Files
third_party_mesa3d/src/broadcom/compiler/nir_to_vir.c
Eric Anholt ba965084b6 broadcom/vc5: Move texture return channel setup into the compiler.
The compiler decides how many LDTMUs we're going to emit, and that must
match the P1 flags.  This brings the return channel counting to a single
place (so all that's passed into the compiler is "how many return channels
you may request from this texture's format), and was a necessary step for
shadow samplers once we stop using OVRTMUOUT=0.
2018-01-03 14:25:23 -08:00

2134 lines
77 KiB
C

/*
* Copyright © 2016 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "util/u_format.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "v3d_compiler.h"
/* We don't do any address packing. */
#define __gen_user_data void
#define __gen_address_type uint32_t
#define __gen_address_offset(reloc) (*reloc)
#define __gen_emit_reloc(cl, reloc)
#include "cle/v3d_packet_v33_pack.h"
static struct qreg
ntq_get_src(struct v3d_compile *c, nir_src src, int i);
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
resize_qreg_array(struct v3d_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++)
(*regs)[i] = c->undef;
}
static struct qreg
vir_SFU(struct v3d_compile *c, int waddr, struct qreg src)
{
vir_FMOV_dest(c, vir_reg(QFILE_MAGIC, waddr), src);
return vir_FMOV(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R4));
}
static struct qreg
vir_LDTMU(struct v3d_compile *c)
{
vir_NOP(c)->qpu.sig.ldtmu = true;
return vir_MOV(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R4));
}
static struct qreg
indirect_uniform_load(struct v3d_compile *c, nir_intrinsic_instr *intr)
{
struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
uint32_t offset = nir_intrinsic_base(intr);
struct v3d_ubo_range *range = NULL;
unsigned i;
for (i = 0; i < c->num_ubo_ranges; i++) {
range = &c->ubo_ranges[i];
if (offset >= range->src_offset &&
offset < range->src_offset + range->size) {
break;
}
}
/* The driver-location-based offset always has to be within a declared
* uniform range.
*/
assert(i != c->num_ubo_ranges);
if (!c->ubo_range_used[i]) {
c->ubo_range_used[i] = true;
range->dst_offset = c->next_ubo_dst_offset;
c->next_ubo_dst_offset += range->size;
}
offset -= range->src_offset;
if (range->dst_offset + offset != 0) {
indirect_offset = vir_ADD(c, indirect_offset,
vir_uniform_ui(c, range->dst_offset +
offset));
}
/* Adjust for where we stored the TGSI register base. */
vir_ADD_dest(c,
vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA),
vir_uniform(c, QUNIFORM_UBO_ADDR, 0),
indirect_offset);
return vir_LDTMU(c);
}
static struct qreg *
ntq_init_ssa_def(struct v3d_compile *c, nir_ssa_def *def)
{
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
def->num_components);
_mesa_hash_table_insert(c->def_ht, def, qregs);
return qregs;
}
/**
* This function is responsible for getting VIR results into the associated
* storage for a NIR instruction.
*
* If it's a NIR SSA def, then we just set the associated hash table entry to
* the new result.
*
* If it's a NIR reg, then we need to update the existing qreg assigned to the
* NIR destination with the incoming value. To do that without introducing
* new MOVs, we require that the incoming qreg either be a uniform, or be
* SSA-defined by the previous VIR instruction in the block and rewritable by
* this function. That lets us sneak ahead and insert the SF flag beforehand
* (knowing that the previous instruction doesn't depend on flags) and rewrite
* its destination to be the NIR reg's destination
*/
static void
ntq_store_dest(struct v3d_compile *c, nir_dest *dest, int chan,
struct qreg result)
{
struct qinst *last_inst = NULL;
if (!list_empty(&c->cur_block->instructions))
last_inst = (struct qinst *)c->cur_block->instructions.prev;
assert(result.file == QFILE_UNIF ||
(result.file == QFILE_TEMP &&
last_inst && last_inst == c->defs[result.index]));
if (dest->is_ssa) {
assert(chan < dest->ssa.num_components);
struct qreg *qregs;
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, &dest->ssa);
if (entry)
qregs = entry->data;
else
qregs = ntq_init_ssa_def(c, &dest->ssa);
qregs[chan] = result;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
struct qreg *qregs = entry->data;
/* Insert a MOV if the source wasn't an SSA def in the
* previous instruction.
*/
if (result.file == QFILE_UNIF) {
result = vir_MOV(c, result);
last_inst = c->defs[result.index];
}
/* We know they're both temps, so just rewrite index. */
c->defs[last_inst->dst.index] = NULL;
last_inst->dst.index = qregs[chan].index;
/* If we're in control flow, then make this update of the reg
* conditional on the execution mask.
*/
if (c->execute.file != QFILE_NULL) {
last_inst->dst.index = qregs[chan].index;
/* Set the flags to the current exec mask. To insert
* the flags push, we temporarily remove our SSA
* instruction.
*/
list_del(&last_inst->link);
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
list_addtail(&last_inst->link,
&c->cur_block->instructions);
vir_set_cond(last_inst, V3D_QPU_COND_IFA);
last_inst->cond_is_exec_mask = true;
}
}
}
static struct qreg
ntq_get_src(struct v3d_compile *c, nir_src src, int i)
{
struct hash_entry *entry;
if (src.is_ssa) {
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
assert(i < src.ssa->num_components);
} else {
nir_register *reg = src.reg.reg;
entry = _mesa_hash_table_search(c->def_ht, reg);
assert(reg->num_array_elems == 0);
assert(src.reg.base_offset == 0);
assert(i < reg->num_components);
}
struct qreg *qregs = entry->data;
return qregs[i];
}
static struct qreg
ntq_get_alu_src(struct v3d_compile *c, nir_alu_instr *instr,
unsigned src)
{
assert(util_is_power_of_two(instr->dest.write_mask));
unsigned chan = ffs(instr->dest.write_mask) - 1;
struct qreg r = ntq_get_src(c, instr->src[src].src,
instr->src[src].swizzle[chan]);
assert(!instr->src[src].abs);
assert(!instr->src[src].negate);
return r;
};
static inline struct qreg
vir_SAT(struct v3d_compile *c, struct qreg val)
{
return vir_FMAX(c,
vir_FMIN(c, val, vir_uniform_f(c, 1.0)),
vir_uniform_f(c, 0.0));
}
static struct qreg
ntq_umul(struct v3d_compile *c, struct qreg src0, struct qreg src1)
{
vir_MULTOP(c, src0, src1);
return vir_UMUL24(c, src0, src1);
}
static struct qreg
ntq_minify(struct v3d_compile *c, struct qreg size, struct qreg level)
{
return vir_MAX(c, vir_SHR(c, size, level), vir_uniform_ui(c, 1));
}
static void
ntq_emit_txs(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
int lod_index = nir_tex_instr_src_index(instr, nir_tex_src_lod);
int dest_size = nir_tex_instr_dest_size(instr);
struct qreg lod = c->undef;
if (lod_index != -1)
lod = ntq_get_src(c, instr->src[lod_index].src, 0);
for (int i = 0; i < dest_size; i++) {
assert(i < 3);
enum quniform_contents contents;
if (instr->is_array && i == dest_size - 1)
contents = QUNIFORM_TEXTURE_ARRAY_SIZE;
else
contents = QUNIFORM_TEXTURE_WIDTH + i;
struct qreg size = vir_uniform(c, contents, unit);
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_3D:
case GLSL_SAMPLER_DIM_CUBE:
/* Don't minify the array size. */
if (!(instr->is_array && i == dest_size - 1)) {
size = ntq_minify(c, size, lod);
}
break;
case GLSL_SAMPLER_DIM_RECT:
/* There's no LOD field for rects */
break;
default:
unreachable("Bad sampler type");
}
ntq_store_dest(c, &instr->dest, i, size);
}
}
static void
ntq_emit_tex(struct v3d_compile *c, nir_tex_instr *instr)
{
unsigned unit = instr->texture_index;
/* Since each texture sampling op requires uploading uniforms to
* reference the texture, there's no HW support for texture size and
* you just upload uniforms containing the size.
*/
switch (instr->op) {
case nir_texop_query_levels:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_TEXTURE_LEVELS, unit));
return;
case nir_texop_txs:
ntq_emit_txs(c, instr);
return;
default:
break;
}
struct V3D33_TEXTURE_UNIFORM_PARAMETER_0_CFG_MODE1 p0_unpacked = {
V3D33_TEXTURE_UNIFORM_PARAMETER_0_CFG_MODE1_header,
.fetch_sample_mode = instr->op == nir_texop_txf,
};
struct V3D33_TEXTURE_UNIFORM_PARAMETER_1_CFG_MODE1 p1_unpacked = {
};
switch (instr->sampler_dim) {
case GLSL_SAMPLER_DIM_1D:
if (instr->is_array)
p0_unpacked.lookup_type = TEXTURE_1D_ARRAY;
else
p0_unpacked.lookup_type = TEXTURE_1D;
break;
case GLSL_SAMPLER_DIM_2D:
case GLSL_SAMPLER_DIM_RECT:
if (instr->is_array)
p0_unpacked.lookup_type = TEXTURE_2D_ARRAY;
else
p0_unpacked.lookup_type = TEXTURE_2D;
break;
case GLSL_SAMPLER_DIM_3D:
p0_unpacked.lookup_type = TEXTURE_3D;
break;
case GLSL_SAMPLER_DIM_CUBE:
p0_unpacked.lookup_type = TEXTURE_CUBE_MAP;
break;
default:
unreachable("Bad sampler type");
}
struct qreg coords[5];
int next_coord = 0;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord:
for (int j = 0; j < instr->coord_components; j++) {
coords[next_coord++] =
ntq_get_src(c, instr->src[i].src, j);
}
if (instr->coord_components < 2)
coords[next_coord++] = vir_uniform_f(c, 0.5);
break;
case nir_tex_src_bias:
coords[next_coord++] =
ntq_get_src(c, instr->src[i].src, 0);
p0_unpacked.bias_supplied = true;
break;
case nir_tex_src_lod:
coords[next_coord++] =
vir_FADD(c,
ntq_get_src(c, instr->src[i].src, 0),
vir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL,
unit));
if (instr->op != nir_texop_txf &&
instr->op != nir_texop_tg4) {
p0_unpacked.disable_autolod_use_bias_only = true;
}
break;
case nir_tex_src_comparator:
coords[next_coord++] =
ntq_get_src(c, instr->src[i].src, 0);
p0_unpacked.shadow = true;
break;
case nir_tex_src_offset: {
nir_const_value *offset =
nir_src_as_const_value(instr->src[i].src);
p0_unpacked.texel_offset_for_s_coordinate =
offset->i32[0];
if (instr->coord_components >= 2)
p0_unpacked.texel_offset_for_t_coordinate =
offset->i32[1];
if (instr->coord_components >= 3)
p0_unpacked.texel_offset_for_r_coordinate =
offset->i32[2];
break;
}
default:
unreachable("unknown texture source");
}
}
bool return_16 = (c->key->tex[unit].return_size == 16 ||
p0_unpacked.shadow);
/* Limit the number of channels returned to both how many the NIR
* instruction writes and how many the instruction could produce.
*/
uint32_t instr_return_channels = nir_tex_instr_dest_size(instr);
if (return_16)
instr_return_channels = (instr_return_channels + 1) / 2;
p1_unpacked.return_words_of_texture_data =
(1 << MIN2(instr_return_channels,
c->key->tex[unit].return_channels)) - 1;
uint32_t p0_packed;
V3D33_TEXTURE_UNIFORM_PARAMETER_0_CFG_MODE1_pack(NULL,
(uint8_t *)&p0_packed,
&p0_unpacked);
uint32_t p1_packed;
V3D33_TEXTURE_UNIFORM_PARAMETER_1_CFG_MODE1_pack(NULL,
(uint8_t *)&p1_packed,
&p1_unpacked);
/* Load unit number into the address field, which will be be used by
* the driver to decide which texture to put in the actual address
* field.
*/
p1_packed |= unit << 5;
/* There is no native support for GL texture rectangle coordinates, so
* we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
* 1]).
*/
if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
coords[0] = vir_FMUL(c, coords[0],
vir_uniform(c, QUNIFORM_TEXRECT_SCALE_X,
unit));
coords[1] = vir_FMUL(c, coords[1],
vir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y,
unit));
}
struct qreg texture_u[] = {
vir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0_0 + unit, p0_packed),
vir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, p1_packed),
};
uint32_t next_texture_u = 0;
for (int i = 0; i < next_coord; i++) {
struct qreg dst;
if (i == next_coord - 1)
dst = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUL);
else
dst = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMU);
struct qinst *tmu = vir_MOV_dest(c, dst, coords[i]);
if (i < 2) {
tmu->has_implicit_uniform = true;
tmu->src[vir_get_implicit_uniform_src(tmu)] =
texture_u[next_texture_u++];
}
}
struct qreg return_values[4];
for (int i = 0; i < 4; i++) {
/* Swizzling .zw of an RG texture should give undefined
* results, not crash the compiler.
*/
if (p1_unpacked.return_words_of_texture_data & (1 << i))
return_values[i] = vir_LDTMU(c);
else
return_values[i] = c->undef;
}
for (int i = 0; i < nir_tex_instr_dest_size(instr); i++) {
struct qreg chan;
if (return_16) {
STATIC_ASSERT(PIPE_SWIZZLE_X == 0);
chan = return_values[i / 2];
if (nir_alu_type_get_base_type(instr->dest_type) ==
nir_type_float) {
enum v3d_qpu_input_unpack unpack;
if (i & 1)
unpack = V3D_QPU_UNPACK_H;
else
unpack = V3D_QPU_UNPACK_L;
chan = vir_FMOV(c, chan);
vir_set_unpack(c->defs[chan.index], 0, unpack);
} else {
/* If we're unpacking the low field, shift it
* up to the top first.
*/
if ((i & 1) == 0) {
chan = vir_SHL(c, chan,
vir_uniform_ui(c, 16));
}
/* Do proper sign extension to a 32-bit int. */
if (nir_alu_type_get_base_type(instr->dest_type) ==
nir_type_int) {
chan = vir_ASR(c, chan,
vir_uniform_ui(c, 16));
} else {
chan = vir_SHR(c, chan,
vir_uniform_ui(c, 16));
}
}
} else {
chan = vir_MOV(c, return_values[i]);
}
ntq_store_dest(c, &instr->dest, i, chan);
}
}
static struct qreg
ntq_fsincos(struct v3d_compile *c, struct qreg src, bool is_cos)
{
struct qreg input = vir_FMUL(c, src, vir_uniform_f(c, 1.0f / M_PI));
if (is_cos)
input = vir_FADD(c, input, vir_uniform_f(c, 0.5));
struct qreg periods = vir_FROUND(c, input);
struct qreg sin_output = vir_SFU(c, V3D_QPU_WADDR_SIN,
vir_FSUB(c, input, periods));
return vir_XOR(c, sin_output, vir_SHL(c,
vir_FTOIN(c, periods),
vir_uniform_ui(c, -1)));
}
static struct qreg
ntq_fsign(struct v3d_compile *c, struct qreg src)
{
struct qreg t = vir_get_temp(c);
vir_MOV_dest(c, t, vir_uniform_f(c, 0.0));
vir_PF(c, vir_FMOV(c, src), V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_f(c, 1.0));
vir_PF(c, vir_FMOV(c, src), V3D_QPU_PF_PUSHN);
vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_f(c, -1.0));
return vir_MOV(c, t);
}
static struct qreg
ntq_isign(struct v3d_compile *c, struct qreg src)
{
struct qreg t = vir_get_temp(c);
vir_MOV_dest(c, t, vir_uniform_ui(c, 0));
vir_PF(c, vir_MOV(c, src), V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFNA, t, vir_uniform_ui(c, 1));
vir_PF(c, vir_MOV(c, src), V3D_QPU_PF_PUSHN);
vir_MOV_cond(c, V3D_QPU_COND_IFA, t, vir_uniform_ui(c, -1));
return vir_MOV(c, t);
}
static void
emit_fragcoord_input(struct v3d_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = vir_FXCD(c);
c->inputs[attr * 4 + 1] = vir_FYCD(c);
c->inputs[attr * 4 + 2] = c->payload_z;
c->inputs[attr * 4 + 3] = vir_SFU(c, V3D_QPU_WADDR_RECIP,
c->payload_w);
}
static struct qreg
emit_fragment_varying(struct v3d_compile *c, nir_variable *var,
uint8_t swizzle)
{
struct qreg vary = vir_reg(QFILE_VARY, ~0);
struct qreg r5 = vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_R5);
/* For gl_PointCoord input or distance along a line, we'll be called
* with no nir_variable, and we don't count toward VPM size so we
* don't track an input slot.
*/
if (!var) {
return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
}
int i = c->num_inputs++;
c->input_slots[i] = v3d_slot_from_slot_and_component(var->data.location,
swizzle);
switch (var->data.interpolation) {
case INTERP_MODE_NONE:
/* If a gl_FrontColor or gl_BackColor input has no interp
* qualifier, then flag it for glShadeModel() handling by the
* driver.
*/
switch (var->data.location) {
case VARYING_SLOT_COL0:
case VARYING_SLOT_COL1:
case VARYING_SLOT_BFC0:
case VARYING_SLOT_BFC1:
BITSET_SET(c->shade_model_flags, i);
break;
default:
break;
}
/* FALLTHROUGH */
case INTERP_MODE_SMOOTH:
if (var->data.centroid) {
return vir_FADD(c, vir_FMUL(c, vary,
c->payload_w_centroid), r5);
} else {
return vir_FADD(c, vir_FMUL(c, vary, c->payload_w), r5);
}
case INTERP_MODE_NOPERSPECTIVE:
/* C appears after the mov from the varying.
XXX: improve ldvary setup.
*/
return vir_FADD(c, vir_MOV(c, vary), r5);
case INTERP_MODE_FLAT:
BITSET_SET(c->flat_shade_flags, i);
vir_MOV_dest(c, c->undef, vary);
return vir_MOV(c, r5);
default:
unreachable("Bad interp mode");
}
}
static void
emit_fragment_input(struct v3d_compile *c, int attr, nir_variable *var)
{
for (int i = 0; i < glsl_get_vector_elements(var->type); i++) {
int chan = var->data.location_frac + i;
c->inputs[attr * 4 + chan] =
emit_fragment_varying(c, var, chan);
}
}
static void
add_output(struct v3d_compile *c,
uint32_t decl_offset,
uint8_t slot,
uint8_t swizzle)
{
uint32_t old_array_size = c->outputs_array_size;
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
decl_offset + 1);
if (old_array_size != c->outputs_array_size) {
c->output_slots = reralloc(c,
c->output_slots,
struct v3d_varying_slot,
c->outputs_array_size);
}
c->output_slots[decl_offset] =
v3d_slot_from_slot_and_component(slot, swizzle);
}
static void
declare_uniform_range(struct v3d_compile *c, uint32_t start, uint32_t size)
{
unsigned array_id = c->num_ubo_ranges++;
if (array_id >= c->ubo_ranges_array_size) {
c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
array_id + 1);
c->ubo_ranges = reralloc(c, c->ubo_ranges,
struct v3d_ubo_range,
c->ubo_ranges_array_size);
c->ubo_range_used = reralloc(c, c->ubo_range_used,
bool,
c->ubo_ranges_array_size);
}
c->ubo_ranges[array_id].dst_offset = 0;
c->ubo_ranges[array_id].src_offset = start;
c->ubo_ranges[array_id].size = size;
c->ubo_range_used[array_id] = false;
}
/**
* If compare_instr is a valid comparison instruction, emits the
* compare_instr's comparison and returns the sel_instr's return value based
* on the compare_instr's result.
*/
static bool
ntq_emit_comparison(struct v3d_compile *c, struct qreg *dest,
nir_alu_instr *compare_instr,
nir_alu_instr *sel_instr)
{
struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
bool cond_invert = false;
switch (compare_instr->op) {
case nir_op_feq:
case nir_op_seq:
vir_PF(c, vir_FCMP(c, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_ieq:
vir_PF(c, vir_XOR(c, src0, src1), V3D_QPU_PF_PUSHZ);
break;
case nir_op_fne:
case nir_op_sne:
vir_PF(c, vir_FCMP(c, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_ine:
vir_PF(c, vir_XOR(c, src0, src1), V3D_QPU_PF_PUSHZ);
cond_invert = true;
break;
case nir_op_fge:
case nir_op_sge:
vir_PF(c, vir_FCMP(c, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ige:
vir_PF(c, vir_MIN(c, src1, src0), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_uge:
vir_PF(c, vir_SUB(c, src0, src1), V3D_QPU_PF_PUSHC);
cond_invert = true;
break;
case nir_op_slt:
case nir_op_flt:
vir_PF(c, vir_FCMP(c, src0, src1), V3D_QPU_PF_PUSHN);
break;
case nir_op_ilt:
vir_PF(c, vir_MIN(c, src1, src0), V3D_QPU_PF_PUSHC);
break;
case nir_op_ult:
vir_PF(c, vir_SUB(c, src0, src1), V3D_QPU_PF_PUSHC);
break;
default:
return false;
}
enum v3d_qpu_cond cond = (cond_invert ?
V3D_QPU_COND_IFNA :
V3D_QPU_COND_IFA);
switch (sel_instr->op) {
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt:
*dest = vir_SEL(c, cond,
vir_uniform_f(c, 1.0), vir_uniform_f(c, 0.0));
break;
case nir_op_bcsel:
*dest = vir_SEL(c, cond,
ntq_get_alu_src(c, sel_instr, 1),
ntq_get_alu_src(c, sel_instr, 2));
break;
default:
*dest = vir_SEL(c, cond,
vir_uniform_ui(c, ~0), vir_uniform_ui(c, 0));
break;
}
/* Make the temporary for nir_store_dest(). */
*dest = vir_MOV(c, *dest);
return true;
}
/**
* Attempts to fold a comparison generating a boolean result into the
* condition code for selecting between two values, instead of comparing the
* boolean result against 0 to generate the condition code.
*/
static struct qreg ntq_emit_bcsel(struct v3d_compile *c, nir_alu_instr *instr,
struct qreg *src)
{
if (!instr->src[0].src.is_ssa)
goto out;
if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
goto out;
nir_alu_instr *compare =
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
if (!compare)
goto out;
struct qreg dest;
if (ntq_emit_comparison(c, &dest, compare, instr))
return dest;
out:
vir_PF(c, src[0], V3D_QPU_PF_PUSHZ);
return vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA, src[1], src[2]));
}
static void
ntq_emit_alu(struct v3d_compile *c, nir_alu_instr *instr)
{
/* This should always be lowered to ALU operations for V3D. */
assert(!instr->dest.saturate);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in order
* into each writemask channel.
*/
if (instr->op == nir_op_vec2 ||
instr->op == nir_op_vec3 ||
instr->op == nir_op_vec4) {
struct qreg srcs[4];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
srcs[i] = ntq_get_src(c, instr->src[i].src,
instr->src[i].swizzle[0]);
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
ntq_store_dest(c, &instr->dest.dest, i,
vir_MOV(c, srcs[i]));
return;
}
/* General case: We can just grab the one used channel per src. */
struct qreg src[nir_op_infos[instr->op].num_inputs];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
src[i] = ntq_get_alu_src(c, instr, i);
}
struct qreg result;
switch (instr->op) {
case nir_op_fmov:
case nir_op_imov:
result = vir_MOV(c, src[0]);
break;
case nir_op_fneg:
result = vir_XOR(c, src[0], vir_uniform_ui(c, 1 << 31));
break;
case nir_op_ineg:
result = vir_NEG(c, src[0]);
break;
case nir_op_fmul:
result = vir_FMUL(c, src[0], src[1]);
break;
case nir_op_fadd:
result = vir_FADD(c, src[0], src[1]);
break;
case nir_op_fsub:
result = vir_FSUB(c, src[0], src[1]);
break;
case nir_op_fmin:
result = vir_FMIN(c, src[0], src[1]);
break;
case nir_op_fmax:
result = vir_FMAX(c, src[0], src[1]);
break;
case nir_op_f2i32:
result = vir_FTOIZ(c, src[0]);
break;
case nir_op_f2u32:
result = vir_FTOUZ(c, src[0]);
break;
case nir_op_i2f32:
result = vir_ITOF(c, src[0]);
break;
case nir_op_u2f32:
result = vir_UTOF(c, src[0]);
break;
case nir_op_b2f:
result = vir_AND(c, src[0], vir_uniform_f(c, 1.0));
break;
case nir_op_b2i:
result = vir_AND(c, src[0], vir_uniform_ui(c, 1));
break;
case nir_op_i2b:
case nir_op_f2b:
vir_PF(c, src[0], V3D_QPU_PF_PUSHZ);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
vir_uniform_ui(c, ~0),
vir_uniform_ui(c, 0)));
break;
case nir_op_iadd:
result = vir_ADD(c, src[0], src[1]);
break;
case nir_op_ushr:
result = vir_SHR(c, src[0], src[1]);
break;
case nir_op_isub:
result = vir_SUB(c, src[0], src[1]);
break;
case nir_op_ishr:
result = vir_ASR(c, src[0], src[1]);
break;
case nir_op_ishl:
result = vir_SHL(c, src[0], src[1]);
break;
case nir_op_imin:
result = vir_MIN(c, src[0], src[1]);
break;
case nir_op_umin:
result = vir_UMIN(c, src[0], src[1]);
break;
case nir_op_imax:
result = vir_MAX(c, src[0], src[1]);
break;
case nir_op_umax:
result = vir_UMAX(c, src[0], src[1]);
break;
case nir_op_iand:
result = vir_AND(c, src[0], src[1]);
break;
case nir_op_ior:
result = vir_OR(c, src[0], src[1]);
break;
case nir_op_ixor:
result = vir_XOR(c, src[0], src[1]);
break;
case nir_op_inot:
result = vir_NOT(c, src[0]);
break;
case nir_op_imul:
result = ntq_umul(c, src[0], src[1]);
break;
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt:
case nir_op_feq:
case nir_op_fne:
case nir_op_fge:
case nir_op_flt:
case nir_op_ieq:
case nir_op_ine:
case nir_op_ige:
case nir_op_uge:
case nir_op_ilt:
case nir_op_ult:
if (!ntq_emit_comparison(c, &result, instr, instr)) {
fprintf(stderr, "Bad comparison instruction\n");
}
break;
case nir_op_bcsel:
result = ntq_emit_bcsel(c, instr, src);
break;
case nir_op_fcsel:
vir_PF(c, src[0], V3D_QPU_PF_PUSHZ);
result = vir_MOV(c, vir_SEL(c, V3D_QPU_COND_IFNA,
src[1], src[2]));
break;
case nir_op_frcp:
result = vir_SFU(c, V3D_QPU_WADDR_RECIP, src[0]);
break;
case nir_op_frsq:
result = vir_SFU(c, V3D_QPU_WADDR_RSQRT, src[0]);
break;
case nir_op_fexp2:
result = vir_SFU(c, V3D_QPU_WADDR_EXP, src[0]);
break;
case nir_op_flog2:
result = vir_SFU(c, V3D_QPU_WADDR_LOG, src[0]);
break;
case nir_op_fceil:
result = vir_FCEIL(c, src[0]);
break;
case nir_op_ffloor:
result = vir_FFLOOR(c, src[0]);
break;
case nir_op_fround_even:
result = vir_FROUND(c, src[0]);
break;
case nir_op_ftrunc:
result = vir_FTRUNC(c, src[0]);
break;
case nir_op_ffract:
result = vir_FSUB(c, src[0], vir_FFLOOR(c, src[0]));
break;
case nir_op_fsin:
result = ntq_fsincos(c, src[0], false);
break;
case nir_op_fcos:
result = ntq_fsincos(c, src[0], true);
break;
case nir_op_fsign:
result = ntq_fsign(c, src[0]);
break;
case nir_op_isign:
result = ntq_isign(c, src[0]);
break;
case nir_op_fabs: {
result = vir_FMOV(c, src[0]);
vir_set_unpack(c->defs[result.index], 0, V3D_QPU_UNPACK_ABS);
break;
}
case nir_op_iabs:
result = vir_MAX(c, src[0],
vir_SUB(c, vir_uniform_ui(c, 0), src[0]));
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
result = vir_FDX(c, src[0]);
break;
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
result = vir_FDY(c, src[0]);
break;
default:
fprintf(stderr, "unknown NIR ALU inst: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
/* We have a scalar result, so the instruction should only have a
* single channel written to.
*/
assert(util_is_power_of_two(instr->dest.write_mask));
ntq_store_dest(c, &instr->dest.dest,
ffs(instr->dest.write_mask) - 1, result);
}
/* Each TLB read/write setup (a render target or depth buffer) takes an 8-bit
* specifier. They come from a register that's preloaded with 0xffffffff
* (0xff gets you normal vec4 f16 RT0 writes), and when one is neaded the low
* 8 bits are shifted off the bottom and 0xff shifted in from the top.
*/
#define TLB_TYPE_F16_COLOR (3 << 6)
#define TLB_TYPE_I32_COLOR (1 << 6)
#define TLB_TYPE_F32_COLOR (0 << 6)
#define TLB_RENDER_TARGET_SHIFT 3 /* Reversed! 7 = RT 0, 0 = RT 7. */
#define TLB_SAMPLE_MODE_PER_SAMPLE (0 << 2)
#define TLB_SAMPLE_MODE_PER_PIXEL (1 << 2)
#define TLB_F16_SWAP_HI_LO (1 << 1)
#define TLB_VEC_SIZE_4_F16 (1 << 0)
#define TLB_VEC_SIZE_2_F16 (0 << 0)
#define TLB_VEC_SIZE_MINUS_1_SHIFT 0
/* Triggers Z/Stencil testing, used when the shader state's "FS modifies Z"
* flag is set.
*/
#define TLB_TYPE_DEPTH ((2 << 6) | (0 << 4))
#define TLB_DEPTH_TYPE_INVARIANT (0 << 2) /* Unmodified sideband input used */
#define TLB_DEPTH_TYPE_PER_PIXEL (1 << 2) /* QPU result used */
/* Stencil is a single 32-bit write. */
#define TLB_TYPE_STENCIL_ALPHA ((2 << 6) | (1 << 4))
static void
emit_frag_end(struct v3d_compile *c)
{
/* XXX
if (c->output_sample_mask_index != -1) {
vir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
}
*/
bool has_any_tlb_color_write = false;
for (int rt = 0; rt < c->fs_key->nr_cbufs; rt++) {
if (c->output_color_var[rt])
has_any_tlb_color_write = true;
}
if (c->output_position_index != -1) {
struct qinst *inst = vir_MOV_dest(c,
vir_reg(QFILE_TLBU, 0),
c->outputs[c->output_position_index]);
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c,
TLB_TYPE_DEPTH |
TLB_DEPTH_TYPE_PER_PIXEL |
0xffffff00);
} else if (c->s->info.fs.uses_discard || !has_any_tlb_color_write) {
/* Emit passthrough Z if it needed to be delayed until shader
* end due to potential discards.
*
* Since (single-threaded) fragment shaders always need a TLB
* write, emit passthrouh Z if we didn't have any color
* buffers and flag us as potentially discarding, so that we
* can use Z as the TLB write.
*/
c->s->info.fs.uses_discard = true;
struct qinst *inst = vir_MOV_dest(c,
vir_reg(QFILE_TLBU, 0),
vir_reg(QFILE_NULL, 0));
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c,
TLB_TYPE_DEPTH |
TLB_DEPTH_TYPE_INVARIANT |
0xffffff00);
}
/* XXX: Performance improvement: Merge Z write and color writes TLB
* uniform setup
*/
for (int rt = 0; rt < c->fs_key->nr_cbufs; rt++) {
if (!c->output_color_var[rt])
continue;
nir_variable *var = c->output_color_var[rt];
struct qreg *color = &c->outputs[var->data.driver_location * 4];
int num_components = glsl_get_vector_elements(var->type);
uint32_t conf = 0xffffff00;
struct qinst *inst;
conf |= TLB_SAMPLE_MODE_PER_PIXEL;
conf |= (7 - rt) << TLB_RENDER_TARGET_SHIFT;
assert(num_components != 0);
switch (glsl_get_base_type(var->type)) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
conf |= TLB_TYPE_I32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
inst = vir_MOV_dest(c, vir_reg(QFILE_TLBU, 0), color[0]);
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c, conf);
for (int i = 1; i < num_components; i++) {
inst = vir_MOV_dest(c, vir_reg(QFILE_TLB, 0),
color[i]);
}
break;
default: {
struct qreg r = color[0];
struct qreg g = color[1];
struct qreg b = color[2];
struct qreg a = color[3];
if (c->fs_key->f32_color_rb) {
conf |= TLB_TYPE_F32_COLOR;
conf |= ((num_components - 1) <<
TLB_VEC_SIZE_MINUS_1_SHIFT);
} else {
conf |= TLB_TYPE_F16_COLOR;
conf |= TLB_F16_SWAP_HI_LO;
if (num_components >= 3)
conf |= TLB_VEC_SIZE_4_F16;
else
conf |= TLB_VEC_SIZE_2_F16;
}
if (c->fs_key->swap_color_rb & (1 << rt)) {
r = color[2];
b = color[0];
}
if (c->fs_key->f32_color_rb & (1 << rt)) {
inst = vir_MOV_dest(c, vir_reg(QFILE_TLBU, 0), color[0]);
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c, conf);
for (int i = 1; i < num_components; i++) {
inst = vir_MOV_dest(c, vir_reg(QFILE_TLB, 0),
color[i]);
}
} else {
inst = vir_VFPACK_dest(c, vir_reg(QFILE_TLB, 0), r, g);
if (conf != ~0) {
inst->dst.file = QFILE_TLBU;
inst->src[vir_get_implicit_uniform_src(inst)] =
vir_uniform_ui(c, conf);
}
inst = vir_VFPACK_dest(c, vir_reg(QFILE_TLB, 0), b, a);
}
break;
}
}
}
}
static void
emit_scaled_viewport_write(struct v3d_compile *c, struct qreg rcp_w)
{
for (int i = 0; i < 2; i++) {
struct qreg coord = c->outputs[c->output_position_index + i];
coord = vir_FMUL(c, coord,
vir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i,
0));
coord = vir_FMUL(c, coord, rcp_w);
vir_FTOIN_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM),
coord);
}
}
static void
emit_zs_write(struct v3d_compile *c, struct qreg rcp_w)
{
struct qreg zscale = vir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
struct qreg zoffset = vir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
vir_FADD_dest(c, vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_VPM),
vir_FMUL(c, vir_FMUL(c,
c->outputs[c->output_position_index + 2],
zscale),
rcp_w),
zoffset);
}
static void
emit_rcp_wc_write(struct v3d_compile *c, struct qreg rcp_w)
{
vir_VPM_WRITE(c, rcp_w);
}
static void
emit_point_size_write(struct v3d_compile *c)
{
struct qreg point_size;
if (c->output_point_size_index != -1)
point_size = c->outputs[c->output_point_size_index];
else
point_size = vir_uniform_f(c, 1.0);
/* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
* BCM21553).
*/
point_size = vir_FMAX(c, point_size, vir_uniform_f(c, .125));
vir_VPM_WRITE(c, point_size);
}
static void
emit_vpm_write_setup(struct v3d_compile *c)
{
uint32_t packed;
struct V3D33_VPM_GENERIC_BLOCK_WRITE_SETUP unpacked = {
V3D33_VPM_GENERIC_BLOCK_WRITE_SETUP_header,
.horiz = true,
.laned = false,
.segs = true,
.stride = 1,
.size = VPM_SETUP_SIZE_32_BIT,
.addr = 0,
};
V3D33_VPM_GENERIC_BLOCK_WRITE_SETUP_pack(NULL,
(uint8_t *)&packed,
&unpacked);
vir_VPMSETUP(c, vir_uniform_ui(c, packed));
}
static void
emit_vert_end(struct v3d_compile *c)
{
struct qreg rcp_w = vir_SFU(c, V3D_QPU_WADDR_RECIP,
c->outputs[c->output_position_index + 3]);
emit_vpm_write_setup(c);
if (c->vs_key->is_coord) {
for (int i = 0; i < 4; i++)
vir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
emit_scaled_viewport_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size) {
emit_point_size_write(c);
/* emit_rcp_wc_write(c, rcp_w); */
}
/* XXX: Z-only rendering */
if (0)
emit_zs_write(c, rcp_w);
} else {
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size)
emit_point_size_write(c);
}
for (int i = 0; i < c->vs_key->num_fs_inputs; i++) {
struct v3d_varying_slot input = c->vs_key->fs_inputs[i];
int j;
for (j = 0; j < c->num_outputs; j++) {
struct v3d_varying_slot output = c->output_slots[j];
if (!memcmp(&input, &output, sizeof(input))) {
vir_VPM_WRITE(c, c->outputs[j]);
break;
}
}
/* Emit padding if we didn't find a declared VS output for
* this FS input.
*/
if (j == c->num_outputs)
vir_VPM_WRITE(c, vir_uniform_f(c, 0.0));
}
}
void
v3d_optimize_nir(struct nir_shader *s)
{
bool progress;
do {
progress = false;
NIR_PASS_V(s, nir_lower_vars_to_ssa);
NIR_PASS(progress, s, nir_lower_alu_to_scalar);
NIR_PASS(progress, s, nir_lower_phis_to_scalar);
NIR_PASS(progress, s, nir_copy_prop);
NIR_PASS(progress, s, nir_opt_remove_phis);
NIR_PASS(progress, s, nir_opt_dce);
NIR_PASS(progress, s, nir_opt_dead_cf);
NIR_PASS(progress, s, nir_opt_cse);
NIR_PASS(progress, s, nir_opt_peephole_select, 8);
NIR_PASS(progress, s, nir_opt_algebraic);
NIR_PASS(progress, s, nir_opt_constant_folding);
NIR_PASS(progress, s, nir_opt_undef);
} while (progress);
}
static int
driver_location_compare(const void *in_a, const void *in_b)
{
const nir_variable *const *a = in_a;
const nir_variable *const *b = in_b;
return (*a)->data.driver_location - (*b)->data.driver_location;
}
static struct qreg
ntq_emit_vpm_read(struct v3d_compile *c,
uint32_t *num_components_queued,
uint32_t *remaining,
uint32_t vpm_index)
{
struct qreg vpm = vir_reg(QFILE_VPM, vpm_index);
if (*num_components_queued != 0) {
(*num_components_queued)--;
c->num_inputs++;
return vir_MOV(c, vpm);
}
uint32_t num_components = MIN2(*remaining, 32);
struct V3D33_VPM_GENERIC_BLOCK_READ_SETUP unpacked = {
V3D33_VPM_GENERIC_BLOCK_READ_SETUP_header,
.horiz = true,
.laned = false,
/* If the field is 0, that means a read count of 32. */
.num = num_components & 31,
.segs = true,
.stride = 1,
.size = VPM_SETUP_SIZE_32_BIT,
.addr = c->num_inputs,
};
uint32_t packed;
V3D33_VPM_GENERIC_BLOCK_READ_SETUP_pack(NULL,
(uint8_t *)&packed,
&unpacked);
vir_VPMSETUP(c, vir_uniform_ui(c, packed));
*num_components_queued = num_components - 1;
*remaining -= num_components;
c->num_inputs++;
return vir_MOV(c, vpm);
}
static void
ntq_setup_inputs(struct v3d_compile *c)
{
unsigned num_entries = 0;
unsigned num_components = 0;
nir_foreach_variable(var, &c->s->inputs) {
num_entries++;
num_components += glsl_get_components(var->type);
}
nir_variable *vars[num_entries];
unsigned i = 0;
nir_foreach_variable(var, &c->s->inputs)
vars[i++] = var;
/* Sort the variables so that we emit the input setup in
* driver_location order. This is required for VPM reads, whose data
* is fetched into the VPM in driver_location (TGSI register index)
* order.
*/
qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
uint32_t vpm_components_queued = 0;
if (c->s->info.stage == MESA_SHADER_VERTEX) {
bool uses_iid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_INSTANCE_ID);
bool uses_vid = c->s->info.system_values_read &
(1ull << SYSTEM_VALUE_VERTEX_ID);
num_components += uses_iid;
num_components += uses_vid;
if (uses_iid) {
c->iid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
if (uses_vid) {
c->vid = ntq_emit_vpm_read(c, &vpm_components_queued,
&num_components, ~0);
}
}
for (unsigned i = 0; i < num_entries; i++) {
nir_variable *var = vars[i];
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location;
assert(array_len == 1);
(void)array_len;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + 1) * 4);
if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
if (var->data.location == VARYING_SLOT_POS) {
emit_fragcoord_input(c, loc);
} else if (var->data.location == VARYING_SLOT_PNTC ||
(var->data.location >= VARYING_SLOT_VAR0 &&
(c->fs_key->point_sprite_mask &
(1 << (var->data.location -
VARYING_SLOT_VAR0))))) {
c->inputs[loc * 4 + 0] = c->point_x;
c->inputs[loc * 4 + 1] = c->point_y;
} else {
emit_fragment_input(c, loc, var);
}
} else {
int var_components = glsl_get_components(var->type);
for (int i = 0; i < var_components; i++) {
c->inputs[loc * 4 + i] =
ntq_emit_vpm_read(c,
&vpm_components_queued,
&num_components,
loc * 4 + i);
}
c->vattr_sizes[loc] = var_components;
}
}
if (c->s->info.stage == MESA_SHADER_VERTEX) {
assert(vpm_components_queued == 0);
assert(num_components == 0);
}
}
static void
ntq_setup_outputs(struct v3d_compile *c)
{
nir_foreach_variable(var, &c->s->outputs) {
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location * 4;
assert(array_len == 1);
(void)array_len;
for (int i = 0; i < glsl_get_vector_elements(var->type); i++) {
add_output(c, loc + var->data.location_frac + i,
var->data.location,
var->data.location_frac + i);
}
if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
switch (var->data.location) {
case FRAG_RESULT_COLOR:
c->output_color_var[0] = var;
c->output_color_var[1] = var;
c->output_color_var[2] = var;
c->output_color_var[3] = var;
break;
case FRAG_RESULT_DATA0:
case FRAG_RESULT_DATA1:
case FRAG_RESULT_DATA2:
case FRAG_RESULT_DATA3:
c->output_color_var[var->data.location -
FRAG_RESULT_DATA0] = var;
break;
case FRAG_RESULT_DEPTH:
c->output_position_index = loc;
break;
case FRAG_RESULT_SAMPLE_MASK:
c->output_sample_mask_index = loc;
break;
}
} else {
switch (var->data.location) {
case VARYING_SLOT_POS:
c->output_position_index = loc;
break;
case VARYING_SLOT_PSIZ:
c->output_point_size_index = loc;
break;
}
}
}
}
static void
ntq_setup_uniforms(struct v3d_compile *c)
{
nir_foreach_variable(var, &c->s->uniforms) {
uint32_t vec4_count = glsl_count_attribute_slots(var->type,
false);
unsigned vec4_size = 4 * sizeof(float);
declare_uniform_range(c, var->data.driver_location * vec4_size,
vec4_count * vec4_size);
}
}
/**
* Sets up the mapping from nir_register to struct qreg *.
*
* Each nir_register gets a struct qreg per 32-bit component being stored.
*/
static void
ntq_setup_registers(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_register, nir_reg, node, list) {
unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
array_len *
nir_reg->num_components);
_mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
for (int i = 0; i < array_len * nir_reg->num_components; i++)
qregs[i] = vir_get_temp(c);
}
}
static void
ntq_emit_load_const(struct v3d_compile *c, nir_load_const_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, instr->value.u32[i]);
_mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
}
static void
ntq_emit_ssa_undef(struct v3d_compile *c, nir_ssa_undef_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
/* VIR needs there to be *some* value, so pick 0 (same as for
* ntq_setup_registers().
*/
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = vir_uniform_ui(c, 0);
}
static void
ntq_emit_intrinsic(struct v3d_compile *c, nir_intrinsic_instr *instr)
{
nir_const_value *const_offset;
unsigned offset;
switch (instr->intrinsic) {
case nir_intrinsic_load_uniform:
assert(instr->num_components == 1);
const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
offset = nir_intrinsic_base(instr) + const_offset->u32[0];
assert(offset % 4 == 0);
/* We need dwords */
offset = offset / 4;
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_UNIFORM,
offset));
} else {
ntq_store_dest(c, &instr->dest, 0,
indirect_uniform_load(c, instr));
}
break;
case nir_intrinsic_load_ubo:
for (int i = 0; i < instr->num_components; i++) {
int ubo = nir_src_as_const_value(instr->src[0])->u32[0];
/* Adjust for where we stored the TGSI register base. */
vir_ADD_dest(c,
vir_reg(QFILE_MAGIC, V3D_QPU_WADDR_TMUA),
vir_uniform(c, QUNIFORM_UBO_ADDR, 1 + ubo),
vir_ADD(c,
ntq_get_src(c, instr->src[1], 0),
vir_uniform_ui(c, i * 4)));
ntq_store_dest(c, &instr->dest, i, vir_LDTMU(c));
}
break;
const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
offset = nir_intrinsic_base(instr) + const_offset->u32[0];
assert(offset % 4 == 0);
/* We need dwords */
offset = offset / 4;
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_UNIFORM,
offset));
} else {
ntq_store_dest(c, &instr->dest, 0,
indirect_uniform_load(c, instr));
}
break;
case nir_intrinsic_load_user_clip_plane:
for (int i = 0; i < instr->num_components; i++) {
ntq_store_dest(c, &instr->dest, i,
vir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
nir_intrinsic_ucp_id(instr) *
4 + i));
}
break;
case nir_intrinsic_load_alpha_ref_float:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_ALPHA_REF, 0));
break;
case nir_intrinsic_load_sample_mask_in:
ntq_store_dest(c, &instr->dest, 0,
vir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
break;
case nir_intrinsic_load_front_face:
/* The register contains 0 (front) or 1 (back), and we need to
* turn it into a NIR bool where true means front.
*/
ntq_store_dest(c, &instr->dest, 0,
vir_ADD(c,
vir_uniform_ui(c, -1),
vir_REVF(c)));
break;
case nir_intrinsic_load_instance_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->iid));
break;
case nir_intrinsic_load_vertex_id:
ntq_store_dest(c, &instr->dest, 0, vir_MOV(c, c->vid));
break;
case nir_intrinsic_load_input:
const_offset = nir_src_as_const_value(instr->src[0]);
assert(const_offset && "v3d doesn't support indirect inputs");
for (int i = 0; i < instr->num_components; i++) {
offset = nir_intrinsic_base(instr) + const_offset->u32[0];
int comp = nir_intrinsic_component(instr) + i;
ntq_store_dest(c, &instr->dest, i,
vir_MOV(c, c->inputs[offset * 4 + comp]));
}
break;
case nir_intrinsic_store_output:
const_offset = nir_src_as_const_value(instr->src[1]);
assert(const_offset && "v3d doesn't support indirect outputs");
offset = ((nir_intrinsic_base(instr) +
const_offset->u32[0]) * 4 +
nir_intrinsic_component(instr));
for (int i = 0; i < instr->num_components; i++) {
c->outputs[offset + i] =
vir_MOV(c, ntq_get_src(c, instr->src[0], i));
}
c->num_outputs = MAX2(c->num_outputs,
offset + instr->num_components);
break;
case nir_intrinsic_discard:
if (c->execute.file != QFILE_NULL) {
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_reg(QFILE_NULL, 0),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFA);
} else {
vir_SETMSF_dest(c, vir_reg(QFILE_NULL, 0),
vir_uniform_ui(c, 0));
}
break;
case nir_intrinsic_discard_if: {
/* true (~0) if we're discarding */
struct qreg cond = ntq_get_src(c, instr->src[0], 0);
if (c->execute.file != QFILE_NULL) {
/* execute == 0 means the channel is active. Invert
* the condition so that we can use zero as "executing
* and discarding."
*/
vir_PF(c, vir_AND(c, c->execute, vir_NOT(c, cond)),
V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_reg(QFILE_NULL, 0),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFA);
} else {
vir_PF(c, cond, V3D_QPU_PF_PUSHZ);
vir_set_cond(vir_SETMSF_dest(c, vir_reg(QFILE_NULL, 0),
vir_uniform_ui(c, 0)),
V3D_QPU_COND_IFNA);
}
break;
}
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
}
/* Clears (activates) the execute flags for any channels whose jump target
* matches this block.
*/
static void
ntq_activate_execute_for_block(struct v3d_compile *c)
{
vir_PF(c, vir_SUB(c, c->execute, vir_uniform_ui(c, c->cur_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
}
static void
ntq_emit_if(struct v3d_compile *c, nir_if *if_stmt)
{
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = vir_new_block(c);
struct qblock *after_block = vir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = vir_new_block(c);
bool was_top_level = false;
if (c->execute.file == QFILE_NULL) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_top_level = true;
}
/* Set A for executing (execute == 0) and jumping (if->condition ==
* 0) channels, and then update execute flags for those to point to
* the ELSE block.
*/
vir_PF(c, vir_OR(c,
c->execute,
ntq_get_src(c, if_stmt->condition, 0)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA,
c->execute,
vir_uniform_ui(c, else_block->index));
/* Jump to ELSE if nothing is active for THEN, otherwise fall
* through.
*/
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLNA);
vir_link_blocks(c->cur_block, else_block);
vir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
vir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* Handle the end of the THEN block. First, all currently
* active channels update their execute flags to point to
* ENDIF
*/
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, after_block->index));
/* If everything points at ENDIF, then jump there immediately. */
vir_PF(c, vir_SUB(c, c->execute,
vir_uniform_ui(c, after_block->index)),
V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ALLA);
vir_link_blocks(c->cur_block, after_block);
vir_link_blocks(c->cur_block, else_block);
vir_set_emit_block(c, else_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
vir_link_blocks(c->cur_block, after_block);
vir_set_emit_block(c, after_block);
if (was_top_level)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
}
static void
ntq_emit_jump(struct v3d_compile *c, nir_jump_instr *jump)
{
switch (jump->type) {
case nir_jump_break:
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_break_block->index));
break;
case nir_jump_continue:
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute,
vir_uniform_ui(c, c->loop_cont_block->index));
break;
case nir_jump_return:
unreachable("All returns shouold be lowered\n");
}
}
static void
ntq_emit_instr(struct v3d_compile *c, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
ntq_emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
ntq_emit_load_const(c, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex:
ntq_emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
ntq_emit_jump(c, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void
ntq_emit_block(struct v3d_compile *c, nir_block *block)
{
nir_foreach_instr(instr, block) {
ntq_emit_instr(c, instr);
}
}
static void ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list);
static void
ntq_emit_loop(struct v3d_compile *c, nir_loop *loop)
{
bool was_top_level = false;
if (c->execute.file == QFILE_NULL) {
c->execute = vir_MOV(c, vir_uniform_ui(c, 0));
was_top_level = true;
}
struct qblock *save_loop_cont_block = c->loop_cont_block;
struct qblock *save_loop_break_block = c->loop_break_block;
c->loop_cont_block = vir_new_block(c);
c->loop_break_block = vir_new_block(c);
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_set_emit_block(c, c->loop_cont_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &loop->body);
/* Re-enable any previous continues now, so our ANYA check below
* works.
*
* XXX: Use the .ORZ flags update, instead.
*/
vir_PF(c, vir_SUB(c,
c->execute,
vir_uniform_ui(c, c->loop_cont_block->index)),
V3D_QPU_PF_PUSHZ);
vir_MOV_cond(c, V3D_QPU_COND_IFA, c->execute, vir_uniform_ui(c, 0));
vir_PF(c, c->execute, V3D_QPU_PF_PUSHZ);
vir_BRANCH(c, V3D_QPU_BRANCH_COND_ANYA);
vir_link_blocks(c->cur_block, c->loop_cont_block);
vir_link_blocks(c->cur_block, c->loop_break_block);
vir_set_emit_block(c, c->loop_break_block);
if (was_top_level)
c->execute = c->undef;
else
ntq_activate_execute_for_block(c);
c->loop_break_block = save_loop_break_block;
c->loop_cont_block = save_loop_cont_block;
}
static void
ntq_emit_function(struct v3d_compile *c, nir_function_impl *func)
{
fprintf(stderr, "FUNCTIONS not handled.\n");
abort();
}
static void
ntq_emit_cf_list(struct v3d_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
ntq_emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
ntq_emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
ntq_emit_loop(c, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
ntq_emit_function(c, nir_cf_node_as_function(node));
break;
default:
fprintf(stderr, "Unknown NIR node type\n");
abort();
}
}
}
static void
ntq_emit_impl(struct v3d_compile *c, nir_function_impl *impl)
{
ntq_setup_registers(c, &impl->registers);
ntq_emit_cf_list(c, &impl->body);
}
static void
nir_to_vir(struct v3d_compile *c)
{
if (c->s->info.stage == MESA_SHADER_FRAGMENT) {
c->payload_w = vir_MOV(c, vir_reg(QFILE_REG, 0));
c->payload_w_centroid = vir_MOV(c, vir_reg(QFILE_REG, 1));
c->payload_z = vir_MOV(c, vir_reg(QFILE_REG, 2));
if (c->fs_key->is_points) {
c->point_x = emit_fragment_varying(c, NULL, 0);
c->point_y = emit_fragment_varying(c, NULL, 0);
} else if (c->fs_key->is_lines) {
c->line_x = emit_fragment_varying(c, NULL, 0);
}
}
ntq_setup_inputs(c);
ntq_setup_outputs(c);
ntq_setup_uniforms(c);
ntq_setup_registers(c, &c->s->registers);
/* Find the main function and emit the body. */
nir_foreach_function(function, c->s) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
ntq_emit_impl(c, function->impl);
}
}
const nir_shader_compiler_options v3d_nir_options = {
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_bitfield_insert = true,
.lower_bitfield_extract = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_pack_snorm_4x8 = true,
.lower_unpack_unorm_4x8 = true,
.lower_unpack_snorm_4x8 = true,
.lower_fdiv = true,
.lower_ffma = true,
.lower_flrp32 = true,
.lower_fpow = true,
.lower_fsat = true,
.lower_fsqrt = true,
.native_integers = true,
};
#if 0
static int
count_nir_instrs(nir_shader *nir)
{
int count = 0;
nir_foreach_function(function, nir) {
if (!function->impl)
continue;
nir_foreach_block(block, function->impl) {
nir_foreach_instr(instr, block)
count++;
}
}
return count;
}
#endif
void
v3d_nir_to_vir(struct v3d_compile *c)
{
if (V3D_DEBUG & (V3D_DEBUG_NIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d NIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
nir_print_shader(c->s, stderr);
}
nir_to_vir(c);
switch (c->s->info.stage) {
case MESA_SHADER_FRAGMENT:
emit_frag_end(c);
break;
case MESA_SHADER_VERTEX:
emit_vert_end(c);
break;
default:
unreachable("bad stage");
}
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d pre-opt VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
vir_optimize(c);
vir_lower_uniforms(c);
/* XXX: vir_schedule_instructions(c); */
if (V3D_DEBUG & (V3D_DEBUG_VIR |
v3d_debug_flag_for_shader_stage(c->s->info.stage))) {
fprintf(stderr, "%s prog %d/%d VIR:\n",
vir_get_stage_name(c),
c->program_id, c->variant_id);
vir_dump(c);
fprintf(stderr, "\n");
}
v3d_vir_to_qpu(c);
}