
Also rename it to "is_builtin" for consistency. Signed-off-by: Ian Romanick <ian.d.romanick@intel.com>
1479 lines
43 KiB
C++
1479 lines
43 KiB
C++
/*
|
|
* Copyright © 2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* \file linker.cpp
|
|
* GLSL linker implementation
|
|
*
|
|
* Given a set of shaders that are to be linked to generate a final program,
|
|
* there are three distinct stages.
|
|
*
|
|
* In the first stage shaders are partitioned into groups based on the shader
|
|
* type. All shaders of a particular type (e.g., vertex shaders) are linked
|
|
* together.
|
|
*
|
|
* - Undefined references in each shader are resolve to definitions in
|
|
* another shader.
|
|
* - Types and qualifiers of uniforms, outputs, and global variables defined
|
|
* in multiple shaders with the same name are verified to be the same.
|
|
* - Initializers for uniforms and global variables defined
|
|
* in multiple shaders with the same name are verified to be the same.
|
|
*
|
|
* The result, in the terminology of the GLSL spec, is a set of shader
|
|
* executables for each processing unit.
|
|
*
|
|
* After the first stage is complete, a series of semantic checks are performed
|
|
* on each of the shader executables.
|
|
*
|
|
* - Each shader executable must define a \c main function.
|
|
* - Each vertex shader executable must write to \c gl_Position.
|
|
* - Each fragment shader executable must write to either \c gl_FragData or
|
|
* \c gl_FragColor.
|
|
*
|
|
* In the final stage individual shader executables are linked to create a
|
|
* complete exectuable.
|
|
*
|
|
* - Types of uniforms defined in multiple shader stages with the same name
|
|
* are verified to be the same.
|
|
* - Initializers for uniforms defined in multiple shader stages with the
|
|
* same name are verified to be the same.
|
|
* - Types and qualifiers of outputs defined in one stage are verified to
|
|
* be the same as the types and qualifiers of inputs defined with the same
|
|
* name in a later stage.
|
|
*
|
|
* \author Ian Romanick <ian.d.romanick@intel.com>
|
|
*/
|
|
#include <cstdlib>
|
|
#include <cstdio>
|
|
#include <cstdarg>
|
|
#include <climits>
|
|
|
|
extern "C" {
|
|
#include <talloc.h>
|
|
}
|
|
|
|
#include "main/core.h"
|
|
#include "glsl_symbol_table.h"
|
|
#include "ir.h"
|
|
#include "program.h"
|
|
#include "program/hash_table.h"
|
|
#include "linker.h"
|
|
#include "ir_optimization.h"
|
|
|
|
/**
|
|
* Visitor that determines whether or not a variable is ever written.
|
|
*/
|
|
class find_assignment_visitor : public ir_hierarchical_visitor {
|
|
public:
|
|
find_assignment_visitor(const char *name)
|
|
: name(name), found(false)
|
|
{
|
|
/* empty */
|
|
}
|
|
|
|
virtual ir_visitor_status visit_enter(ir_assignment *ir)
|
|
{
|
|
ir_variable *const var = ir->lhs->variable_referenced();
|
|
|
|
if (strcmp(name, var->name) == 0) {
|
|
found = true;
|
|
return visit_stop;
|
|
}
|
|
|
|
return visit_continue_with_parent;
|
|
}
|
|
|
|
virtual ir_visitor_status visit_enter(ir_call *ir)
|
|
{
|
|
exec_list_iterator sig_iter = ir->get_callee()->parameters.iterator();
|
|
foreach_iter(exec_list_iterator, iter, *ir) {
|
|
ir_rvalue *param_rval = (ir_rvalue *)iter.get();
|
|
ir_variable *sig_param = (ir_variable *)sig_iter.get();
|
|
|
|
if (sig_param->mode == ir_var_out ||
|
|
sig_param->mode == ir_var_inout) {
|
|
ir_variable *var = param_rval->variable_referenced();
|
|
if (var && strcmp(name, var->name) == 0) {
|
|
found = true;
|
|
return visit_stop;
|
|
}
|
|
}
|
|
sig_iter.next();
|
|
}
|
|
|
|
return visit_continue_with_parent;
|
|
}
|
|
|
|
bool variable_found()
|
|
{
|
|
return found;
|
|
}
|
|
|
|
private:
|
|
const char *name; /**< Find writes to a variable with this name. */
|
|
bool found; /**< Was a write to the variable found? */
|
|
};
|
|
|
|
|
|
/**
|
|
* Visitor that determines whether or not a variable is ever read.
|
|
*/
|
|
class find_deref_visitor : public ir_hierarchical_visitor {
|
|
public:
|
|
find_deref_visitor(const char *name)
|
|
: name(name), found(false)
|
|
{
|
|
/* empty */
|
|
}
|
|
|
|
virtual ir_visitor_status visit(ir_dereference_variable *ir)
|
|
{
|
|
if (strcmp(this->name, ir->var->name) == 0) {
|
|
this->found = true;
|
|
return visit_stop;
|
|
}
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
bool variable_found() const
|
|
{
|
|
return this->found;
|
|
}
|
|
|
|
private:
|
|
const char *name; /**< Find writes to a variable with this name. */
|
|
bool found; /**< Was a write to the variable found? */
|
|
};
|
|
|
|
|
|
void
|
|
linker_error_printf(gl_shader_program *prog, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
prog->InfoLog = talloc_strdup_append(prog->InfoLog, "error: ");
|
|
va_start(ap, fmt);
|
|
prog->InfoLog = talloc_vasprintf_append(prog->InfoLog, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
|
|
void
|
|
invalidate_variable_locations(gl_shader *sh, enum ir_variable_mode mode,
|
|
int generic_base)
|
|
{
|
|
foreach_list(node, sh->ir) {
|
|
ir_variable *const var = ((ir_instruction *) node)->as_variable();
|
|
|
|
if ((var == NULL) || (var->mode != (unsigned) mode))
|
|
continue;
|
|
|
|
/* Only assign locations for generic attributes / varyings / etc.
|
|
*/
|
|
if (var->location >= generic_base)
|
|
var->location = -1;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Determine the number of attribute slots required for a particular type
|
|
*
|
|
* This code is here because it implements the language rules of a specific
|
|
* GLSL version. Since it's a property of the language and not a property of
|
|
* types in general, it doesn't really belong in glsl_type.
|
|
*/
|
|
unsigned
|
|
count_attribute_slots(const glsl_type *t)
|
|
{
|
|
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
|
|
*
|
|
* "A scalar input counts the same amount against this limit as a vec4,
|
|
* so applications may want to consider packing groups of four
|
|
* unrelated float inputs together into a vector to better utilize the
|
|
* capabilities of the underlying hardware. A matrix input will use up
|
|
* multiple locations. The number of locations used will equal the
|
|
* number of columns in the matrix."
|
|
*
|
|
* The spec does not explicitly say how arrays are counted. However, it
|
|
* should be safe to assume the total number of slots consumed by an array
|
|
* is the number of entries in the array multiplied by the number of slots
|
|
* consumed by a single element of the array.
|
|
*/
|
|
|
|
if (t->is_array())
|
|
return t->array_size() * count_attribute_slots(t->element_type());
|
|
|
|
if (t->is_matrix())
|
|
return t->matrix_columns;
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* Verify that a vertex shader executable meets all semantic requirements
|
|
*
|
|
* \param shader Vertex shader executable to be verified
|
|
*/
|
|
bool
|
|
validate_vertex_shader_executable(struct gl_shader_program *prog,
|
|
struct gl_shader *shader)
|
|
{
|
|
if (shader == NULL)
|
|
return true;
|
|
|
|
find_assignment_visitor find("gl_Position");
|
|
find.run(shader->ir);
|
|
if (!find.variable_found()) {
|
|
linker_error_printf(prog,
|
|
"vertex shader does not write to `gl_Position'\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Verify that a fragment shader executable meets all semantic requirements
|
|
*
|
|
* \param shader Fragment shader executable to be verified
|
|
*/
|
|
bool
|
|
validate_fragment_shader_executable(struct gl_shader_program *prog,
|
|
struct gl_shader *shader)
|
|
{
|
|
if (shader == NULL)
|
|
return true;
|
|
|
|
find_assignment_visitor frag_color("gl_FragColor");
|
|
find_assignment_visitor frag_data("gl_FragData");
|
|
|
|
frag_color.run(shader->ir);
|
|
frag_data.run(shader->ir);
|
|
|
|
if (frag_color.variable_found() && frag_data.variable_found()) {
|
|
linker_error_printf(prog, "fragment shader writes to both "
|
|
"`gl_FragColor' and `gl_FragData'\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Generate a string describing the mode of a variable
|
|
*/
|
|
static const char *
|
|
mode_string(const ir_variable *var)
|
|
{
|
|
switch (var->mode) {
|
|
case ir_var_auto:
|
|
return (var->read_only) ? "global constant" : "global variable";
|
|
|
|
case ir_var_uniform: return "uniform";
|
|
case ir_var_in: return "shader input";
|
|
case ir_var_out: return "shader output";
|
|
case ir_var_inout: return "shader inout";
|
|
|
|
case ir_var_temporary:
|
|
default:
|
|
assert(!"Should not get here.");
|
|
return "invalid variable";
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform validation of global variables used across multiple shaders
|
|
*/
|
|
bool
|
|
cross_validate_globals(struct gl_shader_program *prog,
|
|
struct gl_shader **shader_list,
|
|
unsigned num_shaders,
|
|
bool uniforms_only)
|
|
{
|
|
/* Examine all of the uniforms in all of the shaders and cross validate
|
|
* them.
|
|
*/
|
|
glsl_symbol_table variables;
|
|
for (unsigned i = 0; i < num_shaders; i++) {
|
|
foreach_list(node, shader_list[i]->ir) {
|
|
ir_variable *const var = ((ir_instruction *) node)->as_variable();
|
|
|
|
if (var == NULL)
|
|
continue;
|
|
|
|
if (uniforms_only && (var->mode != ir_var_uniform))
|
|
continue;
|
|
|
|
/* Don't cross validate temporaries that are at global scope. These
|
|
* will eventually get pulled into the shaders 'main'.
|
|
*/
|
|
if (var->mode == ir_var_temporary)
|
|
continue;
|
|
|
|
/* If a global with this name has already been seen, verify that the
|
|
* new instance has the same type. In addition, if the globals have
|
|
* initializers, the values of the initializers must be the same.
|
|
*/
|
|
ir_variable *const existing = variables.get_variable(var->name);
|
|
if (existing != NULL) {
|
|
if (var->type != existing->type) {
|
|
linker_error_printf(prog, "%s `%s' declared as type "
|
|
"`%s' and type `%s'\n",
|
|
mode_string(var),
|
|
var->name, var->type->name,
|
|
existing->type->name);
|
|
return false;
|
|
}
|
|
|
|
/* FINISHME: Handle non-constant initializers.
|
|
*/
|
|
if (var->constant_value != NULL) {
|
|
if (existing->constant_value != NULL) {
|
|
if (!var->constant_value->has_value(existing->constant_value)) {
|
|
linker_error_printf(prog, "initializers for %s "
|
|
"`%s' have differing values\n",
|
|
mode_string(var), var->name);
|
|
return false;
|
|
}
|
|
} else
|
|
/* If the first-seen instance of a particular uniform did not
|
|
* have an initializer but a later instance does, copy the
|
|
* initializer to the version stored in the symbol table.
|
|
*/
|
|
/* FINISHME: This is wrong. The constant_value field should
|
|
* FINISHME: not be modified! Imagine a case where a shader
|
|
* FINISHME: without an initializer is linked in two different
|
|
* FINISHME: programs with shaders that have differing
|
|
* FINISHME: initializers. Linking with the first will
|
|
* FINISHME: modify the shader, and linking with the second
|
|
* FINISHME: will fail.
|
|
*/
|
|
existing->constant_value =
|
|
var->constant_value->clone(talloc_parent(existing), NULL);
|
|
}
|
|
} else
|
|
variables.add_variable(var->name, var);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Perform validation of uniforms used across multiple shader stages
|
|
*/
|
|
bool
|
|
cross_validate_uniforms(struct gl_shader_program *prog)
|
|
{
|
|
return cross_validate_globals(prog, prog->_LinkedShaders,
|
|
prog->_NumLinkedShaders, true);
|
|
}
|
|
|
|
|
|
/**
|
|
* Validate that outputs from one stage match inputs of another
|
|
*/
|
|
bool
|
|
cross_validate_outputs_to_inputs(struct gl_shader_program *prog,
|
|
gl_shader *producer, gl_shader *consumer)
|
|
{
|
|
glsl_symbol_table parameters;
|
|
/* FINISHME: Figure these out dynamically. */
|
|
const char *const producer_stage = "vertex";
|
|
const char *const consumer_stage = "fragment";
|
|
|
|
/* Find all shader outputs in the "producer" stage.
|
|
*/
|
|
foreach_list(node, producer->ir) {
|
|
ir_variable *const var = ((ir_instruction *) node)->as_variable();
|
|
|
|
/* FINISHME: For geometry shaders, this should also look for inout
|
|
* FINISHME: variables.
|
|
*/
|
|
if ((var == NULL) || (var->mode != ir_var_out))
|
|
continue;
|
|
|
|
parameters.add_variable(var->name, var);
|
|
}
|
|
|
|
|
|
/* Find all shader inputs in the "consumer" stage. Any variables that have
|
|
* matching outputs already in the symbol table must have the same type and
|
|
* qualifiers.
|
|
*/
|
|
foreach_list(node, consumer->ir) {
|
|
ir_variable *const input = ((ir_instruction *) node)->as_variable();
|
|
|
|
/* FINISHME: For geometry shaders, this should also look for inout
|
|
* FINISHME: variables.
|
|
*/
|
|
if ((input == NULL) || (input->mode != ir_var_in))
|
|
continue;
|
|
|
|
ir_variable *const output = parameters.get_variable(input->name);
|
|
if (output != NULL) {
|
|
/* Check that the types match between stages.
|
|
*/
|
|
if (input->type != output->type) {
|
|
linker_error_printf(prog,
|
|
"%s shader output `%s' delcared as "
|
|
"type `%s', but %s shader input declared "
|
|
"as type `%s'\n",
|
|
producer_stage, output->name,
|
|
output->type->name,
|
|
consumer_stage, input->type->name);
|
|
return false;
|
|
}
|
|
|
|
/* Check that all of the qualifiers match between stages.
|
|
*/
|
|
if (input->centroid != output->centroid) {
|
|
linker_error_printf(prog,
|
|
"%s shader output `%s' %s centroid qualifier, "
|
|
"but %s shader input %s centroid qualifier\n",
|
|
producer_stage,
|
|
output->name,
|
|
(output->centroid) ? "has" : "lacks",
|
|
consumer_stage,
|
|
(input->centroid) ? "has" : "lacks");
|
|
return false;
|
|
}
|
|
|
|
if (input->invariant != output->invariant) {
|
|
linker_error_printf(prog,
|
|
"%s shader output `%s' %s invariant qualifier, "
|
|
"but %s shader input %s invariant qualifier\n",
|
|
producer_stage,
|
|
output->name,
|
|
(output->invariant) ? "has" : "lacks",
|
|
consumer_stage,
|
|
(input->invariant) ? "has" : "lacks");
|
|
return false;
|
|
}
|
|
|
|
if (input->interpolation != output->interpolation) {
|
|
linker_error_printf(prog,
|
|
"%s shader output `%s' specifies %s "
|
|
"interpolation qualifier, "
|
|
"but %s shader input specifies %s "
|
|
"interpolation qualifier\n",
|
|
producer_stage,
|
|
output->name,
|
|
output->interpolation_string(),
|
|
consumer_stage,
|
|
input->interpolation_string());
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Populates a shaders symbol table with all global declarations
|
|
*/
|
|
static void
|
|
populate_symbol_table(gl_shader *sh)
|
|
{
|
|
sh->symbols = new(sh) glsl_symbol_table;
|
|
|
|
foreach_list(node, sh->ir) {
|
|
ir_instruction *const inst = (ir_instruction *) node;
|
|
ir_variable *var;
|
|
ir_function *func;
|
|
|
|
if ((func = inst->as_function()) != NULL) {
|
|
sh->symbols->add_function(func->name, func);
|
|
} else if ((var = inst->as_variable()) != NULL) {
|
|
sh->symbols->add_variable(var->name, var);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Remap variables referenced in an instruction tree
|
|
*
|
|
* This is used when instruction trees are cloned from one shader and placed in
|
|
* another. These trees will contain references to \c ir_variable nodes that
|
|
* do not exist in the target shader. This function finds these \c ir_variable
|
|
* references and replaces the references with matching variables in the target
|
|
* shader.
|
|
*
|
|
* If there is no matching variable in the target shader, a clone of the
|
|
* \c ir_variable is made and added to the target shader. The new variable is
|
|
* added to \b both the instruction stream and the symbol table.
|
|
*
|
|
* \param inst IR tree that is to be processed.
|
|
* \param symbols Symbol table containing global scope symbols in the
|
|
* linked shader.
|
|
* \param instructions Instruction stream where new variable declarations
|
|
* should be added.
|
|
*/
|
|
void
|
|
remap_variables(ir_instruction *inst, struct gl_shader *target,
|
|
hash_table *temps)
|
|
{
|
|
class remap_visitor : public ir_hierarchical_visitor {
|
|
public:
|
|
remap_visitor(struct gl_shader *target,
|
|
hash_table *temps)
|
|
{
|
|
this->target = target;
|
|
this->symbols = target->symbols;
|
|
this->instructions = target->ir;
|
|
this->temps = temps;
|
|
}
|
|
|
|
virtual ir_visitor_status visit(ir_dereference_variable *ir)
|
|
{
|
|
if (ir->var->mode == ir_var_temporary) {
|
|
ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var);
|
|
|
|
assert(var != NULL);
|
|
ir->var = var;
|
|
return visit_continue;
|
|
}
|
|
|
|
ir_variable *const existing =
|
|
this->symbols->get_variable(ir->var->name);
|
|
if (existing != NULL)
|
|
ir->var = existing;
|
|
else {
|
|
ir_variable *copy = ir->var->clone(this->target, NULL);
|
|
|
|
this->symbols->add_variable(copy->name, copy);
|
|
this->instructions->push_head(copy);
|
|
ir->var = copy;
|
|
}
|
|
|
|
return visit_continue;
|
|
}
|
|
|
|
private:
|
|
struct gl_shader *target;
|
|
glsl_symbol_table *symbols;
|
|
exec_list *instructions;
|
|
hash_table *temps;
|
|
};
|
|
|
|
remap_visitor v(target, temps);
|
|
|
|
inst->accept(&v);
|
|
}
|
|
|
|
|
|
/**
|
|
* Move non-declarations from one instruction stream to another
|
|
*
|
|
* The intended usage pattern of this function is to pass the pointer to the
|
|
* head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
|
|
* pointer) for \c last and \c false for \c make_copies on the first
|
|
* call. Successive calls pass the return value of the previous call for
|
|
* \c last and \c true for \c make_copies.
|
|
*
|
|
* \param instructions Source instruction stream
|
|
* \param last Instruction after which new instructions should be
|
|
* inserted in the target instruction stream
|
|
* \param make_copies Flag selecting whether instructions in \c instructions
|
|
* should be copied (via \c ir_instruction::clone) into the
|
|
* target list or moved.
|
|
*
|
|
* \return
|
|
* The new "last" instruction in the target instruction stream. This pointer
|
|
* is suitable for use as the \c last parameter of a later call to this
|
|
* function.
|
|
*/
|
|
exec_node *
|
|
move_non_declarations(exec_list *instructions, exec_node *last,
|
|
bool make_copies, gl_shader *target)
|
|
{
|
|
hash_table *temps = NULL;
|
|
|
|
if (make_copies)
|
|
temps = hash_table_ctor(0, hash_table_pointer_hash,
|
|
hash_table_pointer_compare);
|
|
|
|
foreach_list_safe(node, instructions) {
|
|
ir_instruction *inst = (ir_instruction *) node;
|
|
|
|
if (inst->as_function())
|
|
continue;
|
|
|
|
ir_variable *var = inst->as_variable();
|
|
if ((var != NULL) && (var->mode != ir_var_temporary))
|
|
continue;
|
|
|
|
assert(inst->as_assignment()
|
|
|| ((var != NULL) && (var->mode == ir_var_temporary)));
|
|
|
|
if (make_copies) {
|
|
inst = inst->clone(target, NULL);
|
|
|
|
if (var != NULL)
|
|
hash_table_insert(temps, inst, var);
|
|
else
|
|
remap_variables(inst, target, temps);
|
|
} else {
|
|
inst->remove();
|
|
}
|
|
|
|
last->insert_after(inst);
|
|
last = inst;
|
|
}
|
|
|
|
if (make_copies)
|
|
hash_table_dtor(temps);
|
|
|
|
return last;
|
|
}
|
|
|
|
/**
|
|
* Get the function signature for main from a shader
|
|
*/
|
|
static ir_function_signature *
|
|
get_main_function_signature(gl_shader *sh)
|
|
{
|
|
ir_function *const f = sh->symbols->get_function("main");
|
|
if (f != NULL) {
|
|
exec_list void_parameters;
|
|
|
|
/* Look for the 'void main()' signature and ensure that it's defined.
|
|
* This keeps the linker from accidentally pick a shader that just
|
|
* contains a prototype for main.
|
|
*
|
|
* We don't have to check for multiple definitions of main (in multiple
|
|
* shaders) because that would have already been caught above.
|
|
*/
|
|
ir_function_signature *sig = f->matching_signature(&void_parameters);
|
|
if ((sig != NULL) && sig->is_defined) {
|
|
return sig;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* Combine a group of shaders for a single stage to generate a linked shader
|
|
*
|
|
* \note
|
|
* If this function is supplied a single shader, it is cloned, and the new
|
|
* shader is returned.
|
|
*/
|
|
static struct gl_shader *
|
|
link_intrastage_shaders(GLcontext *ctx,
|
|
struct gl_shader_program *prog,
|
|
struct gl_shader **shader_list,
|
|
unsigned num_shaders)
|
|
{
|
|
/* Check that global variables defined in multiple shaders are consistent.
|
|
*/
|
|
if (!cross_validate_globals(prog, shader_list, num_shaders, false))
|
|
return NULL;
|
|
|
|
/* Check that there is only a single definition of each function signature
|
|
* across all shaders.
|
|
*/
|
|
for (unsigned i = 0; i < (num_shaders - 1); i++) {
|
|
foreach_list(node, shader_list[i]->ir) {
|
|
ir_function *const f = ((ir_instruction *) node)->as_function();
|
|
|
|
if (f == NULL)
|
|
continue;
|
|
|
|
for (unsigned j = i + 1; j < num_shaders; j++) {
|
|
ir_function *const other =
|
|
shader_list[j]->symbols->get_function(f->name);
|
|
|
|
/* If the other shader has no function (and therefore no function
|
|
* signatures) with the same name, skip to the next shader.
|
|
*/
|
|
if (other == NULL)
|
|
continue;
|
|
|
|
foreach_iter (exec_list_iterator, iter, *f) {
|
|
ir_function_signature *sig =
|
|
(ir_function_signature *) iter.get();
|
|
|
|
if (!sig->is_defined || f->is_builtin)
|
|
continue;
|
|
|
|
ir_function_signature *other_sig =
|
|
other->exact_matching_signature(& sig->parameters);
|
|
|
|
if ((other_sig != NULL) && other_sig->is_defined
|
|
&& !other_sig->function()->is_builtin) {
|
|
linker_error_printf(prog,
|
|
"function `%s' is multiply defined",
|
|
f->name);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Find the shader that defines main, and make a clone of it.
|
|
*
|
|
* Starting with the clone, search for undefined references. If one is
|
|
* found, find the shader that defines it. Clone the reference and add
|
|
* it to the shader. Repeat until there are no undefined references or
|
|
* until a reference cannot be resolved.
|
|
*/
|
|
gl_shader *main = NULL;
|
|
for (unsigned i = 0; i < num_shaders; i++) {
|
|
if (get_main_function_signature(shader_list[i]) != NULL) {
|
|
main = shader_list[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (main == NULL) {
|
|
linker_error_printf(prog, "%s shader lacks `main'\n",
|
|
(shader_list[0]->Type == GL_VERTEX_SHADER)
|
|
? "vertex" : "fragment");
|
|
return NULL;
|
|
}
|
|
|
|
gl_shader *const linked = ctx->Driver.NewShader(NULL, 0, main->Type);
|
|
linked->ir = new(linked) exec_list;
|
|
clone_ir_list(linked, linked->ir, main->ir);
|
|
|
|
populate_symbol_table(linked);
|
|
|
|
/* The a pointer to the main function in the final linked shader (i.e., the
|
|
* copy of the original shader that contained the main function).
|
|
*/
|
|
ir_function_signature *const main_sig = get_main_function_signature(linked);
|
|
|
|
/* Move any instructions other than variable declarations or function
|
|
* declarations into main.
|
|
*/
|
|
exec_node *insertion_point =
|
|
move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
|
|
linked);
|
|
|
|
for (unsigned i = 0; i < num_shaders; i++) {
|
|
if (shader_list[i] == main)
|
|
continue;
|
|
|
|
insertion_point = move_non_declarations(shader_list[i]->ir,
|
|
insertion_point, true, linked);
|
|
}
|
|
|
|
/* Resolve initializers for global variables in the linked shader.
|
|
*/
|
|
unsigned num_linking_shaders = num_shaders;
|
|
for (unsigned i = 0; i < num_shaders; i++)
|
|
num_linking_shaders += shader_list[i]->num_builtins_to_link;
|
|
|
|
gl_shader **linking_shaders =
|
|
(gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *));
|
|
|
|
memcpy(linking_shaders, shader_list,
|
|
sizeof(linking_shaders[0]) * num_shaders);
|
|
|
|
unsigned idx = num_shaders;
|
|
for (unsigned i = 0; i < num_shaders; i++) {
|
|
memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link,
|
|
sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link);
|
|
idx += shader_list[i]->num_builtins_to_link;
|
|
}
|
|
|
|
assert(idx == num_linking_shaders);
|
|
|
|
link_function_calls(prog, linked, linking_shaders, num_linking_shaders);
|
|
|
|
free(linking_shaders);
|
|
|
|
return linked;
|
|
}
|
|
|
|
|
|
struct uniform_node {
|
|
exec_node link;
|
|
struct gl_uniform *u;
|
|
unsigned slots;
|
|
};
|
|
|
|
/**
|
|
* Update the sizes of linked shader uniform arrays to the maximum
|
|
* array index used.
|
|
*
|
|
* From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
|
|
*
|
|
* If one or more elements of an array are active,
|
|
* GetActiveUniform will return the name of the array in name,
|
|
* subject to the restrictions listed above. The type of the array
|
|
* is returned in type. The size parameter contains the highest
|
|
* array element index used, plus one. The compiler or linker
|
|
* determines the highest index used. There will be only one
|
|
* active uniform reported by the GL per uniform array.
|
|
|
|
*/
|
|
static void
|
|
update_uniform_array_sizes(struct gl_shader_program *prog)
|
|
{
|
|
for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
|
|
foreach_list(node, prog->_LinkedShaders[i]->ir) {
|
|
ir_variable *const var = ((ir_instruction *) node)->as_variable();
|
|
|
|
if ((var == NULL) || (var->mode != ir_var_uniform) ||
|
|
!var->type->is_array())
|
|
continue;
|
|
|
|
unsigned int size = var->max_array_access;
|
|
for (unsigned j = 0; j < prog->_NumLinkedShaders; j++) {
|
|
foreach_list(node2, prog->_LinkedShaders[j]->ir) {
|
|
ir_variable *other_var = ((ir_instruction *) node2)->as_variable();
|
|
if (!other_var)
|
|
continue;
|
|
|
|
if (strcmp(var->name, other_var->name) == 0 &&
|
|
other_var->max_array_access > size) {
|
|
size = other_var->max_array_access;
|
|
}
|
|
}
|
|
}
|
|
if (size + 1 != var->type->fields.array->length) {
|
|
var->type = glsl_type::get_array_instance(var->type->fields.array,
|
|
size + 1);
|
|
/* FINISHME: We should update the types of array
|
|
* dereferences of this variable now.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
add_uniform(void *mem_ctx, exec_list *uniforms, struct hash_table *ht,
|
|
const char *name, const glsl_type *type, GLenum shader_type,
|
|
unsigned *next_shader_pos, unsigned *total_uniforms)
|
|
{
|
|
if (type->is_record()) {
|
|
for (unsigned int i = 0; i < type->length; i++) {
|
|
const glsl_type *field_type = type->fields.structure[i].type;
|
|
char *field_name = talloc_asprintf(mem_ctx, "%s.%s", name,
|
|
type->fields.structure[i].name);
|
|
|
|
add_uniform(mem_ctx, uniforms, ht, field_name, field_type,
|
|
shader_type, next_shader_pos, total_uniforms);
|
|
}
|
|
} else {
|
|
uniform_node *n = (uniform_node *) hash_table_find(ht, name);
|
|
unsigned int vec4_slots;
|
|
const glsl_type *array_elem_type = NULL;
|
|
|
|
if (type->is_array()) {
|
|
array_elem_type = type->fields.array;
|
|
/* Array of structures. */
|
|
if (array_elem_type->is_record()) {
|
|
for (unsigned int i = 0; i < type->length; i++) {
|
|
char *elem_name = talloc_asprintf(mem_ctx, "%s[%d]", name, i);
|
|
add_uniform(mem_ctx, uniforms, ht, elem_name, array_elem_type,
|
|
shader_type, next_shader_pos, total_uniforms);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Fix the storage size of samplers at 1 vec4 each. Be sure to pad out
|
|
* vectors to vec4 slots.
|
|
*/
|
|
if (type->is_array()) {
|
|
if (array_elem_type->is_sampler())
|
|
vec4_slots = type->length;
|
|
else
|
|
vec4_slots = type->length * array_elem_type->matrix_columns;
|
|
} else if (type->is_sampler()) {
|
|
vec4_slots = 1;
|
|
} else {
|
|
vec4_slots = type->matrix_columns;
|
|
}
|
|
|
|
if (n == NULL) {
|
|
n = (uniform_node *) calloc(1, sizeof(struct uniform_node));
|
|
n->u = (gl_uniform *) calloc(1, sizeof(struct gl_uniform));
|
|
n->slots = vec4_slots;
|
|
|
|
n->u->Name = strdup(name);
|
|
n->u->Type = type;
|
|
n->u->VertPos = -1;
|
|
n->u->FragPos = -1;
|
|
n->u->GeomPos = -1;
|
|
(*total_uniforms)++;
|
|
|
|
hash_table_insert(ht, n, name);
|
|
uniforms->push_tail(& n->link);
|
|
}
|
|
|
|
switch (shader_type) {
|
|
case GL_VERTEX_SHADER:
|
|
n->u->VertPos = *next_shader_pos;
|
|
break;
|
|
case GL_FRAGMENT_SHADER:
|
|
n->u->FragPos = *next_shader_pos;
|
|
break;
|
|
case GL_GEOMETRY_SHADER:
|
|
n->u->GeomPos = *next_shader_pos;
|
|
break;
|
|
}
|
|
|
|
(*next_shader_pos) += vec4_slots;
|
|
}
|
|
}
|
|
|
|
void
|
|
assign_uniform_locations(struct gl_shader_program *prog)
|
|
{
|
|
/* */
|
|
exec_list uniforms;
|
|
unsigned total_uniforms = 0;
|
|
hash_table *ht = hash_table_ctor(32, hash_table_string_hash,
|
|
hash_table_string_compare);
|
|
void *mem_ctx = talloc_new(NULL);
|
|
|
|
update_uniform_array_sizes(prog);
|
|
|
|
for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
|
|
unsigned next_position = 0;
|
|
|
|
foreach_list(node, prog->_LinkedShaders[i]->ir) {
|
|
ir_variable *const var = ((ir_instruction *) node)->as_variable();
|
|
|
|
if ((var == NULL) || (var->mode != ir_var_uniform))
|
|
continue;
|
|
|
|
if (strncmp(var->name, "gl_", 3) == 0) {
|
|
/* At the moment, we don't allocate uniform locations for
|
|
* builtin uniforms. It's permitted by spec, and we'll
|
|
* likely switch to doing that at some point, but not yet.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
var->location = next_position;
|
|
add_uniform(mem_ctx, &uniforms, ht, var->name, var->type,
|
|
prog->_LinkedShaders[i]->Type,
|
|
&next_position, &total_uniforms);
|
|
}
|
|
}
|
|
|
|
talloc_free(mem_ctx);
|
|
|
|
gl_uniform_list *ul = (gl_uniform_list *)
|
|
calloc(1, sizeof(gl_uniform_list));
|
|
|
|
ul->Size = total_uniforms;
|
|
ul->NumUniforms = total_uniforms;
|
|
ul->Uniforms = (gl_uniform *) calloc(total_uniforms, sizeof(gl_uniform));
|
|
|
|
unsigned idx = 0;
|
|
uniform_node *next;
|
|
for (uniform_node *node = (uniform_node *) uniforms.head
|
|
; node->link.next != NULL
|
|
; node = next) {
|
|
next = (uniform_node *) node->link.next;
|
|
|
|
node->link.remove();
|
|
memcpy(&ul->Uniforms[idx], node->u, sizeof(gl_uniform));
|
|
idx++;
|
|
|
|
free(node->u);
|
|
free(node);
|
|
}
|
|
|
|
hash_table_dtor(ht);
|
|
|
|
prog->Uniforms = ul;
|
|
}
|
|
|
|
|
|
/**
|
|
* Find a contiguous set of available bits in a bitmask
|
|
*
|
|
* \param used_mask Bits representing used (1) and unused (0) locations
|
|
* \param needed_count Number of contiguous bits needed.
|
|
*
|
|
* \return
|
|
* Base location of the available bits on success or -1 on failure.
|
|
*/
|
|
int
|
|
find_available_slots(unsigned used_mask, unsigned needed_count)
|
|
{
|
|
unsigned needed_mask = (1 << needed_count) - 1;
|
|
const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
|
|
|
|
/* The comparison to 32 is redundant, but without it GCC emits "warning:
|
|
* cannot optimize possibly infinite loops" for the loop below.
|
|
*/
|
|
if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
|
|
return -1;
|
|
|
|
for (int i = 0; i <= max_bit_to_test; i++) {
|
|
if ((needed_mask & ~used_mask) == needed_mask)
|
|
return i;
|
|
|
|
needed_mask <<= 1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
|
|
bool
|
|
assign_attribute_locations(gl_shader_program *prog, unsigned max_attribute_index)
|
|
{
|
|
/* Mark invalid attribute locations as being used.
|
|
*/
|
|
unsigned used_locations = (max_attribute_index >= 32)
|
|
? ~0 : ~((1 << max_attribute_index) - 1);
|
|
|
|
gl_shader *const sh = prog->_LinkedShaders[0];
|
|
assert(sh->Type == GL_VERTEX_SHADER);
|
|
|
|
/* Operate in a total of four passes.
|
|
*
|
|
* 1. Invalidate the location assignments for all vertex shader inputs.
|
|
*
|
|
* 2. Assign locations for inputs that have user-defined (via
|
|
* glBindVertexAttribLocation) locatoins.
|
|
*
|
|
* 3. Sort the attributes without assigned locations by number of slots
|
|
* required in decreasing order. Fragmentation caused by attribute
|
|
* locations assigned by the application may prevent large attributes
|
|
* from having enough contiguous space.
|
|
*
|
|
* 4. Assign locations to any inputs without assigned locations.
|
|
*/
|
|
|
|
invalidate_variable_locations(sh, ir_var_in, VERT_ATTRIB_GENERIC0);
|
|
|
|
if (prog->Attributes != NULL) {
|
|
for (unsigned i = 0; i < prog->Attributes->NumParameters; i++) {
|
|
ir_variable *const var =
|
|
sh->symbols->get_variable(prog->Attributes->Parameters[i].Name);
|
|
|
|
/* Note: attributes that occupy multiple slots, such as arrays or
|
|
* matrices, may appear in the attrib array multiple times.
|
|
*/
|
|
if ((var == NULL) || (var->location != -1))
|
|
continue;
|
|
|
|
/* From page 61 of the OpenGL 4.0 spec:
|
|
*
|
|
* "LinkProgram will fail if the attribute bindings assigned by
|
|
* BindAttribLocation do not leave not enough space to assign a
|
|
* location for an active matrix attribute or an active attribute
|
|
* array, both of which require multiple contiguous generic
|
|
* attributes."
|
|
*
|
|
* Previous versions of the spec contain similar language but omit the
|
|
* bit about attribute arrays.
|
|
*
|
|
* Page 61 of the OpenGL 4.0 spec also says:
|
|
*
|
|
* "It is possible for an application to bind more than one
|
|
* attribute name to the same location. This is referred to as
|
|
* aliasing. This will only work if only one of the aliased
|
|
* attributes is active in the executable program, or if no path
|
|
* through the shader consumes more than one attribute of a set
|
|
* of attributes aliased to the same location. A link error can
|
|
* occur if the linker determines that every path through the
|
|
* shader consumes multiple aliased attributes, but
|
|
* implementations are not required to generate an error in this
|
|
* case."
|
|
*
|
|
* These two paragraphs are either somewhat contradictory, or I don't
|
|
* fully understand one or both of them.
|
|
*/
|
|
/* FINISHME: The code as currently written does not support attribute
|
|
* FINISHME: location aliasing (see comment above).
|
|
*/
|
|
const int attr = prog->Attributes->Parameters[i].StateIndexes[0];
|
|
const unsigned slots = count_attribute_slots(var->type);
|
|
|
|
/* Mask representing the contiguous slots that will be used by this
|
|
* attribute.
|
|
*/
|
|
const unsigned use_mask = (1 << slots) - 1;
|
|
|
|
/* Generate a link error if the set of bits requested for this
|
|
* attribute overlaps any previously allocated bits.
|
|
*/
|
|
if ((~(use_mask << attr) & used_locations) != used_locations) {
|
|
linker_error_printf(prog,
|
|
"insufficient contiguous attribute locations "
|
|
"available for vertex shader input `%s'",
|
|
var->name);
|
|
return false;
|
|
}
|
|
|
|
var->location = VERT_ATTRIB_GENERIC0 + attr;
|
|
used_locations |= (use_mask << attr);
|
|
}
|
|
}
|
|
|
|
/* Temporary storage for the set of attributes that need locations assigned.
|
|
*/
|
|
struct temp_attr {
|
|
unsigned slots;
|
|
ir_variable *var;
|
|
|
|
/* Used below in the call to qsort. */
|
|
static int compare(const void *a, const void *b)
|
|
{
|
|
const temp_attr *const l = (const temp_attr *) a;
|
|
const temp_attr *const r = (const temp_attr *) b;
|
|
|
|
/* Reversed because we want a descending order sort below. */
|
|
return r->slots - l->slots;
|
|
}
|
|
} to_assign[16];
|
|
|
|
unsigned num_attr = 0;
|
|
|
|
foreach_list(node, sh->ir) {
|
|
ir_variable *const var = ((ir_instruction *) node)->as_variable();
|
|
|
|
if ((var == NULL) || (var->mode != ir_var_in))
|
|
continue;
|
|
|
|
/* The location was explicitly assigned, nothing to do here.
|
|
*/
|
|
if (var->location != -1)
|
|
continue;
|
|
|
|
to_assign[num_attr].slots = count_attribute_slots(var->type);
|
|
to_assign[num_attr].var = var;
|
|
num_attr++;
|
|
}
|
|
|
|
/* If all of the attributes were assigned locations by the application (or
|
|
* are built-in attributes with fixed locations), return early. This should
|
|
* be the common case.
|
|
*/
|
|
if (num_attr == 0)
|
|
return true;
|
|
|
|
qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
|
|
|
|
/* VERT_ATTRIB_GENERIC0 is a psdueo-alias for VERT_ATTRIB_POS. It can only
|
|
* be explicitly assigned by via glBindAttribLocation. Mark it as reserved
|
|
* to prevent it from being automatically allocated below.
|
|
*/
|
|
find_deref_visitor find("gl_Vertex");
|
|
find.run(sh->ir);
|
|
if (find.variable_found())
|
|
used_locations |= (1 << 0);
|
|
|
|
for (unsigned i = 0; i < num_attr; i++) {
|
|
/* Mask representing the contiguous slots that will be used by this
|
|
* attribute.
|
|
*/
|
|
const unsigned use_mask = (1 << to_assign[i].slots) - 1;
|
|
|
|
int location = find_available_slots(used_locations, to_assign[i].slots);
|
|
|
|
if (location < 0) {
|
|
linker_error_printf(prog,
|
|
"insufficient contiguous attribute locations "
|
|
"available for vertex shader input `%s'",
|
|
to_assign[i].var->name);
|
|
return false;
|
|
}
|
|
|
|
to_assign[i].var->location = VERT_ATTRIB_GENERIC0 + location;
|
|
used_locations |= (use_mask << location);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/**
|
|
* Demote shader outputs that are not read to being just plain global variables
|
|
*/
|
|
void
|
|
demote_unread_shader_outputs(gl_shader *sh)
|
|
{
|
|
foreach_list(node, sh->ir) {
|
|
ir_variable *const var = ((ir_instruction *) node)->as_variable();
|
|
|
|
if ((var == NULL) || (var->mode != ir_var_out))
|
|
continue;
|
|
|
|
/* An 'out' variable is only really a shader output if its value is read
|
|
* by the following stage.
|
|
*/
|
|
if (var->location == -1) {
|
|
var->mode = ir_var_auto;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
assign_varying_locations(struct gl_shader_program *prog,
|
|
gl_shader *producer, gl_shader *consumer)
|
|
{
|
|
/* FINISHME: Set dynamically when geometry shader support is added. */
|
|
unsigned output_index = VERT_RESULT_VAR0;
|
|
unsigned input_index = FRAG_ATTRIB_VAR0;
|
|
|
|
/* Operate in a total of three passes.
|
|
*
|
|
* 1. Assign locations for any matching inputs and outputs.
|
|
*
|
|
* 2. Mark output variables in the producer that do not have locations as
|
|
* not being outputs. This lets the optimizer eliminate them.
|
|
*
|
|
* 3. Mark input variables in the consumer that do not have locations as
|
|
* not being inputs. This lets the optimizer eliminate them.
|
|
*/
|
|
|
|
invalidate_variable_locations(producer, ir_var_out, VERT_RESULT_VAR0);
|
|
invalidate_variable_locations(consumer, ir_var_in, FRAG_ATTRIB_VAR0);
|
|
|
|
foreach_list(node, producer->ir) {
|
|
ir_variable *const output_var = ((ir_instruction *) node)->as_variable();
|
|
|
|
if ((output_var == NULL) || (output_var->mode != ir_var_out)
|
|
|| (output_var->location != -1))
|
|
continue;
|
|
|
|
ir_variable *const input_var =
|
|
consumer->symbols->get_variable(output_var->name);
|
|
|
|
if ((input_var == NULL) || (input_var->mode != ir_var_in))
|
|
continue;
|
|
|
|
assert(input_var->location == -1);
|
|
|
|
/* FINISHME: Location assignment will need some changes when arrays,
|
|
* FINISHME: matrices, and structures are allowed as shader inputs /
|
|
* FINISHME: outputs.
|
|
*/
|
|
output_var->location = output_index;
|
|
input_var->location = input_index;
|
|
|
|
output_index++;
|
|
input_index++;
|
|
}
|
|
|
|
demote_unread_shader_outputs(producer);
|
|
|
|
foreach_list(node, consumer->ir) {
|
|
ir_variable *const var = ((ir_instruction *) node)->as_variable();
|
|
|
|
if ((var == NULL) || (var->mode != ir_var_in))
|
|
continue;
|
|
|
|
if (var->location == -1) {
|
|
if (prog->Version <= 120) {
|
|
/* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec:
|
|
*
|
|
* Only those varying variables used (i.e. read) in
|
|
* the fragment shader executable must be written to
|
|
* by the vertex shader executable; declaring
|
|
* superfluous varying variables in a vertex shader is
|
|
* permissible.
|
|
*
|
|
* We interpret this text as meaning that the VS must
|
|
* write the variable for the FS to read it. See
|
|
* "glsl1-varying read but not written" in piglit.
|
|
*/
|
|
|
|
linker_error_printf(prog, "fragment shader varying %s not written "
|
|
"by vertex shader\n.", var->name);
|
|
prog->LinkStatus = false;
|
|
}
|
|
|
|
/* An 'in' variable is only really a shader input if its
|
|
* value is written by the previous stage.
|
|
*/
|
|
var->mode = ir_var_auto;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
link_shaders(GLcontext *ctx, struct gl_shader_program *prog)
|
|
{
|
|
prog->LinkStatus = false;
|
|
prog->Validated = false;
|
|
prog->_Used = false;
|
|
|
|
if (prog->InfoLog != NULL)
|
|
talloc_free(prog->InfoLog);
|
|
|
|
prog->InfoLog = talloc_strdup(NULL, "");
|
|
|
|
/* Separate the shaders into groups based on their type.
|
|
*/
|
|
struct gl_shader **vert_shader_list;
|
|
unsigned num_vert_shaders = 0;
|
|
struct gl_shader **frag_shader_list;
|
|
unsigned num_frag_shaders = 0;
|
|
|
|
vert_shader_list = (struct gl_shader **)
|
|
calloc(2 * prog->NumShaders, sizeof(struct gl_shader *));
|
|
frag_shader_list = &vert_shader_list[prog->NumShaders];
|
|
|
|
unsigned min_version = UINT_MAX;
|
|
unsigned max_version = 0;
|
|
for (unsigned i = 0; i < prog->NumShaders; i++) {
|
|
min_version = MIN2(min_version, prog->Shaders[i]->Version);
|
|
max_version = MAX2(max_version, prog->Shaders[i]->Version);
|
|
|
|
switch (prog->Shaders[i]->Type) {
|
|
case GL_VERTEX_SHADER:
|
|
vert_shader_list[num_vert_shaders] = prog->Shaders[i];
|
|
num_vert_shaders++;
|
|
break;
|
|
case GL_FRAGMENT_SHADER:
|
|
frag_shader_list[num_frag_shaders] = prog->Shaders[i];
|
|
num_frag_shaders++;
|
|
break;
|
|
case GL_GEOMETRY_SHADER:
|
|
/* FINISHME: Support geometry shaders. */
|
|
assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Previous to GLSL version 1.30, different compilation units could mix and
|
|
* match shading language versions. With GLSL 1.30 and later, the versions
|
|
* of all shaders must match.
|
|
*/
|
|
assert(min_version >= 110);
|
|
assert(max_version <= 130);
|
|
if ((max_version >= 130) && (min_version != max_version)) {
|
|
linker_error_printf(prog, "all shaders must use same shading "
|
|
"language version\n");
|
|
goto done;
|
|
}
|
|
|
|
prog->Version = max_version;
|
|
|
|
for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
|
|
ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]);
|
|
}
|
|
|
|
/* Link all shaders for a particular stage and validate the result.
|
|
*/
|
|
prog->_NumLinkedShaders = 0;
|
|
if (num_vert_shaders > 0) {
|
|
gl_shader *const sh =
|
|
link_intrastage_shaders(ctx, prog, vert_shader_list, num_vert_shaders);
|
|
|
|
if (sh == NULL)
|
|
goto done;
|
|
|
|
if (!validate_vertex_shader_executable(prog, sh))
|
|
goto done;
|
|
|
|
prog->_LinkedShaders[prog->_NumLinkedShaders] = sh;
|
|
prog->_NumLinkedShaders++;
|
|
}
|
|
|
|
if (num_frag_shaders > 0) {
|
|
gl_shader *const sh =
|
|
link_intrastage_shaders(ctx, prog, frag_shader_list, num_frag_shaders);
|
|
|
|
if (sh == NULL)
|
|
goto done;
|
|
|
|
if (!validate_fragment_shader_executable(prog, sh))
|
|
goto done;
|
|
|
|
prog->_LinkedShaders[prog->_NumLinkedShaders] = sh;
|
|
prog->_NumLinkedShaders++;
|
|
}
|
|
|
|
/* Here begins the inter-stage linking phase. Some initial validation is
|
|
* performed, then locations are assigned for uniforms, attributes, and
|
|
* varyings.
|
|
*/
|
|
if (cross_validate_uniforms(prog)) {
|
|
/* Validate the inputs of each stage with the output of the preceeding
|
|
* stage.
|
|
*/
|
|
for (unsigned i = 1; i < prog->_NumLinkedShaders; i++) {
|
|
if (!cross_validate_outputs_to_inputs(prog,
|
|
prog->_LinkedShaders[i - 1],
|
|
prog->_LinkedShaders[i]))
|
|
goto done;
|
|
}
|
|
|
|
prog->LinkStatus = true;
|
|
}
|
|
|
|
/* Do common optimization before assigning storage for attributes,
|
|
* uniforms, and varyings. Later optimization could possibly make
|
|
* some of that unused.
|
|
*/
|
|
for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
|
|
while (do_common_optimization(prog->_LinkedShaders[i]->ir, true))
|
|
;
|
|
}
|
|
|
|
assign_uniform_locations(prog);
|
|
|
|
if (prog->_LinkedShaders[0]->Type == GL_VERTEX_SHADER) {
|
|
/* FINISHME: The value of the max_attribute_index parameter is
|
|
* FINISHME: implementation dependent based on the value of
|
|
* FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be
|
|
* FINISHME: at least 16, so hardcode 16 for now.
|
|
*/
|
|
if (!assign_attribute_locations(prog, 16))
|
|
goto done;
|
|
|
|
if (prog->_NumLinkedShaders == 1)
|
|
demote_unread_shader_outputs(prog->_LinkedShaders[0]);
|
|
}
|
|
|
|
for (unsigned i = 1; i < prog->_NumLinkedShaders; i++)
|
|
assign_varying_locations(prog,
|
|
prog->_LinkedShaders[i - 1],
|
|
prog->_LinkedShaders[i]);
|
|
|
|
/* FINISHME: Assign fragment shader output locations. */
|
|
|
|
done:
|
|
free(vert_shader_list);
|
|
}
|