
Reviewed-by: Nanley Chery <nanley.g.chery@intel.com> Cc: "17.1" <mesa-stable@lists.freedesktop.org>
2094 lines
71 KiB
C
2094 lines
71 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/sysinfo.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <xf86drm.h>
|
|
|
|
#include "anv_private.h"
|
|
#include "util/strtod.h"
|
|
#include "util/debug.h"
|
|
#include "util/build_id.h"
|
|
#include "util/mesa-sha1.h"
|
|
#include "util/vk_util.h"
|
|
|
|
#include "genxml/gen7_pack.h"
|
|
|
|
static void
|
|
compiler_debug_log(void *data, const char *fmt, ...)
|
|
{ }
|
|
|
|
static void
|
|
compiler_perf_log(void *data, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_PERF))
|
|
vfprintf(stderr, fmt, args);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
static VkResult
|
|
anv_compute_heap_size(int fd, uint64_t *heap_size)
|
|
{
|
|
uint64_t gtt_size;
|
|
if (anv_gem_get_context_param(fd, 0, I915_CONTEXT_PARAM_GTT_SIZE,
|
|
>t_size) == -1) {
|
|
/* If, for whatever reason, we can't actually get the GTT size from the
|
|
* kernel (too old?) fall back to the aperture size.
|
|
*/
|
|
anv_perf_warn("Failed to get I915_CONTEXT_PARAM_GTT_SIZE: %m");
|
|
|
|
if (anv_gem_get_aperture(fd, >t_size) == -1) {
|
|
return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get aperture size: %m");
|
|
}
|
|
}
|
|
|
|
/* Query the total ram from the system */
|
|
struct sysinfo info;
|
|
sysinfo(&info);
|
|
|
|
uint64_t total_ram = (uint64_t)info.totalram * (uint64_t)info.mem_unit;
|
|
|
|
/* We don't want to burn too much ram with the GPU. If the user has 4GiB
|
|
* or less, we use at most half. If they have more than 4GiB, we use 3/4.
|
|
*/
|
|
uint64_t available_ram;
|
|
if (total_ram <= 4ull * 1024ull * 1024ull * 1024ull)
|
|
available_ram = total_ram / 2;
|
|
else
|
|
available_ram = total_ram * 3 / 4;
|
|
|
|
/* We also want to leave some padding for things we allocate in the driver,
|
|
* so don't go over 3/4 of the GTT either.
|
|
*/
|
|
uint64_t available_gtt = gtt_size * 3 / 4;
|
|
|
|
*heap_size = MIN2(available_ram, available_gtt);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init_heaps(struct anv_physical_device *device, int fd)
|
|
{
|
|
/* The kernel query only tells us whether or not the kernel supports the
|
|
* EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and not whether or not the
|
|
* hardware has actual 48bit address support.
|
|
*/
|
|
device->supports_48bit_addresses =
|
|
(device->info.gen >= 8) && anv_gem_supports_48b_addresses(fd);
|
|
|
|
uint64_t heap_size;
|
|
VkResult result = anv_compute_heap_size(fd, &heap_size);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
if (device->info.has_llc) {
|
|
/* Big core GPUs share LLC with the CPU and thus one memory type can be
|
|
* both cached and coherent at the same time.
|
|
*/
|
|
device->memory.type_count = 1;
|
|
device->memory.types[0] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = 0,
|
|
.valid_buffer_usage = ~0,
|
|
};
|
|
} else {
|
|
/* The spec requires that we expose a host-visible, coherent memory
|
|
* type, but Atom GPUs don't share LLC. Thus we offer two memory types
|
|
* to give the application a choice between cached, but not coherent and
|
|
* coherent but uncached (WC though).
|
|
*/
|
|
device->memory.type_count = 2;
|
|
device->memory.types[0] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
|
|
.heapIndex = 0,
|
|
.valid_buffer_usage = ~0,
|
|
};
|
|
device->memory.types[1] = (struct anv_memory_type) {
|
|
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
|
|
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
|
|
.heapIndex = 0,
|
|
.valid_buffer_usage = ~0,
|
|
};
|
|
}
|
|
|
|
device->memory.heap_count = 1;
|
|
device->memory.heaps[0] = (struct anv_memory_heap) {
|
|
.size = heap_size,
|
|
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
|
|
.supports_48bit_addresses = device->supports_48bit_addresses,
|
|
};
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init_uuids(struct anv_physical_device *device)
|
|
{
|
|
const struct build_id_note *note = build_id_find_nhdr("libvulkan_intel.so");
|
|
if (!note) {
|
|
return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"Failed to find build-id");
|
|
}
|
|
|
|
unsigned build_id_len = build_id_length(note);
|
|
if (build_id_len < 20) {
|
|
return vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"build-id too short. It needs to be a SHA");
|
|
}
|
|
|
|
struct mesa_sha1 sha1_ctx;
|
|
uint8_t sha1[20];
|
|
STATIC_ASSERT(VK_UUID_SIZE <= sizeof(sha1));
|
|
|
|
/* The pipeline cache UUID is used for determining when a pipeline cache is
|
|
* invalid. It needs both a driver build and the PCI ID of the device.
|
|
*/
|
|
_mesa_sha1_init(&sha1_ctx);
|
|
_mesa_sha1_update(&sha1_ctx, build_id_data(note), build_id_len);
|
|
_mesa_sha1_update(&sha1_ctx, &device->chipset_id,
|
|
sizeof(device->chipset_id));
|
|
_mesa_sha1_final(&sha1_ctx, sha1);
|
|
memcpy(device->pipeline_cache_uuid, sha1, VK_UUID_SIZE);
|
|
|
|
/* The driver UUID is used for determining sharability of images and memory
|
|
* between two Vulkan instances in separate processes. People who want to
|
|
* share memory need to also check the device UUID (below) so all this
|
|
* needs to be is the build-id.
|
|
*/
|
|
memcpy(device->driver_uuid, build_id_data(note), VK_UUID_SIZE);
|
|
|
|
/* The device UUID uniquely identifies the given device within the machine.
|
|
* Since we never have more than one device, this doesn't need to be a real
|
|
* UUID. However, on the off-chance that someone tries to use this to
|
|
* cache pre-tiled images or something of the like, we use the PCI ID and
|
|
* some bits of ISL info to ensure that this is safe.
|
|
*/
|
|
_mesa_sha1_init(&sha1_ctx);
|
|
_mesa_sha1_update(&sha1_ctx, &device->chipset_id,
|
|
sizeof(device->chipset_id));
|
|
_mesa_sha1_update(&sha1_ctx, &device->isl_dev.has_bit6_swizzling,
|
|
sizeof(device->isl_dev.has_bit6_swizzling));
|
|
_mesa_sha1_final(&sha1_ctx, sha1);
|
|
memcpy(device->device_uuid, sha1, VK_UUID_SIZE);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_physical_device_init(struct anv_physical_device *device,
|
|
struct anv_instance *instance,
|
|
const char *path)
|
|
{
|
|
VkResult result;
|
|
int fd;
|
|
|
|
fd = open(path, O_RDWR | O_CLOEXEC);
|
|
if (fd < 0)
|
|
return vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
|
|
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
device->instance = instance;
|
|
|
|
assert(strlen(path) < ARRAY_SIZE(device->path));
|
|
strncpy(device->path, path, ARRAY_SIZE(device->path));
|
|
|
|
device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
|
|
if (!device->chipset_id) {
|
|
result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
goto fail;
|
|
}
|
|
|
|
device->name = gen_get_device_name(device->chipset_id);
|
|
if (!gen_get_device_info(device->chipset_id, &device->info)) {
|
|
result = vk_error(VK_ERROR_INCOMPATIBLE_DRIVER);
|
|
goto fail;
|
|
}
|
|
|
|
if (device->info.is_haswell) {
|
|
fprintf(stderr, "WARNING: Haswell Vulkan support is incomplete\n");
|
|
} else if (device->info.gen == 7 && !device->info.is_baytrail) {
|
|
fprintf(stderr, "WARNING: Ivy Bridge Vulkan support is incomplete\n");
|
|
} else if (device->info.gen == 7 && device->info.is_baytrail) {
|
|
fprintf(stderr, "WARNING: Bay Trail Vulkan support is incomplete\n");
|
|
} else if (device->info.gen >= 8) {
|
|
/* Broadwell, Cherryview, Skylake, Broxton, Kabylake is as fully
|
|
* supported as anything */
|
|
} else {
|
|
result = vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Vulkan not yet supported on %s", device->name);
|
|
goto fail;
|
|
}
|
|
|
|
device->cmd_parser_version = -1;
|
|
if (device->info.gen == 7) {
|
|
device->cmd_parser_version =
|
|
anv_gem_get_param(fd, I915_PARAM_CMD_PARSER_VERSION);
|
|
if (device->cmd_parser_version == -1) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"failed to get command parser version");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT)) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing gem wait");
|
|
goto fail;
|
|
}
|
|
|
|
if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2)) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing execbuf2");
|
|
goto fail;
|
|
}
|
|
|
|
if (!device->info.has_llc &&
|
|
anv_gem_get_param(fd, I915_PARAM_MMAP_VERSION) < 1) {
|
|
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
|
|
"kernel missing wc mmap");
|
|
goto fail;
|
|
}
|
|
|
|
result = anv_physical_device_init_heaps(device, fd);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
device->has_exec_async = anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_ASYNC);
|
|
|
|
bool swizzled = anv_gem_get_bit6_swizzle(fd, I915_TILING_X);
|
|
|
|
/* GENs prior to 8 do not support EU/Subslice info */
|
|
if (device->info.gen >= 8) {
|
|
device->subslice_total = anv_gem_get_param(fd, I915_PARAM_SUBSLICE_TOTAL);
|
|
device->eu_total = anv_gem_get_param(fd, I915_PARAM_EU_TOTAL);
|
|
|
|
/* Without this information, we cannot get the right Braswell
|
|
* brandstrings, and we have to use conservative numbers for GPGPU on
|
|
* many platforms, but otherwise, things will just work.
|
|
*/
|
|
if (device->subslice_total < 1 || device->eu_total < 1) {
|
|
fprintf(stderr, "WARNING: Kernel 4.1 required to properly"
|
|
" query GPU properties.\n");
|
|
}
|
|
} else if (device->info.gen == 7) {
|
|
device->subslice_total = 1 << (device->info.gt - 1);
|
|
}
|
|
|
|
if (device->info.is_cherryview &&
|
|
device->subslice_total > 0 && device->eu_total > 0) {
|
|
/* Logical CS threads = EUs per subslice * 7 threads per EU */
|
|
uint32_t max_cs_threads = device->eu_total / device->subslice_total * 7;
|
|
|
|
/* Fuse configurations may give more threads than expected, never less. */
|
|
if (max_cs_threads > device->info.max_cs_threads)
|
|
device->info.max_cs_threads = max_cs_threads;
|
|
}
|
|
|
|
brw_process_intel_debug_variable();
|
|
|
|
device->compiler = brw_compiler_create(NULL, &device->info);
|
|
if (device->compiler == NULL) {
|
|
result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
goto fail;
|
|
}
|
|
device->compiler->shader_debug_log = compiler_debug_log;
|
|
device->compiler->shader_perf_log = compiler_perf_log;
|
|
|
|
isl_device_init(&device->isl_dev, &device->info, swizzled);
|
|
|
|
result = anv_physical_device_init_uuids(device);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
result = anv_init_wsi(device);
|
|
if (result != VK_SUCCESS) {
|
|
ralloc_free(device->compiler);
|
|
goto fail;
|
|
}
|
|
|
|
device->local_fd = fd;
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
close(fd);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
anv_physical_device_finish(struct anv_physical_device *device)
|
|
{
|
|
anv_finish_wsi(device);
|
|
ralloc_free(device->compiler);
|
|
close(device->local_fd);
|
|
}
|
|
|
|
static const VkExtensionProperties global_extensions[] = {
|
|
{
|
|
.extensionName = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
|
|
.specVersion = 25,
|
|
},
|
|
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
|
|
{
|
|
.extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
|
|
.specVersion = 5,
|
|
},
|
|
#endif
|
|
#ifdef VK_USE_PLATFORM_XCB_KHR
|
|
{
|
|
.extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
|
|
.specVersion = 6,
|
|
},
|
|
#endif
|
|
#ifdef VK_USE_PLATFORM_XLIB_KHR
|
|
{
|
|
.extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
|
|
.specVersion = 6,
|
|
},
|
|
#endif
|
|
{
|
|
.extensionName = VK_KHX_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHX_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
};
|
|
|
|
static const VkExtensionProperties device_extensions[] = {
|
|
{
|
|
.extensionName = VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHR_MAINTENANCE1_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
|
|
.specVersion = 68,
|
|
},
|
|
{
|
|
.extensionName = VK_KHX_EXTERNAL_MEMORY_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHX_EXTERNAL_MEMORY_FD_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHX_EXTERNAL_SEMAPHORE_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHX_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
{
|
|
.extensionName = VK_KHX_MULTIVIEW_EXTENSION_NAME,
|
|
.specVersion = 1,
|
|
},
|
|
};
|
|
|
|
static void *
|
|
default_alloc_func(void *pUserData, size_t size, size_t align,
|
|
VkSystemAllocationScope allocationScope)
|
|
{
|
|
return malloc(size);
|
|
}
|
|
|
|
static void *
|
|
default_realloc_func(void *pUserData, void *pOriginal, size_t size,
|
|
size_t align, VkSystemAllocationScope allocationScope)
|
|
{
|
|
return realloc(pOriginal, size);
|
|
}
|
|
|
|
static void
|
|
default_free_func(void *pUserData, void *pMemory)
|
|
{
|
|
free(pMemory);
|
|
}
|
|
|
|
static const VkAllocationCallbacks default_alloc = {
|
|
.pUserData = NULL,
|
|
.pfnAllocation = default_alloc_func,
|
|
.pfnReallocation = default_realloc_func,
|
|
.pfnFree = default_free_func,
|
|
};
|
|
|
|
VkResult anv_CreateInstance(
|
|
const VkInstanceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkInstance* pInstance)
|
|
{
|
|
struct anv_instance *instance;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
|
|
|
|
uint32_t client_version;
|
|
if (pCreateInfo->pApplicationInfo &&
|
|
pCreateInfo->pApplicationInfo->apiVersion != 0) {
|
|
client_version = pCreateInfo->pApplicationInfo->apiVersion;
|
|
} else {
|
|
client_version = VK_MAKE_VERSION(1, 0, 0);
|
|
}
|
|
|
|
if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
|
|
client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
|
|
return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
|
|
"Client requested version %d.%d.%d",
|
|
VK_VERSION_MAJOR(client_version),
|
|
VK_VERSION_MINOR(client_version),
|
|
VK_VERSION_PATCH(client_version));
|
|
}
|
|
|
|
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
|
|
bool found = false;
|
|
for (uint32_t j = 0; j < ARRAY_SIZE(global_extensions); j++) {
|
|
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
|
|
global_extensions[j].extensionName) == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
}
|
|
|
|
instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
|
|
if (!instance)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
|
|
if (pAllocator)
|
|
instance->alloc = *pAllocator;
|
|
else
|
|
instance->alloc = default_alloc;
|
|
|
|
instance->apiVersion = client_version;
|
|
instance->physicalDeviceCount = -1;
|
|
|
|
_mesa_locale_init();
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
|
|
|
|
*pInstance = anv_instance_to_handle(instance);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyInstance(
|
|
VkInstance _instance,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
|
|
if (!instance)
|
|
return;
|
|
|
|
if (instance->physicalDeviceCount > 0) {
|
|
/* We support at most one physical device. */
|
|
assert(instance->physicalDeviceCount == 1);
|
|
anv_physical_device_finish(&instance->physicalDevice);
|
|
}
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(instance));
|
|
|
|
_mesa_locale_fini();
|
|
|
|
vk_free(&instance->alloc, instance);
|
|
}
|
|
|
|
static VkResult
|
|
anv_enumerate_devices(struct anv_instance *instance)
|
|
{
|
|
/* TODO: Check for more devices ? */
|
|
drmDevicePtr devices[8];
|
|
VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
|
|
int max_devices;
|
|
|
|
instance->physicalDeviceCount = 0;
|
|
|
|
max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
|
|
if (max_devices < 1)
|
|
return VK_ERROR_INCOMPATIBLE_DRIVER;
|
|
|
|
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
|
|
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
|
|
devices[i]->bustype == DRM_BUS_PCI &&
|
|
devices[i]->deviceinfo.pci->vendor_id == 0x8086) {
|
|
|
|
result = anv_physical_device_init(&instance->physicalDevice,
|
|
instance,
|
|
devices[i]->nodes[DRM_NODE_RENDER]);
|
|
if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
|
|
break;
|
|
}
|
|
}
|
|
drmFreeDevices(devices, max_devices);
|
|
|
|
if (result == VK_SUCCESS)
|
|
instance->physicalDeviceCount = 1;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
VkResult anv_EnumeratePhysicalDevices(
|
|
VkInstance _instance,
|
|
uint32_t* pPhysicalDeviceCount,
|
|
VkPhysicalDevice* pPhysicalDevices)
|
|
{
|
|
ANV_FROM_HANDLE(anv_instance, instance, _instance);
|
|
VK_OUTARRAY_MAKE(out, pPhysicalDevices, pPhysicalDeviceCount);
|
|
VkResult result;
|
|
|
|
if (instance->physicalDeviceCount < 0) {
|
|
result = anv_enumerate_devices(instance);
|
|
if (result != VK_SUCCESS &&
|
|
result != VK_ERROR_INCOMPATIBLE_DRIVER)
|
|
return result;
|
|
}
|
|
|
|
if (instance->physicalDeviceCount > 0) {
|
|
assert(instance->physicalDeviceCount == 1);
|
|
vk_outarray_append(&out, i) {
|
|
*i = anv_physical_device_to_handle(&instance->physicalDevice);
|
|
}
|
|
}
|
|
|
|
return vk_outarray_status(&out);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures* pFeatures)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
*pFeatures = (VkPhysicalDeviceFeatures) {
|
|
.robustBufferAccess = true,
|
|
.fullDrawIndexUint32 = true,
|
|
.imageCubeArray = true,
|
|
.independentBlend = true,
|
|
.geometryShader = true,
|
|
.tessellationShader = true,
|
|
.sampleRateShading = true,
|
|
.dualSrcBlend = true,
|
|
.logicOp = true,
|
|
.multiDrawIndirect = true,
|
|
.drawIndirectFirstInstance = true,
|
|
.depthClamp = true,
|
|
.depthBiasClamp = true,
|
|
.fillModeNonSolid = true,
|
|
.depthBounds = false,
|
|
.wideLines = true,
|
|
.largePoints = true,
|
|
.alphaToOne = true,
|
|
.multiViewport = true,
|
|
.samplerAnisotropy = true,
|
|
.textureCompressionETC2 = pdevice->info.gen >= 8 ||
|
|
pdevice->info.is_baytrail,
|
|
.textureCompressionASTC_LDR = pdevice->info.gen >= 9, /* FINISHME CHV */
|
|
.textureCompressionBC = true,
|
|
.occlusionQueryPrecise = true,
|
|
.pipelineStatisticsQuery = true,
|
|
.fragmentStoresAndAtomics = true,
|
|
.shaderTessellationAndGeometryPointSize = true,
|
|
.shaderImageGatherExtended = true,
|
|
.shaderStorageImageExtendedFormats = true,
|
|
.shaderStorageImageMultisample = false,
|
|
.shaderStorageImageReadWithoutFormat = false,
|
|
.shaderStorageImageWriteWithoutFormat = true,
|
|
.shaderUniformBufferArrayDynamicIndexing = true,
|
|
.shaderSampledImageArrayDynamicIndexing = true,
|
|
.shaderStorageBufferArrayDynamicIndexing = true,
|
|
.shaderStorageImageArrayDynamicIndexing = true,
|
|
.shaderClipDistance = true,
|
|
.shaderCullDistance = true,
|
|
.shaderFloat64 = pdevice->info.gen >= 8,
|
|
.shaderInt64 = pdevice->info.gen >= 8,
|
|
.shaderInt16 = false,
|
|
.shaderResourceMinLod = false,
|
|
.variableMultisampleRate = false,
|
|
.inheritedQueries = true,
|
|
};
|
|
|
|
/* We can't do image stores in vec4 shaders */
|
|
pFeatures->vertexPipelineStoresAndAtomics =
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_VERTEX] &&
|
|
pdevice->compiler->scalar_stage[MESA_SHADER_GEOMETRY];
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceFeatures2KHR(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceFeatures2KHR* pFeatures)
|
|
{
|
|
anv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
|
|
|
|
vk_foreach_struct(ext, pFeatures->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: {
|
|
VkPhysicalDeviceMultiviewFeaturesKHX *features =
|
|
(VkPhysicalDeviceMultiviewFeaturesKHX *)ext;
|
|
features->multiview = true;
|
|
features->multiviewGeometryShader = true;
|
|
features->multiviewTessellationShader = true;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
const struct gen_device_info *devinfo = &pdevice->info;
|
|
|
|
/* See assertions made when programming the buffer surface state. */
|
|
const uint32_t max_raw_buffer_sz = devinfo->gen >= 7 ?
|
|
(1ul << 30) : (1ul << 27);
|
|
|
|
VkSampleCountFlags sample_counts =
|
|
isl_device_get_sample_counts(&pdevice->isl_dev);
|
|
|
|
VkPhysicalDeviceLimits limits = {
|
|
.maxImageDimension1D = (1 << 14),
|
|
.maxImageDimension2D = (1 << 14),
|
|
.maxImageDimension3D = (1 << 11),
|
|
.maxImageDimensionCube = (1 << 14),
|
|
.maxImageArrayLayers = (1 << 11),
|
|
.maxTexelBufferElements = 128 * 1024 * 1024,
|
|
.maxUniformBufferRange = (1ul << 27),
|
|
.maxStorageBufferRange = max_raw_buffer_sz,
|
|
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
|
|
.maxMemoryAllocationCount = UINT32_MAX,
|
|
.maxSamplerAllocationCount = 64 * 1024,
|
|
.bufferImageGranularity = 64, /* A cache line */
|
|
.sparseAddressSpaceSize = 0,
|
|
.maxBoundDescriptorSets = MAX_SETS,
|
|
.maxPerStageDescriptorSamplers = 64,
|
|
.maxPerStageDescriptorUniformBuffers = 64,
|
|
.maxPerStageDescriptorStorageBuffers = 64,
|
|
.maxPerStageDescriptorSampledImages = 64,
|
|
.maxPerStageDescriptorStorageImages = 64,
|
|
.maxPerStageDescriptorInputAttachments = 64,
|
|
.maxPerStageResources = 128,
|
|
.maxDescriptorSetSamplers = 256,
|
|
.maxDescriptorSetUniformBuffers = 256,
|
|
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
|
.maxDescriptorSetStorageBuffers = 256,
|
|
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
|
|
.maxDescriptorSetSampledImages = 256,
|
|
.maxDescriptorSetStorageImages = 256,
|
|
.maxDescriptorSetInputAttachments = 256,
|
|
.maxVertexInputAttributes = MAX_VBS,
|
|
.maxVertexInputBindings = MAX_VBS,
|
|
.maxVertexInputAttributeOffset = 2047,
|
|
.maxVertexInputBindingStride = 2048,
|
|
.maxVertexOutputComponents = 128,
|
|
.maxTessellationGenerationLevel = 64,
|
|
.maxTessellationPatchSize = 32,
|
|
.maxTessellationControlPerVertexInputComponents = 128,
|
|
.maxTessellationControlPerVertexOutputComponents = 128,
|
|
.maxTessellationControlPerPatchOutputComponents = 128,
|
|
.maxTessellationControlTotalOutputComponents = 2048,
|
|
.maxTessellationEvaluationInputComponents = 128,
|
|
.maxTessellationEvaluationOutputComponents = 128,
|
|
.maxGeometryShaderInvocations = 32,
|
|
.maxGeometryInputComponents = 64,
|
|
.maxGeometryOutputComponents = 128,
|
|
.maxGeometryOutputVertices = 256,
|
|
.maxGeometryTotalOutputComponents = 1024,
|
|
.maxFragmentInputComponents = 128,
|
|
.maxFragmentOutputAttachments = 8,
|
|
.maxFragmentDualSrcAttachments = 1,
|
|
.maxFragmentCombinedOutputResources = 8,
|
|
.maxComputeSharedMemorySize = 32768,
|
|
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
|
|
.maxComputeWorkGroupInvocations = 16 * devinfo->max_cs_threads,
|
|
.maxComputeWorkGroupSize = {
|
|
16 * devinfo->max_cs_threads,
|
|
16 * devinfo->max_cs_threads,
|
|
16 * devinfo->max_cs_threads,
|
|
},
|
|
.subPixelPrecisionBits = 4 /* FIXME */,
|
|
.subTexelPrecisionBits = 4 /* FIXME */,
|
|
.mipmapPrecisionBits = 4 /* FIXME */,
|
|
.maxDrawIndexedIndexValue = UINT32_MAX,
|
|
.maxDrawIndirectCount = UINT32_MAX,
|
|
.maxSamplerLodBias = 16,
|
|
.maxSamplerAnisotropy = 16,
|
|
.maxViewports = MAX_VIEWPORTS,
|
|
.maxViewportDimensions = { (1 << 14), (1 << 14) },
|
|
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
|
|
.viewportSubPixelBits = 13, /* We take a float? */
|
|
.minMemoryMapAlignment = 4096, /* A page */
|
|
.minTexelBufferOffsetAlignment = 1,
|
|
.minUniformBufferOffsetAlignment = 16,
|
|
.minStorageBufferOffsetAlignment = 4,
|
|
.minTexelOffset = -8,
|
|
.maxTexelOffset = 7,
|
|
.minTexelGatherOffset = -32,
|
|
.maxTexelGatherOffset = 31,
|
|
.minInterpolationOffset = -0.5,
|
|
.maxInterpolationOffset = 0.4375,
|
|
.subPixelInterpolationOffsetBits = 4,
|
|
.maxFramebufferWidth = (1 << 14),
|
|
.maxFramebufferHeight = (1 << 14),
|
|
.maxFramebufferLayers = (1 << 11),
|
|
.framebufferColorSampleCounts = sample_counts,
|
|
.framebufferDepthSampleCounts = sample_counts,
|
|
.framebufferStencilSampleCounts = sample_counts,
|
|
.framebufferNoAttachmentsSampleCounts = sample_counts,
|
|
.maxColorAttachments = MAX_RTS,
|
|
.sampledImageColorSampleCounts = sample_counts,
|
|
.sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
|
.sampledImageDepthSampleCounts = sample_counts,
|
|
.sampledImageStencilSampleCounts = sample_counts,
|
|
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
|
|
.maxSampleMaskWords = 1,
|
|
.timestampComputeAndGraphics = false,
|
|
.timestampPeriod = devinfo->timebase_scale,
|
|
.maxClipDistances = 8,
|
|
.maxCullDistances = 8,
|
|
.maxCombinedClipAndCullDistances = 8,
|
|
.discreteQueuePriorities = 1,
|
|
.pointSizeRange = { 0.125, 255.875 },
|
|
.lineWidthRange = { 0.0, 7.9921875 },
|
|
.pointSizeGranularity = (1.0 / 8.0),
|
|
.lineWidthGranularity = (1.0 / 128.0),
|
|
.strictLines = false, /* FINISHME */
|
|
.standardSampleLocations = true,
|
|
.optimalBufferCopyOffsetAlignment = 128,
|
|
.optimalBufferCopyRowPitchAlignment = 128,
|
|
.nonCoherentAtomSize = 64,
|
|
};
|
|
|
|
*pProperties = (VkPhysicalDeviceProperties) {
|
|
.apiVersion = VK_MAKE_VERSION(1, 0, 42),
|
|
.driverVersion = 1,
|
|
.vendorID = 0x8086,
|
|
.deviceID = pdevice->chipset_id,
|
|
.deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
|
|
.limits = limits,
|
|
.sparseProperties = {0}, /* Broadwell doesn't do sparse. */
|
|
};
|
|
|
|
strcpy(pProperties->deviceName, pdevice->name);
|
|
memcpy(pProperties->pipelineCacheUUID,
|
|
pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceProperties2KHR(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceProperties2KHR* pProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, pdevice, physicalDevice);
|
|
|
|
anv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
|
|
|
|
vk_foreach_struct(ext, pProperties->pNext) {
|
|
switch (ext->sType) {
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
|
|
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
|
|
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
|
|
|
|
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHX: {
|
|
VkPhysicalDeviceIDPropertiesKHX *id_props =
|
|
(VkPhysicalDeviceIDPropertiesKHX *)ext;
|
|
memcpy(id_props->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
|
|
memcpy(id_props->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
|
|
/* The LUID is for Windows. */
|
|
id_props->deviceLUIDValid = false;
|
|
break;
|
|
}
|
|
|
|
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: {
|
|
VkPhysicalDeviceMultiviewPropertiesKHX *properties =
|
|
(VkPhysicalDeviceMultiviewPropertiesKHX *)ext;
|
|
properties->maxMultiviewViewCount = 16;
|
|
properties->maxMultiviewInstanceIndex = UINT32_MAX / 16;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We support exactly one queue family. */
|
|
static const VkQueueFamilyProperties
|
|
anv_queue_family_properties = {
|
|
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
|
|
VK_QUEUE_COMPUTE_BIT |
|
|
VK_QUEUE_TRANSFER_BIT,
|
|
.queueCount = 1,
|
|
.timestampValidBits = 36, /* XXX: Real value here */
|
|
.minImageTransferGranularity = { 1, 1, 1 },
|
|
};
|
|
|
|
void anv_GetPhysicalDeviceQueueFamilyProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pCount,
|
|
VkQueueFamilyProperties* pQueueFamilyProperties)
|
|
{
|
|
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pCount);
|
|
|
|
vk_outarray_append(&out, p) {
|
|
*p = anv_queue_family_properties;
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceQueueFamilyProperties2KHR(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pQueueFamilyPropertyCount,
|
|
VkQueueFamilyProperties2KHR* pQueueFamilyProperties)
|
|
{
|
|
|
|
VK_OUTARRAY_MAKE(out, pQueueFamilyProperties, pQueueFamilyPropertyCount);
|
|
|
|
vk_outarray_append(&out, p) {
|
|
p->queueFamilyProperties = anv_queue_family_properties;
|
|
|
|
vk_foreach_struct(s, p->pNext) {
|
|
anv_debug_ignored_stype(s->sType);
|
|
}
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties* pMemoryProperties)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
|
|
pMemoryProperties->memoryTypeCount = physical_device->memory.type_count;
|
|
for (uint32_t i = 0; i < physical_device->memory.type_count; i++) {
|
|
pMemoryProperties->memoryTypes[i] = (VkMemoryType) {
|
|
.propertyFlags = physical_device->memory.types[i].propertyFlags,
|
|
.heapIndex = physical_device->memory.types[i].heapIndex,
|
|
};
|
|
}
|
|
|
|
pMemoryProperties->memoryHeapCount = physical_device->memory.heap_count;
|
|
for (uint32_t i = 0; i < physical_device->memory.heap_count; i++) {
|
|
pMemoryProperties->memoryHeaps[i] = (VkMemoryHeap) {
|
|
.size = physical_device->memory.heaps[i].size,
|
|
.flags = physical_device->memory.heaps[i].flags,
|
|
};
|
|
}
|
|
}
|
|
|
|
void anv_GetPhysicalDeviceMemoryProperties2KHR(
|
|
VkPhysicalDevice physicalDevice,
|
|
VkPhysicalDeviceMemoryProperties2KHR* pMemoryProperties)
|
|
{
|
|
anv_GetPhysicalDeviceMemoryProperties(physicalDevice,
|
|
&pMemoryProperties->memoryProperties);
|
|
|
|
vk_foreach_struct(ext, pMemoryProperties->pNext) {
|
|
switch (ext->sType) {
|
|
default:
|
|
anv_debug_ignored_stype(ext->sType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName)
|
|
{
|
|
return anv_lookup_entrypoint(NULL, pName);
|
|
}
|
|
|
|
/* With version 1+ of the loader interface the ICD should expose
|
|
* vk_icdGetInstanceProcAddr to work around certain LD_PRELOAD issues seen in apps.
|
|
*/
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName);
|
|
|
|
PUBLIC
|
|
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
|
|
VkInstance instance,
|
|
const char* pName)
|
|
{
|
|
return anv_GetInstanceProcAddr(instance, pName);
|
|
}
|
|
|
|
PFN_vkVoidFunction anv_GetDeviceProcAddr(
|
|
VkDevice _device,
|
|
const char* pName)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
return anv_lookup_entrypoint(&device->info, pName);
|
|
}
|
|
|
|
static void
|
|
anv_queue_init(struct anv_device *device, struct anv_queue *queue)
|
|
{
|
|
queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
queue->device = device;
|
|
queue->pool = &device->surface_state_pool;
|
|
}
|
|
|
|
static void
|
|
anv_queue_finish(struct anv_queue *queue)
|
|
{
|
|
}
|
|
|
|
static struct anv_state
|
|
anv_state_pool_emit_data(struct anv_state_pool *pool, size_t size, size_t align, const void *p)
|
|
{
|
|
struct anv_state state;
|
|
|
|
state = anv_state_pool_alloc(pool, size, align);
|
|
memcpy(state.map, p, size);
|
|
|
|
anv_state_flush(pool->block_pool.device, state);
|
|
|
|
return state;
|
|
}
|
|
|
|
struct gen8_border_color {
|
|
union {
|
|
float float32[4];
|
|
uint32_t uint32[4];
|
|
};
|
|
/* Pad out to 64 bytes */
|
|
uint32_t _pad[12];
|
|
};
|
|
|
|
static void
|
|
anv_device_init_border_colors(struct anv_device *device)
|
|
{
|
|
static const struct gen8_border_color border_colors[] = {
|
|
[VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 0.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK] = { .float32 = { 0.0, 0.0, 0.0, 1.0 } },
|
|
[VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE] = { .float32 = { 1.0, 1.0, 1.0, 1.0 } },
|
|
[VK_BORDER_COLOR_INT_TRANSPARENT_BLACK] = { .uint32 = { 0, 0, 0, 0 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_BLACK] = { .uint32 = { 0, 0, 0, 1 } },
|
|
[VK_BORDER_COLOR_INT_OPAQUE_WHITE] = { .uint32 = { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
device->border_colors = anv_state_pool_emit_data(&device->dynamic_state_pool,
|
|
sizeof(border_colors), 64,
|
|
border_colors);
|
|
}
|
|
|
|
VkResult anv_CreateDevice(
|
|
VkPhysicalDevice physicalDevice,
|
|
const VkDeviceCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDevice* pDevice)
|
|
{
|
|
ANV_FROM_HANDLE(anv_physical_device, physical_device, physicalDevice);
|
|
VkResult result;
|
|
struct anv_device *device;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
|
|
|
|
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
|
|
bool found = false;
|
|
for (uint32_t j = 0; j < ARRAY_SIZE(device_extensions); j++) {
|
|
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i],
|
|
device_extensions[j].extensionName) == 0) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
|
|
}
|
|
|
|
device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
|
|
sizeof(*device), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
|
|
if (!device)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
|
|
device->instance = physical_device->instance;
|
|
device->chipset_id = physical_device->chipset_id;
|
|
device->lost = false;
|
|
|
|
if (pAllocator)
|
|
device->alloc = *pAllocator;
|
|
else
|
|
device->alloc = physical_device->instance->alloc;
|
|
|
|
/* XXX(chadv): Can we dup() physicalDevice->fd here? */
|
|
device->fd = open(physical_device->path, O_RDWR | O_CLOEXEC);
|
|
if (device->fd == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_device;
|
|
}
|
|
|
|
device->context_id = anv_gem_create_context(device);
|
|
if (device->context_id == -1) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_fd;
|
|
}
|
|
|
|
device->info = physical_device->info;
|
|
device->isl_dev = physical_device->isl_dev;
|
|
|
|
/* On Broadwell and later, we can use batch chaining to more efficiently
|
|
* implement growing command buffers. Prior to Haswell, the kernel
|
|
* command parser gets in the way and we have to fall back to growing
|
|
* the batch.
|
|
*/
|
|
device->can_chain_batches = device->info.gen >= 8;
|
|
|
|
device->robust_buffer_access = pCreateInfo->pEnabledFeatures &&
|
|
pCreateInfo->pEnabledFeatures->robustBufferAccess;
|
|
|
|
if (pthread_mutex_init(&device->mutex, NULL) != 0) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_context_id;
|
|
}
|
|
|
|
pthread_condattr_t condattr;
|
|
if (pthread_condattr_init(&condattr) != 0) {
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
if (pthread_condattr_setclock(&condattr, CLOCK_MONOTONIC) != 0) {
|
|
pthread_condattr_destroy(&condattr);
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
if (pthread_cond_init(&device->queue_submit, NULL) != 0) {
|
|
pthread_condattr_destroy(&condattr);
|
|
result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
|
|
goto fail_mutex;
|
|
}
|
|
pthread_condattr_destroy(&condattr);
|
|
|
|
anv_bo_pool_init(&device->batch_bo_pool, device);
|
|
|
|
result = anv_bo_cache_init(&device->bo_cache);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_batch_bo_pool;
|
|
|
|
result = anv_state_pool_init(&device->dynamic_state_pool, device, 16384);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_bo_cache;
|
|
|
|
result = anv_state_pool_init(&device->instruction_state_pool, device, 16384);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_dynamic_state_pool;
|
|
|
|
result = anv_state_pool_init(&device->surface_state_pool, device, 4096);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_instruction_state_pool;
|
|
|
|
result = anv_bo_init_new(&device->workaround_bo, device, 1024);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_surface_state_pool;
|
|
|
|
anv_scratch_pool_init(device, &device->scratch_pool);
|
|
|
|
anv_queue_init(device, &device->queue);
|
|
|
|
switch (device->info.gen) {
|
|
case 7:
|
|
if (!device->info.is_haswell)
|
|
result = gen7_init_device_state(device);
|
|
else
|
|
result = gen75_init_device_state(device);
|
|
break;
|
|
case 8:
|
|
result = gen8_init_device_state(device);
|
|
break;
|
|
case 9:
|
|
result = gen9_init_device_state(device);
|
|
break;
|
|
default:
|
|
/* Shouldn't get here as we don't create physical devices for any other
|
|
* gens. */
|
|
unreachable("unhandled gen");
|
|
}
|
|
if (result != VK_SUCCESS)
|
|
goto fail_workaround_bo;
|
|
|
|
anv_device_init_blorp(device);
|
|
|
|
anv_device_init_border_colors(device);
|
|
|
|
*pDevice = anv_device_to_handle(device);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_workaround_bo:
|
|
anv_queue_finish(&device->queue);
|
|
anv_scratch_pool_finish(device, &device->scratch_pool);
|
|
anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
|
|
anv_gem_close(device, device->workaround_bo.gem_handle);
|
|
fail_surface_state_pool:
|
|
anv_state_pool_finish(&device->surface_state_pool);
|
|
fail_instruction_state_pool:
|
|
anv_state_pool_finish(&device->instruction_state_pool);
|
|
fail_dynamic_state_pool:
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
fail_bo_cache:
|
|
anv_bo_cache_finish(&device->bo_cache);
|
|
fail_batch_bo_pool:
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
pthread_cond_destroy(&device->queue_submit);
|
|
fail_mutex:
|
|
pthread_mutex_destroy(&device->mutex);
|
|
fail_context_id:
|
|
anv_gem_destroy_context(device, device->context_id);
|
|
fail_fd:
|
|
close(device->fd);
|
|
fail_device:
|
|
vk_free(&device->alloc, device);
|
|
|
|
return result;
|
|
}
|
|
|
|
void anv_DestroyDevice(
|
|
VkDevice _device,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (!device)
|
|
return;
|
|
|
|
anv_device_finish_blorp(device);
|
|
|
|
anv_queue_finish(&device->queue);
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
/* We only need to free these to prevent valgrind errors. The backing
|
|
* BO will go away in a couple of lines so we don't actually leak.
|
|
*/
|
|
anv_state_pool_free(&device->dynamic_state_pool, device->border_colors);
|
|
#endif
|
|
|
|
anv_scratch_pool_finish(device, &device->scratch_pool);
|
|
|
|
anv_gem_munmap(device->workaround_bo.map, device->workaround_bo.size);
|
|
anv_gem_close(device, device->workaround_bo.gem_handle);
|
|
|
|
anv_state_pool_finish(&device->surface_state_pool);
|
|
anv_state_pool_finish(&device->instruction_state_pool);
|
|
anv_state_pool_finish(&device->dynamic_state_pool);
|
|
|
|
anv_bo_cache_finish(&device->bo_cache);
|
|
|
|
anv_bo_pool_finish(&device->batch_bo_pool);
|
|
|
|
pthread_cond_destroy(&device->queue_submit);
|
|
pthread_mutex_destroy(&device->mutex);
|
|
|
|
anv_gem_destroy_context(device, device->context_id);
|
|
|
|
close(device->fd);
|
|
|
|
vk_free(&device->alloc, device);
|
|
}
|
|
|
|
VkResult anv_EnumerateInstanceExtensionProperties(
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = ARRAY_SIZE(global_extensions);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
*pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(global_extensions));
|
|
typed_memcpy(pProperties, global_extensions, *pPropertyCount);
|
|
|
|
if (*pPropertyCount < ARRAY_SIZE(global_extensions))
|
|
return VK_INCOMPLETE;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_EnumerateDeviceExtensionProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
const char* pLayerName,
|
|
uint32_t* pPropertyCount,
|
|
VkExtensionProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = ARRAY_SIZE(device_extensions);
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
*pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(device_extensions));
|
|
typed_memcpy(pProperties, device_extensions, *pPropertyCount);
|
|
|
|
if (*pPropertyCount < ARRAY_SIZE(device_extensions))
|
|
return VK_INCOMPLETE;
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_EnumerateInstanceLayerProperties(
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
VkResult anv_EnumerateDeviceLayerProperties(
|
|
VkPhysicalDevice physicalDevice,
|
|
uint32_t* pPropertyCount,
|
|
VkLayerProperties* pProperties)
|
|
{
|
|
if (pProperties == NULL) {
|
|
*pPropertyCount = 0;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* None supported at this time */
|
|
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
|
|
}
|
|
|
|
void anv_GetDeviceQueue(
|
|
VkDevice _device,
|
|
uint32_t queueNodeIndex,
|
|
uint32_t queueIndex,
|
|
VkQueue* pQueue)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
assert(queueIndex == 0);
|
|
|
|
*pQueue = anv_queue_to_handle(&device->queue);
|
|
}
|
|
|
|
VkResult
|
|
anv_device_query_status(struct anv_device *device)
|
|
{
|
|
/* This isn't likely as most of the callers of this function already check
|
|
* for it. However, it doesn't hurt to check and it potentially lets us
|
|
* avoid an ioctl.
|
|
*/
|
|
if (unlikely(device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
uint32_t active, pending;
|
|
int ret = anv_gem_gpu_get_reset_stats(device, &active, &pending);
|
|
if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
device->lost = true;
|
|
return vk_errorf(VK_ERROR_DEVICE_LOST, "get_reset_stats failed: %m");
|
|
}
|
|
|
|
if (active) {
|
|
device->lost = true;
|
|
return vk_errorf(VK_ERROR_DEVICE_LOST,
|
|
"GPU hung on one of our command buffers");
|
|
} else if (pending) {
|
|
device->lost = true;
|
|
return vk_errorf(VK_ERROR_DEVICE_LOST,
|
|
"GPU hung with commands in-flight");
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo)
|
|
{
|
|
/* Note: This only returns whether or not the BO is in use by an i915 GPU.
|
|
* Other usages of the BO (such as on different hardware) will not be
|
|
* flagged as "busy" by this ioctl. Use with care.
|
|
*/
|
|
int ret = anv_gem_busy(device, bo->gem_handle);
|
|
if (ret == 1) {
|
|
return VK_NOT_READY;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
device->lost = true;
|
|
return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
|
|
}
|
|
|
|
/* Query for device status after the busy call. If the BO we're checking
|
|
* got caught in a GPU hang we don't want to return VK_SUCCESS to the
|
|
* client because it clearly doesn't have valid data. Yes, this most
|
|
* likely means an ioctl, but we just did an ioctl to query the busy status
|
|
* so it's no great loss.
|
|
*/
|
|
return anv_device_query_status(device);
|
|
}
|
|
|
|
VkResult
|
|
anv_device_wait(struct anv_device *device, struct anv_bo *bo,
|
|
int64_t timeout)
|
|
{
|
|
int ret = anv_gem_wait(device, bo->gem_handle, &timeout);
|
|
if (ret == -1 && errno == ETIME) {
|
|
return VK_TIMEOUT;
|
|
} else if (ret == -1) {
|
|
/* We don't know the real error. */
|
|
device->lost = true;
|
|
return vk_errorf(VK_ERROR_DEVICE_LOST, "gem wait failed: %m");
|
|
}
|
|
|
|
/* Query for device status after the wait. If the BO we're waiting on got
|
|
* caught in a GPU hang we don't want to return VK_SUCCESS to the client
|
|
* because it clearly doesn't have valid data. Yes, this most likely means
|
|
* an ioctl, but we just did an ioctl to wait so it's no great loss.
|
|
*/
|
|
return anv_device_query_status(device);
|
|
}
|
|
|
|
VkResult anv_DeviceWaitIdle(
|
|
VkDevice _device)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
if (unlikely(device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
struct anv_batch batch;
|
|
|
|
uint32_t cmds[8];
|
|
batch.start = batch.next = cmds;
|
|
batch.end = (void *) cmds + sizeof(cmds);
|
|
|
|
anv_batch_emit(&batch, GEN7_MI_BATCH_BUFFER_END, bbe);
|
|
anv_batch_emit(&batch, GEN7_MI_NOOP, noop);
|
|
|
|
return anv_device_submit_simple_batch(device, &batch);
|
|
}
|
|
|
|
VkResult
|
|
anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
|
|
{
|
|
uint32_t gem_handle = anv_gem_create(device, size);
|
|
if (!gem_handle)
|
|
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
|
|
|
anv_bo_init(bo, gem_handle, size);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_AllocateMemory(
|
|
VkDevice _device,
|
|
const VkMemoryAllocateInfo* pAllocateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkDeviceMemory* pMem)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
struct anv_device_memory *mem;
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
|
|
|
|
/* The Vulkan 1.0.33 spec says "allocationSize must be greater than 0". */
|
|
assert(pAllocateInfo->allocationSize > 0);
|
|
|
|
/* The kernel relocation API has a limitation of a 32-bit delta value
|
|
* applied to the address before it is written which, in spite of it being
|
|
* unsigned, is treated as signed . Because of the way that this maps to
|
|
* the Vulkan API, we cannot handle an offset into a buffer that does not
|
|
* fit into a signed 32 bits. The only mechanism we have for dealing with
|
|
* this at the moment is to limit all VkDeviceMemory objects to a maximum
|
|
* of 2GB each. The Vulkan spec allows us to do this:
|
|
*
|
|
* "Some platforms may have a limit on the maximum size of a single
|
|
* allocation. For example, certain systems may fail to create
|
|
* allocations with a size greater than or equal to 4GB. Such a limit is
|
|
* implementation-dependent, and if such a failure occurs then the error
|
|
* VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
|
|
*
|
|
* We don't use vk_error here because it's not an error so much as an
|
|
* indication to the application that the allocation is too large.
|
|
*/
|
|
if (pAllocateInfo->allocationSize > (1ull << 31))
|
|
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
|
|
|
|
/* FINISHME: Fail if allocation request exceeds heap size. */
|
|
|
|
mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (mem == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
assert(pAllocateInfo->memoryTypeIndex < pdevice->memory.type_count);
|
|
mem->type = &pdevice->memory.types[pAllocateInfo->memoryTypeIndex];
|
|
mem->map = NULL;
|
|
mem->map_size = 0;
|
|
|
|
const VkImportMemoryFdInfoKHX *fd_info =
|
|
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHX);
|
|
|
|
/* The Vulkan spec permits handleType to be 0, in which case the struct is
|
|
* ignored.
|
|
*/
|
|
if (fd_info && fd_info->handleType) {
|
|
/* At the moment, we only support the OPAQUE_FD memory type which is
|
|
* just a GEM buffer.
|
|
*/
|
|
assert(fd_info->handleType ==
|
|
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHX);
|
|
|
|
result = anv_bo_cache_import(device, &device->bo_cache,
|
|
fd_info->fd, pAllocateInfo->allocationSize,
|
|
&mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
} else {
|
|
result = anv_bo_cache_alloc(device, &device->bo_cache,
|
|
pAllocateInfo->allocationSize,
|
|
&mem->bo);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
}
|
|
|
|
assert(mem->type->heapIndex < pdevice->memory.heap_count);
|
|
if (pdevice->memory.heaps[mem->type->heapIndex].supports_48bit_addresses)
|
|
mem->bo->flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
|
|
|
|
if (pdevice->has_exec_async)
|
|
mem->bo->flags |= EXEC_OBJECT_ASYNC;
|
|
|
|
*pMem = anv_device_memory_to_handle(mem);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
vk_free2(&device->alloc, pAllocator, mem);
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult anv_GetMemoryFdKHX(
|
|
VkDevice device_h,
|
|
VkDeviceMemory memory_h,
|
|
VkExternalMemoryHandleTypeFlagBitsKHX handleType,
|
|
int* pFd)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, dev, device_h);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, memory_h);
|
|
|
|
/* We support only one handle type. */
|
|
assert(handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHX);
|
|
|
|
return anv_bo_cache_export(dev, &dev->bo_cache, mem->bo, pFd);
|
|
}
|
|
|
|
VkResult anv_GetMemoryFdPropertiesKHX(
|
|
VkDevice device_h,
|
|
VkExternalMemoryHandleTypeFlagBitsKHX handleType,
|
|
int fd,
|
|
VkMemoryFdPropertiesKHX* pMemoryFdProperties)
|
|
{
|
|
/* The valid usage section for this function says:
|
|
*
|
|
* "handleType must not be one of the handle types defined as opaque."
|
|
*
|
|
* Since we only handle opaque handles for now, there are no FD properties.
|
|
*/
|
|
return VK_ERROR_INVALID_EXTERNAL_HANDLE_KHX;
|
|
}
|
|
|
|
void anv_FreeMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _mem,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _mem);
|
|
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
if (mem->map)
|
|
anv_UnmapMemory(_device, _mem);
|
|
|
|
anv_bo_cache_release(device, &device->bo_cache, mem->bo);
|
|
|
|
vk_free2(&device->alloc, pAllocator, mem);
|
|
}
|
|
|
|
VkResult anv_MapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory,
|
|
VkDeviceSize offset,
|
|
VkDeviceSize size,
|
|
VkMemoryMapFlags flags,
|
|
void** ppData)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL) {
|
|
*ppData = NULL;
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
if (size == VK_WHOLE_SIZE)
|
|
size = mem->bo->size - offset;
|
|
|
|
/* From the Vulkan spec version 1.0.32 docs for MapMemory:
|
|
*
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be greater than 0
|
|
* assert(size != 0);
|
|
* * If size is not equal to VK_WHOLE_SIZE, size must be less than or
|
|
* equal to the size of the memory minus offset
|
|
*/
|
|
assert(size > 0);
|
|
assert(offset + size <= mem->bo->size);
|
|
|
|
/* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
|
|
* takes a VkDeviceMemory pointer, it seems like only one map of the memory
|
|
* at a time is valid. We could just mmap up front and return an offset
|
|
* pointer here, but that may exhaust virtual memory on 32 bit
|
|
* userspace. */
|
|
|
|
uint32_t gem_flags = 0;
|
|
|
|
if (!device->info.has_llc &&
|
|
(mem->type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
|
|
gem_flags |= I915_MMAP_WC;
|
|
|
|
/* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
|
|
uint64_t map_offset = offset & ~4095ull;
|
|
assert(offset >= map_offset);
|
|
uint64_t map_size = (offset + size) - map_offset;
|
|
|
|
/* Let's map whole pages */
|
|
map_size = align_u64(map_size, 4096);
|
|
|
|
void *map = anv_gem_mmap(device, mem->bo->gem_handle,
|
|
map_offset, map_size, gem_flags);
|
|
if (map == MAP_FAILED)
|
|
return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
|
|
|
|
mem->map = map;
|
|
mem->map_size = map_size;
|
|
|
|
*ppData = mem->map + (offset - map_offset);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_UnmapMemory(
|
|
VkDevice _device,
|
|
VkDeviceMemory _memory)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
|
|
if (mem == NULL)
|
|
return;
|
|
|
|
anv_gem_munmap(mem->map, mem->map_size);
|
|
|
|
mem->map = NULL;
|
|
mem->map_size = 0;
|
|
}
|
|
|
|
static void
|
|
clflush_mapped_ranges(struct anv_device *device,
|
|
uint32_t count,
|
|
const VkMappedMemoryRange *ranges)
|
|
{
|
|
for (uint32_t i = 0; i < count; i++) {
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, ranges[i].memory);
|
|
if (ranges[i].offset >= mem->map_size)
|
|
continue;
|
|
|
|
anv_clflush_range(mem->map + ranges[i].offset,
|
|
MIN2(ranges[i].size, mem->map_size - ranges[i].offset));
|
|
}
|
|
}
|
|
|
|
VkResult anv_FlushMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (device->info.has_llc)
|
|
return VK_SUCCESS;
|
|
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
|
|
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_InvalidateMappedMemoryRanges(
|
|
VkDevice _device,
|
|
uint32_t memoryRangeCount,
|
|
const VkMappedMemoryRange* pMemoryRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
|
|
if (device->info.has_llc)
|
|
return VK_SUCCESS;
|
|
|
|
clflush_mapped_ranges(device, memoryRangeCount, pMemoryRanges);
|
|
|
|
/* Make sure no reads get moved up above the invalidate. */
|
|
__builtin_ia32_mfence();
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_GetBufferMemoryRequirements(
|
|
VkDevice _device,
|
|
VkBuffer _buffer,
|
|
VkMemoryRequirements* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*/
|
|
uint32_t memory_types = 0;
|
|
for (uint32_t i = 0; i < pdevice->memory.type_count; i++) {
|
|
uint32_t valid_usage = pdevice->memory.types[i].valid_buffer_usage;
|
|
if ((valid_usage & buffer->usage) == buffer->usage)
|
|
memory_types |= (1u << i);
|
|
}
|
|
|
|
pMemoryRequirements->size = buffer->size;
|
|
pMemoryRequirements->alignment = 16;
|
|
pMemoryRequirements->memoryTypeBits = memory_types;
|
|
}
|
|
|
|
void anv_GetImageMemoryRequirements(
|
|
VkDevice _device,
|
|
VkImage _image,
|
|
VkMemoryRequirements* pMemoryRequirements)
|
|
{
|
|
ANV_FROM_HANDLE(anv_image, image, _image);
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_physical_device *pdevice = &device->instance->physicalDevice;
|
|
|
|
/* The Vulkan spec (git aaed022) says:
|
|
*
|
|
* memoryTypeBits is a bitfield and contains one bit set for every
|
|
* supported memory type for the resource. The bit `1<<i` is set if and
|
|
* only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
|
|
* structure for the physical device is supported.
|
|
*
|
|
* All types are currently supported for images.
|
|
*/
|
|
uint32_t memory_types = (1ull << pdevice->memory.type_count) - 1;
|
|
|
|
pMemoryRequirements->size = image->size;
|
|
pMemoryRequirements->alignment = image->alignment;
|
|
pMemoryRequirements->memoryTypeBits = memory_types;
|
|
}
|
|
|
|
void anv_GetImageSparseMemoryRequirements(
|
|
VkDevice device,
|
|
VkImage image,
|
|
uint32_t* pSparseMemoryRequirementCount,
|
|
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
|
|
{
|
|
*pSparseMemoryRequirementCount = 0;
|
|
}
|
|
|
|
void anv_GetDeviceMemoryCommitment(
|
|
VkDevice device,
|
|
VkDeviceMemory memory,
|
|
VkDeviceSize* pCommittedMemoryInBytes)
|
|
{
|
|
*pCommittedMemoryInBytes = 0;
|
|
}
|
|
|
|
VkResult anv_BindBufferMemory(
|
|
VkDevice device,
|
|
VkBuffer _buffer,
|
|
VkDeviceMemory _memory,
|
|
VkDeviceSize memoryOffset)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
|
|
if (mem) {
|
|
assert((buffer->usage & mem->type->valid_buffer_usage) == buffer->usage);
|
|
buffer->bo = mem->bo;
|
|
buffer->offset = memoryOffset;
|
|
} else {
|
|
buffer->bo = NULL;
|
|
buffer->offset = 0;
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_QueueBindSparse(
|
|
VkQueue _queue,
|
|
uint32_t bindInfoCount,
|
|
const VkBindSparseInfo* pBindInfo,
|
|
VkFence fence)
|
|
{
|
|
ANV_FROM_HANDLE(anv_queue, queue, _queue);
|
|
if (unlikely(queue->device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
|
|
}
|
|
|
|
// Event functions
|
|
|
|
VkResult anv_CreateEvent(
|
|
VkDevice _device,
|
|
const VkEventCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkEvent* pEvent)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_state state;
|
|
struct anv_event *event;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_EVENT_CREATE_INFO);
|
|
|
|
state = anv_state_pool_alloc(&device->dynamic_state_pool,
|
|
sizeof(*event), 8);
|
|
event = state.map;
|
|
event->state = state;
|
|
event->semaphore = VK_EVENT_RESET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
*pEvent = anv_event_to_handle(event);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyEvent(
|
|
VkDevice _device,
|
|
VkEvent _event,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (!event)
|
|
return;
|
|
|
|
anv_state_pool_free(&device->dynamic_state_pool, event->state);
|
|
}
|
|
|
|
VkResult anv_GetEventStatus(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
if (unlikely(device->lost))
|
|
return VK_ERROR_DEVICE_LOST;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Invalidate read cache before reading event written by GPU. */
|
|
__builtin_ia32_clflush(event);
|
|
__builtin_ia32_mfence();
|
|
|
|
}
|
|
|
|
return event->semaphore;
|
|
}
|
|
|
|
VkResult anv_SetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
event->semaphore = VK_EVENT_SET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult anv_ResetEvent(
|
|
VkDevice _device,
|
|
VkEvent _event)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_event, event, _event);
|
|
|
|
event->semaphore = VK_EVENT_RESET;
|
|
|
|
if (!device->info.has_llc) {
|
|
/* Make sure the writes we're flushing have landed. */
|
|
__builtin_ia32_mfence();
|
|
__builtin_ia32_clflush(event);
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
// Buffer functions
|
|
|
|
VkResult anv_CreateBuffer(
|
|
VkDevice _device,
|
|
const VkBufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkBuffer* pBuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_buffer *buffer;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
|
|
|
|
buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (buffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
buffer->size = pCreateInfo->size;
|
|
buffer->usage = pCreateInfo->usage;
|
|
buffer->bo = NULL;
|
|
buffer->offset = 0;
|
|
|
|
*pBuffer = anv_buffer_to_handle(buffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyBuffer(
|
|
VkDevice _device,
|
|
VkBuffer _buffer,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
|
|
|
|
if (!buffer)
|
|
return;
|
|
|
|
vk_free2(&device->alloc, pAllocator, buffer);
|
|
}
|
|
|
|
void
|
|
anv_fill_buffer_surface_state(struct anv_device *device, struct anv_state state,
|
|
enum isl_format format,
|
|
uint32_t offset, uint32_t range, uint32_t stride)
|
|
{
|
|
isl_buffer_fill_state(&device->isl_dev, state.map,
|
|
.address = offset,
|
|
.mocs = device->default_mocs,
|
|
.size = range,
|
|
.format = format,
|
|
.stride = stride);
|
|
|
|
anv_state_flush(device, state);
|
|
}
|
|
|
|
void anv_DestroySampler(
|
|
VkDevice _device,
|
|
VkSampler _sampler,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_sampler, sampler, _sampler);
|
|
|
|
if (!sampler)
|
|
return;
|
|
|
|
vk_free2(&device->alloc, pAllocator, sampler);
|
|
}
|
|
|
|
VkResult anv_CreateFramebuffer(
|
|
VkDevice _device,
|
|
const VkFramebufferCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkFramebuffer* pFramebuffer)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_framebuffer *framebuffer;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
|
|
|
|
size_t size = sizeof(*framebuffer) +
|
|
sizeof(struct anv_image_view *) * pCreateInfo->attachmentCount;
|
|
framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (framebuffer == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
framebuffer->attachment_count = pCreateInfo->attachmentCount;
|
|
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
|
|
VkImageView _iview = pCreateInfo->pAttachments[i];
|
|
framebuffer->attachments[i] = anv_image_view_from_handle(_iview);
|
|
}
|
|
|
|
framebuffer->width = pCreateInfo->width;
|
|
framebuffer->height = pCreateInfo->height;
|
|
framebuffer->layers = pCreateInfo->layers;
|
|
|
|
*pFramebuffer = anv_framebuffer_to_handle(framebuffer);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyFramebuffer(
|
|
VkDevice _device,
|
|
VkFramebuffer _fb,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_framebuffer, fb, _fb);
|
|
|
|
if (!fb)
|
|
return;
|
|
|
|
vk_free2(&device->alloc, pAllocator, fb);
|
|
}
|
|
|
|
/* vk_icd.h does not declare this function, so we declare it here to
|
|
* suppress Wmissing-prototypes.
|
|
*/
|
|
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
|
|
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion);
|
|
|
|
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
|
|
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion)
|
|
{
|
|
/* For the full details on loader interface versioning, see
|
|
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
|
|
* What follows is a condensed summary, to help you navigate the large and
|
|
* confusing official doc.
|
|
*
|
|
* - Loader interface v0 is incompatible with later versions. We don't
|
|
* support it.
|
|
*
|
|
* - In loader interface v1:
|
|
* - The first ICD entrypoint called by the loader is
|
|
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
|
|
* entrypoint.
|
|
* - The ICD must statically expose no other Vulkan symbol unless it is
|
|
* linked with -Bsymbolic.
|
|
* - Each dispatchable Vulkan handle created by the ICD must be
|
|
* a pointer to a struct whose first member is VK_LOADER_DATA. The
|
|
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
|
|
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
|
|
* vkDestroySurfaceKHR(). The ICD must be capable of working with
|
|
* such loader-managed surfaces.
|
|
*
|
|
* - Loader interface v2 differs from v1 in:
|
|
* - The first ICD entrypoint called by the loader is
|
|
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
|
|
* statically expose this entrypoint.
|
|
*
|
|
* - Loader interface v3 differs from v2 in:
|
|
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
|
|
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
|
|
* because the loader no longer does so.
|
|
*/
|
|
*pSupportedVersion = MIN2(*pSupportedVersion, 3u);
|
|
return VK_SUCCESS;
|
|
}
|