
The pass can't handle it just like the other unpack opcodes and generates invalid NIR. Reviewed-by: Pierre-Eric Pelloux-Prayer <pierre-eric.pelloux-prayer@amd.com> Reviewed-by: Faith Ekstrand <faith.ekstrand@collabora.com> Reviewed-by: Timur Kristóf <timur.kristof@gmail.com> Reviewed-by: Rhys Perry <pendingchaos02@gmail.com> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/19399>
450 lines
16 KiB
C
450 lines
16 KiB
C
/*
|
|
* Copyright © 2014-2015 Broadcom
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "nir.h"
|
|
#include "nir_builder.h"
|
|
|
|
struct alu_width_data {
|
|
nir_vectorize_cb cb;
|
|
const void *data;
|
|
};
|
|
|
|
/** @file nir_lower_alu_width.c
|
|
*
|
|
* Replaces nir_alu_instr operations with more than one channel used in the
|
|
* arguments with individual per-channel operations.
|
|
*
|
|
* Optionally, a callback function which returns the max vectorization width
|
|
* per instruction can be provided.
|
|
*
|
|
* The max vectorization width must be a power of 2.
|
|
*/
|
|
|
|
static bool
|
|
inst_is_vector_alu(const nir_instr *instr, const void *_state)
|
|
{
|
|
if (instr->type != nir_instr_type_alu)
|
|
return false;
|
|
|
|
nir_alu_instr *alu = nir_instr_as_alu(instr);
|
|
|
|
/* There is no ALU instruction which has a scalar destination, scalar
|
|
* src[0], and some other vector source.
|
|
*/
|
|
assert(alu->dest.dest.is_ssa);
|
|
assert(alu->src[0].src.is_ssa);
|
|
return alu->dest.dest.ssa.num_components > 1 ||
|
|
nir_op_infos[alu->op].input_sizes[0] > 1;
|
|
}
|
|
|
|
/* Checks whether all operands of an ALU instruction are swizzled
|
|
* within the targeted vectorization width.
|
|
*
|
|
* The assumption here is that a vecN instruction can only swizzle
|
|
* within the first N channels of the values it consumes, irrespective
|
|
* of the capabilities of the instruction which produced those values.
|
|
* If we assume values are packed consistently (i.e., they always start
|
|
* at the beginning of a hardware register), we can actually access any
|
|
* aligned group of N channels so long as we stay within the group.
|
|
* This means for a vectorization width of 4 that only swizzles from
|
|
* either [xyzw] or [abcd] etc are allowed. For a width of 2 these are
|
|
* swizzles from either [xy] or [zw] etc.
|
|
*/
|
|
static bool
|
|
alu_is_swizzled_in_bounds(const nir_alu_instr *alu, unsigned width)
|
|
{
|
|
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
|
|
if (nir_op_infos[alu->op].input_sizes[i] == 1)
|
|
continue;
|
|
|
|
unsigned mask = ~(width - 1);
|
|
for (unsigned j = 1; j < alu->dest.dest.ssa.num_components; j++) {
|
|
if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
nir_alu_ssa_dest_init(nir_alu_instr *alu, unsigned num_components,
|
|
unsigned bit_size)
|
|
{
|
|
nir_ssa_dest_init(&alu->instr, &alu->dest.dest, num_components,
|
|
bit_size, NULL);
|
|
alu->dest.write_mask = (1 << num_components) - 1;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
lower_reduction(nir_alu_instr *alu, nir_op chan_op, nir_op merge_op,
|
|
nir_builder *builder)
|
|
{
|
|
unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
|
|
|
|
nir_ssa_def *last = NULL;
|
|
for (int i = num_components - 1; i >= 0; i--) {
|
|
nir_alu_instr *chan = nir_alu_instr_create(builder->shader, chan_op);
|
|
nir_alu_ssa_dest_init(chan, 1, alu->dest.dest.ssa.bit_size);
|
|
nir_alu_src_copy(&chan->src[0], &alu->src[0], chan);
|
|
chan->src[0].swizzle[0] = chan->src[0].swizzle[i];
|
|
if (nir_op_infos[chan_op].num_inputs > 1) {
|
|
assert(nir_op_infos[chan_op].num_inputs == 2);
|
|
nir_alu_src_copy(&chan->src[1], &alu->src[1], chan);
|
|
chan->src[1].swizzle[0] = chan->src[1].swizzle[i];
|
|
}
|
|
chan->exact = alu->exact;
|
|
|
|
nir_builder_instr_insert(builder, &chan->instr);
|
|
|
|
if (i == num_components - 1) {
|
|
last = &chan->dest.dest.ssa;
|
|
} else {
|
|
last = nir_build_alu(builder, merge_op,
|
|
last, &chan->dest.dest.ssa, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
return last;
|
|
}
|
|
|
|
static inline bool
|
|
will_lower_ffma(nir_shader *shader, unsigned bit_size)
|
|
{
|
|
switch (bit_size) {
|
|
case 16:
|
|
return shader->options->lower_ffma16;
|
|
case 32:
|
|
return shader->options->lower_ffma32;
|
|
case 64:
|
|
return shader->options->lower_ffma64;
|
|
}
|
|
unreachable("bad bit size");
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
lower_fdot(nir_alu_instr *alu, nir_builder *builder)
|
|
{
|
|
/* If we don't want to lower ffma, create several ffma instead of fmul+fadd
|
|
* and fusing later because fusing is not possible for exact fdot instructions.
|
|
*/
|
|
if (will_lower_ffma(builder->shader, alu->dest.dest.ssa.bit_size))
|
|
return lower_reduction(alu, nir_op_fmul, nir_op_fadd, builder);
|
|
|
|
unsigned num_components = nir_op_infos[alu->op].input_sizes[0];
|
|
|
|
nir_ssa_def *prev = NULL;
|
|
for (int i = num_components - 1; i >= 0; i--) {
|
|
nir_alu_instr *instr = nir_alu_instr_create(
|
|
builder->shader, prev ? nir_op_ffma : nir_op_fmul);
|
|
nir_alu_ssa_dest_init(instr, 1, alu->dest.dest.ssa.bit_size);
|
|
for (unsigned j = 0; j < 2; j++) {
|
|
nir_alu_src_copy(&instr->src[j], &alu->src[j], instr);
|
|
instr->src[j].swizzle[0] = alu->src[j].swizzle[i];
|
|
}
|
|
if (i != num_components - 1)
|
|
instr->src[2].src = nir_src_for_ssa(prev);
|
|
instr->exact = builder->exact;
|
|
|
|
nir_builder_instr_insert(builder, &instr->instr);
|
|
|
|
prev = &instr->dest.dest.ssa;
|
|
}
|
|
|
|
return prev;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
lower_alu_instr_width(nir_builder *b, nir_instr *instr, void *_data)
|
|
{
|
|
struct alu_width_data *data = _data;
|
|
nir_alu_instr *alu = nir_instr_as_alu(instr);
|
|
unsigned num_src = nir_op_infos[alu->op].num_inputs;
|
|
unsigned i, chan;
|
|
|
|
assert(alu->dest.dest.is_ssa);
|
|
assert(alu->dest.write_mask != 0);
|
|
|
|
b->exact = alu->exact;
|
|
|
|
unsigned num_components = alu->dest.dest.ssa.num_components;
|
|
unsigned target_width = 1;
|
|
|
|
if (data->cb) {
|
|
target_width = data->cb(instr, data->data);
|
|
assert(util_is_power_of_two_or_zero(target_width));
|
|
if (target_width == 0)
|
|
return NULL;
|
|
}
|
|
|
|
#define LOWER_REDUCTION(name, chan, merge) \
|
|
case name##2: \
|
|
case name##3: \
|
|
case name##4: \
|
|
case name##8: \
|
|
case name##16: \
|
|
return lower_reduction(alu, chan, merge, b); \
|
|
|
|
switch (alu->op) {
|
|
case nir_op_vec16:
|
|
case nir_op_vec8:
|
|
case nir_op_vec5:
|
|
case nir_op_vec4:
|
|
case nir_op_vec3:
|
|
case nir_op_vec2:
|
|
case nir_op_cube_face_coord_amd:
|
|
case nir_op_cube_face_index_amd:
|
|
/* We don't need to scalarize these ops, they're the ones generated to
|
|
* group up outputs into a value that can be SSAed.
|
|
*/
|
|
return NULL;
|
|
|
|
case nir_op_pack_half_2x16: {
|
|
if (!b->shader->options->lower_pack_half_2x16)
|
|
return NULL;
|
|
|
|
nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
|
|
return nir_pack_half_2x16_split(b, nir_channel(b, src_vec2, 0),
|
|
nir_channel(b, src_vec2, 1));
|
|
}
|
|
|
|
case nir_op_unpack_unorm_4x8:
|
|
case nir_op_unpack_snorm_4x8:
|
|
case nir_op_unpack_unorm_2x16:
|
|
case nir_op_unpack_snorm_2x16:
|
|
/* There is no scalar version of these ops, unless we were to break it
|
|
* down to bitshifts and math (which is definitely not intended).
|
|
*/
|
|
return NULL;
|
|
|
|
case nir_op_unpack_half_2x16_flush_to_zero:
|
|
case nir_op_unpack_half_2x16: {
|
|
if (!b->shader->options->lower_unpack_half_2x16)
|
|
return NULL;
|
|
|
|
nir_ssa_def *packed = nir_ssa_for_alu_src(b, alu, 0);
|
|
if (alu->op == nir_op_unpack_half_2x16_flush_to_zero) {
|
|
return nir_vec2(b,
|
|
nir_unpack_half_2x16_split_x_flush_to_zero(b,
|
|
packed),
|
|
nir_unpack_half_2x16_split_y_flush_to_zero(b,
|
|
packed));
|
|
} else {
|
|
return nir_vec2(b,
|
|
nir_unpack_half_2x16_split_x(b, packed),
|
|
nir_unpack_half_2x16_split_y(b, packed));
|
|
}
|
|
}
|
|
|
|
case nir_op_pack_uvec2_to_uint: {
|
|
assert(b->shader->options->lower_pack_snorm_2x16 ||
|
|
b->shader->options->lower_pack_unorm_2x16);
|
|
|
|
nir_ssa_def *word = nir_extract_u16(b, nir_ssa_for_alu_src(b, alu, 0),
|
|
nir_imm_int(b, 0));
|
|
return nir_ior(b, nir_ishl(b, nir_channel(b, word, 1),
|
|
nir_imm_int(b, 16)),
|
|
nir_channel(b, word, 0));
|
|
}
|
|
|
|
case nir_op_pack_uvec4_to_uint: {
|
|
assert(b->shader->options->lower_pack_snorm_4x8 ||
|
|
b->shader->options->lower_pack_unorm_4x8);
|
|
|
|
nir_ssa_def *byte = nir_extract_u8(b, nir_ssa_for_alu_src(b, alu, 0),
|
|
nir_imm_int(b, 0));
|
|
return nir_ior(b, nir_ior(b, nir_ishl(b, nir_channel(b, byte, 3),
|
|
nir_imm_int(b, 24)),
|
|
nir_ishl(b, nir_channel(b, byte, 2),
|
|
nir_imm_int(b, 16))),
|
|
nir_ior(b, nir_ishl(b, nir_channel(b, byte, 1),
|
|
nir_imm_int(b, 8)),
|
|
nir_channel(b, byte, 0)));
|
|
}
|
|
|
|
case nir_op_fdph: {
|
|
nir_ssa_def *src0_vec = nir_ssa_for_alu_src(b, alu, 0);
|
|
nir_ssa_def *src1_vec = nir_ssa_for_alu_src(b, alu, 1);
|
|
|
|
nir_ssa_def *sum[4];
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
sum[i] = nir_fmul(b, nir_channel(b, src0_vec, i),
|
|
nir_channel(b, src1_vec, i));
|
|
}
|
|
sum[3] = nir_channel(b, src1_vec, 3);
|
|
|
|
return nir_fadd(b, nir_fadd(b, sum[0], sum[1]),
|
|
nir_fadd(b, sum[2], sum[3]));
|
|
}
|
|
|
|
case nir_op_pack_64_2x32: {
|
|
if (!b->shader->options->lower_pack_64_2x32)
|
|
return NULL;
|
|
|
|
nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
|
|
return nir_pack_64_2x32_split(b, nir_channel(b, src_vec2, 0),
|
|
nir_channel(b, src_vec2, 1));
|
|
}
|
|
case nir_op_pack_64_4x16: {
|
|
if (!b->shader->options->lower_pack_64_4x16)
|
|
return NULL;
|
|
|
|
nir_ssa_def *src_vec4 = nir_ssa_for_alu_src(b, alu, 0);
|
|
nir_ssa_def *xy = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 0),
|
|
nir_channel(b, src_vec4, 1));
|
|
nir_ssa_def *zw = nir_pack_32_2x16_split(b, nir_channel(b, src_vec4, 2),
|
|
nir_channel(b, src_vec4, 3));
|
|
|
|
return nir_pack_64_2x32_split(b, xy, zw);
|
|
}
|
|
case nir_op_pack_32_2x16: {
|
|
if (!b->shader->options->lower_pack_32_2x16)
|
|
return NULL;
|
|
|
|
nir_ssa_def *src_vec2 = nir_ssa_for_alu_src(b, alu, 0);
|
|
return nir_pack_32_2x16_split(b, nir_channel(b, src_vec2, 0),
|
|
nir_channel(b, src_vec2, 1));
|
|
}
|
|
case nir_op_unpack_64_2x32:
|
|
case nir_op_unpack_64_4x16:
|
|
case nir_op_unpack_32_2x16:
|
|
case nir_op_unpack_32_4x8:
|
|
case nir_op_unpack_double_2x32_dxil:
|
|
return NULL;
|
|
|
|
case nir_op_fdot2:
|
|
case nir_op_fdot3:
|
|
case nir_op_fdot4:
|
|
case nir_op_fdot8:
|
|
case nir_op_fdot16:
|
|
return lower_fdot(alu, b);
|
|
|
|
LOWER_REDUCTION(nir_op_ball_fequal, nir_op_feq, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_ball_iequal, nir_op_ieq, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_bany_fnequal, nir_op_fneu, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_bany_inequal, nir_op_ine, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b8all_fequal, nir_op_feq8, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b8all_iequal, nir_op_ieq8, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b8any_fnequal, nir_op_fneu8, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b8any_inequal, nir_op_ine8, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b16all_fequal, nir_op_feq16, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b16all_iequal, nir_op_ieq16, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b16any_fnequal, nir_op_fneu16, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b16any_inequal, nir_op_ine16, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b32all_fequal, nir_op_feq32, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b32all_iequal, nir_op_ieq32, nir_op_iand);
|
|
LOWER_REDUCTION(nir_op_b32any_fnequal, nir_op_fneu32, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_b32any_inequal, nir_op_ine32, nir_op_ior);
|
|
LOWER_REDUCTION(nir_op_fall_equal, nir_op_seq, nir_op_fmin);
|
|
LOWER_REDUCTION(nir_op_fany_nequal, nir_op_sne, nir_op_fmax);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (num_components == 1)
|
|
return NULL;
|
|
|
|
if (num_components <= target_width) {
|
|
/* If the ALU instr is swizzled outside the target width,
|
|
* reduce the target width.
|
|
*/
|
|
if (alu_is_swizzled_in_bounds(alu, target_width))
|
|
return NULL;
|
|
else
|
|
target_width = DIV_ROUND_UP(num_components, 2);
|
|
}
|
|
|
|
nir_alu_instr *vec = nir_alu_instr_create(b->shader, nir_op_vec(num_components));
|
|
|
|
for (chan = 0; chan < num_components; chan += target_width) {
|
|
unsigned components = MIN2(target_width, num_components - chan);
|
|
nir_alu_instr *lower = nir_alu_instr_create(b->shader, alu->op);
|
|
|
|
for (i = 0; i < num_src; i++) {
|
|
nir_alu_src_copy(&lower->src[i], &alu->src[i], lower);
|
|
|
|
/* We only handle same-size-as-dest (input_sizes[] == 0) or scalar
|
|
* args (input_sizes[] == 1).
|
|
*/
|
|
assert(nir_op_infos[alu->op].input_sizes[i] < 2);
|
|
for (int j = 0; j < components; j++) {
|
|
unsigned src_chan = nir_op_infos[alu->op].input_sizes[i] == 1 ? 0 : chan + j;
|
|
lower->src[i].swizzle[j] = alu->src[i].swizzle[src_chan];
|
|
}
|
|
}
|
|
|
|
nir_alu_ssa_dest_init(lower, components, alu->dest.dest.ssa.bit_size);
|
|
lower->dest.saturate = alu->dest.saturate;
|
|
lower->exact = alu->exact;
|
|
|
|
for (i = 0; i < components; i++) {
|
|
vec->src[chan + i].src = nir_src_for_ssa(&lower->dest.dest.ssa);
|
|
vec->src[chan + i].swizzle[0] = i;
|
|
}
|
|
|
|
nir_builder_instr_insert(b, &lower->instr);
|
|
}
|
|
|
|
return nir_builder_alu_instr_finish_and_insert(b, vec);
|
|
}
|
|
|
|
bool
|
|
nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *_data)
|
|
{
|
|
struct alu_width_data data = {
|
|
.cb = cb,
|
|
.data = _data,
|
|
};
|
|
|
|
return nir_shader_lower_instructions(shader,
|
|
inst_is_vector_alu,
|
|
lower_alu_instr_width,
|
|
&data);
|
|
}
|
|
|
|
struct alu_to_scalar_data {
|
|
nir_instr_filter_cb cb;
|
|
const void *data;
|
|
};
|
|
|
|
static uint8_t
|
|
scalar_cb(const nir_instr *instr, const void *data)
|
|
{
|
|
/* return vectorization-width = 1 for filtered instructions */
|
|
const struct alu_to_scalar_data *filter = data;
|
|
return filter->cb(instr, filter->data) ? 1 : 0;
|
|
}
|
|
|
|
bool
|
|
nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *_data)
|
|
{
|
|
struct alu_to_scalar_data data = {
|
|
.cb = cb,
|
|
.data = _data,
|
|
};
|
|
|
|
return nir_lower_alu_width(shader, cb ? scalar_cb : NULL, &data);
|
|
}
|
|
|