string.h"
#include "util/driconf.h"
#include "git_sha1.h"
#include "vk_util.h"
#include "vk_deferred_operation.h"
#include "vk_drm_syncobj.h"
#include "common/intel_aux_map.h"
#include "common/intel_uuid.h"
#include "perf/intel_perf.h"
#include "i915/anv_device.h"
#include "xe/anv_device.h"
#include "genxml/gen7_pack.h"
#include "genxml/genX_bits.h"
static const driOptionDescription anv_dri_options[] = {
DRI_CONF_SECTION_PERFORMANCE
DRI_CONF_ADAPTIVE_SYNC(true)
DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
DRI_CONF_VK_KHR_PRESENT_WAIT(false)
DRI_CONF_VK_XWAYLAND_WAIT_READY(true)
DRI_CONF_ANV_ASSUME_FULL_SUBGROUPS(false)
DRI_CONF_ANV_SAMPLE_MASK_OUT_OPENGL_BEHAVIOUR(false)
DRI_CONF_ANV_FP64_WORKAROUND_ENABLED(false)
DRI_CONF_ANV_GENERATED_INDIRECT_THRESHOLD(4)
DRI_CONF_NO_16BIT(false)
DRI_CONF_ANV_QUERY_CLEAR_WITH_BLORP_THRESHOLD(6)
DRI_CONF_ANV_QUERY_COPY_WITH_SHADER_THRESHOLD(6)
DRI_CONF_ANV_FORCE_INDIRECT_DESCRIPTORS(false)
DRI_CONF_SHADER_SPILLING_RATE(0)
DRI_CONF_SECTION_END
DRI_CONF_SECTION_DEBUG
DRI_CONF_ALWAYS_FLUSH_CACHE(false)
DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
DRI_CONF_LIMIT_TRIG_INPUT_RANGE(false)
DRI_CONF_ANV_MESH_CONV_PRIM_ATTRS_TO_VERT_ATTRS(-2)
DRI_CONF_FORCE_VK_VENDOR(0)
DRI_CONF_FAKE_SPARSE(false)
DRI_CONF_SECTION_END
DRI_CONF_SECTION_QUALITY
DRI_CONF_PP_LOWER_DEPTH_RANGE_RATE()
DRI_CONF_SECTION_END
};
/* This is probably far to big but it reflects the max size used for messages
* in OpenGLs KHR_debug.
*/
#define MAX_DEBUG_MESSAGE_LENGTH 4096
/* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
#if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
#define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
#endif
static void
compiler_debug_log(void *data, UNUSED unsigned *id, const char *fmt, ...)
{
char str[MAX_DEBUG_MESSAGE_LENGTH];
struct anv_device *device = (struct anv_device *)data;
UNUSED struct anv_instance *instance = device->physical->instance;
va_list args;
va_start(args, fmt);
(void) vsnprintf(str, MAX_DEBUG_MESSAGE_LENGTH, fmt, args);
va_end(args);
//vk_logd(VK_LOG_NO_OBJS(&instance->vk), "%s", str);
}
static void
compiler_perf_log(UNUSED void *data, UNUSED unsigned *id, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
if (INTEL_DEBUG(DEBUG_PERF))
mesa_logd_v(fmt, args);
va_end(args);
}
#if defined(VK_USE_PLATFORM_WAYLAND_KHR) || \
defined(VK_USE_PLATFORM_XCB_KHR) || \
defined(VK_USE_PLATFORM_XLIB_KHR) || \
defined(VK_USE_PLATFORM_DISPLAY_KHR)
#define ANV_USE_WSI_PLATFORM
#endif
#ifdef ANDROID
#if ANDROID_API_LEVEL >= 33
#define ANV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
#else
#define ANV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
#endif
#else
#define ANV_API_VERSION VK_MAKE_VERSION(1, 3, VK_HEADER_VERSION)
#endif
VkResult anv_EnumerateInstanceVersion(
uint32_t* pApiVersion)
{
*pApiVersion = ANV_API_VERSION;
return VK_SUCCESS;
}
static const struct vk_instance_extension_table instance_extensions = {
.KHR_device_group_creation = true,
.KHR_external_fence_capabilities = true,
.KHR_external_memory_capabilities = true,
.KHR_external_semaphore_capabilities = true,
.KHR_get_physical_device_properties2 = true,
.EXT_debug_report = true,
.EXT_debug_utils = true,
#ifdef ANV_USE_WSI_PLATFORM
.KHR_get_surface_capabilities2 = true,
.KHR_surface = true,
.KHR_surface_protected_capabilities = true,
.EXT_swapchain_colorspace = true,
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
.KHR_wayland_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
.KHR_xcb_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
.KHR_xlib_surface = true,
#endif
#ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
.EXT_acquire_xlib_display = true,
#endif
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.KHR_display = true,
.KHR_get_display_properties2 = true,
.EXT_direct_mode_display = true,
.EXT_display_surface_counter = true,
.EXT_acquire_drm_display = true,
#endif
};
static void
get_device_extensions(const struct anv_physical_device *device,
struct vk_device_extension_table *ext)
{
const bool has_syncobj_wait =
(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT) != 0;
const bool rt_enabled = ANV_SUPPORT_RT && device->info.has_ray_tracing;
/* We are still seeing some failures with mesh and graphics pipeline
* libraries used together, so disable mesh by default.
*/
const bool mesh_shader_enabled = device->info.has_mesh_shading &&
debug_get_bool_option("ANV_MESH_SHADER", false);
*ext = (struct vk_device_extension_table) {
.KHR_8bit_storage = true,
.KHR_16bit_storage = !device->instance->no_16bit,
.KHR_acceleration_structure = rt_enabled,
.KHR_bind_memory2 = true,
.KHR_buffer_device_address = true,
.KHR_copy_commands2 = true,
.KHR_create_renderpass2 = true,
.KHR_dedicated_allocation = true,
.KHR_deferred_host_operations = true,
.KHR_depth_stencil_resolve = true,
.KHR_descriptor_update_template = true,
.KHR_device_group = true,
.KHR_draw_indirect_count = true,
.KHR_driver_properties = true,
.KHR_dynamic_rendering = true,
.KHR_external_fence = has_syncobj_wait,
.KHR_external_fence_fd = has_syncobj_wait,
.KHR_external_memory = true,
.KHR_external_memory_fd = true,
.KHR_external_semaphore = true,
.KHR_external_semaphore_fd = true,
.KHR_format_feature_flags2 = true,
.KHR_fragment_shading_rate = device->info.ver >= 11,
.KHR_get_memory_requirements2 = true,
.KHR_image_format_list = true,
.KHR_imageless_framebuffer = true,
#ifdef ANV_USE_WSI_PLATFORM
.KHR_incremental_present = true,
#endif
.KHR_maintenance1 = true,
.KHR_maintenance2 = true,
.KHR_maintenance3 = true,
.KHR_maintenance4 = true,
.KHR_map_memory2 = true,
.KHR_multiview = true,
.KHR_performance_query =
device->perf &&
(device->perf->i915_perf_version >= 3 ||
INTEL_DEBUG(DEBUG_NO_OACONFIG)) &&
device->use_call_secondary,
.KHR_pipeline_executable_properties = true,
.KHR_pipeline_library = true,
/* Hide these behind dri configs for now since we cannot implement it reliably on
* all surfaces yet. There is no surface capability query for present wait/id,
* but the feature is useful enough to hide behind an opt-in mechanism for now.
* If the instance only enables surface extensions that unconditionally support present wait,
* we can also expose the extension that way. */
.KHR_present_id =
driQueryOptionb(&device->instance->dri_options, "vk_khr_present_wait") ||
wsi_common_vk_instance_supports_present_wait(&device->instance->vk),
.KHR_present_wait =
driQueryOptionb(&device->instance->dri_options, "vk_khr_present_wait") ||
wsi_common_vk_instance_supports_present_wait(&device->instance->vk),
.KHR_push_descriptor = true,
.KHR_ray_query = rt_enabled,
.KHR_ray_tracing_maintenance1 = rt_enabled,
.KHR_ray_tracing_pipeline = rt_enabled,
.KHR_ray_tracing_position_fetch = rt_enabled,
.KHR_relaxed_block_layout = true,
.KHR_sampler_mirror_clamp_to_edge = true,
.KHR_sampler_ycbcr_conversion = true,
.KHR_separate_depth_stencil_layouts = true,
.KHR_shader_atomic_int64 = true,
.KHR_shader_clock = true,
.KHR_shader_draw_parameters = true,
.KHR_shader_float16_int8 = !device->instance->no_16bit,
.KHR_shader_float_controls = true,
.KHR_shader_integer_dot_product = true,
.KHR_shader_non_semantic_info = true,
.KHR_shader_subgroup_extended_types = true,
.KHR_shader_subgroup_uniform_control_flow = true,
.KHR_shader_terminate_invocation = true,
.KHR_spirv_1_4 = true,
.KHR_storage_buffer_storage_class = true,
#ifdef ANV_USE_WSI_PLATFORM
.KHR_swapchain = true,
.KHR_swapchain_mutable_format = true,
#endif
.KHR_synchronization2 = true,
.KHR_timeline_semaphore = true,
.KHR_uniform_buffer_standard_layout = true,
.KHR_variable_pointers = true,
.KHR_video_queue = device->video_decode_enabled,
.KHR_video_decode_queue = device->video_decode_enabled,
.KHR_video_decode_h264 = VIDEO_CODEC_H264DEC && device->video_decode_enabled,
.KHR_video_decode_h265 = VIDEO_CODEC_H265DEC && device->video_decode_enabled,
.KHR_vulkan_memory_model = true,
.KHR_workgroup_memory_explicit_layout = true,
.KHR_zero_initialize_workgroup_memory = true,
.EXT_4444_formats = true,
.EXT_border_color_swizzle = true,
.EXT_buffer_device_address = true,
.EXT_calibrated_timestamps = device->has_reg_timestamp,
.EXT_color_write_enable = true,
.EXT_conditional_rendering = true,
.EXT_conservative_rasterization = true,
.EXT_custom_border_color = true,
.EXT_depth_bias_control = true,
.EXT_depth_clamp_zero_one = true,
.EXT_depth_clip_control = true,
.EXT_depth_clip_enable = true,
.EXT_descriptor_indexing = true,
#ifdef VK_USE_PLATFORM_DISPLAY_KHR
.EXT_display_control = true,
#endif
.EXT_dynamic_rendering_unused_attachments = true,
.EXT_extended_dynamic_state = true,
.EXT_extended_dynamic_state2 = true,
.EXT_extended_dynamic_state3 = true,
.EXT_external_memory_dma_buf = true,
.EXT_external_memory_host = true,
.EXT_fragment_shader_interlock = true,
.EXT_global_priority = device->max_context_priority >=
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
.EXT_global_priority_query = device->max_context_priority >=
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
.EXT_graphics_pipeline_library = !debug_get_bool_option("ANV_NO_GPL", false),
.EXT_host_query_reset = true,
.EXT_image_2d_view_of_3d = true,
.EXT_image_robustness = true,
.EXT_image_drm_format_modifier = true,
.EXT_image_sliced_view_of_3d = true,
.EXT_image_view_min_lod = true,
.EXT_index_type_uint8 = true,
.EXT_inline_uniform_block = true,
.EXT_line_rasterization = true,
.EXT_load_store_op_none = true,
/* Enable the extension only if we have support on both the local &
* system memory
*/
.EXT_memory_budget = (!device->info.has_local_mem ||
device->vram_mappable.available > 0) &&
device->sys.available,
.EXT_mesh_shader = mesh_shader_enabled,
.EXT_mutable_descriptor_type = true,
.EXT_non_seamless_cube_map = true,
.EXT_pci_bus_info = true,
.EXT_physical_device_drm = true,
.EXT_pipeline_creation_cache_control = true,
.EXT_pipeline_creation_feedback = true,
.EXT_pipeline_library_group_handles = rt_enabled,
.EXT_pipeline_robustness = true,
.EXT_post_depth_coverage = true,
.EXT_primitives_generated_query = true,
.EXT_primitive_topology_list_restart = true,
.EXT_private_data = true,
.EXT_provoking_vertex = true,
.EXT_queue_family_foreign = true,
.EXT_robustness2 = true,
.EXT_sample_locations = true,
.EXT_sampler_filter_minmax = true,
.EXT_scalar_block_layout = true,
.EXT_separate_stencil_usage = true,
.EXT_shader_atomic_float = true,
.EXT_shader_atomic_float2 = true,
.EXT_shader_demote_to_helper_invocation = true,
.EXT_shader_module_identifier = true,
.EXT_shader_stencil_export = true,
.EXT_shader_subgroup_ballot = true,
.EXT_shader_subgroup_vote = true,
.EXT_shader_viewport_index_layer = true,
.EXT_subgroup_size_control = true,
.EXT_texel_buffer_alignment = true,
.EXT_tooling_info = true,
.EXT_transform_feedback = true,
.EXT_vertex_attribute_divisor = true,
.EXT_vertex_input_dynamic_state = true,
.EXT_ycbcr_image_arrays = true,
#ifdef ANDROID
.ANDROID_external_memory_android_hardware_buffer = true,
.ANDROID_native_buffer = true,
#endif
.GOOGLE_decorate_string = true,
.GOOGLE_hlsl_functionality1 = true,
.GOOGLE_user_type = true,
.INTEL_performance_query = device->perf &&
device->perf->i915_perf_version >= 3,
.INTEL_shader_integer_functions2 = true,
.EXT_multi_draw = true,
.NV_compute_shader_derivatives = true,
.VALVE_mutable_descriptor_type = true,
};
}
static void
get_features(const struct anv_physical_device *pdevice,
struct vk_features *features)
{
struct vk_app_info *app_info = &pdevice->instance->vk.app_info;
/* Just pick one; they're all the same */
const bool has_astc_ldr =
isl_format_supports_sampling(&pdevice->info,
ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16);
const bool rt_enabled = ANV_SUPPORT_RT && pdevice->info.has_ray_tracing;
const bool mesh_shader =
pdevice->vk.supported_extensions.EXT_mesh_shader;
*features = (struct vk_features) {
/* Vulkan 1.0 */
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = true,
.tessellationShader = true,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = pdevice->info.ver >= 12,
.wideLines = true,
.largePoints = true,
.alphaToOne = true,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = true,
.textureCompressionASTC_LDR = has_astc_ldr,
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
/* We can't do image stores in vec4 shaders */
.vertexPipelineStoresAndAtomics =
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY],
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = false,
/* Gfx12.5 has all the required format supported in HW for typed
* read/writes
*/
.shaderStorageImageReadWithoutFormat = pdevice->info.verx10 >= 125,
.shaderStorageImageWriteWithoutFormat = true,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = pdevice->info.has_64bit_float,
.shaderInt64 = true,
.shaderInt16 = true,
.shaderResourceResidency = pdevice->instance->has_fake_sparse,
.shaderResourceMinLod = true,
.sparseBinding = pdevice->instance->has_fake_sparse,
.sparseResidencyBuffer = pdevice->instance->has_fake_sparse,
.sparseResidencyImage2D = pdevice->instance->has_fake_sparse,
.sparseResidencyImage3D = pdevice->instance->has_fake_sparse,
.sparseResidency2Samples = false,
.sparseResidency4Samples = false,
.sparseResidency8Samples = false,
.sparseResidency16Samples = false,
.sparseResidencyAliased = pdevice->instance->has_fake_sparse,
.variableMultisampleRate = true,
.inheritedQueries = true,
/* Vulkan 1.1 */
.storageBuffer16BitAccess = !pdevice->instance->no_16bit,
.uniformAndStorageBuffer16BitAccess = !pdevice->instance->no_16bit,
.storagePushConstant16 = true,
.storageInputOutput16 = false,
.multiview = true,
.multiviewGeometryShader = true,
.multiviewTessellationShader = true,
.variablePointersStorageBuffer = true,
.variablePointers = true,
.protectedMemory = false,
.samplerYcbcrConversion = true,
.shaderDrawParameters = true,
/* Vulkan 1.2 */
.samplerMirrorClampToEdge = true,
.drawIndirectCount = true,
.storageBuffer8BitAccess = true,
.uniformAndStorageBuffer8BitAccess = true,
.storagePushConstant8 = true,
.shaderBufferInt64Atomics = true,
.shaderSharedInt64Atomics = false,
.shaderFloat16 = !pdevice->instance->no_16bit,
.shaderInt8 = !pdevice->instance->no_16bit,
.descriptorIndexing = true,
.shaderInputAttachmentArrayDynamicIndexing = false,
.shaderUniformTexelBufferArrayDynamicIndexing = true,
.shaderStorageTexelBufferArrayDynamicIndexing = true,
.shaderUniformBufferArrayNonUniformIndexing = true,
.shaderSampledImageArrayNonUniformIndexing = true,
.shaderStorageBufferArrayNonUniformIndexing = true,
.shaderStorageImageArrayNonUniformIndexing = true,
.shaderInputAttachmentArrayNonUniformIndexing = false,
.shaderUniformTexelBufferArrayNonUniformIndexing = true,
.shaderStorageTexelBufferArrayNonUniformIndexing = true,
.descriptorBindingUniformBufferUpdateAfterBind = true,
.descriptorBindingSampledImageUpdateAfterBind = true,
.descriptorBindingStorageImageUpdateAfterBind = true,
.descriptorBindingStorageBufferUpdateAfterBind = true,
.descriptorBindingUniformTexelBufferUpdateAfterBind = true,
.descriptorBindingStorageTexelBufferUpdateAfterBind = true,
.descriptorBindingUpdateUnusedWhilePending = true,
.descriptorBindingPartiallyBound = true,
.descriptorBindingVariableDescriptorCount = true,
.runtimeDescriptorArray = true,
.samplerFilterMinmax = true,
.scalarBlockLayout = true,
.imagelessFramebuffer = true,
.uniformBufferStandardLayout = true,
.shaderSubgroupExtendedTypes = true,
.separateDepthStencilLayouts = true,
.hostQueryReset = true,
.timelineSemaphore = true,
.bufferDeviceAddress = true,
.bufferDeviceAddressCaptureReplay = true,
.bufferDeviceAddressMultiDevice = false,
.vulkanMemoryModel = true,
.vulkanMemoryModelDeviceScope = true,
.vulkanMemoryModelAvailabilityVisibilityChains = true,
.shaderOutputViewportIndex = true,
.shaderOutputLayer = true,
.subgroupBroadcastDynamicId = true,
/* Vulkan 1.3 */
.robustImageAccess = true,
.inlineUniformBlock = true,
.descriptorBindingInlineUniformBlockUpdateAfterBind = true,
.pipelineCreationCacheControl = true,
.privateData = true,
.shaderDemoteToHelperInvocation = true,
.shaderTerminateInvocation = true,
.subgroupSizeControl = true,
.computeFullSubgroups = true,
.synchronization2 = true,
.textureCompressionASTC_HDR = false,
.shaderZeroInitializeWorkgroupMemory = true,
.dynamicRendering = true,
.shaderIntegerDotProduct = true,
.maintenance4 = true,
/* VK_EXT_4444_formats */
.formatA4R4G4B4 = true,
.formatA4B4G4R4 = false,
/* VK_KHR_acceleration_structure */
.accelerationStructure = rt_enabled,
.accelerationStructureCaptureReplay = false, /* TODO */
.accelerationStructureIndirectBuild = false, /* TODO */
.accelerationStructureHostCommands = false,
.descriptorBindingAccelerationStructureUpdateAfterBind = rt_enabled,
/* VK_EXT_border_color_swizzle */
.borderColorSwizzle = true,
.borderColorSwizzleFromImage = true,
/* VK_EXT_color_write_enable */
.colorWriteEnable = true,
/* VK_EXT_image_2d_view_of_3d */
.image2DViewOf3D = true,
.sampler2DViewOf3D = true,
/* VK_EXT_image_sliced_view_of_3d */
.imageSlicedViewOf3D = true,
/* VK_NV_compute_shader_derivatives */
.computeDerivativeGroupQuads = true,
.computeDerivativeGroupLinear = true,
/* VK_EXT_conditional_rendering */
.conditionalRendering = true,
.inheritedConditionalRendering = true,
/* VK_EXT_custom_border_color */
.customBorderColors = true,
.customBorderColorWithoutFormat = true,
/* VK_EXT_depth_clamp_zero_one */
.depthClampZeroOne = true,
/* VK_EXT_depth_clip_enable */
.depthClipEnable = true,
/* VK_EXT_fragment_shader_interlock */
.fragmentShaderSampleInterlock = true,
.fragmentShaderPixelInterlock = true,
.fragmentShaderShadingRateInterlock = false,
/* VK_EXT_global_priority_query */
.globalPriorityQuery = true,
/* VK_EXT_graphics_pipeline_library */
.graphicsPipelineLibrary =
pdevice->vk.supported_extensions.EXT_graphics_pipeline_library,
/* VK_KHR_fragment_shading_rate */
.pipelineFragmentShadingRate = true,
.primitiveFragmentShadingRate =
pdevice->info.has_coarse_pixel_primitive_and_cb,
.attachmentFragmentShadingRate =
pdevice->info.has_coarse_pixel_primitive_and_cb,
/* VK_EXT_image_view_min_lod */
.minLod = true,
/* VK_EXT_index_type_uint8 */
.indexTypeUint8 = true,
/* VK_EXT_line_rasterization */
/* Rectangular lines must use the strict algorithm, which is not
* supported for wide lines prior to ICL. See rasterization_mode for
* details and how the HW states are programmed.
*/
.rectangularLines = pdevice->info.ver >= 10,
.bresenhamLines = true,
/* Support for Smooth lines with MSAA was removed on gfx11. From the
* BSpec section "Multisample ModesState" table for "AA Line Support
* Requirements":
*
* GFX10:BUG:######## NUM_MULTISAMPLES == 1
*
* Fortunately, this isn't a case most people care about.
*/
.smoothLines = pdevice->info.ver < 10,
.stippledRectangularLines = false,
.stippledBresenhamLines = true,
.stippledSmoothLines = false,
/* VK_NV_mesh_shader */
.taskShaderNV = false,
.meshShaderNV = false,
/* VK_EXT_mesh_shader */
.taskShader = mesh_shader,
.meshShader = mesh_shader,
.multiviewMeshShader = false,
.primitiveFragmentShadingRateMeshShader = mesh_shader,
.meshShaderQueries = false,
/* VK_EXT_mutable_descriptor_type */
.mutableDescriptorType = true,
/* VK_KHR_performance_query */
.performanceCounterQueryPools = true,
/* HW only supports a single configuration at a time. */
.performanceCounterMultipleQueryPools = false,
/* VK_KHR_pipeline_executable_properties */
.pipelineExecutableInfo = true,
/* VK_EXT_primitives_generated_query */
.primitivesGeneratedQuery = true,
.primitivesGeneratedQueryWithRasterizerDiscard = false,
.primitivesGeneratedQueryWithNonZeroStreams = false,
/* VK_EXT_pipeline_library_group_handles */
.pipelineLibraryGroupHandles = true,
/* VK_EXT_provoking_vertex */
.provokingVertexLast = true,
.transformFeedbackPreservesProvokingVertex = true,
/* VK_KHR_ray_query */
.rayQuery = rt_enabled,
/* VK_KHR_ray_tracing_maintenance1 */
.rayTracingMaintenance1 = rt_enabled,
.rayTracingPipelineTraceRaysIndirect2 = rt_enabled,
/* VK_KHR_ray_tracing_pipeline */
.rayTracingPipeline = rt_enabled,
.rayTracingPipelineShaderGroupHandleCaptureReplay = false,
.rayTracingPipelineShaderGroupHandleCaptureReplayMixed = false,
.rayTracingPipelineTraceRaysIndirect = rt_enabled,
.rayTraversalPrimitiveCulling = rt_enabled,
/* VK_EXT_robustness2 */
.robustBufferAccess2 = true,
.robustImageAccess2 = true,
.nullDescriptor = true,
/* VK_EXT_shader_atomic_float */
.shaderBufferFloat32Atomics = true,
.shaderBufferFloat32AtomicAdd = pdevice->info.has_lsc,
.shaderBufferFloat64Atomics =
pdevice->info.has_64bit_float && pdevice->info.has_lsc,
.shaderBufferFloat64AtomicAdd = false,
.shaderSharedFloat32Atomics = true,
.shaderSharedFloat32AtomicAdd = false,
.shaderSharedFloat64Atomics = false,
.shaderSharedFloat64AtomicAdd = false,
.shaderImageFloat32Atomics = true,
.shaderImageFloat32AtomicAdd = false,
.sparseImageFloat32Atomics = false,
.sparseImageFloat32AtomicAdd = false,
/* VK_EXT_shader_atomic_float2 */
.shaderBufferFloat16Atomics = pdevice->info.has_lsc,
.shaderBufferFloat16AtomicAdd = false,
.shaderBufferFloat16AtomicMinMax = pdevice->info.has_lsc,
.shaderBufferFloat32AtomicMinMax = true,
.shaderBufferFloat64AtomicMinMax =
pdevice->info.has_64bit_float && pdevice->info.has_lsc,
.shaderSharedFloat16Atomics = pdevice->info.has_lsc,
.shaderSharedFloat16AtomicAdd = false,
.shaderSharedFloat16AtomicMinMax = pdevice->info.has_lsc,
.shaderSharedFloat32AtomicMinMax = true,
.shaderSharedFloat64AtomicMinMax = false,
.shaderImageFloat32AtomicMinMax = false,
.sparseImageFloat32AtomicMinMax = false,
/* VK_KHR_shader_clock */
.shaderSubgroupClock = true,
.shaderDeviceClock = false,
/* VK_INTEL_shader_integer_functions2 */
.shaderIntegerFunctions2 = true,
/* VK_EXT_shader_module_identifier */
.shaderModuleIdentifier = true,
/* VK_KHR_shader_subgroup_uniform_control_flow */
.shaderSubgroupUniformControlFlow = true,
/* VK_EXT_texel_buffer_alignment */
.texelBufferAlignment = true,
/* VK_EXT_transform_feedback */
.transformFeedback = true,
.geometryStreams = true,
/* VK_EXT_vertex_attribute_divisor */
.vertexAttributeInstanceRateDivisor = true,
.vertexAttributeInstanceRateZeroDivisor = true,
/* VK_KHR_workgroup_memory_explicit_layout */
.workgroupMemoryExplicitLayout = true,
.workgroupMemoryExplicitLayoutScalarBlockLayout = true,
.workgroupMemoryExplicitLayout8BitAccess = true,
.workgroupMemoryExplicitLayout16BitAccess = true,
/* VK_EXT_ycbcr_image_arrays */
.ycbcrImageArrays = true,
/* VK_EXT_extended_dynamic_state */
.extendedDynamicState = true,
/* VK_EXT_extended_dynamic_state2 */
.extendedDynamicState2 = true,
.extendedDynamicState2LogicOp = true,
.extendedDynamicState2PatchControlPoints = true,
/* VK_EXT_extended_dynamic_state3 */
.extendedDynamicState3PolygonMode = true,
.extendedDynamicState3TessellationDomainOrigin = true,
.extendedDynamicState3RasterizationStream = true,
.extendedDynamicState3LineStippleEnable = true,
.extendedDynamicState3LineRasterizationMode = true,
.extendedDynamicState3LogicOpEnable = true,
.extendedDynamicState3AlphaToOneEnable = true,
.extendedDynamicState3DepthClipEnable = true,
.extendedDynamicState3DepthClampEnable = true,
.extendedDynamicState3DepthClipNegativeOneToOne = true,
.extendedDynamicState3ProvokingVertexMode = true,
.extendedDynamicState3ColorBlendEnable = true,
.extendedDynamicState3ColorWriteMask = true,
.extendedDynamicState3ColorBlendEquation = true,
.extendedDynamicState3SampleLocationsEnable = true,
.extendedDynamicState3SampleMask = true,
.extendedDynamicState3ConservativeRasterizationMode = true,
.extendedDynamicState3RasterizationSamples = false,
.extendedDynamicState3AlphaToCoverageEnable = false,
.extendedDynamicState3ExtraPrimitiveOverestimationSize = false,
.extendedDynamicState3ViewportWScalingEnable = false,
.extendedDynamicState3ViewportSwizzle = false,
.extendedDynamicState3ShadingRateImageEnable = false,
.extendedDynamicState3CoverageToColorEnable = false,
.extendedDynamicState3CoverageToColorLocation = false,
.extendedDynamicState3CoverageModulationMode = false,
.extendedDynamicState3CoverageModulationTableEnable = false,
.extendedDynamicState3CoverageModulationTable = false,
.extendedDynamicState3CoverageReductionMode = false,
.extendedDynamicState3RepresentativeFragmentTestEnable = false,
.extendedDynamicState3ColorBlendAdvanced = false,
/* VK_EXT_multi_draw */
.multiDraw = true,
/* VK_EXT_non_seamless_cube_map */
.nonSeamlessCubeMap = true,
/* VK_EXT_primitive_topology_list_restart */
.primitiveTopologyListRestart = true,
.primitiveTopologyPatchListRestart = true,
/* VK_EXT_depth_clip_control */
.depthClipControl = true,
/* VK_KHR_present_id */
.presentId = pdevice->vk.supported_extensions.KHR_present_id,
/* VK_KHR_present_wait */
.presentWait = pdevice->vk.supported_extensions.KHR_present_wait,
/* VK_EXT_vertex_input_dynamic_state */
.vertexInputDynamicState = true,
/* VK_KHR_ray_tracing_position_fetch */
.rayTracingPositionFetch = rt_enabled,
/* VK_EXT_dynamic_rendering_unused_attachments */
.dynamicRenderingUnusedAttachments = true,
/* VK_EXT_depth_bias_control */
.depthBiasControl = true,
.floatRepresentation = true,
.leastRepresentableValueForceUnormRepresentation = false,
.depthBiasExact = true,
/* VK_EXT_pipeline_robustness */
.pipelineRobustness = true,
};
/* The new DOOM and Wolfenstein games require depthBounds without
* checking for it. They seem to run fine without it so just claim it's
* there and accept the consequences.
*/
if (app_info->engine_name && strcmp(app_info->engine_name, "idTech") == 0)
features->depthBounds = true;
}
static uint64_t
anv_compute_sys_heap_size(struct anv_physical_device *device,
uint64_t total_ram)
{
/* We don't want to burn too much ram with the GPU. If the user has 4GiB
* or less, we use at most half. If they have more than 4GiB, we use 3/4.
*/
uint64_t available_ram;
if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
available_ram = total_ram / 2;
else
available_ram = total_ram * 3 / 4;
/* We also want to leave some padding for things we allocate in the driver,
* so don't go over 3/4 of the GTT either.
*/
available_ram = MIN2(available_ram, device->gtt_size * 3 / 4);
return available_ram;
}
static VkResult MUST_CHECK
anv_init_meminfo(struct anv_physical_device *device, int fd)
{
const struct intel_device_info *devinfo = &device->info;
device->sys.region = &devinfo->mem.sram.mem;
device->sys.size =
anv_compute_sys_heap_size(device, devinfo->mem.sram.mappable.size);
device->sys.available = devinfo->mem.sram.mappable.free;
device->vram_mappable.region = &devinfo->mem.vram.mem;
device->vram_mappable.size = devinfo->mem.vram.mappable.size;
device->vram_mappable.available = devinfo->mem.vram.mappable.free;
device->vram_non_mappable.region = &devinfo->mem.vram.mem;
device->vram_non_mappable.size = devinfo->mem.vram.unmappable.size;
device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free;
return VK_SUCCESS;
}
static void
anv_update_meminfo(struct anv_physical_device *device, int fd)
{
if (!intel_device_info_update_memory_info(&device->info, fd))
return;
const struct intel_device_info *devinfo = &device->info;
device->sys.available = devinfo->mem.sram.mappable.free;
device->vram_mappable.available = devinfo->mem.vram.mappable.free;
device->vram_non_mappable.available = devinfo->mem.vram.unmappable.free;
}
static VkResult
anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
{
VkResult result = anv_init_meminfo(device, fd);
if (result != VK_SUCCESS)
return result;
assert(device->sys.size != 0);
if (anv_physical_device_has_vram(device)) {
/* We can create 2 or 3 different heaps when we have local memory
* support, first heap with local memory size and second with system
* memory size and the third is added only if part of the vram is
* mappable to the host.
*/
device->memory.heap_count = 2;
device->memory.heaps[0] = (struct anv_memory_heap) {
/* If there is a vram_non_mappable, use that for the device only
* heap. Otherwise use the vram_mappable.
*/
.size = device->vram_non_mappable.size != 0 ?
device->vram_non_mappable.size : device->vram_mappable.size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
.is_local_mem = true,
};
device->memory.heaps[1] = (struct anv_memory_heap) {
.size = device->sys.size,
.flags = 0,
.is_local_mem = false,
};
/* Add an additional smaller vram mappable heap if we can't map all the
* vram to the host.
*/
if (device->vram_non_mappable.size > 0) {
device->memory.heap_count++;
device->memory.heaps[2] = (struct anv_memory_heap) {
.size = device->vram_mappable.size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
.is_local_mem = true,
};
}
} else {
device->memory.heap_count = 1;
device->memory.heaps[0] = (struct anv_memory_heap) {
.size = device->sys.size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
.is_local_mem = false,
};
}
switch (device->info.kmd_type) {
case INTEL_KMD_TYPE_XE:
result = anv_xe_physical_device_init_memory_types(device);
break;
case INTEL_KMD_TYPE_I915:
default:
result = anv_i915_physical_device_init_memory_types(device);
break;
}
if (result != VK_SUCCESS)
return result;
for (unsigned i = 0; i < device->memory.type_count; i++) {
VkMemoryPropertyFlags props = device->memory.types[i].propertyFlags;
if ((props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) &&
!(props & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
#ifdef SUPPORT_INTEL_INTEGRATED_GPUS
device->memory.need_clflush = true;
#else
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"Memory configuration requires flushing, but it's not implemented for this architecture");
#endif
}
return VK_SUCCESS;
}
static VkResult
anv_physical_device_init_uuids(struct anv_physical_device *device)
{
const struct build_id_note *note =
build_id_find_nhdr_for_addr(anv_physical_device_init_uuids);
if (!note) {
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"Failed to find build-id");
}
unsigned build_id_len = build_id_length(note);
if (build_id_len < 20) {
return vk_errorf(device, VK_ERROR_INITIALIZATION_FAILED,
"build-id too short. It needs to be a SHA");
}
memcpy(device->driver_build_sha1, build_id_data(note), 20);
struct mesa_sha1 sha1_ctx;
uint8_t sha1[20];
STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
/* The pipeline cache UUID is used for determining when a pipeline cache is
* invalid. It needs both a driver build and the PCI ID of the device.
*/
_mesa_sha1_init(&sha1_ctx);
_mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
_mesa_sha1_update(&sha1_ctx, &device->info.pci_device_id,
sizeof(device->info.pci_device_id));
_mesa_sha1_update(&sha1_ctx, &device->always_use_bindless,
sizeof(device->always_use_bindless));
_mesa_sha1_final(&sha1_ctx, sha1);
memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
intel_uuid_compute_driver_id(device->driver_uuid, &device->info, VK_UUID_SIZE);
intel_uuid_compute_device_id(device->device_uuid, &device->info, VK_UUID_SIZE);
return VK_SUCCESS;
}
static void
anv_physical_device_init_disk_cache(struct anv_physical_device *device)
{
#ifdef ENABLE_SHADER_CACHE
char renderer[10];
ASSERTED int len = snprintf(renderer, sizeof(renderer), "anv_%04x",
device->info.pci_device_id);
assert(len == sizeof(renderer) - 2);
char timestamp[41];
_mesa_sha1_format(timestamp, device->driver_build_sha1);
const uint64_t driver_flags =
brw_get_compiler_config_value(device->compiler);
device->vk.disk_cache = disk_cache_create(renderer, timestamp, driver_flags);
#endif
}
static void
anv_physical_device_free_disk_cache(struct anv_physical_device *device)
{
#ifdef ENABLE_SHADER_CACHE
if (device->vk.disk_cache) {
disk_cache_destroy(device->vk.disk_cache);
device->vk.disk_cache = NULL;
}
#else
assert(device->vk.disk_cache == NULL);
#endif
}
/* The ANV_QUEUE_OVERRIDE environment variable is a comma separated list of
* queue overrides.
*
* To override the number queues:
* * "gc" is for graphics queues with compute support
* * "g" is for graphics queues with no compute support
* * "c" is for compute queues with no graphics support
* * "v" is for video queues with no graphics support
*
* For example, ANV_QUEUE_OVERRIDE=gc=2,c=1 would override the number of
* advertised queues to be 2 queues with graphics+compute support, and 1 queue
* with compute-only support.
*
* ANV_QUEUE_OVERRIDE=c=1 would override the number of advertised queues to
* include 1 queue with compute-only support, but it will not change the
* number of graphics+compute queues.
*
* ANV_QUEUE_OVERRIDE=gc=0,c=1 would override the number of advertised queues
* to include 1 queue with compute-only support, and it would override the
* number of graphics+compute queues to be 0.
*/
static void
anv_override_engine_counts(int *gc_count, int *g_count, int *c_count, int *v_count)
{
int gc_override = -1;
int g_override = -1;
int c_override = -1;
int v_override = -1;
char *env = getenv("ANV_QUEUE_OVERRIDE");
if (env == NULL)
return;
env = strdup(env);
char *save = NULL;
char *next = strtok_r(env, ",", &save);
while (next != NULL) {
if (strncmp(next, "gc=", 3) == 0) {
gc_override = strtol(next + 3, NULL, 0);
} else if (strncmp(next, "g=", 2) == 0) {
g_override = strtol(next + 2, NULL, 0);
} else if (strncmp(next, "c=", 2) == 0) {
c_override = strtol(next + 2, NULL, 0);
} else if (strncmp(next, "v=", 2) == 0) {
v_override = strtol(next + 2, NULL, 0);
} else {
mesa_logw("Ignoring unsupported ANV_QUEUE_OVERRIDE token: %s", next);
}
next = strtok_r(NULL, ",", &save);
}
free(env);
if (gc_override >= 0)
*gc_count = gc_override;
if (g_override >= 0)
*g_count = g_override;
if (*g_count > 0 && *gc_count <= 0 && (gc_override >= 0 || g_override >= 0))
mesa_logw("ANV_QUEUE_OVERRIDE: gc=0 with g > 0 violates the "
"Vulkan specification");
if (c_override >= 0)
*c_count = c_override;
if (v_override >= 0)
*v_count = v_override;
}
static void
anv_physical_device_init_queue_families(struct anv_physical_device *pdevice)
{
uint32_t family_count = 0;
VkQueueFlags sparse_flags = pdevice->instance->has_fake_sparse ?
VK_QUEUE_SPARSE_BINDING_BIT : 0;
if (pdevice->engine_info) {
int gc_count =
intel_engines_count(pdevice->engine_info,
INTEL_ENGINE_CLASS_RENDER);
int v_count =
intel_engines_count(pdevice->engine_info, INTEL_ENGINE_CLASS_VIDEO);
int g_count = 0;
int c_count = 0;
if (debug_get_bool_option("INTEL_COMPUTE_CLASS", false))
c_count = intel_engines_count(pdevice->engine_info,
INTEL_ENGINE_CLASS_COMPUTE);
enum intel_engine_class compute_class =
c_count < 1 ? INTEL_ENGINE_CLASS_RENDER : INTEL_ENGINE_CLASS_COMPUTE;
anv_override_engine_counts(&gc_count, &g_count, &c_count, &v_count);
if (gc_count > 0) {
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT |
sparse_flags,
.queueCount = gc_count,
.engine_class = INTEL_ENGINE_CLASS_RENDER,
};
}
if (g_count > 0) {
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_TRANSFER_BIT |
sparse_flags,
.queueCount = g_count,
.engine_class = INTEL_ENGINE_CLASS_RENDER,
};
}
if (c_count > 0) {
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT |
sparse_flags,
.queueCount = c_count,
.engine_class = compute_class,
};
}
if (v_count > 0 && pdevice->video_decode_enabled) {
/* HEVC support on Gfx9 is only available on VCS0. So limit the number of video queues
* to the first VCS engine instance.
*
* We should be able to query HEVC support from the kernel using the engine query uAPI,
* but this appears to be broken :
* https://gitlab.freedesktop.org/drm/intel/-/issues/8832
*
* When this bug is fixed we should be able to check HEVC support to determine the
* correct number of queues.
*/
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_VIDEO_DECODE_BIT_KHR,
.queueCount = pdevice->info.ver == 9 ? MIN2(1, v_count) : v_count,
.engine_class = INTEL_ENGINE_CLASS_VIDEO,
};
}
/* Increase count below when other families are added as a reminder to
* increase the ANV_MAX_QUEUE_FAMILIES value.
*/
STATIC_ASSERT(ANV_MAX_QUEUE_FAMILIES >= 4);
} else {
/* Default to a single render queue */
pdevice->queue.families[family_count++] = (struct anv_queue_family) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT |
sparse_flags,
.queueCount = 1,
.engine_class = INTEL_ENGINE_CLASS_RENDER,
};
family_count = 1;
}
assert(family_count <= ANV_MAX_QUEUE_FAMILIES);
pdevice->queue.family_count = family_count;
}
static VkResult
anv_physical_device_get_parameters(struct anv_physical_device *device)
{
switch (device->info.kmd_type) {
case INTEL_KMD_TYPE_I915:
return anv_i915_physical_device_get_parameters(device);
case INTEL_KMD_TYPE_XE:
return anv_xe_physical_device_get_parameters(device);
default:
unreachable("Missing");
return VK_ERROR_UNKNOWN;
}
}
static VkResult
anv_physical_device_try_create(struct vk_instance *vk_instance,
struct _drmDevice *drm_device,
struct vk_physical_device **out)
{
struct anv_instance *instance =
container_of(vk_instance, struct anv_instance, vk);
if (!(drm_device->available_nodes & (1 << DRM_NODE_RENDER)) ||
drm_device->bustype != DRM_BUS_PCI ||
drm_device->deviceinfo.pci->vendor_id != 0x8086)
return VK_ERROR_INCOMPATIBLE_DRIVER;
const char *primary_path = drm_device->nodes[DRM_NODE_PRIMARY];
const char *path = drm_device->nodes[DRM_NODE_RENDER];
VkResult result;
int fd;
int master_fd = -1;
brw_process_intel_debug_variable();
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0) {
if (errno == ENOMEM) {
return vk_errorf(instance, VK_ERROR_OUT_OF_HOST_MEMORY,
"Unable to open device %s: out of memory", path);
}
return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Unable to open device %s: %m", path);
}
struct intel_device_info devinfo;
if (!intel_get_device_info_from_fd(fd, &devinfo)) {
result = vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
goto fail_fd;
}
if (devinfo.ver > 12) {
result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Vulkan not yet supported on %s", devinfo.name);
goto fail_fd;
} else if (devinfo.ver < 9) {
/* Silently fail here, hasvk should pick up this device. */
result = VK_ERROR_INCOMPATIBLE_DRIVER;
goto fail_fd;
}
if (!devinfo.has_context_isolation) {
result = vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"Vulkan requires context isolation for %s", devinfo.name);
goto fail_fd;
}
struct anv_physical_device *device =
vk_zalloc(&instance->vk.alloc, sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (device == NULL) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_fd;
}
struct vk_physical_device_dispatch_table dispatch_table;
vk_physical_device_dispatch_table_from_entrypoints(
&dispatch_table, &anv_physical_device_entrypoints, true);
vk_physical_device_dispatch_table_from_entrypoints(
&dispatch_table, &wsi_physical_device_entrypoints, false);
result = vk_physical_device_init(&device->vk, &instance->vk,
NULL, NULL, NULL, /* We set up extensions later */
&dispatch_table);
if (result != VK_SUCCESS) {
vk_error(instance, result);
goto fail_alloc;
}
device->instance = instance;
assert(strlen(path) < ARRAY_SIZE(device->path));
snprintf(device->path, ARRAY_SIZE(device->path), "%s", path);
device->info = devinfo;
device->local_fd = fd;
result = anv_physical_device_get_parameters(device);
if (result != VK_SUCCESS)
goto fail_base;
device->gtt_size = device->info.gtt_size ? device->info.gtt_size :
device->info.aperture_bytes;
if (device->gtt_size < (4ULL << 30 /* GiB */)) {
vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER,
"GTT size too small: 0x%016"PRIx64, device->gtt_size);
goto fail_base;
}
/* We currently only have the right bits for instructions in Gen12+. If the
* kernel ever starts supporting that feature on previous generations,
* we'll need to edit genxml prior to enabling here.
*/
device->has_protected_contexts = device->info.ver >= 12 &&
intel_gem_supports_protected_context(fd, device->info.kmd_type);
result = anv_physical_device_init_heaps(device, fd);
if (result != VK_SUCCESS)
goto fail_base;
if (debug_get_bool_option("ANV_QUEUE_THREAD_DISABLE", false))
device->has_exec_timeline = false;
device->generated_indirect_draws =
debug_get_bool_option("ANV_ENABLE_GENERATED_INDIRECT_DRAWS",
true);
unsigned st_idx = 0;
device->sync_syncobj_type = vk_drm_syncobj_get_type(fd);
if (!device->has_exec_timeline)
device->sync_syncobj_type.features &= ~VK_SYNC_FEATURE_TIMELINE;
device->sync_types[st_idx++] = &device->sync_syncobj_type;
/* anv_bo_sync_type is only supported with i915 for now */
if (device->info.kmd_type == INTEL_KMD_TYPE_I915) {
if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT))
device->sync_types[st_idx++] = &anv_bo_sync_type;
if (!(device->sync_syncobj_type.features & VK_SYNC_FEATURE_TIMELINE)) {
device->sync_timeline_type = vk_sync_timeline_get_type(&anv_bo_sync_type);
device->sync_types[st_idx++] = &device->sync_timeline_type.sync;
}
} else {
assert(device->sync_syncobj_type.features & VK_SYNC_FEATURE_TIMELINE);
assert(device->sync_syncobj_type.features & VK_SYNC_FEATURE_CPU_WAIT);
}
device->sync_types[st_idx++] = NULL;
assert(st_idx <= ARRAY_SIZE(device->sync_types));
device->vk.supported_sync_types = device->sync_types;
device->vk.pipeline_cache_import_ops = anv_cache_import_ops;
device->always_use_bindless =
debug_get_bool_option("ANV_ALWAYS_BINDLESS", false);
device->use_call_secondary =
!debug_get_bool_option("ANV_DISABLE_SECONDARY_CMD_BUFFER_CALLS", false);
device->has_implicit_ccs = device->info.has_aux_map ||
device->info.verx10 >= 125;
device->video_decode_enabled = debug_get_bool_option("ANV_VIDEO_DECODE", false);
device->uses_ex_bso = device->info.verx10 >= 125;
/* For now always use indirect descriptors. We'll update this
* to !uses_ex_bso when all the infrastructure is built up.
*/
device->indirect_descriptors =
!device->uses_ex_bso ||
driQueryOptionb(&instance->dri_options, "force_indirect_descriptors");
/* Check if we can read the GPU timestamp register from the CPU */
uint64_t u64_ignore;
device->has_reg_timestamp = intel_gem_read_render_timestamp(fd,
device->info.kmd_type,
&u64_ignore);
device->uses_relocs = device->info.kmd_type != INTEL_KMD_TYPE_XE;
device->always_flush_cache = INTEL_DEBUG(DEBUG_STALL) ||
driQueryOptionb(&instance->dri_options, "always_flush_cache");
device->compiler = brw_compiler_create(NULL, &device->info);
if (device->compiler == NULL) {
result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_base;
}
device->compiler->shader_debug_log = compiler_debug_log;
device->compiler->shader_perf_log = compiler_perf_log;
device->compiler->constant_buffer_0_is_relative = false;
device->compiler->supports_shader_constants = true;
device->compiler->indirect_ubos_use_sampler = device->info.ver < 12;
device->compiler->extended_bindless_surface_offset = device->uses_ex_bso;
device->compiler->use_bindless_sampler_offset = !device->indirect_descriptors;
device->compiler->spilling_rate =
driQueryOptioni(&instance->dri_options, "shader_spilling_rate");
isl_device_init(&device->isl_dev, &device->info);
device->isl_dev.buffer_length_in_aux_addr = true;
result = anv_physical_device_init_uuids(device);
if (result != VK_SUCCESS)
goto fail_compiler;
anv_physical_device_init_va_ranges(device);
anv_physical_device_init_disk_cache(device);
if (instance->vk.enabled_extensions.KHR_display) {
master_fd = open(primary_path, O_RDWR | O_CLOEXEC);
if (master_fd >= 0) {
/* fail if we don't have permission to even render on this device */
if (!intel_gem_can_render_on_fd(master_fd, device->info.kmd_type)) {
close(master_fd);
master_fd = -1;
}
}
}
device->master_fd = master_fd;
device->engine_info = intel_engine_get_info(fd, device->info.kmd_type);
device->info.has_compute_engine = device->engine_info &&
intel_engines_count(device->engine_info,
INTEL_ENGINE_CLASS_COMPUTE);
anv_physical_device_init_queue_families(device);
anv_physical_device_init_perf(device, fd);
get_device_extensions(device, &device->vk.supported_extensions);
get_features(device, &device->vk.supported_features);
/* Gather major/minor before WSI. */
struct stat st;
if (stat(primary_path, &st) == 0) {
device->has_master = true;
device->master_major = major(st.st_rdev);
device->master_minor = minor(st.st_rdev);
} else {
device->has_master = false;
device->master_major = 0;
device->master_minor = 0;
}
if (stat(path, &st) == 0) {
device->has_local = true;
device->local_major = major(st.st_rdev);
device->local_minor = minor(st.st_rdev);
} else {
device->has_local = false;
device->local_major = 0;
device->local_minor = 0;
}
result = anv_init_wsi(device);
if (result != VK_SUCCESS)
goto fail_perf;
anv_measure_device_init(device);
anv_genX(&device->info, init_physical_device_state)(device);
*out = &device->vk;
return VK_SUCCESS;
fail_perf:
ralloc_free(device->perf);
free(device->engine_info);
anv_physical_device_free_disk_cache(device);
fail_compiler:
ralloc_free(device->compiler);
fail_base:
vk_physical_device_finish(&device->vk);
fail_alloc:
vk_free(&instance->vk.alloc, device);
fail_fd:
close(fd);
if (master_fd != -1)
close(master_fd);
return result;
}
static void
anv_physical_device_destroy(struct vk_physical_device *vk_device)
{
struct anv_physical_device *device =
container_of(vk_device, struct anv_physical_device, vk);
anv_finish_wsi(device);
anv_measure_device_destroy(device);
free(device->engine_info);
anv_physical_device_free_disk_cache(device);
ralloc_free(device->compiler);
ralloc_free(device->perf);
close(device->local_fd);
if (device->master_fd >= 0)
close(device->master_fd);
vk_physical_device_finish(&device->vk);
vk_free(&device->instance->vk.alloc, device);
}
VkResult anv_EnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
if (pLayerName)
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
return vk_enumerate_instance_extension_properties(
&instance_extensions, pPropertyCount, pProperties);
}
static void
anv_init_dri_options(struct anv_instance *instance)
{
driParseOptionInfo(&instance->available_dri_options, anv_dri_options,
ARRAY_SIZE(anv_dri_options));
driParseConfigFiles(&instance->dri_options,
&instance->available_dri_options, 0, "anv", NULL, NULL,
instance->vk.app_info.app_name,
instance->vk.app_info.app_version,
instance->vk.app_info.engine_name,
instance->vk.app_info.engine_version);
instance->assume_full_subgroups =
driQueryOptionb(&instance->dri_options, "anv_assume_full_subgroups");
instance->limit_trig_input_range =
driQueryOptionb(&instance->dri_options, "limit_trig_input_range");
instance->sample_mask_out_opengl_behaviour =
driQueryOptionb(&instance->dri_options, "anv_sample_mask_out_opengl_behaviour");
instance->lower_depth_range_rate =
driQueryOptionf(&instance->dri_options, "lower_depth_range_rate");
instance->no_16bit =
driQueryOptionb(&instance->dri_options, "no_16bit");
instance->mesh_conv_prim_attrs_to_vert_attrs =
driQueryOptioni(&instance->dri_options, "anv_mesh_conv_prim_attrs_to_vert_attrs");
instance->fp64_workaround_enabled =
driQueryOptionb(&instance->dri_options, "fp64_workaround_enabled");
instance->generated_indirect_threshold =
driQueryOptioni(&instance->dri_options, "generated_indirect_threshold");
instance->query_clear_with_blorp_threshold =
driQueryOptioni(&instance->dri_options, "query_clear_with_blorp_threshold");
instance->query_copy_with_shader_threshold =
driQueryOptioni(&instance->dri_options, "query_copy_with_shader_threshold");
instance->force_vk_vendor =
driQueryOptioni(&instance->dri_options, "force_vk_vendor");
instance->has_fake_sparse =
driQueryOptionb(&instance->dri_options, "fake_sparse");
}
VkResult anv_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
struct anv_instance *instance;
VkResult result;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
if (pAllocator == NULL)
pAllocator = vk_default_allocator();
instance = vk_alloc(pAllocator, sizeof(*instance), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_instance_dispatch_table dispatch_table;
vk_instance_dispatch_table_from_entrypoints(
&dispatch_table, &anv_instance_entrypoints, true);
vk_instance_dispatch_table_from_entrypoints(
&dispatch_table, &wsi_instance_entrypoints, false);
result = vk_instance_init(&instance->vk, &instance_extensions,
&dispatch_table, pCreateInfo, pAllocator);
if (result != VK_SUCCESS) {
vk_free(pAllocator, instance);
return vk_error(NULL, result);
}
instance->vk.physical_devices.try_create_for_drm = anv_physical_device_try_create;
instance->vk.physical_devices.destroy = anv_physical_device_destroy;
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
anv_init_dri_options(instance);
intel_driver_ds_init();
*pInstance = anv_instance_to_handle(instance);
return VK_SUCCESS;
}
void anv_DestroyInstance(
VkInstance _instance,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
if (!instance)
return;
VG(VALGRIND_DESTROY_MEMPOOL(instance));
driDestroyOptionCache(&instance->dri_options);
driDestroyOptionInfo(&instance->available_dri_options);
vk_instance_finish(&instance->vk);
vk_free(&instance->vk.alloc, instance);
}
#define MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS 64
#define MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS 64
#define MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS 256
#define MAX_CUSTOM_BORDER_COLORS 4096
static VkDeviceSize
anx_get_physical_device_max_heap_size(struct anv_physical_device *pdevice)
{
VkDeviceSize ret = 0;
for (uint32_t i = 0; i < pdevice->memory.heap_count; i++) {
if (pdevice->memory.heaps[i].size > ret)
ret = pdevice->memory.heaps[i].size;
}
return ret;
}
void anv_GetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
const struct intel_device_info *devinfo = &pdevice->info;
const uint32_t max_ssbos = UINT16_MAX;
const uint32_t max_textures = UINT16_MAX;
const uint32_t max_samplers = UINT16_MAX;
const uint32_t max_images = UINT16_MAX;
const VkDeviceSize max_heap_size = anx_get_physical_device_max_heap_size(pdevice);
/* Claim a high per-stage limit since we have bindless. */
const uint32_t max_per_stage = UINT32_MAX;
const uint32_t max_workgroup_size =
MIN2(1024, 32 * devinfo->max_cs_workgroup_threads);
VkSampleCountFlags sample_counts =
isl_device_get_sample_counts(&pdevice->isl_dev);
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = 128 * 1024 * 1024,
.maxUniformBufferRange = pdevice->compiler->indirect_ubos_use_sampler ? (1u << 27) : (1u << 30),
.maxStorageBufferRange = MIN3(pdevice->isl_dev.max_buffer_size, max_heap_size, UINT32_MAX),
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 1,
.sparseAddressSpaceSize = pdevice->instance->has_fake_sparse ? (1uLL << 48) : 0,
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_samplers,
.maxPerStageDescriptorUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS,
.maxPerStageDescriptorStorageBuffers = max_ssbos,
.maxPerStageDescriptorSampledImages = max_textures,
.maxPerStageDescriptorStorageImages = max_images,
.maxPerStageDescriptorInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS,
.maxPerStageResources = max_per_stage,
.maxDescriptorSetSamplers = 6 * max_samplers, /* number of stages * maxPerStageDescriptorSamplers */
.maxDescriptorSetUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS, /* number of stages * maxPerStageDescriptorUniformBuffers */
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
.maxDescriptorSetStorageBuffers = 6 * max_ssbos, /* number of stages * maxPerStageDescriptorStorageBuffers */
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
.maxDescriptorSetSampledImages = 6 * max_textures, /* number of stages * maxPerStageDescriptorSampledImages */
.maxDescriptorSetStorageImages = 6 * max_images, /* number of stages * maxPerStageDescriptorStorageImages */
.maxDescriptorSetInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS,
.maxVertexInputAttributes = MAX_VES,
.maxVertexInputBindings = MAX_VBS,
/* Broadwell PRMs: Volume 2d: Command Reference: Structures:
*
* VERTEX_ELEMENT_STATE::Source Element Offset: [0,2047]
*/
.maxVertexInputAttributeOffset = 2047,
/* Skylake PRMs: Volume 2d: Command Reference: Structures:
*
* VERTEX_BUFFER_STATE::Buffer Pitch: [0,4095]
*/
.maxVertexInputBindingStride = 4095,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 128,
.maxTessellationControlTotalOutputComponents = 2048,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 32,
.maxGeometryInputComponents = 128,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 116, /* 128 components - (PSIZ, CLIP_DIST0, CLIP_DIST1) */
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = MAX_RTS + max_ssbos + max_images,
.maxComputeSharedMemorySize = 64 * 1024,
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
.maxComputeWorkGroupInvocations = max_workgroup_size,
.maxComputeWorkGroupSize = {
max_workgroup_size,
max_workgroup_size,
max_workgroup_size,
},
.subPixelPrecisionBits = 8,
.subTexelPrecisionBits = 8,
.mipmapPrecisionBits = 8,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = { (1 << 14), (1 << 14) },
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
.viewportSubPixelBits = 13, /* We take a float? */
.minMemoryMapAlignment = 4096, /* A page */
/* The dataport requires texel alignment so we need to assume a worst
* case of R32G32B32A32 which is 16 bytes.
*/
.minTexelBufferOffsetAlignment = 16,
.minUniformBufferOffsetAlignment = ANV_UBO_ALIGNMENT,
.minStorageBufferOffsetAlignment = ANV_SSBO_ALIGNMENT,
.minTexelOffset = -8,
.maxTexelOffset = 7,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -0.5,
.maxInterpolationOffset = 0.4375,
.subPixelInterpolationOffsetBits = 4,
.maxFramebufferWidth = (1 << 14),
.maxFramebufferHeight = (1 << 14),
.maxFramebufferLayers = (1 << 11),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = sample_counts,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000000.0 / devinfo->timestamp_frequency,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 2,
.pointSizeRange = { 0.125, 255.875 },
/* While SKL and up support much wider lines than we are setting here,
* in practice we run into conformance issues if we go past this limit.
* Since the Windows driver does the same, it's probably fair to assume
* that no one needs more than this.
*/
.lineWidthRange = { 0.0, 8.0 },
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 128.0),
.strictLines = false,
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 128,
.optimalBufferCopyRowPitchAlignment = 128,
.nonCoherentAtomSize = 64,
};
*pProperties = (VkPhysicalDeviceProperties) {
.apiVersion = ANV_API_VERSION,
.driverVersion = vk_get_driver_version(),
.vendorID = 0x8086,
.deviceID = pdevice->info.pci_device_id,
.deviceType = pdevice->info.has_local_mem ?
VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU :
VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
.limits = limits,
.sparseProperties = {
.residencyStandard2DBlockShape = pdevice->instance->has_fake_sparse,
.residencyStandard2DMultisampleBlockShape = pdevice->instance->has_fake_sparse,
.residencyStandard3DBlockShape = pdevice->instance->has_fake_sparse,
.residencyAlignedMipSize = false,
.residencyNonResidentStrict = pdevice->instance->has_fake_sparse,
},
};
if (unlikely(pdevice->instance->force_vk_vendor))
pProperties->vendorID = pdevice->instance->force_vk_vendor;
snprintf(pProperties->deviceName, sizeof(pProperties->deviceName),
"%s", pdevice->info.name);
memcpy(pProperties->pipelineCacheUUID,
pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
}
static void
anv_get_physical_device_properties_1_1(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan11Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memset(p->deviceLUID, 0, VK_LUID_SIZE);
p->deviceNodeMask = 0;
p->deviceLUIDValid = false;
p->subgroupSize = BRW_SUBGROUP_SIZE;
VkShaderStageFlags scalar_stages = 0;
for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
if (pdevice->compiler->scalar_stage[stage])
scalar_stages |= mesa_to_vk_shader_stage(stage);
}
if (pdevice->vk.supported_extensions.KHR_ray_tracing_pipeline) {
scalar_stages |= VK_SHADER_STAGE_RAYGEN_BIT_KHR |
VK_SHADER_STAGE_ANY_HIT_BIT_KHR |
VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR |
VK_SHADER_STAGE_MISS_BIT_KHR |
VK_SHADER_STAGE_INTERSECTION_BIT_KHR |
VK_SHADER_STAGE_CALLABLE_BIT_KHR;
}
if (pdevice->vk.supported_extensions.EXT_mesh_shader) {
scalar_stages |= VK_SHADER_STAGE_TASK_BIT_EXT |
VK_SHADER_STAGE_MESH_BIT_EXT;
}
p->subgroupSupportedStages = scalar_stages;
p->subgroupSupportedOperations = VK_SUBGROUP_FEATURE_BASIC_BIT |
VK_SUBGROUP_FEATURE_VOTE_BIT |
VK_SUBGROUP_FEATURE_BALLOT_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_BIT |
VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT |
VK_SUBGROUP_FEATURE_QUAD_BIT |
VK_SUBGROUP_FEATURE_ARITHMETIC_BIT |
VK_SUBGROUP_FEATURE_CLUSTERED_BIT;
p->subgroupQuadOperationsInAllStages = true;
p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_USER_CLIP_PLANES_ONLY;
p->maxMultiviewViewCount = 16;
p->maxMultiviewInstanceIndex = UINT32_MAX / 16;
p->protectedNoFault = false;
/* This value doesn't matter for us today as our per-stage descriptors are
* the real limit.
*/
p->maxPerSetDescriptors = 1024;
for (uint32_t i = 0; i < pdevice->memory.heap_count; i++) {
p->maxMemoryAllocationSize = MAX2(p->maxMemoryAllocationSize,
pdevice->memory.heaps[i].size);
}
}
static void
anv_get_physical_device_properties_1_2(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan12Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
p->driverID = VK_DRIVER_ID_INTEL_OPEN_SOURCE_MESA;
memset(p->driverName, 0, sizeof(p->driverName));
snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE,
"Intel open-source Mesa driver");
memset(p->driverInfo, 0, sizeof(p->driverInfo));
snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE,
"Mesa " PACKAGE_VERSION MESA_GIT_SHA1);
p->conformanceVersion = (VkConformanceVersion) {
.major = 1,
.minor = 3,
.subminor = 6,
.patch = 0,
};
p->denormBehaviorIndependence =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL;
p->roundingModeIndependence =
VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE;
/* Broadwell does not support HF denorms and there are restrictions
* other gens. According to Kabylake's PRM:
*
* "math - Extended Math Function
* [...]
* Restriction : Half-float denorms are always retained."
*/
p->shaderDenormFlushToZeroFloat16 = false;
p->shaderDenormPreserveFloat16 = true;
p->shaderRoundingModeRTEFloat16 = true;
p->shaderRoundingModeRTZFloat16 = true;
p->shaderSignedZeroInfNanPreserveFloat16 = true;
p->shaderDenormFlushToZeroFloat32 = true;
p->shaderDenormPreserveFloat32 = true;
p->shaderRoundingModeRTEFloat32 = true;
p->shaderRoundingModeRTZFloat32 = true;
p->shaderSignedZeroInfNanPreserveFloat32 = true;
p->shaderDenormFlushToZeroFloat64 = true;
p->shaderDenormPreserveFloat64 = true;
p->shaderRoundingModeRTEFloat64 = true;
p->shaderRoundingModeRTZFloat64 = true;
p->shaderSignedZeroInfNanPreserveFloat64 = true;
/* It's a bit hard to exactly map our implementation to the limits
* described by Vulkan. The bindless surface handle in the extended
* message descriptors is 20 bits and it's an index into the table of
* RENDER_SURFACE_STATE structs that starts at bindless surface base
* address. This means that we can have at must 1M surface states
* allocated at any given time. Since most image views take two
* descriptors, this means we have a limit of about 500K image views.
*
* However, since we allocate surface states at vkCreateImageView time,
* this means our limit is actually something on the order of 500K image
* views allocated at any time. The actual limit describe by Vulkan, on
* the other hand, is a limit of how many you can have in a descriptor set.
* Assuming anyone using 1M descriptors will be using the same image view
* twice a bunch of times (or a bunch of null descriptors), we can safely
* advertise a larger limit here.
*/
const unsigned max_bindless_views =
anv_physical_device_bindless_heap_size(pdevice) / ANV_SURFACE_STATE_SIZE;
p->maxUpdateAfterBindDescriptorsInAllPools = max_bindless_views;
p->shaderUniformBufferArrayNonUniformIndexingNative = false;
p->shaderSampledImageArrayNonUniformIndexingNative = false;
p->shaderStorageBufferArrayNonUniformIndexingNative = true;
p->shaderStorageImageArrayNonUniformIndexingNative = false;
p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
p->robustBufferAccessUpdateAfterBind = true;
p->quadDivergentImplicitLod = false;
p->maxPerStageDescriptorUpdateAfterBindSamplers = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = UINT32_MAX;
p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_bindless_views;
p->maxPerStageDescriptorUpdateAfterBindInputAttachments = MAX_PER_STAGE_DESCRIPTOR_INPUT_ATTACHMENTS;
p->maxPerStageUpdateAfterBindResources = UINT32_MAX;
p->maxDescriptorSetUpdateAfterBindSamplers = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindUniformBuffers = 6 * MAX_PER_STAGE_DESCRIPTOR_UNIFORM_BUFFERS;
p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
p->maxDescriptorSetUpdateAfterBindStorageBuffers = UINT32_MAX;
p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2;
p->maxDescriptorSetUpdateAfterBindSampledImages = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindStorageImages = max_bindless_views;
p->maxDescriptorSetUpdateAfterBindInputAttachments = MAX_DESCRIPTOR_SET_INPUT_ATTACHMENTS;
/* We support all of the depth resolve modes */
p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
VK_RESOLVE_MODE_AVERAGE_BIT |
VK_RESOLVE_MODE_MIN_BIT |
VK_RESOLVE_MODE_MAX_BIT;
/* Average doesn't make sense for stencil so we don't support that */
p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT |
VK_RESOLVE_MODE_MIN_BIT |
VK_RESOLVE_MODE_MAX_BIT;
p->independentResolveNone = true;
p->independentResolve = true;
p->filterMinmaxSingleComponentFormats = true;
p->filterMinmaxImageComponentMapping = true;
p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
p->framebufferIntegerColorSampleCounts =
isl_device_get_sample_counts(&pdevice->isl_dev);
}
static void
anv_get_physical_device_properties_1_3(struct anv_physical_device *pdevice,
VkPhysicalDeviceVulkan13Properties *p)
{
assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES);
p->minSubgroupSize = 8;
p->maxSubgroupSize = 32;
p->maxComputeWorkgroupSubgroups = pdevice->info.max_cs_workgroup_threads;
p->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT |
VK_SHADER_STAGE_TASK_BIT_EXT |
VK_SHADER_STAGE_MESH_BIT_EXT;
p->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
p->maxPerStageDescriptorInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
p->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
p->maxDescriptorSetInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
p->maxDescriptorSetUpdateAfterBindInlineUniformBlocks =
MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS;
p->maxInlineUniformTotalSize = UINT16_MAX;
p->integerDotProduct8BitUnsignedAccelerated = false;
p->integerDotProduct8BitSignedAccelerated = false;
p->integerDotProduct8BitMixedSignednessAccelerated = false;
p->integerDotProduct4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12;
p->integerDotProduct4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12;
p->integerDotProduct4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12;
p->integerDotProduct16BitUnsignedAccelerated = false;
p->integerDotProduct16BitSignedAccelerated = false;
p->integerDotProduct16BitMixedSignednessAccelerated = false;
p->integerDotProduct32BitUnsignedAccelerated = false;
p->integerDotProduct32BitSignedAccelerated = false;
p->integerDotProduct32BitMixedSignednessAccelerated = false;
p->integerDotProduct64BitUnsignedAccelerated = false;
p->integerDotProduct64BitSignedAccelerated = false;
p->integerDotProduct64BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = pdevice->info.ver >= 12;
p->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = pdevice->info.ver >= 12;
p->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated = pdevice->info.ver >= 12;
p->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating16BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
p->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
/* From the SKL PRM Vol. 2d, docs for RENDER_SURFACE_STATE::Surface
* Base Address:
*
* "For SURFTYPE_BUFFER non-rendertarget surfaces, this field
* specifies the base address of the first element of the surface,
* computed in software by adding the surface base address to the
* byte offset of the element in the buffer. The base address must
* be aligned to element size."
*
* The typed dataport messages require that things be texel aligned.
* Otherwise, we may just load/store the wrong data or, in the worst
* case, there may be hangs.
*/
p->storageTexelBufferOffsetAlignmentBytes = 16;
p->storageTexelBufferOffsetSingleTexelAlignment = true;
/* The sampler, however, is much more forgiving and it can handle
* arbitrary byte alignment for linear and buffer surfaces. It's
* hard to find a good PRM citation for this but years of empirical
* experience demonstrate that this is true.
*/
p->uniformTexelBufferOffsetAlignmentBytes = 1;
p->uniformTexelBufferOffsetSingleTexelAlignment = true;
p->maxBufferSize = pdevice->isl_dev.max_buffer_size;
}
void anv_GetPhysicalDeviceProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2* pProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
VkPhysicalDeviceVulkan11Properties core_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
};
anv_get_physical_device_properties_1_1(pdevice, &core_1_1);
VkPhysicalDeviceVulkan12Properties core_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
};
anv_get_physical_device_properties_1_2(pdevice, &core_1_2);
VkPhysicalDeviceVulkan13Properties core_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_PROPERTIES,
};
anv_get_physical_device_properties_1_3(pdevice, &core_1_3);
vk_foreach_struct(ext, pProperties->pNext) {
if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1))
continue;
if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2))
continue;
if (vk_get_physical_device_core_1_3_property_ext(ext, &core_1_3))
continue;
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: {
VkPhysicalDeviceAccelerationStructurePropertiesKHR *props = (void *)ext;
props->maxGeometryCount = (1u << 24) - 1;
props->maxInstanceCount = (1u << 24) - 1;
props->maxPrimitiveCount = (1u << 29) - 1;
props->maxPerStageDescriptorAccelerationStructures = UINT16_MAX;
props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures = UINT16_MAX;
props->maxDescriptorSetAccelerationStructures = UINT16_MAX;
props->maxDescriptorSetUpdateAfterBindAccelerationStructures = UINT16_MAX;
props->minAccelerationStructureScratchOffsetAlignment = 64;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
/* TODO: Real limits */
VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
(VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
/* There's nothing in the public docs about this value as far as I
* can tell. However, this is the value the Windows driver reports
* and there's a comment on a rejected HW feature in the internal
* docs that says:
*
* "This is similar to conservative rasterization, except the
* primitive area is not extended by 1/512 and..."
*
* That's a bit of an obtuse reference but it's the best we've got
* for now.
*/
properties->primitiveOverestimationSize = 1.0f / 512.0f;
properties->maxExtraPrimitiveOverestimationSize = 0.0f;
properties->extraPrimitiveOverestimationSizeGranularity = 0.0f;
properties->primitiveUnderestimation = false;
properties->conservativePointAndLineRasterization = false;
properties->degenerateTrianglesRasterized = true;
properties->degenerateLinesRasterized = false;
properties->fullyCoveredFragmentShaderInputVariable = false;
properties->conservativeRasterizationPostDepthCoverage = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
VkPhysicalDeviceCustomBorderColorPropertiesEXT *properties =
(VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
properties->maxCustomBorderColorSamplers = MAX_CUSTOM_BORDER_COLORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
(VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
props->primitiveFragmentShadingRateWithMultipleViewports =
pdevice->info.has_coarse_pixel_primitive_and_cb;
props->layeredShadingRateAttachments = pdevice->info.has_coarse_pixel_primitive_and_cb;
props->fragmentShadingRateNonTrivialCombinerOps =
pdevice->info.has_coarse_pixel_primitive_and_cb;
props->maxFragmentSize = (VkExtent2D) { 4, 4 };
props->maxFragmentSizeAspectRatio =
pdevice->info.has_coarse_pixel_primitive_and_cb ?
2 : 4;
props->maxFragmentShadingRateCoverageSamples = 4 * 4 *
(pdevice->info.has_coarse_pixel_primitive_and_cb ? 4 : 16);
props->maxFragmentShadingRateRasterizationSamples =
pdevice->info.has_coarse_pixel_primitive_and_cb ?
VK_SAMPLE_COUNT_4_BIT : VK_SAMPLE_COUNT_16_BIT;
props->fragmentShadingRateWithShaderDepthStencilWrites = false;
props->fragmentShadingRateWithSampleMask = true;
props->fragmentShadingRateWithShaderSampleMask = false;
props->fragmentShadingRateWithConservativeRasterization = true;
props->fragmentShadingRateWithFragmentShaderInterlock = true;
props->fragmentShadingRateWithCustomSampleLocations = true;
/* Fix in DG2_G10_C0 and DG2_G11_B0. Consider any other Sku as having
* the fix.
*/
props->fragmentShadingRateStrictMultiplyCombiner =
pdevice->info.platform == INTEL_PLATFORM_DG2_G10 ?
pdevice->info.revision >= 8 :
pdevice->info.platform == INTEL_PLATFORM_DG2_G11 ?
pdevice->info.revision >= 4 : true;
if (pdevice->info.has_coarse_pixel_primitive_and_cb) {
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 };
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 8, 8 };
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
} else {
/* Those must be 0 if attachmentFragmentShadingRate is not
* supported.
*/
props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 };
props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D) { 0, 0 };
props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 0;
}
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: {
VkPhysicalDeviceDrmPropertiesEXT *props =
(VkPhysicalDeviceDrmPropertiesEXT *)ext;
props->hasPrimary = pdevice->has_master;
props->primaryMajor = pdevice->master_major;
props->primaryMinor = pdevice->master_minor;
props->hasRender = pdevice->has_local;
props->renderMajor = pdevice->local_major;
props->renderMinor = pdevice->local_minor;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_3_PROPERTIES_EXT: {
VkPhysicalDeviceExtendedDynamicState3PropertiesEXT *props =
(VkPhysicalDeviceExtendedDynamicState3PropertiesEXT *) ext;
props->dynamicPrimitiveTopologyUnrestricted = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
VkPhysicalDeviceExternalMemoryHostPropertiesEXT *props =
(VkPhysicalDeviceExternalMemoryHostPropertiesEXT *) ext;
/* Userptr needs page aligned memory. */
props->minImportedHostPointerAlignment = 4096;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GRAPHICS_PIPELINE_LIBRARY_PROPERTIES_EXT: {
VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT *props =
(VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT *)ext;
props->graphicsPipelineLibraryFastLinking = true;
props->graphicsPipelineLibraryIndependentInterpolationDecoration = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
(VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
/* In the Skylake PRM Vol. 7, subsection titled "GIQ (Diamond)
* Sampling Rules - Legacy Mode", it says the following:
*
* "Note that the device divides a pixel into a 16x16 array of
* subpixels, referenced by their upper left corners."
*
* This is the only known reference in the PRMs to the subpixel
* precision of line rasterization and a "16x16 array of subpixels"
* implies 4 subpixel precision bits. Empirical testing has shown
* that 4 subpixel precision bits applies to all line rasterization
* types.
*/
props->lineSubPixelPrecisionBits = 4;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES: {
VkPhysicalDeviceMaintenance4Properties *properties =
(VkPhysicalDeviceMaintenance4Properties *)ext;
properties->maxBufferSize = pdevice->isl_dev.max_buffer_size;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MESH_SHADER_PROPERTIES_EXT: {
VkPhysicalDeviceMeshShaderPropertiesEXT *properties =
(VkPhysicalDeviceMeshShaderPropertiesEXT *)ext;
/* Bounded by the maximum representable size in
* 3DSTATE_MESH_SHADER_BODY::SharedLocalMemorySize. Same for Task.
*/
const uint32_t max_slm_size = 64 * 1024;
/* Bounded by the maximum representable size in
* 3DSTATE_MESH_SHADER_BODY::LocalXMaximum. Same for Task.
*/
const uint32_t max_workgroup_size = 1 << 10;
/* 3DMESH_3D limitation. */
const uint32_t max_threadgroup_count = 1 << 22;
/* 3DMESH_3D limitation. */
const uint32_t max_threadgroup_xyz = 65535;
const uint32_t max_urb_size = 64 * 1024;
properties->maxTaskWorkGroupTotalCount = max_threadgroup_count;
properties->maxTaskWorkGroupCount[0] = max_threadgroup_xyz;
properties->maxTaskWorkGroupCount[1] = max_threadgroup_xyz;
properties->maxTaskWorkGroupCount[2] = max_threadgroup_xyz;
properties->maxTaskWorkGroupInvocations = max_workgroup_size;
properties->maxTaskWorkGroupSize[0] = max_workgroup_size;
properties->maxTaskWorkGroupSize[1] = max_workgroup_size;
properties->maxTaskWorkGroupSize[2] = max_workgroup_size;
/* TUE header with padding */
const uint32_t task_payload_reserved = 32;
properties->maxTaskPayloadSize = max_urb_size - task_payload_reserved;
properties->maxTaskSharedMemorySize = max_slm_size;
properties->maxTaskPayloadAndSharedMemorySize =
properties->maxTaskPayloadSize +
properties->maxTaskSharedMemorySize;
properties->maxMeshWorkGroupTotalCount = max_threadgroup_count;
properties->maxMeshWorkGroupCount[0] = max_threadgroup_xyz;
properties->maxMeshWorkGroupCount[1] = max_threadgroup_xyz;
properties->maxMeshWorkGroupCount[2] = max_threadgroup_xyz;
properties->maxMeshWorkGroupInvocations = max_workgroup_size;
properties->maxMeshWorkGroupSize[0] = max_workgroup_size;
properties->maxMeshWorkGroupSize[1] = max_workgroup_size;
properties->maxMeshWorkGroupSize[2] = max_workgroup_size;
properties->maxMeshSharedMemorySize = max_slm_size;
properties->maxMeshPayloadAndSharedMemorySize =
properties->maxTaskPayloadSize +
properties->maxMeshSharedMemorySize;
/* Unfortunately spec's formula for the max output size doesn't match our hardware
* (because some per-primitive and per-vertex attributes have alignment restrictions),
* so we have to advertise the minimum value mandated by the spec to not overflow it.
*/
properties->maxMeshOutputPrimitives = 256;
properties->maxMeshOutputVertices = 256;
/* NumPrim + Primitive Data List */
const uint32_t max_indices_memory =
ALIGN(sizeof(uint32_t) +
sizeof(uint32_t) * properties->maxMeshOutputVertices, 32);
properties->maxMeshOutputMemorySize = MIN2(max_urb_size - max_indices_memory, 32768);
properties->maxMeshPayloadAndOutputMemorySize =
properties->maxTaskPayloadSize +
properties->maxMeshOutputMemorySize;
properties->maxMeshOutputComponents = 128;
/* RTAIndex is 11-bits wide */
properties->maxMeshOutputLayers = 1 << 11;
properties->maxMeshMultiviewViewCount = 1;
/* Elements in Vertex Data Array must be aligned to 32 bytes (8 dwords). */
properties->meshOutputPerVertexGranularity = 8;
/* Elements in Primitive Data Array must be aligned to 32 bytes (8 dwords). */
properties->meshOutputPerPrimitiveGranularity = 8;
/* SIMD16 */
properties->maxPreferredTaskWorkGroupInvocations = 16;
properties->maxPreferredMeshWorkGroupInvocations = 16;
properties->prefersLocalInvocationVertexOutput = false;
properties->prefersLocalInvocationPrimitiveOutput = false;
properties->prefersCompactVertexOutput = false;
properties->prefersCompactPrimitiveOutput = false;
/* Spec minimum values */
assert(properties->maxTaskWorkGroupTotalCount >= (1U << 22));
assert(properties->maxTaskWorkGroupCount[0] >= 65535);
assert(properties->maxTaskWorkGroupCount[1] >= 65535);
assert(properties->maxTaskWorkGroupCount[2] >= 65535);
assert(properties->maxTaskWorkGroupInvocations >= 128);
assert(properties->maxTaskWorkGroupSize[0] >= 128);
assert(properties->maxTaskWorkGroupSize[1] >= 128);
assert(properties->maxTaskWorkGroupSize[2] >= 128);
assert(properties->maxTaskPayloadSize >= 16384);
assert(properties->maxTaskSharedMemorySize >= 32768);
assert(properties->maxTaskPayloadAndSharedMemorySize >= 32768);
assert(properties->maxMeshWorkGroupTotalCount >= (1U << 22));
assert(properties->maxMeshWorkGroupCount[0] >= 65535);
assert(properties->maxMeshWorkGroupCount[1] >= 65535);
assert(properties->maxMeshWorkGroupCount[2] >= 65535);
assert(properties->maxMeshWorkGroupInvocations >= 128);
assert(properties->maxMeshWorkGroupSize[0] >= 128);
assert(properties->maxMeshWorkGroupSize[1] >= 128);
assert(properties->maxMeshWorkGroupSize[2] >= 128);
assert(properties->maxMeshSharedMemorySize >= 28672);
assert(properties->maxMeshPayloadAndSharedMemorySize >= 28672);
assert(properties->maxMeshOutputMemorySize >= 32768);
assert(properties->maxMeshPayloadAndOutputMemorySize >= 48128);
assert(properties->maxMeshOutputComponents >= 128);
assert(properties->maxMeshOutputVertices >= 256);
assert(properties->maxMeshOutputPrimitives >= 256);
assert(properties->maxMeshOutputLayers >= 8);
assert(properties->maxMeshMultiviewViewCount >= 1);
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
(VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
properties->pciDomain = pdevice->info.pci_domain;
properties->pciBus = pdevice->info.pci_bus;
properties->pciDevice = pdevice->info.pci_dev;
properties->pciFunction = pdevice->info.pci_func;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PERFORMANCE_QUERY_PROPERTIES_KHR: {
VkPhysicalDevicePerformanceQueryPropertiesKHR *properties =
(VkPhysicalDevicePerformanceQueryPropertiesKHR *)ext;
/* We could support this by spawning a shader to do the equation
* normalization.
*/
properties->allowCommandBufferQueryCopies = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_PROPERTIES_EXT: {
VkPhysicalDevicePipelineRobustnessPropertiesEXT *properties =
(VkPhysicalDevicePipelineRobustnessPropertiesEXT *)ext;
properties->defaultRobustnessStorageBuffers =
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT;
properties->defaultRobustnessUniformBuffers =
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_DISABLED_EXT;
properties->defaultRobustnessVertexInputs =
VK_PIPELINE_ROBUSTNESS_BUFFER_BEHAVIOR_ROBUST_BUFFER_ACCESS_2_EXT;
properties->defaultRobustnessImages =
VK_PIPELINE_ROBUSTNESS_IMAGE_BEHAVIOR_ROBUST_IMAGE_ACCESS_2_EXT;
break;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch"
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRESENTATION_PROPERTIES_ANDROID: {
VkPhysicalDevicePresentationPropertiesANDROID *props =
(VkPhysicalDevicePresentationPropertiesANDROID *)ext;
props->sharedImage = VK_FALSE;
break;
}
#pragma GCC diagnostic pop
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: {
VkPhysicalDeviceProvokingVertexPropertiesEXT *properties =
(VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext;
properties->provokingVertexModePerPipeline = true;
properties->transformFeedbackPreservesTriangleFanProvokingVertex = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR: {
VkPhysicalDeviceRayTracingPipelinePropertiesKHR *props = (void *)ext;
/* TODO */
props->shaderGroupHandleSize = 32;
props->maxRayRecursionDepth = 31;
/* MemRay::hitGroupSRStride is 16 bits */
props->maxShaderGroupStride = UINT16_MAX;
/* MemRay::hitGroupSRBasePtr requires 16B alignment */
props->shaderGroupBaseAlignment = 16;
props->shaderGroupHandleAlignment = 16;
props->shaderGroupHandleCaptureReplaySize = 32;
props->maxRayDispatchInvocationCount = 1U << 30; /* required min limit */
props->maxRayHitAttributeSize = BRW_RT_SIZEOF_HIT_ATTRIB_DATA;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
VkPhysicalDeviceRobustness2PropertiesEXT *properties = (void *)ext;
properties->robustStorageBufferAccessSizeAlignment =
ANV_SSBO_BOUNDS_CHECK_ALIGNMENT;
properties->robustUniformBufferAccessSizeAlignment =
ANV_UBO_ALIGNMENT;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
VkPhysicalDeviceSampleLocationsPropertiesEXT *props =
(VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
props->sampleLocationSampleCounts =
isl_device_get_sample_counts(&pdevice->isl_dev);
/* See also anv_GetPhysicalDeviceMultisamplePropertiesEXT */
props->maxSampleLocationGridSize.width = 1;
props->maxSampleLocationGridSize.height = 1;
props->sampleLocationCoordinateRange[0] = 0;
props->sampleLocationCoordinateRange[1] = 0.9375;
props->sampleLocationSubPixelBits = 4;
props->variableSampleLocations = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_MODULE_IDENTIFIER_PROPERTIES_EXT: {
VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *props =
(VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT *)ext;
STATIC_ASSERT(sizeof(vk_shaderModuleIdentifierAlgorithmUUID) ==
sizeof(props->shaderModuleIdentifierAlgorithmUUID));
memcpy(props->shaderModuleIdentifierAlgorithmUUID,
vk_shaderModuleIdentifierAlgorithmUUID,
sizeof(props->shaderModuleIdentifierAlgorithmUUID));
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
VkPhysicalDeviceTransformFeedbackPropertiesEXT *props =
(VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
props->maxTransformFeedbackStreams = MAX_XFB_STREAMS;
props->maxTransformFeedbackBuffers = MAX_XFB_BUFFERS;
props->maxTransformFeedbackBufferSize = (1ull << 32);
props->maxTransformFeedbackStreamDataSize = 128 * 4;
props->maxTransformFeedbackBufferDataSize = 128 * 4;
props->maxTransformFeedbackBufferDataStride = 2048;
props->transformFeedbackQueries = true;
props->transformFeedbackStreamsLinesTriangles = false;
props->transformFeedbackRasterizationStreamSelect = false;
props->transformFeedbackDraw = true;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *props =
(VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
/* We have to restrict this a bit for multiview */
props->maxVertexAttribDivisor = UINT32_MAX / 16;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: {
VkPhysicalDeviceMultiDrawPropertiesEXT *props = (VkPhysicalDeviceMultiDrawPropertiesEXT *)ext;
props->maxMultiDrawCount = 2048;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
static const VkQueueFamilyProperties
anv_queue_family_properties_template = {
.timestampValidBits = 36, /* XXX: Real value here */
.minImageTransferGranularity = { 1, 1, 1 },
};
void anv_GetPhysicalDeviceQueueFamilyProperties2(
VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties)
{
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
VK_OUTARRAY_MAKE_TYPED(VkQueueFamilyProperties2, out,
pQueueFamilyProperties, pQueueFamilyPropertyCount);
for (uint32_t i = 0; i < pdevice->queue.family_count; i++) {
struct anv_queue_family *queue_family = &pdevice->queue.families[i];
vk_outarray_append_typed(VkQueueFamilyProperties2, &out, p) {
p->queueFamilyProperties = anv_queue_family_properties_template;
p->queueFamilyProperties.queueFlags = queue_family->queueFlags;
p->queueFamilyProperties.queueCount = queue_family->queueCount;
vk_foreach_struct(ext, p->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_KHR: {
VkQueueFamilyGlobalPriorityPropertiesKHR *properties =
(VkQueueFamilyGlobalPriorityPropertiesKHR *)ext;
/* Deliberately sorted low to high */
VkQueueGlobalPriorityKHR all_priorities[] = {
VK_QUEUE_GLOBAL_PRIORITY_LOW_KHR,
VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_KHR,
VK_QUEUE_GLOBAL_PRIORITY_HIGH_KHR,
VK_QUEUE_GLOBAL_PRIORITY_REALTIME_KHR,
};
uint32_t count = 0;
for (unsigned i = 0; i < ARRAY_SIZE(all_priorities); i++) {
if (all_priorities[i] > pdevice->max_context_priority)
break;
properties->priorities[count++] = all_priorities[i];
}
properties->priorityCount = count;
break;
}
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_QUERY_RESULT_STATUS_PROPERTIES_KHR: {
VkQueueFamilyQueryResultStatusPropertiesKHR *prop =
(VkQueueFamilyQueryResultStatusPropertiesKHR *)ext;
prop->queryResultStatusSupport = VK_TRUE;
break;
}
case VK_STRUCTURE_TYPE_QUEUE_FAMILY_VIDEO_PROPERTIES_KHR: {
VkQueueFamilyVideoPropertiesKHR *prop =
(VkQueueFamilyVideoPropertiesKHR *)ext;
if (queue_family->queueFlags & VK_QUEUE_VIDEO_DECODE_BIT_KHR) {
prop->videoCodecOperations = VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR |
VK_VIDEO_CODEC_OPERATION_DECODE_H265_BIT_KHR;
}
break;
}
default:
anv_debug_ignored_stype(ext->sType);
}
}
}
}
}
void anv_GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
.propertyFlags = physical_device->memory.types[i].propertyFlags,
.heapIndex = physical_device->memory.types[i].heapIndex,
};
}
pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
.size = physical_device->memory.heaps[i].size,
.flags = physical_device->memory.heaps[i].flags,
};
}
}
static void
anv_get_memory_budget(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
{
ANV_FROM_HANDLE(anv_physical_device, device, physicalDevice);
if (!device->vk.supported_extensions.EXT_memory_budget)
return;
anv_update_meminfo(device, device->local_fd);
VkDeviceSize total_sys_heaps_size = 0, total_vram_heaps_size = 0;
for (size_t i = 0; i < device->memory.heap_count; i++) {
if (device->memory.heaps[i].is_local_mem) {
total_vram_heaps_size += device->memory.heaps[i].size;
} else {
total_sys_heaps_size += device->memory.heaps[i].size;
}
}
for (size_t i = 0; i < device->memory.heap_count; i++) {
VkDeviceSize heap_size = device->memory.heaps[i].size;
VkDeviceSize heap_used = device->memory.heaps[i].used;
VkDeviceSize heap_budget, total_heaps_size;
uint64_t mem_available = 0;
if (device->memory.heaps[i].is_local_mem) {
total_heaps_size = total_vram_heaps_size;
if (device->vram_non_mappable.size > 0 && i == 0) {
mem_available = device->vram_non_mappable.available;
} else {
mem_available = device->vram_mappable.available;
}
} else {
total_heaps_size = total_sys_heaps_size;
mem_available = device->sys.available;
}
double heap_proportion = (double) heap_size / total_heaps_size;
VkDeviceSize available_prop = mem_available * heap_proportion;
/*
* Let's not incite the app to starve the system: report at most 90% of
* the available heap memory.
*/
uint64_t heap_available = available_prop * 9 / 10;
heap_budget = MIN2(heap_size, heap_used + heap_available);
/*
* Round down to the nearest MB
*/
heap_budget &= ~((1ull << 20) - 1);
/*
* The heapBudget value must be non-zero for array elements less than
* VkPhysicalDeviceMemoryProperties::memoryHeapCount. The heapBudget
* value must be less than or equal to VkMemoryHeap::size for each heap.
*/
assert(0 < heap_budget && heap_budget <= heap_size);
memoryBudget->heapUsage[i] = heap_used;
memoryBudget->heapBudget[i] = heap_budget;
}
/* The heapBudget and heapUsage values must be zero for array elements
* greater than or equal to VkPhysicalDeviceMemoryProperties::memoryHeapCount
*/
for (uint32_t i = device->memory.heap_count; i < VK_MAX_MEMORY_HEAPS; i++) {
memoryBudget->heapBudget[i] = 0;
memoryBudget->heapUsage[i] = 0;
}
}
void anv_GetPhysicalDeviceMemoryProperties2(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2* pMemoryProperties)
{
anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
&pMemoryProperties->memoryProperties);
vk_foreach_struct(ext, pMemoryProperties->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT:
anv_get_memory_budget(physicalDevice, (void*)ext);
break;
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
PFN_vkVoidFunction anv_GetInstanceProcAddr(
VkInstance _instance,
const char* pName)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
return vk_instance_get_proc_addr(&instance->vk,
&anv_instance_entrypoints,
pName);
}
/* With version 1+ of the loader interface the ICD should expose
* vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName);
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName)
{
return anv_GetInstanceProcAddr(instance, pName);
}
/* With version 4+ of the loader interface the ICD should expose
* vk_icdGetPhysicalDeviceProcAddr()
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(
VkInstance _instance,
const char* pName);
PFN_vkVoidFunction vk_icdGetPhysicalDeviceProcAddr(
VkInstance _instance,
const char* pName)
{
ANV_FROM_HANDLE(anv_instance, instance, _instance);
return vk_instance_get_physical_device_proc_addr(&instance->vk, pName);
}
static struct anv_state
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
{
struct anv_state state;
state = anv_state_pool_alloc(pool, size, align);
memcpy(state.map, p, size);
return state;
}
static void
anv_device_init_border_colors(struct anv_device *device)
{
static const struct gfx8_border_color border_colors[] = {
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
};
device->border_colors =
anv_state_pool_emit_data(&device->dynamic_state_pool,
sizeof(border_colors), 64, border_colors);
}
static VkResult
anv_device_init_trivial_batch(struct anv_device *device)
{
VkResult result = anv_device_alloc_bo(device, "trivial-batch", 4096,
ANV_BO_ALLOC_MAPPED,
0 /* explicit_address */,
&device->trivial_batch_bo);
if (result != VK_SUCCESS)
return result;
struct anv_batch batch = {
.start = device->trivial_batch_bo->map,
.next = device->trivial_batch_bo->map,
.end = device->trivial_batch_bo->map + 4096,
};
anv_batch_emit(&batch, GFX7_MI_BATCH_BUFFER_END, bbe);
anv_batch_emit(&batch, GFX7_MI_NOOP, noop);
#ifdef SUPPORT_INTEL_INTEGRATED_GPUS
if (device->physical->memory.need_clflush)
intel_clflush_range(batch.start, batch.next - batch.start);
#endif
return VK_SUCCESS;
}
static bool
get_bo_from_pool(struct intel_batch_decode_bo *ret,
struct anv_block_pool *pool,
uint64_t address)
{
anv_block_pool_foreach_bo(bo, pool) {
uint64_t bo_address = intel_48b_address(bo->offset);
if (address >= bo_address && address < (bo_address + bo->size)) {
*ret = (struct intel_batch_decode_bo) {
.addr = bo_address,
.size = bo->size,
.map = bo->map,
};
return true;
}
}
return false;
}
/* Finding a buffer for batch decoding */
static struct intel_batch_decode_bo
decode_get_bo(void *v_batch, bool ppgtt, uint64_t address)
{
struct anv_device *device = v_batch;
struct intel_batch_decode_bo ret_bo = {};
assert(ppgtt);
if (get_bo_from_pool(&ret_bo, &device->dynamic_state_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->instruction_state_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->binding_table_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->scratch_surface_state_pool.block_pool, address))
return ret_bo;
if (device->physical->indirect_descriptors &&
get_bo_from_pool(&ret_bo, &device->bindless_surface_state_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->internal_surface_state_pool.block_pool, address))
return ret_bo;
if (get_bo_from_pool(&ret_bo, &device->push_descriptor_pool.block_pool, address))
return ret_bo;
if (!device->cmd_buffer_being_decoded)
return (struct intel_batch_decode_bo) { };
struct anv_batch_bo **bbo;
u_vector_foreach(bbo, &device->cmd_buffer_being_decoded->seen_bbos) {
/* The decoder zeroes out the top 16 bits, so we need to as well */
uint64_t bo_address = (*bbo)->bo->offset & (~0ull >> 16);
if (address >= bo_address && address < bo_address + (*bbo)->bo->size) {
return (struct intel_batch_decode_bo) {
.addr = bo_address,
.size = (*bbo)->bo->size,
.map = (*bbo)->bo->map,
};
}
uint32_t dep_words = (*bbo)->relocs.dep_words;
BITSET_WORD *deps = (*bbo)->relocs.deps;
for (uint32_t w = 0; w < dep_words; w++) {
BITSET_WORD mask = deps[w];
while (mask) {
int i = u_bit_scan(&mask);
uint32_t gem_handle = w * BITSET_WORDBITS + i;
struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
assert(bo->refcount > 0);
bo_address = bo->offset & (~0ull >> 16);
if (address >= bo_address && address < bo_address + bo->size) {
return (struct intel_batch_decode_bo) {
.addr = bo_address,
.size = bo->size,
.map = bo->map,
};
}
}
}
}
return (struct intel_batch_decode_bo) { };
}
struct intel_aux_map_buffer {
struct intel_buffer base;
struct anv_state state;
};
static struct intel_buffer *
intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
{
struct intel_aux_map_buffer *buf = malloc(sizeof(struct intel_aux_map_buffer));
if (!buf)
return NULL;
struct anv_device *device = (struct anv_device*)driver_ctx;
struct anv_state_pool *pool = &device->dynamic_state_pool;
buf->state = anv_state_pool_alloc(pool, size, size);
buf->base.gpu = pool->block_pool.bo->offset + buf->state.offset;
buf->base.gpu_end = buf->base.gpu + buf->state.alloc_size;
buf->base.map = buf->state.map;
buf->base.driver_bo = &buf->state;
return &buf->base;
}
static void
intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer)
{
struct intel_aux_map_buffer *buf = (struct intel_aux_map_buffer*)buffer;
struct anv_device *device = (struct anv_device*)driver_ctx;
struct anv_state_pool *pool = &device->dynamic_state_pool;
anv_state_pool_free(pool, buf->state);
free(buf);
}
static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = {
.alloc = intel_aux_map_buffer_alloc,
.free = intel_aux_map_buffer_free,
};
static VkResult
anv_device_setup_context_or_vm(struct anv_device *device,
const VkDeviceCreateInfo *pCreateInfo,
const uint32_t num_queues)
{
switch (device->info->kmd_type) {
case INTEL_KMD_TYPE_I915:
return anv_i915_device_setup_context(device, pCreateInfo, num_queues);
case INTEL_KMD_TYPE_XE:
return anv_xe_device_setup_vm(device);
default:
unreachable("Missing");
return VK_ERROR_UNKNOWN;
}
}
static bool
anv_device_destroy_context_or_vm(struct anv_device *device)
{
switch (device->info->kmd_type) {
case INTEL_KMD_TYPE_I915:
return intel_gem_destroy_context(device->fd, device->context_id);
case INTEL_KMD_TYPE_XE:
return anv_xe_device_destroy_vm(device);
default:
unreachable("Missing");
return false;
}
}
VkResult anv_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
VkResult result;
struct anv_device *device;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
/* Check requested queues and fail if we are requested to create any
* queues with flags we don't support.
*/
assert(pCreateInfo->queueCreateInfoCount > 0);
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
if (pCreateInfo->pQueueCreateInfos[i].flags != 0)
return vk_error(physical_device, VK_ERROR_INITIALIZATION_FAILED);
}
device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator,
sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(physical_device, VK_ERROR_OUT_OF_HOST_MEMORY);
struct vk_device_dispatch_table dispatch_table;
bool override_initial_entrypoints = true;
if (physical_device->instance->vk.app_info.app_name &&
!strcmp(physical_device->instance->vk.app_info.app_name, "HITMAN3.exe")) {
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &hitman3_device_entrypoints, true);
override_initial_entrypoints = false;
}
if (physical_device->info.ver < 12 &&
physical_device->instance->vk.app_info.app_name &&
!strcmp(physical_device->instance->vk.app_info.app_name, "DOOM 64")) {
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &doom64_device_entrypoints, true);
override_initial_entrypoints = false;
}
#ifdef ANDROID
vk_device_dispatch_table_from_entrypoints(&dispatch_table, &android_device_entrypoints, true);
override_initial_entrypoints = false;
#endif
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
anv_genX(&physical_device->info, device_entrypoints),
override_initial_entrypoints);
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
&anv_device_entrypoints, false);
vk_device_dispatch_table_from_entrypoints(&dispatch_table,
&wsi_device_entrypoints, false);
result = vk_device_init(&device->vk, &physical_device->vk,
&dispatch_table, pCreateInfo, pAllocator);
if (result != VK_SUCCESS)
goto fail_alloc;
if (INTEL_DEBUG(DEBUG_BATCH)) {
for (unsigned i = 0; i < physical_device->queue.family_count; i++) {
struct intel_batch_decode_ctx *decoder = &device->decoder[i];
const unsigned decode_flags = INTEL_BATCH_DECODE_DEFAULT_FLAGS;
intel_batch_decode_ctx_init(decoder,
&physical_device->compiler->isa,
&physical_device->info,
stderr, decode_flags, NULL,
decode_get_bo, NULL, device);
decoder->engine = physical_device->queue.families[i].engine_class;
decoder->dynamic_base = physical_device->va.dynamic_state_pool.addr;
decoder->surface_base = physical_device->va.internal_surface_state_pool.addr;
decoder->instruction_base = physical_device->va.instruction_state_pool.addr;
}
}
anv_device_set_physical(device, physical_device);
device->kmd_backend = anv_kmd_backend_get(device->info->kmd_type);
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
if (device->fd == -1) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_device;
}
switch (device->info->kmd_type) {
case INTEL_KMD_TYPE_I915:
device->vk.check_status = anv_i915_device_check_status;
break;
case INTEL_KMD_TYPE_XE:
device->vk.check_status = anv_xe_device_check_status;
break;
default:
unreachable("Missing");
}
device->vk.command_buffer_ops = &anv_cmd_buffer_ops;
device->vk.create_sync_for_memory = anv_create_sync_for_memory;
if (physical_device->info.kmd_type == INTEL_KMD_TYPE_I915)
device->vk.create_sync_for_memory = anv_create_sync_for_memory;
vk_device_set_drm_fd(&device->vk, device->fd);
uint32_t num_queues = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++)
num_queues += pCreateInfo->pQueueCreateInfos[i].queueCount;
result = anv_device_setup_context_or_vm(device, pCreateInfo, num_queues);
if (result != VK_SUCCESS)
goto fail_fd;
device->queues =
vk_zalloc(&device->vk.alloc, num_queues * sizeof(*device->queues), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (device->queues == NULL) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_context_id;
}
device->queue_count = 0;
for (uint32_t i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queueCreateInfo =
&pCreateInfo->pQueueCreateInfos[i];
for (uint32_t j = 0; j < queueCreateInfo->queueCount; j++) {
result = anv_queue_init(device, &device->queues[device->queue_count],
queueCreateInfo, j);
if (result != VK_SUCCESS)
goto fail_queues;
device->queue_count++;
}
}
if (pthread_mutex_init(&device->vma_mutex, NULL) != 0) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_queues;
}
/* keep the page with address zero out of the allocator */
util_vma_heap_init(&device->vma_lo,
device->physical->va.low_heap.addr,
device->physical->va.low_heap.size);
util_vma_heap_init(&device->vma_cva,
device->physical->va.client_visible_heap.addr,
device->physical->va.client_visible_heap.size);
util_vma_heap_init(&device->vma_hi,
device->physical->va.high_heap.addr,
device->physical->va.high_heap.size);
util_vma_heap_init(&device->vma_desc,
device->physical->va.descriptor_pool.addr,
device->physical->va.descriptor_pool.size);
list_inithead(&device->memory_objects);
list_inithead(&device->image_private_objects);
if (pthread_mutex_init(&device->mutex, NULL) != 0) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_vmas;
}
pthread_condattr_t condattr;
if (pthread_condattr_init(&condattr) != 0) {
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
pthread_condattr_destroy(&condattr);
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
if (pthread_cond_init(&device->queue_submit, &condattr) != 0) {
pthread_condattr_destroy(&condattr);
result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
goto fail_mutex;
}
pthread_condattr_destroy(&condattr);
result = anv_bo_cache_init(&device->bo_cache, device);
if (result != VK_SUCCESS)
goto fail_queue_cond;
anv_bo_pool_init(&device->batch_bo_pool, device, "batch");
/* Because scratch is also relative to General State Base Address, we leave
* the base address 0 and start the pool memory at an offset. This way we
* get the correct offsets in the anv_states that get allocated from it.
*/
result = anv_state_pool_init(&device->general_state_pool, device,
"general pool",
0, device->physical->va.general_state_pool.addr, 16384);
if (result != VK_SUCCESS)
goto fail_batch_bo_pool;
result = anv_state_pool_init(&device->dynamic_state_pool, device,
"dynamic pool",
device->physical->va.dynamic_state_pool.addr, 0, 16384);
if (result != VK_SUCCESS)
goto fail_general_state_pool;
/* The border color pointer is limited to 24 bits, so we need to make
* sure that any such color used at any point in the program doesn't
* exceed that limit.
* We achieve that by reserving all the custom border colors we support
* right off the bat, so they are close to the base address.
*/
anv_state_reserved_pool_init(&device->custom_border_colors,
&device->dynamic_state_pool,
MAX_CUSTOM_BORDER_COLORS,
sizeof(struct gfx8_border_color), 64);
result = anv_state_pool_init(&device->instruction_state_pool, device,
"instruction pool",
device->physical->va.instruction_state_pool.addr,
0, 16384);
if (result != VK_SUCCESS)
goto fail_dynamic_state_pool;
if (device->info->verx10 >= 125) {
/* Put the scratch surface states at the beginning of the internal
* surface state pool.
*/
result = anv_state_pool_init(&device->scratch_surface_state_pool, device,
"scratch surface state pool",
device->physical->va.scratch_surface_state_pool.addr,
0, 4096);
if (result != VK_SUCCESS)
goto fail_instruction_state_pool;
result = anv_state_pool_init(&device->internal_surface_state_pool, device,
"internal surface state pool",
device->physical->va.internal_surface_state_pool.addr,
device->physical->va.scratch_surface_state_pool.size,
4096);
} else {
result = anv_state_pool_init(&device->internal_surface_state_pool, device,
"internal surface state pool",
device->physical->va.internal_surface_state_pool.addr,
0, 4096);
}
if (result != VK_SUCCESS)
goto fail_scratch_surface_state_pool;
if (device->physical->indirect_descriptors) {
result = anv_state_pool_init(&device->bindless_surface_state_pool, device,
"bindless surface state pool",
device->physical->va.bindless_surface_state_pool.addr,
0, 4096);
if (result != VK_SUCCESS)
goto fail_internal_surface_state_pool;
}
if (device->info->verx10 >= 125) {
/* We're using 3DSTATE_BINDING_TABLE_POOL_ALLOC to give the binding
* table its own base address separately from surface state base.
*/
result = anv_state_pool_init(&device->binding_table_pool, device,
"binding table pool",
device->physical->va.binding_table_pool.addr, 0,
BINDING_TABLE_POOL_BLOCK_SIZE);
} else {
/* The binding table should be in front of the surface states in virtual
* address space so that all surface states can be express as relative
* offsets from the binding table location.
*/
assert(device->physical->va.binding_table_pool.addr <
device->physical->va.internal_surface_state_pool.addr);
int64_t bt_pool_offset = (int64_t)device->physical->va.binding_table_pool.addr -
(int64_t)device->physical->va.internal_surface_state_pool.addr;
assert(INT32_MIN < bt_pool_offset && bt_pool_offset < 0);
result = anv_state_pool_init(&device->binding_table_pool, device,
"binding table pool",
device->physical->va.internal_surface_state_pool.addr,
bt_pool_offset,
BINDING_TABLE_POOL_BLOCK_SIZE);
}
if (result != VK_SUCCESS)
goto fail_bindless_surface_state_pool;
result = anv_state_pool_init(&device->push_descriptor_pool, device,
"push descriptor pool",
device->physical->va.push_descriptor_pool.addr,
0, 4096);
if (result != VK_SUCCESS)
goto fail_binding_table_pool;
if (device->info->has_aux_map) {
device->aux_map_ctx = intel_aux_map_init(device, &aux_map_allocator,
&physical_device->info);
if (!device->aux_map_ctx)
goto fail_push_descriptor_pool;
}
result = anv_device_alloc_bo(device, "workaround", 8192,
ANV_BO_ALLOC_CAPTURE |
ANV_BO_ALLOC_MAPPED,
0 /* explicit_address */,
&device->workaround_bo);
if (result != VK_SUCCESS)
goto fail_surface_aux_map_pool;
device->workaround_address = (struct anv_address) {
.bo = device->workaround_bo,
.offset = align(intel_debug_write_identifiers(device->workaround_bo->map,
device->workaround_bo->size,
"Anv"), 32),
};
device->workarounds.doom64_images = NULL;
device->rt_uuid_addr = anv_address_add(device->workaround_address, 8);
memcpy(device->rt_uuid_addr.bo->map + device->rt_uuid_addr.offset,
physical_device->rt_uuid,
sizeof(physical_device->rt_uuid));
device->debug_frame_desc =
intel_debug_get_identifier_block(device->workaround_bo->map,
device->workaround_bo->size,
INTEL_DEBUG_BLOCK_TYPE_FRAME);
if (device->vk.enabled_extensions.KHR_ray_query) {
uint32_t ray_queries_size =
align(brw_rt_ray_queries_hw_stacks_size(device->info), 4096);
result = anv_device_alloc_bo(device, "ray queries",
ray_queries_size,
0,
0 /* explicit_address */,
&device->ray_query_bo);
if (result != VK_SUCCESS)
goto fail_workaround_bo;
}
result = anv_device_init_trivial_batch(device);
if (result != VK_SUCCESS)
goto fail_ray_query_bo;
/* Emit the CPS states before running the initialization batch as those
* structures are referenced.
*/
if (device->info->ver >= 12) {
uint32_t n_cps_states = 3 * 3; /* All combinaisons of X by Y CP sizes (1, 2, 4) */
if (device->info->has_coarse_pixel_primitive_and_cb)
n_cps_states *= 5 * 5; /* 5 combiners by 2 operators */
n_cps_states += 1; /* Disable CPS */
/* Each of the combinaison must be replicated on all viewports */
n_cps_states *= MAX_VIEWPORTS;
device->cps_states =
anv_state_pool_alloc(&device->dynamic_state_pool,
n_cps_states * CPS_STATE_length(device->info) * 4,
32);
if (device->cps_states.map == NULL)
goto fail_trivial_batch;
anv_genX(device->info, init_cps_device_state)(device);
}
if (device->physical->indirect_descriptors) {
/* Allocate a null surface state at surface state offset 0. This makes
* NULL descriptor handling trivial because we can just memset
* structures to zero and they have a valid descriptor.
*/
device->null_surface_state =
anv_state_pool_alloc(&device->bindless_surface_state_pool,
device->isl_dev.ss.size,
device->isl_dev.ss.align);
isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
.size = isl_extent3d(1, 1, 1) /* This shouldn't matter */);
assert(device->null_surface_state.offset == 0);
} else {
/* When using direct descriptors, those can hold the null surface state
* directly. We still need a null surface for the binding table entries
* though but this one can live anywhere the internal surface state
* pool.
*/
device->null_surface_state =
anv_state_pool_alloc(&device->internal_surface_state_pool,
device->isl_dev.ss.size,
device->isl_dev.ss.align);
isl_null_fill_state(&device->isl_dev, device->null_surface_state.map,
.size = isl_extent3d(1, 1, 1) /* This shouldn't matter */);
}
anv_scratch_pool_init(device, &device->scratch_pool);
/* TODO(RT): Do we want some sort of data structure for this? */
memset(device->rt_scratch_bos, 0, sizeof(device->rt_scratch_bos));
if (ANV_SUPPORT_RT && device->info->has_ray_tracing) {
/* The docs say to always allocate 128KB per DSS */
const uint32_t btd_fifo_bo_size =
128 * 1024 * intel_device_info_dual_subslice_id_bound(device->info);
result = anv_device_alloc_bo(device,
"rt-btd-fifo",
btd_fifo_bo_size,
0 /* alloc_flags */,
0 /* explicit_address */,
&device->btd_fifo_bo);
if (result != VK_SUCCESS)
goto fail_trivial_batch_bo_and_scratch_pool;
}
result = anv_genX(device->info, init_device_state)(device);
if (result != VK_SUCCESS)
goto fail_btd_fifo_bo;
struct vk_pipeline_cache_create_info pcc_info = { };
device->default_pipeline_cache =
vk_pipeline_cache_create(&device->vk, &pcc_info, NULL);
if (!device->default_pipeline_cache) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_btd_fifo_bo;
}
/* Internal shaders need their own pipeline cache because, unlike the rest
* of ANV, it won't work at all without the cache. It depends on it for
* shaders to remain resident while it runs. Therefore, we need a special
* cache just for BLORP/RT that's forced to always be enabled.
*/
pcc_info.force_enable = true;
device->internal_cache =
vk_pipeline_cache_create(&device->vk, &pcc_info, NULL);
if (device->internal_cache == NULL) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_default_pipeline_cache;
}
/* The device (currently is ICL/TGL) does not have float64 support. */
if (!device->info->has_64bit_float &&
device->physical->instance->fp64_workaround_enabled)
anv_load_fp64_shader(device);
result = anv_device_init_rt_shaders(device);
if (result != VK_SUCCESS) {
result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
goto fail_internal_cache;
}
device->robust_buffer_access =
device->vk.enabled_features.robustBufferAccess ||
device->vk.enabled_features.nullDescriptor;
device->breakpoint = anv_state_pool_alloc(&device->dynamic_state_pool, 4,
4);
p_atomic_set(&device->draw_call_count, 0);
anv_device_init_blorp(device);
anv_device_init_border_colors(device);
anv_device_init_internal_kernels(device);
anv_device_perf_init(device);
anv_device_utrace_init(device);
*pDevice = anv_device_to_handle(device);
return VK_SUCCESS;
fail_internal_cache:
vk_pipeline_cache_destroy(device->internal_cache, NULL);
fail_default_pipeline_cache:
vk_pipeline_cache_destroy(device->default_pipeline_cache, NULL);
fail_btd_fifo_bo:
if (ANV_SUPPORT_RT && device->info->has_ray_tracing)
anv_device_release_bo(device, device->btd_fifo_bo);
fail_trivial_batch_bo_and_scratch_pool:
anv_scratch_pool_finish(device, &device->scratch_pool);
fail_trivial_batch:
anv_device_release_bo(device, device->trivial_batch_bo);
fail_ray_query_bo:
if (device->ray_query_bo)
anv_device_release_bo(device, device->ray_query_bo);
fail_workaround_bo:
anv_device_release_bo(device, device->workaround_bo);
fail_surface_aux_map_pool:
if (device->info->has_aux_map) {
intel_aux_map_finish(device->aux_map_ctx);
device->aux_map_ctx = NULL;
}
fail_push_descriptor_pool:
anv_state_pool_finish(&device->push_descriptor_pool);
fail_binding_table_pool:
anv_state_pool_finish(&device->binding_table_pool);
fail_bindless_surface_state_pool:
if (device->physical->indirect_descriptors)
anv_state_pool_finish(&device->bindless_surface_state_pool);
fail_internal_surface_state_pool:
anv_state_pool_finish(&device->internal_surface_state_pool);
fail_scratch_surface_state_pool:
if (device->info->verx10 >= 125)
anv_state_pool_finish(&device->scratch_surface_state_pool);
fail_instruction_state_pool:
anv_state_pool_finish(&device->instruction_state_pool);
fail_dynamic_state_pool:
anv_state_reserved_pool_finish(&device->custom_border_colors);
anv_state_pool_finish(&device->dynamic_state_pool);
fail_general_state_pool:
anv_state_pool_finish(&device->general_state_pool);
fail_batch_bo_pool:
anv_bo_pool_finish(&device->batch_bo_pool);
anv_bo_cache_finish(&device->bo_cache);
fail_queue_cond:
pthread_cond_destroy(&device->queue_submit);
fail_mutex:
pthread_mutex_destroy(&device->mutex);
fail_vmas:
util_vma_heap_finish(&device->vma_desc);
util_vma_heap_finish(&device->vma_hi);
util_vma_heap_finish(&device->vma_cva);
util_vma_heap_finish(&device->vma_lo);
fail_queues:
for (uint32_t i = 0; i < device->queue_count; i++)
anv_queue_finish(&device->queues[i]);
vk_free(&device->vk.alloc, device->queues);
fail_context_id:
anv_device_destroy_context_or_vm(device);
fail_fd:
close(device->fd);
fail_device:
vk_device_finish(&device->vk);
fail_alloc:
vk_free(&device->vk.alloc, device);
return result;
}
void anv_DestroyDevice(
VkDevice _device,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (!device)
return;
struct anv_physical_device *pdevice = device->physical;
anv_device_utrace_finish(device);
anv_device_finish_blorp(device);
anv_device_finish_rt_shaders(device);
anv_device_finish_internal_kernels(device);
vk_pipeline_cache_destroy(device->internal_cache, NULL);
vk_pipeline_cache_destroy(device->default_pipeline_cache, NULL);
if (ANV_SUPPORT_RT && device->info->has_ray_tracing)
anv_device_release_bo(device, device->btd_fifo_bo);
#ifdef HAVE_VALGRIND
/* We only need to free these to prevent valgrind errors. The backing
* BO will go away in a couple of lines so we don't actually leak.
*/
anv_state_reserved_pool_finish(&device->custom_border_colors);
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
anv_state_pool_free(&device->dynamic_state_pool, device->slice_hash);
anv_state_pool_free(&device->dynamic_state_pool, device->cps_states);
anv_state_pool_free(&device->dynamic_state_pool, device->breakpoint);
#endif
for (unsigned i = 0; i < ARRAY_SIZE(device->rt_scratch_bos); i++) {
if (device->rt_scratch_bos[i] != NULL)
anv_device_release_bo(device, device->rt_scratch_bos[i]);
}
anv_scratch_pool_finish(device, &device->scratch_pool);
if (device->vk.enabled_extensions.KHR_ray_query) {
for (unsigned i = 0; i < ARRAY_SIZE(device->ray_query_shadow_bos); i++) {
if (device->ray_query_shadow_bos[i] != NULL)
anv_device_release_bo(device, device->ray_query_shadow_bos[i]);
}
anv_device_release_bo(device, device->ray_query_bo);
}
anv_device_release_bo(device, device->workaround_bo);
anv_device_release_bo(device, device->trivial_batch_bo);
if (device->info->has_aux_map) {
intel_aux_map_finish(device->aux_map_ctx);
device->aux_map_ctx = NULL;
}
anv_state_pool_finish(&device->push_descriptor_pool);
anv_state_pool_finish(&device->binding_table_pool);
if (device->info->verx10 >= 125)
anv_state_pool_finish(&device->scratch_surface_state_pool);
anv_state_pool_finish(&device->internal_surface_state_pool);
if (device->physical->indirect_descriptors)
anv_state_pool_finish(&device->bindless_surface_state_pool);
anv_state_pool_finish(&device->instruction_state_pool);
anv_state_pool_finish(&device->dynamic_state_pool);
anv_state_pool_finish(&device->general_state_pool);
anv_bo_pool_finish(&device->batch_bo_pool);
anv_bo_cache_finish(&device->bo_cache);
util_vma_heap_finish(&device->vma_desc);
util_vma_heap_finish(&device->vma_hi);
util_vma_heap_finish(&device->vma_cva);
util_vma_heap_finish(&device->vma_lo);
pthread_cond_destroy(&device->queue_submit);
pthread_mutex_destroy(&device->mutex);
for (uint32_t i = 0; i < device->queue_count; i++)
anv_queue_finish(&device->queues[i]);
vk_free(&device->vk.alloc, device->queues);
anv_device_destroy_context_or_vm(device);
if (INTEL_DEBUG(DEBUG_BATCH)) {
for (unsigned i = 0; i < pdevice->queue.family_count; i++)
intel_batch_decode_ctx_finish(&device->decoder[i]);
}
close(device->fd);
vk_device_finish(&device->vk);
vk_free(&device->vk.alloc, device);
}
VkResult anv_EnumerateInstanceLayerProperties(
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
}
VkResult
anv_device_wait(struct anv_device *device, struct anv_bo *bo,
int64_t timeout)
{
int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
if (ret == -1 && errno == ETIME) {
return VK_TIMEOUT;
} else if (ret == -1) {
/* We don't know the real error. */
return vk_device_set_lost(&device->vk, "gem wait failed: %m");
} else {
return VK_SUCCESS;
}
}
static struct util_vma_heap *
anv_vma_heap_for_flags(struct anv_device *device,
enum anv_bo_alloc_flags alloc_flags)
{
if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS)
return &device->vma_cva;
if (alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS)
return &device->vma_lo;
if (alloc_flags & ANV_BO_ALLOC_DESCRIPTOR_POOL)
return &device->vma_desc;
return &device->vma_hi;
}
uint64_t
anv_vma_alloc(struct anv_device *device,
uint64_t size, uint64_t align,
enum anv_bo_alloc_flags alloc_flags,
uint64_t client_address,
struct util_vma_heap **out_vma_heap)
{
pthread_mutex_lock(&device->vma_mutex);
uint64_t addr = 0;
*out_vma_heap = anv_vma_heap_for_flags(device, alloc_flags);
if (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) {
if (client_address) {
if (util_vma_heap_alloc_addr(*out_vma_heap,
client_address, size)) {
addr = client_address;
}
} else {
addr = util_vma_heap_alloc(*out_vma_heap, size, align);
}
/* We don't want to fall back to other heaps */
goto done;
}
assert(client_address == 0);
addr = util_vma_heap_alloc(*out_vma_heap, size, align);
done:
pthread_mutex_unlock(&device->vma_mutex);
assert(addr == intel_48b_address(addr));
return intel_canonical_address(addr);
}
void
anv_vma_free(struct anv_device *device,
struct util_vma_heap *vma_heap,
uint64_t address, uint64_t size)
{
assert(vma_heap == &device->vma_lo ||
vma_heap == &device->vma_cva ||
vma_heap == &device->vma_hi ||
vma_heap == &device->vma_desc);
const uint64_t addr_48b = intel_48b_address(address);
pthread_mutex_lock(&device->vma_mutex);
util_vma_heap_free(vma_heap, addr_48b, size);
pthread_mutex_unlock(&device->vma_mutex);
}
VkResult anv_AllocateMemory(
VkDevice _device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMem)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_physical_device *pdevice = device->physical;
struct anv_device_memory *mem;
VkResult result = VK_SUCCESS;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
VkDeviceSize aligned_alloc_size =
align64(pAllocateInfo->allocationSize, 4096);
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
const struct anv_memory_type *mem_type =
&pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
assert(mem_type->heapIndex < pdevice->memory.heap_count);
struct anv_memory_heap *mem_heap =
&pdevice->memory.heaps[mem_type->heapIndex];
if (aligned_alloc_size > mem_heap->size)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
uint64_t mem_heap_used = p_atomic_read(&mem_heap->used);
if (mem_heap_used + aligned_alloc_size > mem_heap->size)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
mem = vk_device_memory_create(&device->vk, pAllocateInfo,
pAllocator, sizeof(*mem));
if (mem == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
mem->type = mem_type;
mem->map = NULL;
mem->map_size = 0;
mem->map_delta = 0;
enum anv_bo_alloc_flags alloc_flags = 0;
const VkImportMemoryFdInfoKHR *fd_info = NULL;
const VkMemoryDedicatedAllocateInfo *dedicated_info = NULL;
uint64_t client_address = 0;
vk_foreach_struct_const(ext, pAllocateInfo->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO:
case VK_STRUCTURE_TYPE_IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID:
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT:
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_WIN32_HANDLE_INFO_KHR:
case VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO:
/* handled by vk_device_memory_create */
break;
case VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR:
fd_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO:
dedicated_info = (void *)ext;
break;
case VK_STRUCTURE_TYPE_MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO: {
const VkMemoryOpaqueCaptureAddressAllocateInfo *addr_info =
(const VkMemoryOpaqueCaptureAddressAllocateInfo *)ext;
client_address = addr_info->opaqueCaptureAddress;
break;
}
default:
/* VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA isn't a real
* enum value, so use conditional to avoid compiler warn
*/
if (ext->sType == VK_STRUCTURE_TYPE_WSI_MEMORY_ALLOCATE_INFO_MESA) {
/* TODO: Android, ChromeOS and other applications may need another
* way to allocate buffers that can be scanout to display but it
* should pretty easy to catch those as Xe KMD driver will print
* warnings in dmesg when scanning buffers allocated without
* proper flag set.
*/
alloc_flags |= ANV_BO_ALLOC_SCANOUT;
} else {
anv_debug_ignored_stype(ext->sType);
}
break;
}
}
/* By default, we want all VkDeviceMemory objects to support CCS */
if (device->physical->has_implicit_ccs && device->info->has_aux_map)
alloc_flags |= ANV_BO_ALLOC_IMPLICIT_CCS;
/* If i915 reported a mappable/non_mappable vram regions and the
* application want lmem mappable, then we need to use the
* I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS flag to create our BO.
*/
if (pdevice->vram_mappable.size > 0 &&
pdevice->vram_non_mappable.size > 0 &&
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) &&
(mem_type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT))
alloc_flags |= ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE;
if (!mem_heap->is_local_mem)
alloc_flags |= ANV_BO_ALLOC_NO_LOCAL_MEM;
if (mem->vk.alloc_flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT)
alloc_flags |= ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS;
/* Anything imported or exported is EXTERNAL. Apply implicit sync to be
* compatible with clients relying on implicit fencing. This matches the
* behavior in iris i915_batch_submit. An example client is VA-API.
*/
if (mem->vk.export_handle_types || mem->vk.import_handle_type)
alloc_flags |= (ANV_BO_ALLOC_EXTERNAL | ANV_BO_ALLOC_IMPLICIT_SYNC);
if (mem->vk.ahardware_buffer) {
result = anv_import_ahw_memory(_device, mem);
if (result != VK_SUCCESS)
goto fail;
goto success;
}
/* The Vulkan spec permits handleType to be 0, in which case the struct is
* ignored.
*/
if (fd_info && fd_info->handleType) {
/* At the moment, we support only the below handle types. */
assert(fd_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
fd_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
result = anv_device_import_bo(device, fd_info->fd, alloc_flags,
client_address, &mem->bo);
if (result != VK_SUCCESS)
goto fail;
/* For security purposes, we reject importing the bo if it's smaller
* than the requested allocation size. This prevents a malicious client
* from passing a buffer to a trusted client, lying about the size, and
* telling the trusted client to try and texture from an image that goes
* out-of-bounds. This sort of thing could lead to GPU hangs or worse
* in the trusted client. The trusted client can protect itself against
* this sort of attack but only if it can trust the buffer size.
*/
if (mem->bo->size < aligned_alloc_size) {
result = vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
"aligned allocationSize too large for "
"VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT: "
"%"PRIu64"B > %"PRIu64"B",
aligned_alloc_size, mem->bo->size);
anv_device_release_bo(device, mem->bo);
goto fail;
}
/* From the Vulkan spec:
*
* "Importing memory from a file descriptor transfers ownership of
* the file descriptor from the application to the Vulkan
* implementation. The application must not perform any operations on
* the file descriptor after a successful import."
*
* If the import fails, we leave the file descriptor open.
*/
close(fd_info->fd);
goto success;
}
if (mem->vk.host_ptr) {
if (mem->vk.import_handle_type ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_MAPPED_FOREIGN_MEMORY_BIT_EXT) {
result = vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
goto fail;
}
assert(mem->vk.import_handle_type ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
result = anv_device_import_bo_from_host_ptr(device,
mem->vk.host_ptr,
mem->vk.size,
alloc_flags,
client_address,
&mem->bo);
if (result != VK_SUCCESS)
goto fail;
goto success;
}
/* Regular allocate (not importing memory). */
result = anv_device_alloc_bo(device, "user", pAllocateInfo->allocationSize,
alloc_flags, client_address, &mem->bo);
if (result != VK_SUCCESS)
goto fail;
if (dedicated_info && dedicated_info->image != VK_NULL_HANDLE) {
ANV_FROM_HANDLE(anv_image, image, dedicated_info->image);
/* Some legacy (non-modifiers) consumers need the tiling to be set on
* the BO. In this case, we have a dedicated allocation.
*/
if (image->vk.wsi_legacy_scanout) {
const struct isl_surf *surf = &image->planes[0].primary_surface.isl;
result = anv_device_set_bo_tiling(device, mem->bo,
surf->row_pitch_B,
surf->tiling);
if (result != VK_SUCCESS) {
anv_device_release_bo(device, mem->bo);
goto fail;
}
}
}
success:
mem_heap_used = p_atomic_add_return(&mem_heap->used, mem->bo->size);
if (mem_heap_used > mem_heap->size) {
p_atomic_add(&mem_heap->used, -mem->bo->size);
anv_device_release_bo(device, mem->bo);
result = vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
"Out of heap memory");
goto fail;
}
pthread_mutex_lock(&device->mutex);
list_addtail(&mem->link, &device->memory_objects);
pthread_mutex_unlock(&device->mutex);
*pMem = anv_device_memory_to_handle(mem);
return VK_SUCCESS;
fail:
vk_device_memory_destroy(&device->vk, pAllocator, &mem->vk);
return result;
}
VkResult anv_GetMemoryFdKHR(
VkDevice device_h,
const VkMemoryGetFdInfoKHR* pGetFdInfo,
int* pFd)
{
ANV_FROM_HANDLE(anv_device, dev, device_h);
ANV_FROM_HANDLE(anv_device_memory, mem, pGetFdInfo->memory);
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
return anv_device_export_bo(dev, mem->bo, pFd);
}
VkResult anv_GetMemoryFdPropertiesKHR(
VkDevice _device,
VkExternalMemoryHandleTypeFlagBits handleType,
int fd,
VkMemoryFdPropertiesKHR* pMemoryFdProperties)
{
ANV_FROM_HANDLE(anv_device, device, _device);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT:
/* dma-buf can be imported as any memory type */
pMemoryFdProperties->memoryTypeBits =
(1 << device->physical->memory.type_count) - 1;
return VK_SUCCESS;
default:
/* The valid usage section for this function says:
*
* "handleType must not be one of the handle types defined as
* opaque."
*
* So opaque handle types fall into the default "unsupported" case.
*/
return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
}
}
VkResult anv_GetMemoryHostPointerPropertiesEXT(
VkDevice _device,
VkExternalMemoryHandleTypeFlagBits handleType,
const void* pHostPointer,
VkMemoryHostPointerPropertiesEXT* pMemoryHostPointerProperties)
{
ANV_FROM_HANDLE(anv_device, device, _device);
assert(pMemoryHostPointerProperties->sType ==
VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT);
switch (handleType) {
case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT:
/* Host memory can be imported as any memory type. */
pMemoryHostPointerProperties->memoryTypeBits =
(1ull << device->physical->memory.type_count) - 1;
return VK_SUCCESS;
default:
return VK_ERROR_INVALID_EXTERNAL_HANDLE;
}
}
void anv_FreeMemory(
VkDevice _device,
VkDeviceMemory _mem,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
if (mem == NULL)
return;
pthread_mutex_lock(&device->mutex);
list_del(&mem->link);
pthread_mutex_unlock(&device->mutex);
if (mem->map) {
const VkMemoryUnmapInfoKHR unmap = {
.sType = VK_STRUCTURE_TYPE_MEMORY_UNMAP_INFO_KHR,
.memory = _mem,
};
anv_UnmapMemory2KHR(_device, &unmap);
}
p_atomic_add(&device->physical->memory.heaps[mem->type->heapIndex].used,
-mem->bo->size);
anv_device_release_bo(device, mem->bo);
vk_device_memory_destroy(&device->vk, pAllocator, &mem->vk);
}
VkResult anv_MapMemory2KHR(
VkDevice _device,
const VkMemoryMapInfoKHR* pMemoryMapInfo,
void** ppData)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryMapInfo->memory);
if (mem == NULL) {
*ppData = NULL;
return VK_SUCCESS;
}
if (mem->vk.host_ptr) {
*ppData = mem->vk.host_ptr + pMemoryMapInfo->offset;
return VK_SUCCESS;
}
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
*
* * memory must have been created with a memory type that reports
* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
*/
if (!(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) {
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
"Memory object not mappable.");
}
assert(pMemoryMapInfo->size > 0);
const VkDeviceSize offset = pMemoryMapInfo->offset;
const VkDeviceSize size =
vk_device_memory_range(&mem->vk, pMemoryMapInfo->offset,
pMemoryMapInfo->size);
if (size != (size_t)size) {
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
"requested size 0x%"PRIx64" does not fit in %u bits",
size, (unsigned)(sizeof(size_t) * 8));
}
/* From the Vulkan 1.2.194 spec:
*
* "memory must not be currently host mapped"
*/
if (mem->map != NULL) {
return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED,
"Memory object already mapped.");
}
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
uint64_t map_offset;
if (!device->physical->info.has_mmap_offset)
map_offset = offset & ~4095ull;
else
map_offset = 0;
assert(offset >= map_offset);
uint64_t map_size = (offset + size) - map_offset;
/* Let's map whole pages */
map_size = align64(map_size, 4096);
void *map;
VkResult result = anv_device_map_bo(device, mem->bo, map_offset, map_size,
mem->type->propertyFlags, &map);
if (result != VK_SUCCESS)
return result;
mem->map = map;
mem->map_size = map_size;
mem->map_delta = (offset - map_offset);
*ppData = mem->map + mem->map_delta;
return VK_SUCCESS;
}
VkResult anv_UnmapMemory2KHR(
VkDevice _device,
const VkMemoryUnmapInfoKHR* pMemoryUnmapInfo)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryUnmapInfo->memory);
if (mem == NULL || mem->vk.host_ptr)
return VK_SUCCESS;
anv_device_unmap_bo(device, mem->bo, mem->map, mem->map_size);
mem->map = NULL;
mem->map_size = 0;
mem->map_delta = 0;
return VK_SUCCESS;
}
VkResult anv_FlushMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
#ifdef SUPPORT_INTEL_INTEGRATED_GPUS
ANV_FROM_HANDLE(anv_device, device, _device);
if (!device->physical->memory.need_clflush)
return VK_SUCCESS;
/* Make sure the writes we're flushing have landed. */
__builtin_ia32_mfence();
for (uint32_t i = 0; i < memoryRangeCount; i++) {
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory);
if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta;
if (map_offset >= mem->map_size)
continue;
intel_clflush_range(mem->map + map_offset,
MIN2(pMemoryRanges[i].size,
mem->map_size - map_offset));
}
#endif
return VK_SUCCESS;
}
VkResult anv_InvalidateMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
#ifdef SUPPORT_INTEL_INTEGRATED_GPUS
ANV_FROM_HANDLE(anv_device, device, _device);
if (!device->physical->memory.need_clflush)
return VK_SUCCESS;
for (uint32_t i = 0; i < memoryRangeCount; i++) {
ANV_FROM_HANDLE(anv_device_memory, mem, pMemoryRanges[i].memory);
if (mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
continue;
uint64_t map_offset = pMemoryRanges[i].offset + mem->map_delta;
if (map_offset >= mem->map_size)
continue;
intel_invalidate_range(mem->map + map_offset,
MIN2(pMemoryRanges[i].size,
mem->map_size - map_offset));
}
/* Make sure no reads get moved up above the invalidate. */
__builtin_ia32_mfence();
#endif
return VK_SUCCESS;
}
void anv_GetDeviceMemoryCommitment(
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize* pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
static void
anv_bind_buffer_memory(const VkBindBufferMemoryInfo *pBindInfo)
{
ANV_FROM_HANDLE(anv_device_memory, mem, pBindInfo->memory);
ANV_FROM_HANDLE(anv_buffer, buffer, pBindInfo->buffer);
assert(pBindInfo->sType == VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO);
if (mem) {
assert(pBindInfo->memoryOffset < mem->vk.size);
assert(mem->vk.size - pBindInfo->memoryOffset >= buffer->vk.size);
buffer->address = (struct anv_address) {
.bo = mem->bo,
.offset = pBindInfo->memoryOffset,
};
} else {
buffer->address = ANV_NULL_ADDRESS;
}
}
VkResult anv_BindBufferMemory2(
VkDevice device,
uint32_t bindInfoCount,
const VkBindBufferMemoryInfo* pBindInfos)
{
for (uint32_t i = 0; i < bindInfoCount; i++)
anv_bind_buffer_memory(&pBindInfos[i]);
return VK_SUCCESS;
}
VkResult anv_QueueBindSparse(
VkQueue _queue,
uint32_t bindInfoCount,
const VkBindSparseInfo* pBindInfo,
VkFence fence)
{
ANV_FROM_HANDLE(anv_queue, queue, _queue);
if (vk_device_is_lost(&queue->device->vk))
return VK_ERROR_DEVICE_LOST;
if (INTEL_DEBUG(DEBUG_SPARSE))
fprintf(stderr, "=== [%s:%d] [%s]\n", __FILE__, __LINE__, __func__);
return vk_error(queue, VK_ERROR_FEATURE_NOT_PRESENT);
}
// Event functions
VkResult anv_CreateEvent(
VkDevice _device,
const VkEventCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkEvent* pEvent)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_event *event;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
event = vk_object_alloc(&device->vk, pAllocator, sizeof(*event),
VK_OBJECT_TYPE_EVENT);
if (event == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
event->state = anv_state_pool_alloc(&device->dynamic_state_pool,
sizeof(uint64_t), 8);
*(uint64_t *)event->state.map = VK_EVENT_RESET;
*pEvent = anv_event_to_handle(event);
return VK_SUCCESS;
}
void anv_DestroyEvent(
VkDevice _device,
VkEvent _event,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
if (!event)
return;
anv_state_pool_free(&device->dynamic_state_pool, event->state);
vk_object_free(&device->vk, pAllocator, event);
}
VkResult anv_GetEventStatus(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_event, event, _event);
if (vk_device_is_lost(&device->vk))
return VK_ERROR_DEVICE_LOST;
return *(uint64_t *)event->state.map;
}
VkResult anv_SetEvent(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_event, event, _event);
*(uint64_t *)event->state.map = VK_EVENT_SET;
return VK_SUCCESS;
}
VkResult anv_ResetEvent(
VkDevice _device,
VkEvent _event)
{
ANV_FROM_HANDLE(anv_event, event, _event);
*(uint64_t *)event->state.map = VK_EVENT_RESET;
return VK_SUCCESS;
}
// Buffer functions
static void
anv_get_buffer_memory_requirements(struct anv_device *device,
VkDeviceSize size,
VkBufferUsageFlags usage,
VkMemoryRequirements2* pMemoryRequirements)
{
/* The Vulkan spec (git aaed022) says:
*
* memoryTypeBits is a bitfield and contains one bit set for every
* supported memory type for the resource. The bit `1<<i` is set if and
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
* structure for the physical device is supported.
*/
uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;
/* The GPU appears to write back to main memory in cachelines. Writes to a
* buffers should not clobber with writes to another buffers so make sure
* those are in different cachelines.
*/
uint32_t alignment = 64;
pMemoryRequirements->memoryRequirements.size = size;
pMemoryRequirements->memoryRequirements.alignment = alignment;
/* Storage and Uniform buffers should have their size aligned to
* 32-bits to avoid boundary checks when last DWord is not complete.
* This would ensure that not internal padding would be needed for
* 16-bit types.
*/
if (device->robust_buffer_access &&
(usage & VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT ||
usage & VK_BUFFER_USAGE_STORAGE_BUFFER_BIT))
pMemoryRequirements->memoryRequirements.size = align64(size, 4);
pMemoryRequirements->memoryRequirements.memoryTypeBits = memory_types;
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
VkMemoryDedicatedRequirements *requirements = (void *)ext;
requirements->prefersDedicatedAllocation = false;
requirements->requiresDedicatedAllocation = false;
break;
}
default:
anv_debug_ignored_stype(ext->sType);
break;
}
}
}
void anv_GetDeviceBufferMemoryRequirementsKHR(
VkDevice _device,
const VkDeviceBufferMemoryRequirements* pInfo,
VkMemoryRequirements2* pMemoryRequirements)
{
ANV_FROM_HANDLE(anv_device, device, _device);
if (INTEL_DEBUG(DEBUG_SPARSE) && pInfo->pCreateInfo->flags &
(VK_BUFFER_CREATE_SPARSE_BINDING_BIT |
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT |
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT))
fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__,
__LINE__, pInfo->pCreateInfo->flags);
anv_get_buffer_memory_requirements(device,
pInfo->pCreateInfo->size,
pInfo->pCreateInfo->usage,
pMemoryRequirements);
}
VkResult anv_CreateBuffer(
VkDevice _device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_buffer *buffer;
if (INTEL_DEBUG(DEBUG_SPARSE) && (pCreateInfo->flags &
(VK_BUFFER_CREATE_SPARSE_BINDING_BIT |
VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT |
VK_BUFFER_CREATE_SPARSE_ALIASED_BIT)))
fprintf(stderr, "=== %s %s:%d flags:0x%08x\n", __func__, __FILE__,
__LINE__, pCreateInfo->flags);
/* Don't allow creating buffers bigger than our address space. The real
* issue here is that we may align up the buffer size and we don't want
* doing so to cause roll-over. However, no one has any business
* allocating a buffer larger than our GTT size.
*/
if (pCreateInfo->size > device->physical->gtt_size)
return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
buffer = vk_buffer_create(&device->vk, pCreateInfo,
pAllocator, sizeof(*buffer));
if (buffer == NULL)
return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
buffer->address = ANV_NULL_ADDRESS;
*pBuffer = anv_buffer_to_handle(buffer);
return VK_SUCCESS;
}
void anv_DestroyBuffer(
VkDevice _device,
VkBuffer _buffer,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
if (!buffer)
return;
vk_buffer_destroy(&device->vk, pAllocator, &buffer->vk);
}
VkDeviceAddress anv_GetBufferDeviceAddress(
VkDevice device,
const VkBufferDeviceAddressInfo* pInfo)
{
ANV_FROM_HANDLE(anv_buffer, buffer, pInfo->buffer);
assert(!anv_address_is_null(buffer->address));
return anv_address_physical(buffer->address);
}
uint64_t anv_GetBufferOpaqueCaptureAddress(
VkDevice device,
const VkBufferDeviceAddressInfo* pInfo)
{
return 0;
}
uint64_t anv_GetDeviceMemoryOpaqueCaptureAddress(
VkDevice device,
const VkDeviceMemoryOpaqueCaptureAddressInfo* pInfo)
{
ANV_FROM_HANDLE(anv_device_memory, memory, pInfo->memory);
assert(memory->bo->has_client_visible_address);
return intel_48b_address(memory->bo->offset);
}
void
anv_fill_buffer_surface_state(struct anv_device *device,
void *surface_state_ptr,
enum isl_format format,
struct isl_swizzle swizzle,
isl_surf_usage_flags_t usage,
struct anv_address address,
uint32_t range, uint32_t stride)
{
isl_buffer_fill_state(&device->isl_dev, surface_state_ptr,
.address = anv_address_physical(address),
.mocs = isl_mocs(&device->isl_dev, usage,
address.bo && address.bo->is_external),
.size_B = range,
.format = format,
.swizzle = swizzle,
.stride_B = stride);
}
void anv_DestroySampler(
VkDevice _device,
VkSampler _sampler,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
if (!sampler)
return;
if (sampler->bindless_state.map) {
anv_state_pool_free(&device->dynamic_state_pool,
sampler->bindless_state);
}
if (sampler->custom_border_color.map) {
anv_state_reserved_pool_free(&device->custom_border_colors,
sampler->custom_border_color);
}
vk_sampler_destroy(&device->vk, pAllocator, &sampler->vk);
}
static const VkTimeDomainEXT anv_time_domains[] = {
VK_TIME_DOMAIN_DEVICE_EXT,
VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
#ifdef CLOCK_MONOTONIC_RAW
VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
#endif
};
VkResult anv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(
VkPhysicalDevice physicalDevice,
uint32_t *pTimeDomainCount,
VkTimeDomainEXT *pTimeDomains)
{
int d;
VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount);
for (d = 0; d < ARRAY_SIZE(anv_time_domains); d++) {
vk_outarray_append_typed(VkTimeDomainEXT, &out, i) {
*i = anv_time_domains[d];
}
}
return vk_outarray_status(&out);
}
VkResult anv_GetCalibratedTimestampsEXT(
VkDevice _device,
uint32_t timestampCount,
const VkCalibratedTimestampInfoEXT *pTimestampInfos,
uint64_t *pTimestamps,
uint64_t *pMaxDeviation)
{
ANV_FROM_HANDLE(anv_device, device, _device);
uint64_t timestamp_frequency = device->info->timestamp_frequency;
int d;
uint64_t begin, end;
uint64_t max_clock_period = 0;
#ifdef CLOCK_MONOTONIC_RAW
begin = vk_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
begin = vk_clock_gettime(CLOCK_MONOTONIC);
#endif
for (d = 0; d < timestampCount; d++) {
switch (pTimestampInfos[d].timeDomain) {
case VK_TIME_DOMAIN_DEVICE_EXT:
if (!intel_gem_read_render_timestamp(device->fd,
device->info->kmd_type,
&pTimestamps[d])) {
return vk_device_set_lost(&device->vk, "Failed to read the "
"TIMESTAMP register: %m");
}
uint64_t device_period = DIV_ROUND_UP(1000000000, timestamp_frequency);
max_clock_period = MAX2(max_clock_period, device_period);
break;
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
pTimestamps[d] = vk_clock_gettime(CLOCK_MONOTONIC);
max_clock_period = MAX2(max_clock_period, 1);
break;
#ifdef CLOCK_MONOTONIC_RAW
case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
pTimestamps[d] = begin;
break;
#endif
default:
pTimestamps[d] = 0;
break;
}
}
#ifdef CLOCK_MONOTONIC_RAW
end = vk_clock_gettime(CLOCK_MONOTONIC_RAW);
#else
end = vk_clock_gettime(CLOCK_MONOTONIC);
#endif
*pMaxDeviation = vk_time_max_deviation(begin, end, max_clock_period);
return VK_SUCCESS;
}
void anv_GetPhysicalDeviceMultisamplePropertiesEXT(
VkPhysicalDevice physicalDevice,
VkSampleCountFlagBits samples,
VkMultisamplePropertiesEXT* pMultisampleProperties)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
assert(pMultisampleProperties->sType ==
VK_STRUCTURE_TYPE_MULTISAMPLE_PROPERTIES_EXT);
VkExtent2D grid_size;
if (samples & isl_device_get_sample_counts(&physical_device->isl_dev)) {
grid_size.width = 1;
grid_size.height = 1;
} else {
grid_size.width = 0;
grid_size.height = 0;
}
pMultisampleProperties->maxSampleLocationGridSize = grid_size;
vk_foreach_struct(ext, pMultisampleProperties->pNext)
anv_debug_ignored_stype(ext->sType);
}
/* vk_icd.h does not declare this function, so we declare it here to
* suppress Wmissing-prototypes.
*/
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
{
/* For the full details on loader interface versioning, see
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
* What follows is a condensed summary, to help you navigate the large and
* confusing official doc.
*
* - Loader interface v0 is incompatible with later versions. We don't
* support it.
*
* - In loader interface v1:
* - The first ICD entrypoint called by the loader is
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
* entrypoint.
* - The ICD must statically expose no other Vulkan symbol unless it is
* linked with -Bsymbolic.
* - Each dispatchable Vulkan handle created by the ICD must be
* a pointer to a struct whose first member is VK_LOADER_DATA. The
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
* vkDestroySurfaceKHR(). The ICD must be capable of working with
* such loader-managed surfaces.
*
* - Loader interface v2 differs from v1 in:
* - The first ICD entrypoint called by the loader is
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
* statically expose this entrypoint.
*
* - Loader interface v3 differs from v2 in:
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
* because the loader no longer does so.
*
* - Loader interface v4 differs from v3 in:
* - The ICD must implement vk_icdGetPhysicalDeviceProcAddr().
*
* - Loader interface v5 differs from v4 in:
* - The ICD must support Vulkan API version 1.1 and must not return
* VK_ERROR_INCOMPATIBLE_DRIVER from vkCreateInstance() unless a
* Vulkan Loader with interface v4 or smaller is being used and the
* application provides an API version that is greater than 1.0.
*/
*pSupportedVersion = MIN2(*pSupportedVersion, 5u);
return VK_SUCCESS;
}
VkResult anv_GetPhysicalDeviceFragmentShadingRatesKHR(
VkPhysicalDevice physicalDevice,
uint32_t* pFragmentShadingRateCount,
VkPhysicalDeviceFragmentShadingRateKHR* pFragmentShadingRates)
{
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out,
pFragmentShadingRates, pFragmentShadingRateCount);
#define append_rate(_samples, _width, _height) \
do { \
vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, __r) { \
__r->sampleCounts = _samples; \
__r->fragmentSize = (VkExtent2D) { \
.width = _width, \
.height = _height, \
}; \
} \
} while (0)
VkSampleCountFlags sample_counts =
isl_device_get_sample_counts(&physical_device->isl_dev);
/* BSpec 47003: There are a number of restrictions on the sample count
* based off the coarse pixel size.
*/
static const VkSampleCountFlags cp_size_sample_limits[] = {
[1] = ISL_SAMPLE_COUNT_16_BIT | ISL_SAMPLE_COUNT_8_BIT |
ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
[2] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
[4] = ISL_SAMPLE_COUNT_4_BIT | ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
[8] = ISL_SAMPLE_COUNT_2_BIT | ISL_SAMPLE_COUNT_1_BIT,
[16] = ISL_SAMPLE_COUNT_1_BIT,
};
for (uint32_t x = 4; x >= 1; x /= 2) {
for (uint32_t y = 4; y >= 1; y /= 2) {
if (physical_device->info.has_coarse_pixel_primitive_and_cb) {
/* BSpec 47003:
* "CPsize 1x4 and 4x1 are not supported"
*/
if ((x == 1 && y == 4) || (x == 4 && y == 1))
continue;
/* For size {1, 1}, the sample count must be ~0
*
* 4x2 is also a specially case.
*/
if (x == 1 && y == 1)
append_rate(~0, x, y);
else if (x == 4 && y == 2)
append_rate(ISL_SAMPLE_COUNT_1_BIT, x, y);
else
append_rate(cp_size_sample_limits[x * y], x, y);
} else {
/* For size {1, 1}, the sample count must be ~0 */
if (x == 1 && y == 1)
append_rate(~0, x, y);
else
append_rate(sample_counts, x, y);
}
}
}
#undef append_rate
return vk_outarray_status(&out);
}