
This moves the following methods that are currently defined in fs_visitor (even though they are side products of the liveness analysis computation) and are already implemented in brw_fs_live_variables.cpp: > bool virtual_grf_interferes(int a, int b) const; > int *virtual_grf_start; > int *virtual_grf_end; It makes sense for them to be part of the fs_live_variables object, because they have the same lifetime as other liveness analysis results and because this will allow some extra validation to happen wherever they are accessed in order to make sure that we only ever use up-to-date liveness analysis results. This shortens the virtual_grf prefix in order to compensate for the slightly increased lexical overhead from the live_intervals pointer dereference. Reviewed-by: Matt Turner <mattst88@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/4012>
361 lines
11 KiB
C++
361 lines
11 KiB
C++
/*
|
|
* Copyright © 2012 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include "brw_fs.h"
|
|
#include "brw_fs_live_variables.h"
|
|
|
|
using namespace brw;
|
|
|
|
#define MAX_INSTRUCTION (1 << 30)
|
|
|
|
/** @file brw_fs_live_variables.cpp
|
|
*
|
|
* Support for calculating liveness information about virtual GRFs.
|
|
*
|
|
* This produces a live interval for each whole virtual GRF. We could
|
|
* choose to expose per-component live intervals for VGRFs of size > 1,
|
|
* but we currently do not. It is easier for the consumers of this
|
|
* information to work with whole VGRFs.
|
|
*
|
|
* However, we internally track use/def information at the per-GRF level for
|
|
* greater accuracy. Large VGRFs may be accessed piecemeal over many
|
|
* (possibly non-adjacent) instructions. In this case, examining a single
|
|
* instruction is insufficient to decide whether a whole VGRF is ultimately
|
|
* used or defined. Tracking individual components allows us to easily
|
|
* assemble this information.
|
|
*
|
|
* See Muchnick's Advanced Compiler Design and Implementation, section
|
|
* 14.1 (p444).
|
|
*/
|
|
|
|
void
|
|
fs_live_variables::setup_one_read(struct block_data *bd, fs_inst *inst,
|
|
int ip, const fs_reg ®)
|
|
{
|
|
int var = var_from_reg(reg);
|
|
assert(var < num_vars);
|
|
|
|
start[var] = MIN2(start[var], ip);
|
|
end[var] = MAX2(end[var], ip);
|
|
|
|
/* The use[] bitset marks when the block makes use of a variable (VGRF
|
|
* channel) without having completely defined that variable within the
|
|
* block.
|
|
*/
|
|
if (!BITSET_TEST(bd->def, var))
|
|
BITSET_SET(bd->use, var);
|
|
}
|
|
|
|
void
|
|
fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
|
|
int ip, const fs_reg ®)
|
|
{
|
|
int var = var_from_reg(reg);
|
|
assert(var < num_vars);
|
|
|
|
start[var] = MIN2(start[var], ip);
|
|
end[var] = MAX2(end[var], ip);
|
|
|
|
/* The def[] bitset marks when an initialization in a block completely
|
|
* screens off previous updates of that variable (VGRF channel).
|
|
*/
|
|
if (inst->dst.file == VGRF) {
|
|
if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var))
|
|
BITSET_SET(bd->def, var);
|
|
|
|
BITSET_SET(bd->defout, var);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets up the use[] and def[] bitsets.
|
|
*
|
|
* The basic-block-level live variable analysis needs to know which
|
|
* variables get used before they're completely defined, and which
|
|
* variables are completely defined before they're used.
|
|
*
|
|
* These are tracked at the per-component level, rather than whole VGRFs.
|
|
*/
|
|
void
|
|
fs_live_variables::setup_def_use()
|
|
{
|
|
int ip = 0;
|
|
|
|
foreach_block (block, cfg) {
|
|
assert(ip == block->start_ip);
|
|
if (block->num > 0)
|
|
assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
|
|
|
|
struct block_data *bd = &block_data[block->num];
|
|
|
|
foreach_inst_in_block(fs_inst, inst, block) {
|
|
/* Set use[] for this instruction */
|
|
for (unsigned int i = 0; i < inst->sources; i++) {
|
|
fs_reg reg = inst->src[i];
|
|
|
|
if (reg.file != VGRF)
|
|
continue;
|
|
|
|
for (unsigned j = 0; j < regs_read(inst, i); j++) {
|
|
setup_one_read(bd, inst, ip, reg);
|
|
reg.offset += REG_SIZE;
|
|
}
|
|
}
|
|
|
|
bd->flag_use[0] |= inst->flags_read(v->devinfo) & ~bd->flag_def[0];
|
|
|
|
/* Set def[] for this instruction */
|
|
if (inst->dst.file == VGRF) {
|
|
fs_reg reg = inst->dst;
|
|
for (unsigned j = 0; j < regs_written(inst); j++) {
|
|
setup_one_write(bd, inst, ip, reg);
|
|
reg.offset += REG_SIZE;
|
|
}
|
|
}
|
|
|
|
if (!inst->predicate && inst->exec_size >= 8)
|
|
bd->flag_def[0] |= inst->flags_written() & ~bd->flag_use[0];
|
|
|
|
ip++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The algorithm incrementally sets bits in liveout and livein,
|
|
* propagating it through control flow. It will eventually terminate
|
|
* because it only ever adds bits, and stops when no bits are added in
|
|
* a pass.
|
|
*/
|
|
void
|
|
fs_live_variables::compute_live_variables()
|
|
{
|
|
bool cont = true;
|
|
|
|
while (cont) {
|
|
cont = false;
|
|
|
|
foreach_block_reverse (block, cfg) {
|
|
struct block_data *bd = &block_data[block->num];
|
|
|
|
/* Update liveout */
|
|
foreach_list_typed(bblock_link, child_link, link, &block->children) {
|
|
struct block_data *child_bd = &block_data[child_link->block->num];
|
|
|
|
for (int i = 0; i < bitset_words; i++) {
|
|
BITSET_WORD new_liveout = (child_bd->livein[i] &
|
|
~bd->liveout[i]);
|
|
if (new_liveout) {
|
|
bd->liveout[i] |= new_liveout;
|
|
cont = true;
|
|
}
|
|
}
|
|
BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
|
|
~bd->flag_liveout[0]);
|
|
if (new_liveout) {
|
|
bd->flag_liveout[0] |= new_liveout;
|
|
cont = true;
|
|
}
|
|
}
|
|
|
|
/* Update livein */
|
|
for (int i = 0; i < bitset_words; i++) {
|
|
BITSET_WORD new_livein = (bd->use[i] |
|
|
(bd->liveout[i] &
|
|
~bd->def[i]));
|
|
if (new_livein & ~bd->livein[i]) {
|
|
bd->livein[i] |= new_livein;
|
|
cont = true;
|
|
}
|
|
}
|
|
BITSET_WORD new_livein = (bd->flag_use[0] |
|
|
(bd->flag_liveout[0] &
|
|
~bd->flag_def[0]));
|
|
if (new_livein & ~bd->flag_livein[0]) {
|
|
bd->flag_livein[0] |= new_livein;
|
|
cont = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Propagate defin and defout down the CFG to calculate the union of live
|
|
* variables potentially defined along any possible control flow path.
|
|
*/
|
|
do {
|
|
cont = false;
|
|
|
|
foreach_block (block, cfg) {
|
|
const struct block_data *bd = &block_data[block->num];
|
|
|
|
foreach_list_typed(bblock_link, child_link, link, &block->children) {
|
|
struct block_data *child_bd = &block_data[child_link->block->num];
|
|
|
|
for (int i = 0; i < bitset_words; i++) {
|
|
const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i];
|
|
child_bd->defin[i] |= new_def;
|
|
child_bd->defout[i] |= new_def;
|
|
cont |= new_def;
|
|
}
|
|
}
|
|
}
|
|
} while (cont);
|
|
}
|
|
|
|
/**
|
|
* Extend the start/end ranges for each variable to account for the
|
|
* new information calculated from control flow.
|
|
*/
|
|
void
|
|
fs_live_variables::compute_start_end()
|
|
{
|
|
foreach_block (block, cfg) {
|
|
struct block_data *bd = &block_data[block->num];
|
|
|
|
for (int w = 0; w < bitset_words; w++) {
|
|
BITSET_WORD livedefin = bd->livein[w] & bd->defin[w];
|
|
BITSET_WORD livedefout = bd->liveout[w] & bd->defout[w];
|
|
BITSET_WORD livedefinout = livedefin | livedefout;
|
|
while (livedefinout) {
|
|
unsigned b = u_bit_scan(&livedefinout);
|
|
unsigned i = w * BITSET_WORDBITS + b;
|
|
if (livedefin & (1u << b)) {
|
|
start[i] = MIN2(start[i], block->start_ip);
|
|
end[i] = MAX2(end[i], block->start_ip);
|
|
}
|
|
if (livedefout & (1u << b)) {
|
|
start[i] = MIN2(start[i], block->end_ip);
|
|
end[i] = MAX2(end[i], block->end_ip);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg)
|
|
: v(v), cfg(cfg)
|
|
{
|
|
mem_ctx = ralloc_context(NULL);
|
|
|
|
num_vgrfs = v->alloc.count;
|
|
num_vars = 0;
|
|
var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
|
|
for (int i = 0; i < num_vgrfs; i++) {
|
|
var_from_vgrf[i] = num_vars;
|
|
num_vars += v->alloc.sizes[i];
|
|
}
|
|
|
|
vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
|
|
for (int i = 0; i < num_vgrfs; i++) {
|
|
for (unsigned j = 0; j < v->alloc.sizes[i]; j++) {
|
|
vgrf_from_var[var_from_vgrf[i] + j] = i;
|
|
}
|
|
}
|
|
|
|
start = ralloc_array(mem_ctx, int, num_vars);
|
|
end = rzalloc_array(mem_ctx, int, num_vars);
|
|
for (int i = 0; i < num_vars; i++) {
|
|
start[i] = MAX_INSTRUCTION;
|
|
end[i] = -1;
|
|
}
|
|
|
|
vgrf_start = ralloc_array(mem_ctx, int, num_vgrfs);
|
|
vgrf_end = ralloc_array(mem_ctx, int, num_vgrfs);
|
|
for (int i = 0; i < num_vgrfs; i++) {
|
|
vgrf_start[i] = MAX_INSTRUCTION;
|
|
vgrf_end[i] = -1;
|
|
}
|
|
|
|
block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
|
|
|
|
bitset_words = BITSET_WORDS(num_vars);
|
|
for (int i = 0; i < cfg->num_blocks; i++) {
|
|
block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
|
|
block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
|
|
block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
|
|
block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
|
|
block_data[i].defin = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
|
|
block_data[i].defout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
|
|
|
|
block_data[i].flag_def[0] = 0;
|
|
block_data[i].flag_use[0] = 0;
|
|
block_data[i].flag_livein[0] = 0;
|
|
block_data[i].flag_liveout[0] = 0;
|
|
}
|
|
|
|
setup_def_use();
|
|
compute_live_variables();
|
|
compute_start_end();
|
|
|
|
/* Merge the per-component live ranges to whole VGRF live ranges. */
|
|
for (int i = 0; i < num_vars; i++) {
|
|
const unsigned vgrf = vgrf_from_var[i];
|
|
vgrf_start[vgrf] = MIN2(vgrf_start[vgrf], start[i]);
|
|
vgrf_end[vgrf] = MAX2(vgrf_end[vgrf], end[i]);
|
|
}
|
|
}
|
|
|
|
fs_live_variables::~fs_live_variables()
|
|
{
|
|
ralloc_free(mem_ctx);
|
|
}
|
|
|
|
void
|
|
fs_visitor::invalidate_live_intervals()
|
|
{
|
|
ralloc_free(live_intervals);
|
|
live_intervals = NULL;
|
|
}
|
|
|
|
/**
|
|
* Compute the live intervals for each virtual GRF.
|
|
*
|
|
* This uses the per-component use/def data, but combines it to produce
|
|
* information about whole VGRFs.
|
|
*/
|
|
void
|
|
fs_visitor::calculate_live_intervals()
|
|
{
|
|
if (this->live_intervals)
|
|
return;
|
|
|
|
this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg);
|
|
}
|
|
|
|
bool
|
|
fs_live_variables::vars_interfere(int a, int b) const
|
|
{
|
|
return !(end[b] <= start[a] ||
|
|
end[a] <= start[b]);
|
|
}
|
|
|
|
bool
|
|
fs_live_variables::vgrfs_interfere(int a, int b) const
|
|
{
|
|
return !(vgrf_end[a] <= vgrf_start[b] ||
|
|
vgrf_end[b] <= vgrf_start[a]);
|
|
}
|