
Signed-off-by: Nanley Chery <nanley.g.chery@intel.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
1650 lines
60 KiB
C
1650 lines
60 KiB
C
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "anv_private.h"
|
|
|
|
static bool
|
|
lookup_blorp_shader(struct blorp_context *blorp,
|
|
const void *key, uint32_t key_size,
|
|
uint32_t *kernel_out, void *prog_data_out)
|
|
{
|
|
struct anv_device *device = blorp->driver_ctx;
|
|
|
|
/* The blorp cache must be a real cache */
|
|
assert(device->blorp_shader_cache.cache);
|
|
|
|
struct anv_shader_bin *bin =
|
|
anv_pipeline_cache_search(&device->blorp_shader_cache, key, key_size);
|
|
if (!bin)
|
|
return false;
|
|
|
|
/* The cache already has a reference and it's not going anywhere so there
|
|
* is no need to hold a second reference.
|
|
*/
|
|
anv_shader_bin_unref(device, bin);
|
|
|
|
*kernel_out = bin->kernel.offset;
|
|
*(const struct brw_stage_prog_data **)prog_data_out = bin->prog_data;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
upload_blorp_shader(struct blorp_context *blorp,
|
|
const void *key, uint32_t key_size,
|
|
const void *kernel, uint32_t kernel_size,
|
|
const struct brw_stage_prog_data *prog_data,
|
|
uint32_t prog_data_size,
|
|
uint32_t *kernel_out, void *prog_data_out)
|
|
{
|
|
struct anv_device *device = blorp->driver_ctx;
|
|
|
|
/* The blorp cache must be a real cache */
|
|
assert(device->blorp_shader_cache.cache);
|
|
|
|
struct anv_pipeline_bind_map bind_map = {
|
|
.surface_count = 0,
|
|
.sampler_count = 0,
|
|
};
|
|
|
|
struct anv_shader_bin *bin =
|
|
anv_pipeline_cache_upload_kernel(&device->blorp_shader_cache,
|
|
key, key_size, kernel, kernel_size,
|
|
prog_data, prog_data_size, &bind_map);
|
|
|
|
/* The cache already has a reference and it's not going anywhere so there
|
|
* is no need to hold a second reference.
|
|
*/
|
|
anv_shader_bin_unref(device, bin);
|
|
|
|
*kernel_out = bin->kernel.offset;
|
|
*(const struct brw_stage_prog_data **)prog_data_out = bin->prog_data;
|
|
}
|
|
|
|
void
|
|
anv_device_init_blorp(struct anv_device *device)
|
|
{
|
|
anv_pipeline_cache_init(&device->blorp_shader_cache, device, true);
|
|
blorp_init(&device->blorp, device, &device->isl_dev);
|
|
device->blorp.compiler = device->instance->physicalDevice.compiler;
|
|
device->blorp.mocs.tex = device->default_mocs;
|
|
device->blorp.mocs.rb = device->default_mocs;
|
|
device->blorp.mocs.vb = device->default_mocs;
|
|
device->blorp.lookup_shader = lookup_blorp_shader;
|
|
device->blorp.upload_shader = upload_blorp_shader;
|
|
switch (device->info.gen) {
|
|
case 7:
|
|
if (device->info.is_haswell) {
|
|
device->blorp.exec = gen75_blorp_exec;
|
|
} else {
|
|
device->blorp.exec = gen7_blorp_exec;
|
|
}
|
|
break;
|
|
case 8:
|
|
device->blorp.exec = gen8_blorp_exec;
|
|
break;
|
|
case 9:
|
|
device->blorp.exec = gen9_blorp_exec;
|
|
break;
|
|
default:
|
|
unreachable("Unknown hardware generation");
|
|
}
|
|
}
|
|
|
|
void
|
|
anv_device_finish_blorp(struct anv_device *device)
|
|
{
|
|
blorp_finish(&device->blorp);
|
|
anv_pipeline_cache_finish(&device->blorp_shader_cache);
|
|
}
|
|
|
|
static void
|
|
get_blorp_surf_for_anv_buffer(struct anv_device *device,
|
|
struct anv_buffer *buffer, uint64_t offset,
|
|
uint32_t width, uint32_t height,
|
|
uint32_t row_pitch, enum isl_format format,
|
|
struct blorp_surf *blorp_surf,
|
|
struct isl_surf *isl_surf)
|
|
{
|
|
const struct isl_format_layout *fmtl =
|
|
isl_format_get_layout(format);
|
|
|
|
/* ASTC is the only format which doesn't support linear layouts.
|
|
* Create an equivalently sized surface with ISL to get around this.
|
|
*/
|
|
if (fmtl->txc == ISL_TXC_ASTC) {
|
|
/* Use an equivalently sized format */
|
|
format = ISL_FORMAT_R32G32B32A32_UINT;
|
|
assert(fmtl->bpb == isl_format_get_layout(format)->bpb);
|
|
|
|
/* Shrink the dimensions for the new format */
|
|
width = DIV_ROUND_UP(width, fmtl->bw);
|
|
height = DIV_ROUND_UP(height, fmtl->bh);
|
|
}
|
|
|
|
*blorp_surf = (struct blorp_surf) {
|
|
.surf = isl_surf,
|
|
.addr = {
|
|
.buffer = buffer->bo,
|
|
.offset = buffer->offset + offset,
|
|
},
|
|
};
|
|
|
|
isl_surf_init(&device->isl_dev, isl_surf,
|
|
.dim = ISL_SURF_DIM_2D,
|
|
.format = format,
|
|
.width = width,
|
|
.height = height,
|
|
.depth = 1,
|
|
.levels = 1,
|
|
.array_len = 1,
|
|
.samples = 1,
|
|
.min_pitch = row_pitch,
|
|
.usage = ISL_SURF_USAGE_TEXTURE_BIT |
|
|
ISL_SURF_USAGE_RENDER_TARGET_BIT,
|
|
.tiling_flags = ISL_TILING_LINEAR_BIT);
|
|
assert(isl_surf->row_pitch == row_pitch);
|
|
}
|
|
|
|
static void
|
|
get_blorp_surf_for_anv_image(const struct anv_image *image,
|
|
VkImageAspectFlags aspect,
|
|
enum isl_aux_usage aux_usage,
|
|
struct blorp_surf *blorp_surf)
|
|
{
|
|
if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT ||
|
|
aux_usage == ISL_AUX_USAGE_HIZ)
|
|
aux_usage = ISL_AUX_USAGE_NONE;
|
|
|
|
const struct anv_surface *surface =
|
|
anv_image_get_surface_for_aspect_mask(image, aspect);
|
|
|
|
*blorp_surf = (struct blorp_surf) {
|
|
.surf = &surface->isl,
|
|
.addr = {
|
|
.buffer = image->bo,
|
|
.offset = image->offset + surface->offset,
|
|
},
|
|
};
|
|
|
|
if (aux_usage != ISL_AUX_USAGE_NONE) {
|
|
blorp_surf->aux_surf = &image->aux_surface.isl,
|
|
blorp_surf->aux_addr = (struct blorp_address) {
|
|
.buffer = image->bo,
|
|
.offset = image->offset + image->aux_surface.offset,
|
|
};
|
|
blorp_surf->aux_usage = aux_usage;
|
|
}
|
|
}
|
|
|
|
void anv_CmdCopyImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage srcImage,
|
|
VkImageLayout srcImageLayout,
|
|
VkImage dstImage,
|
|
VkImageLayout dstImageLayout,
|
|
uint32_t regionCount,
|
|
const VkImageCopy* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
|
|
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
VkOffset3D srcOffset =
|
|
anv_sanitize_image_offset(src_image->type, pRegions[r].srcOffset);
|
|
VkOffset3D dstOffset =
|
|
anv_sanitize_image_offset(dst_image->type, pRegions[r].dstOffset);
|
|
VkExtent3D extent =
|
|
anv_sanitize_image_extent(src_image->type, pRegions[r].extent);
|
|
|
|
unsigned dst_base_layer, layer_count;
|
|
if (dst_image->type == VK_IMAGE_TYPE_3D) {
|
|
dst_base_layer = pRegions[r].dstOffset.z;
|
|
layer_count = pRegions[r].extent.depth;
|
|
} else {
|
|
dst_base_layer = pRegions[r].dstSubresource.baseArrayLayer;
|
|
layer_count = pRegions[r].dstSubresource.layerCount;
|
|
}
|
|
|
|
unsigned src_base_layer;
|
|
if (src_image->type == VK_IMAGE_TYPE_3D) {
|
|
src_base_layer = pRegions[r].srcOffset.z;
|
|
} else {
|
|
src_base_layer = pRegions[r].srcSubresource.baseArrayLayer;
|
|
assert(pRegions[r].srcSubresource.layerCount == layer_count);
|
|
}
|
|
|
|
assert(pRegions[r].srcSubresource.aspectMask ==
|
|
pRegions[r].dstSubresource.aspectMask);
|
|
|
|
uint32_t a;
|
|
for_each_bit(a, pRegions[r].dstSubresource.aspectMask) {
|
|
VkImageAspectFlagBits aspect = (1 << a);
|
|
|
|
struct blorp_surf src_surf, dst_surf;
|
|
get_blorp_surf_for_anv_image(src_image, aspect, src_image->aux_usage,
|
|
&src_surf);
|
|
get_blorp_surf_for_anv_image(dst_image, aspect, dst_image->aux_usage,
|
|
&dst_surf);
|
|
|
|
for (unsigned i = 0; i < layer_count; i++) {
|
|
blorp_copy(&batch, &src_surf, pRegions[r].srcSubresource.mipLevel,
|
|
src_base_layer + i,
|
|
&dst_surf, pRegions[r].dstSubresource.mipLevel,
|
|
dst_base_layer + i,
|
|
srcOffset.x, srcOffset.y,
|
|
dstOffset.x, dstOffset.y,
|
|
extent.width, extent.height);
|
|
}
|
|
}
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
static void
|
|
copy_buffer_to_image(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_buffer *anv_buffer,
|
|
struct anv_image *anv_image,
|
|
uint32_t regionCount,
|
|
const VkBufferImageCopy* pRegions,
|
|
bool buffer_to_image)
|
|
{
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
struct {
|
|
struct blorp_surf surf;
|
|
uint32_t level;
|
|
VkOffset3D offset;
|
|
} image, buffer, *src, *dst;
|
|
|
|
buffer.level = 0;
|
|
buffer.offset = (VkOffset3D) { 0, 0, 0 };
|
|
|
|
if (buffer_to_image) {
|
|
src = &buffer;
|
|
dst = ℑ
|
|
} else {
|
|
src = ℑ
|
|
dst = &buffer;
|
|
}
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
const VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
|
|
|
|
get_blorp_surf_for_anv_image(anv_image, aspect, anv_image->aux_usage,
|
|
&image.surf);
|
|
image.offset =
|
|
anv_sanitize_image_offset(anv_image->type, pRegions[r].imageOffset);
|
|
image.level = pRegions[r].imageSubresource.mipLevel;
|
|
|
|
VkExtent3D extent =
|
|
anv_sanitize_image_extent(anv_image->type, pRegions[r].imageExtent);
|
|
if (anv_image->type != VK_IMAGE_TYPE_3D) {
|
|
image.offset.z = pRegions[r].imageSubresource.baseArrayLayer;
|
|
extent.depth = pRegions[r].imageSubresource.layerCount;
|
|
}
|
|
|
|
const enum isl_format buffer_format =
|
|
anv_get_isl_format(&cmd_buffer->device->info, anv_image->vk_format,
|
|
aspect, VK_IMAGE_TILING_LINEAR);
|
|
|
|
const VkExtent3D bufferImageExtent = {
|
|
.width = pRegions[r].bufferRowLength ?
|
|
pRegions[r].bufferRowLength : extent.width,
|
|
.height = pRegions[r].bufferImageHeight ?
|
|
pRegions[r].bufferImageHeight : extent.height,
|
|
};
|
|
|
|
const struct isl_format_layout *buffer_fmtl =
|
|
isl_format_get_layout(buffer_format);
|
|
|
|
const uint32_t buffer_row_pitch =
|
|
DIV_ROUND_UP(bufferImageExtent.width, buffer_fmtl->bw) *
|
|
(buffer_fmtl->bpb / 8);
|
|
|
|
const uint32_t buffer_layer_stride =
|
|
DIV_ROUND_UP(bufferImageExtent.height, buffer_fmtl->bh) *
|
|
buffer_row_pitch;
|
|
|
|
struct isl_surf buffer_isl_surf;
|
|
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
|
|
anv_buffer, pRegions[r].bufferOffset,
|
|
extent.width, extent.height,
|
|
buffer_row_pitch, buffer_format,
|
|
&buffer.surf, &buffer_isl_surf);
|
|
|
|
for (unsigned z = 0; z < extent.depth; z++) {
|
|
blorp_copy(&batch, &src->surf, src->level, src->offset.z,
|
|
&dst->surf, dst->level, dst->offset.z,
|
|
src->offset.x, src->offset.y, dst->offset.x, dst->offset.y,
|
|
extent.width, extent.height);
|
|
|
|
image.offset.z++;
|
|
buffer.surf.addr.offset += buffer_layer_stride;
|
|
}
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
void anv_CmdCopyBufferToImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkBuffer srcBuffer,
|
|
VkImage dstImage,
|
|
VkImageLayout dstImageLayout,
|
|
uint32_t regionCount,
|
|
const VkBufferImageCopy* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
|
|
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
|
|
|
|
copy_buffer_to_image(cmd_buffer, src_buffer, dst_image,
|
|
regionCount, pRegions, true);
|
|
}
|
|
|
|
void anv_CmdCopyImageToBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage srcImage,
|
|
VkImageLayout srcImageLayout,
|
|
VkBuffer dstBuffer,
|
|
uint32_t regionCount,
|
|
const VkBufferImageCopy* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
|
|
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
|
|
|
|
copy_buffer_to_image(cmd_buffer, dst_buffer, src_image,
|
|
regionCount, pRegions, false);
|
|
}
|
|
|
|
static bool
|
|
flip_coords(unsigned *src0, unsigned *src1, unsigned *dst0, unsigned *dst1)
|
|
{
|
|
bool flip = false;
|
|
if (*src0 > *src1) {
|
|
unsigned tmp = *src0;
|
|
*src0 = *src1;
|
|
*src1 = tmp;
|
|
flip = !flip;
|
|
}
|
|
|
|
if (*dst0 > *dst1) {
|
|
unsigned tmp = *dst0;
|
|
*dst0 = *dst1;
|
|
*dst1 = tmp;
|
|
flip = !flip;
|
|
}
|
|
|
|
return flip;
|
|
}
|
|
|
|
void anv_CmdBlitImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage srcImage,
|
|
VkImageLayout srcImageLayout,
|
|
VkImage dstImage,
|
|
VkImageLayout dstImageLayout,
|
|
uint32_t regionCount,
|
|
const VkImageBlit* pRegions,
|
|
VkFilter filter)
|
|
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
|
|
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
|
|
|
|
struct blorp_surf src, dst;
|
|
|
|
uint32_t gl_filter;
|
|
switch (filter) {
|
|
case VK_FILTER_NEAREST:
|
|
gl_filter = 0x2600; /* GL_NEAREST */
|
|
break;
|
|
case VK_FILTER_LINEAR:
|
|
gl_filter = 0x2601; /* GL_LINEAR */
|
|
break;
|
|
default:
|
|
unreachable("Invalid filter");
|
|
}
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
const VkImageSubresourceLayers *src_res = &pRegions[r].srcSubresource;
|
|
const VkImageSubresourceLayers *dst_res = &pRegions[r].dstSubresource;
|
|
|
|
get_blorp_surf_for_anv_image(src_image, src_res->aspectMask,
|
|
src_image->aux_usage, &src);
|
|
get_blorp_surf_for_anv_image(dst_image, dst_res->aspectMask,
|
|
dst_image->aux_usage, &dst);
|
|
|
|
struct anv_format src_format =
|
|
anv_get_format(&cmd_buffer->device->info, src_image->vk_format,
|
|
src_res->aspectMask, src_image->tiling);
|
|
struct anv_format dst_format =
|
|
anv_get_format(&cmd_buffer->device->info, dst_image->vk_format,
|
|
dst_res->aspectMask, dst_image->tiling);
|
|
|
|
unsigned dst_start, dst_end;
|
|
if (dst_image->type == VK_IMAGE_TYPE_3D) {
|
|
assert(dst_res->baseArrayLayer == 0);
|
|
dst_start = pRegions[r].dstOffsets[0].z;
|
|
dst_end = pRegions[r].dstOffsets[1].z;
|
|
} else {
|
|
dst_start = dst_res->baseArrayLayer;
|
|
dst_end = dst_start + dst_res->layerCount;
|
|
}
|
|
|
|
unsigned src_start, src_end;
|
|
if (src_image->type == VK_IMAGE_TYPE_3D) {
|
|
assert(src_res->baseArrayLayer == 0);
|
|
src_start = pRegions[r].srcOffsets[0].z;
|
|
src_end = pRegions[r].srcOffsets[1].z;
|
|
} else {
|
|
src_start = src_res->baseArrayLayer;
|
|
src_end = src_start + src_res->layerCount;
|
|
}
|
|
|
|
bool flip_z = flip_coords(&src_start, &src_end, &dst_start, &dst_end);
|
|
float src_z_step = (float)(src_end + 1 - src_start) /
|
|
(float)(dst_end + 1 - dst_start);
|
|
|
|
if (flip_z) {
|
|
src_start = src_end;
|
|
src_z_step *= -1;
|
|
}
|
|
|
|
unsigned src_x0 = pRegions[r].srcOffsets[0].x;
|
|
unsigned src_x1 = pRegions[r].srcOffsets[1].x;
|
|
unsigned dst_x0 = pRegions[r].dstOffsets[0].x;
|
|
unsigned dst_x1 = pRegions[r].dstOffsets[1].x;
|
|
bool flip_x = flip_coords(&src_x0, &src_x1, &dst_x0, &dst_x1);
|
|
|
|
unsigned src_y0 = pRegions[r].srcOffsets[0].y;
|
|
unsigned src_y1 = pRegions[r].srcOffsets[1].y;
|
|
unsigned dst_y0 = pRegions[r].dstOffsets[0].y;
|
|
unsigned dst_y1 = pRegions[r].dstOffsets[1].y;
|
|
bool flip_y = flip_coords(&src_y0, &src_y1, &dst_y0, &dst_y1);
|
|
|
|
const unsigned num_layers = dst_end - dst_start;
|
|
for (unsigned i = 0; i < num_layers; i++) {
|
|
unsigned dst_z = dst_start + i;
|
|
unsigned src_z = src_start + i * src_z_step;
|
|
|
|
blorp_blit(&batch, &src, src_res->mipLevel, src_z,
|
|
src_format.isl_format, src_format.swizzle,
|
|
&dst, dst_res->mipLevel, dst_z,
|
|
dst_format.isl_format, dst_format.swizzle,
|
|
src_x0, src_y0, src_x1, src_y1,
|
|
dst_x0, dst_y0, dst_x1, dst_y1,
|
|
gl_filter, flip_x, flip_y);
|
|
}
|
|
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
static enum isl_format
|
|
isl_format_for_size(unsigned size_B)
|
|
{
|
|
switch (size_B) {
|
|
case 1: return ISL_FORMAT_R8_UINT;
|
|
case 2: return ISL_FORMAT_R8G8_UINT;
|
|
case 4: return ISL_FORMAT_R8G8B8A8_UINT;
|
|
case 8: return ISL_FORMAT_R16G16B16A16_UINT;
|
|
case 16: return ISL_FORMAT_R32G32B32A32_UINT;
|
|
default:
|
|
unreachable("Not a power-of-two format size");
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_buffer_copy(struct blorp_batch *batch,
|
|
struct anv_bo *src, uint64_t src_offset,
|
|
struct anv_bo *dst, uint64_t dst_offset,
|
|
int width, int height, int block_size)
|
|
{
|
|
struct anv_device *device = batch->blorp->driver_ctx;
|
|
|
|
/* The actual format we pick doesn't matter as blorp will throw it away.
|
|
* The only thing that actually matters is the size.
|
|
*/
|
|
enum isl_format format = isl_format_for_size(block_size);
|
|
|
|
struct isl_surf surf;
|
|
isl_surf_init(&device->isl_dev, &surf,
|
|
.dim = ISL_SURF_DIM_2D,
|
|
.format = format,
|
|
.width = width,
|
|
.height = height,
|
|
.depth = 1,
|
|
.levels = 1,
|
|
.array_len = 1,
|
|
.samples = 1,
|
|
.usage = ISL_SURF_USAGE_TEXTURE_BIT |
|
|
ISL_SURF_USAGE_RENDER_TARGET_BIT,
|
|
.tiling_flags = ISL_TILING_LINEAR_BIT);
|
|
assert(surf.row_pitch == width * block_size);
|
|
|
|
struct blorp_surf src_blorp_surf = {
|
|
.surf = &surf,
|
|
.addr = {
|
|
.buffer = src,
|
|
.offset = src_offset,
|
|
},
|
|
};
|
|
|
|
struct blorp_surf dst_blorp_surf = {
|
|
.surf = &surf,
|
|
.addr = {
|
|
.buffer = dst,
|
|
.offset = dst_offset,
|
|
},
|
|
};
|
|
|
|
blorp_copy(batch, &src_blorp_surf, 0, 0, &dst_blorp_surf, 0, 0,
|
|
0, 0, 0, 0, width, height);
|
|
}
|
|
|
|
/**
|
|
* Returns the greatest common divisor of a and b that is a power of two.
|
|
*/
|
|
static inline uint64_t
|
|
gcd_pow2_u64(uint64_t a, uint64_t b)
|
|
{
|
|
assert(a > 0 || b > 0);
|
|
|
|
unsigned a_log2 = ffsll(a) - 1;
|
|
unsigned b_log2 = ffsll(b) - 1;
|
|
|
|
/* If either a or b is 0, then a_log2 or b_log2 till be UINT_MAX in which
|
|
* case, the MIN2() will take the other one. If both are 0 then we will
|
|
* hit the assert above.
|
|
*/
|
|
return 1 << MIN2(a_log2, b_log2);
|
|
}
|
|
|
|
/* This is maximum possible width/height our HW can handle */
|
|
#define MAX_SURFACE_DIM (1ull << 14)
|
|
|
|
void anv_CmdCopyBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
VkBuffer srcBuffer,
|
|
VkBuffer dstBuffer,
|
|
uint32_t regionCount,
|
|
const VkBufferCopy* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
|
|
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
|
|
uint64_t dst_offset = dst_buffer->offset + pRegions[r].dstOffset;
|
|
uint64_t copy_size = pRegions[r].size;
|
|
|
|
/* First, we compute the biggest format that can be used with the
|
|
* given offsets and size.
|
|
*/
|
|
int bs = 16;
|
|
bs = gcd_pow2_u64(bs, src_offset);
|
|
bs = gcd_pow2_u64(bs, dst_offset);
|
|
bs = gcd_pow2_u64(bs, pRegions[r].size);
|
|
|
|
/* First, we make a bunch of max-sized copies */
|
|
uint64_t max_copy_size = MAX_SURFACE_DIM * MAX_SURFACE_DIM * bs;
|
|
while (copy_size >= max_copy_size) {
|
|
do_buffer_copy(&batch, src_buffer->bo, src_offset,
|
|
dst_buffer->bo, dst_offset,
|
|
MAX_SURFACE_DIM, MAX_SURFACE_DIM, bs);
|
|
copy_size -= max_copy_size;
|
|
src_offset += max_copy_size;
|
|
dst_offset += max_copy_size;
|
|
}
|
|
|
|
/* Now make a max-width copy */
|
|
uint64_t height = copy_size / (MAX_SURFACE_DIM * bs);
|
|
assert(height < MAX_SURFACE_DIM);
|
|
if (height != 0) {
|
|
uint64_t rect_copy_size = height * MAX_SURFACE_DIM * bs;
|
|
do_buffer_copy(&batch, src_buffer->bo, src_offset,
|
|
dst_buffer->bo, dst_offset,
|
|
MAX_SURFACE_DIM, height, bs);
|
|
copy_size -= rect_copy_size;
|
|
src_offset += rect_copy_size;
|
|
dst_offset += rect_copy_size;
|
|
}
|
|
|
|
/* Finally, make a small copy to finish it off */
|
|
if (copy_size != 0) {
|
|
do_buffer_copy(&batch, src_buffer->bo, src_offset,
|
|
dst_buffer->bo, dst_offset,
|
|
copy_size / bs, 1, bs);
|
|
}
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
void anv_CmdUpdateBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
VkBuffer dstBuffer,
|
|
VkDeviceSize dstOffset,
|
|
VkDeviceSize dataSize,
|
|
const void* pData)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
/* We can't quite grab a full block because the state stream needs a
|
|
* little data at the top to build its linked list.
|
|
*/
|
|
const uint32_t max_update_size =
|
|
cmd_buffer->device->dynamic_state_block_pool.block_size - 64;
|
|
|
|
assert(max_update_size < MAX_SURFACE_DIM * 4);
|
|
|
|
while (dataSize) {
|
|
const uint32_t copy_size = MIN2(dataSize, max_update_size);
|
|
|
|
struct anv_state tmp_data =
|
|
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
|
|
|
|
memcpy(tmp_data.map, pData, copy_size);
|
|
|
|
int bs = 16;
|
|
bs = gcd_pow2_u64(bs, dstOffset);
|
|
bs = gcd_pow2_u64(bs, copy_size);
|
|
|
|
do_buffer_copy(&batch,
|
|
&cmd_buffer->device->dynamic_state_block_pool.bo,
|
|
tmp_data.offset,
|
|
dst_buffer->bo, dst_buffer->offset + dstOffset,
|
|
copy_size / bs, 1, bs);
|
|
|
|
dataSize -= copy_size;
|
|
dstOffset += copy_size;
|
|
pData = (void *)pData + copy_size;
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
void anv_CmdFillBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
VkBuffer dstBuffer,
|
|
VkDeviceSize dstOffset,
|
|
VkDeviceSize fillSize,
|
|
uint32_t data)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
|
|
struct blorp_surf surf;
|
|
struct isl_surf isl_surf;
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
if (fillSize == VK_WHOLE_SIZE) {
|
|
fillSize = dst_buffer->size - dstOffset;
|
|
/* Make sure fillSize is a multiple of 4 */
|
|
fillSize &= ~3ull;
|
|
}
|
|
|
|
/* First, we compute the biggest format that can be used with the
|
|
* given offsets and size.
|
|
*/
|
|
int bs = 16;
|
|
bs = gcd_pow2_u64(bs, dstOffset);
|
|
bs = gcd_pow2_u64(bs, fillSize);
|
|
enum isl_format isl_format = isl_format_for_size(bs);
|
|
|
|
union isl_color_value color = {
|
|
.u32 = { data, data, data, data },
|
|
};
|
|
|
|
const uint64_t max_fill_size = MAX_SURFACE_DIM * MAX_SURFACE_DIM * bs;
|
|
while (fillSize >= max_fill_size) {
|
|
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
|
|
dst_buffer, dstOffset,
|
|
MAX_SURFACE_DIM, MAX_SURFACE_DIM,
|
|
MAX_SURFACE_DIM * bs, isl_format,
|
|
&surf, &isl_surf);
|
|
|
|
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
|
|
0, 0, 1, 0, 0, MAX_SURFACE_DIM, MAX_SURFACE_DIM,
|
|
color, NULL);
|
|
fillSize -= max_fill_size;
|
|
dstOffset += max_fill_size;
|
|
}
|
|
|
|
uint64_t height = fillSize / (MAX_SURFACE_DIM * bs);
|
|
assert(height < MAX_SURFACE_DIM);
|
|
if (height != 0) {
|
|
const uint64_t rect_fill_size = height * MAX_SURFACE_DIM * bs;
|
|
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
|
|
dst_buffer, dstOffset,
|
|
MAX_SURFACE_DIM, height,
|
|
MAX_SURFACE_DIM * bs, isl_format,
|
|
&surf, &isl_surf);
|
|
|
|
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
|
|
0, 0, 1, 0, 0, MAX_SURFACE_DIM, height,
|
|
color, NULL);
|
|
fillSize -= rect_fill_size;
|
|
dstOffset += rect_fill_size;
|
|
}
|
|
|
|
if (fillSize != 0) {
|
|
const uint32_t width = fillSize / bs;
|
|
get_blorp_surf_for_anv_buffer(cmd_buffer->device,
|
|
dst_buffer, dstOffset,
|
|
width, 1,
|
|
width * bs, isl_format,
|
|
&surf, &isl_surf);
|
|
|
|
blorp_clear(&batch, &surf, isl_format, ISL_SWIZZLE_IDENTITY,
|
|
0, 0, 1, 0, 0, width, 1,
|
|
color, NULL);
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
void anv_CmdClearColorImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage _image,
|
|
VkImageLayout imageLayout,
|
|
const VkClearColorValue* pColor,
|
|
uint32_t rangeCount,
|
|
const VkImageSubresourceRange* pRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, image, _image);
|
|
|
|
static const bool color_write_disable[4] = { false, false, false, false };
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
struct blorp_surf surf;
|
|
get_blorp_surf_for_anv_image(image, VK_IMAGE_ASPECT_COLOR_BIT,
|
|
image->aux_usage, &surf);
|
|
|
|
for (unsigned r = 0; r < rangeCount; r++) {
|
|
if (pRanges[r].aspectMask == 0)
|
|
continue;
|
|
|
|
assert(pRanges[r].aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
|
|
|
|
struct anv_format src_format =
|
|
anv_get_format(&cmd_buffer->device->info, image->vk_format,
|
|
VK_IMAGE_ASPECT_COLOR_BIT, image->tiling);
|
|
|
|
unsigned base_layer = pRanges[r].baseArrayLayer;
|
|
unsigned layer_count = pRanges[r].layerCount;
|
|
|
|
for (unsigned i = 0; i < anv_get_levelCount(image, &pRanges[r]); i++) {
|
|
const unsigned level = pRanges[r].baseMipLevel + i;
|
|
const unsigned level_width = anv_minify(image->extent.width, level);
|
|
const unsigned level_height = anv_minify(image->extent.height, level);
|
|
|
|
if (image->type == VK_IMAGE_TYPE_3D) {
|
|
base_layer = 0;
|
|
layer_count = anv_minify(image->extent.depth, level);
|
|
}
|
|
|
|
blorp_clear(&batch, &surf,
|
|
src_format.isl_format, src_format.swizzle,
|
|
level, base_layer, layer_count,
|
|
0, 0, level_width, level_height,
|
|
vk_to_isl_color(*pColor), color_write_disable);
|
|
}
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
void anv_CmdClearDepthStencilImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage image_h,
|
|
VkImageLayout imageLayout,
|
|
const VkClearDepthStencilValue* pDepthStencil,
|
|
uint32_t rangeCount,
|
|
const VkImageSubresourceRange* pRanges)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, image, image_h);
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
struct blorp_surf depth, stencil;
|
|
if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
|
|
get_blorp_surf_for_anv_image(image, VK_IMAGE_ASPECT_DEPTH_BIT,
|
|
ISL_AUX_USAGE_NONE, &depth);
|
|
} else {
|
|
memset(&depth, 0, sizeof(depth));
|
|
}
|
|
|
|
if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
|
|
get_blorp_surf_for_anv_image(image, VK_IMAGE_ASPECT_STENCIL_BIT,
|
|
ISL_AUX_USAGE_NONE, &stencil);
|
|
} else {
|
|
memset(&stencil, 0, sizeof(stencil));
|
|
}
|
|
|
|
for (unsigned r = 0; r < rangeCount; r++) {
|
|
if (pRanges[r].aspectMask == 0)
|
|
continue;
|
|
|
|
bool clear_depth = pRanges[r].aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
bool clear_stencil = pRanges[r].aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
|
|
unsigned base_layer = pRanges[r].baseArrayLayer;
|
|
unsigned layer_count = pRanges[r].layerCount;
|
|
|
|
for (unsigned i = 0; i < anv_get_levelCount(image, &pRanges[r]); i++) {
|
|
const unsigned level = pRanges[r].baseMipLevel + i;
|
|
const unsigned level_width = anv_minify(image->extent.width, level);
|
|
const unsigned level_height = anv_minify(image->extent.height, level);
|
|
|
|
if (image->type == VK_IMAGE_TYPE_3D)
|
|
layer_count = anv_minify(image->extent.depth, level);
|
|
|
|
blorp_clear_depth_stencil(&batch, &depth, &stencil,
|
|
level, base_layer, layer_count,
|
|
0, 0, level_width, level_height,
|
|
clear_depth, pDepthStencil->depth,
|
|
clear_stencil ? 0xff : 0,
|
|
pDepthStencil->stencil);
|
|
}
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
struct anv_state
|
|
anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
|
|
uint32_t num_entries,
|
|
uint32_t *state_offset)
|
|
{
|
|
struct anv_state bt_state =
|
|
anv_cmd_buffer_alloc_binding_table(cmd_buffer, num_entries,
|
|
state_offset);
|
|
if (bt_state.map == NULL) {
|
|
/* We ran out of space. Grab a new binding table block. */
|
|
MAYBE_UNUSED VkResult result =
|
|
anv_cmd_buffer_new_binding_table_block(cmd_buffer);
|
|
assert(result == VK_SUCCESS);
|
|
|
|
/* Re-emit state base addresses so we get the new surface state base
|
|
* address before we start emitting binding tables etc.
|
|
*/
|
|
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
|
|
|
|
bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer, num_entries,
|
|
state_offset);
|
|
assert(bt_state.map != NULL);
|
|
}
|
|
|
|
return bt_state;
|
|
}
|
|
|
|
static uint32_t
|
|
binding_table_for_surface_state(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_state surface_state)
|
|
{
|
|
uint32_t state_offset;
|
|
struct anv_state bt_state =
|
|
anv_cmd_buffer_alloc_blorp_binding_table(cmd_buffer, 1, &state_offset);
|
|
|
|
uint32_t *bt_map = bt_state.map;
|
|
bt_map[0] = surface_state.offset + state_offset;
|
|
|
|
return bt_state.offset;
|
|
}
|
|
|
|
static void
|
|
clear_color_attachment(struct anv_cmd_buffer *cmd_buffer,
|
|
struct blorp_batch *batch,
|
|
const VkClearAttachment *attachment,
|
|
uint32_t rectCount, const VkClearRect *pRects)
|
|
{
|
|
const struct anv_subpass *subpass = cmd_buffer->state.subpass;
|
|
const uint32_t color_att = attachment->colorAttachment;
|
|
const uint32_t att_idx = subpass->color_attachments[color_att];
|
|
|
|
if (att_idx == VK_ATTACHMENT_UNUSED)
|
|
return;
|
|
|
|
struct anv_render_pass_attachment *pass_att =
|
|
&cmd_buffer->state.pass->attachments[att_idx];
|
|
struct anv_attachment_state *att_state =
|
|
&cmd_buffer->state.attachments[att_idx];
|
|
|
|
uint32_t binding_table =
|
|
binding_table_for_surface_state(cmd_buffer, att_state->color_rt_state);
|
|
|
|
union isl_color_value clear_color =
|
|
vk_to_isl_color(attachment->clearValue.color);
|
|
|
|
for (uint32_t r = 0; r < rectCount; ++r) {
|
|
const VkOffset2D offset = pRects[r].rect.offset;
|
|
const VkExtent2D extent = pRects[r].rect.extent;
|
|
blorp_clear_attachments(batch, binding_table,
|
|
ISL_FORMAT_UNSUPPORTED, pass_att->samples,
|
|
pRects[r].baseArrayLayer,
|
|
pRects[r].layerCount,
|
|
offset.x, offset.y,
|
|
offset.x + extent.width, offset.y + extent.height,
|
|
true, clear_color, false, 0.0f, 0, 0);
|
|
}
|
|
}
|
|
|
|
static void
|
|
clear_depth_stencil_attachment(struct anv_cmd_buffer *cmd_buffer,
|
|
struct blorp_batch *batch,
|
|
const VkClearAttachment *attachment,
|
|
uint32_t rectCount, const VkClearRect *pRects)
|
|
{
|
|
static const union isl_color_value color_value = { .u32 = { 0, } };
|
|
const struct anv_subpass *subpass = cmd_buffer->state.subpass;
|
|
const uint32_t att_idx = subpass->depth_stencil_attachment;
|
|
|
|
if (att_idx == VK_ATTACHMENT_UNUSED)
|
|
return;
|
|
|
|
struct anv_render_pass_attachment *pass_att =
|
|
&cmd_buffer->state.pass->attachments[att_idx];
|
|
|
|
bool clear_depth = attachment->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
bool clear_stencil = attachment->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
|
|
enum isl_format depth_format = ISL_FORMAT_UNSUPPORTED;
|
|
if (clear_depth) {
|
|
depth_format = anv_get_isl_format(&cmd_buffer->device->info,
|
|
pass_att->format,
|
|
VK_IMAGE_ASPECT_DEPTH_BIT,
|
|
VK_IMAGE_TILING_OPTIMAL);
|
|
}
|
|
|
|
uint32_t binding_table =
|
|
binding_table_for_surface_state(cmd_buffer,
|
|
cmd_buffer->state.null_surface_state);
|
|
|
|
for (uint32_t r = 0; r < rectCount; ++r) {
|
|
const VkOffset2D offset = pRects[r].rect.offset;
|
|
const VkExtent2D extent = pRects[r].rect.extent;
|
|
VkClearDepthStencilValue value = attachment->clearValue.depthStencil;
|
|
blorp_clear_attachments(batch, binding_table,
|
|
depth_format, pass_att->samples,
|
|
pRects[r].baseArrayLayer,
|
|
pRects[r].layerCount,
|
|
offset.x, offset.y,
|
|
offset.x + extent.width, offset.y + extent.height,
|
|
false, color_value,
|
|
clear_depth, value.depth,
|
|
clear_stencil ? 0xff : 0, value.stencil);
|
|
}
|
|
}
|
|
|
|
void anv_CmdClearAttachments(
|
|
VkCommandBuffer commandBuffer,
|
|
uint32_t attachmentCount,
|
|
const VkClearAttachment* pAttachments,
|
|
uint32_t rectCount,
|
|
const VkClearRect* pRects)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
|
|
/* Because this gets called within a render pass, we tell blorp not to
|
|
* trash our depth and stencil buffers.
|
|
*/
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer,
|
|
BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
|
|
|
|
for (uint32_t a = 0; a < attachmentCount; ++a) {
|
|
if (pAttachments[a].aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) {
|
|
clear_color_attachment(cmd_buffer, &batch,
|
|
&pAttachments[a],
|
|
rectCount, pRects);
|
|
} else {
|
|
clear_depth_stencil_attachment(cmd_buffer, &batch,
|
|
&pAttachments[a],
|
|
rectCount, pRects);
|
|
}
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
enum subpass_stage {
|
|
SUBPASS_STAGE_LOAD,
|
|
SUBPASS_STAGE_DRAW,
|
|
SUBPASS_STAGE_RESOLVE,
|
|
};
|
|
|
|
static bool
|
|
attachment_needs_flush(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_render_pass_attachment *att,
|
|
enum subpass_stage stage)
|
|
{
|
|
struct anv_render_pass *pass = cmd_buffer->state.pass;
|
|
struct anv_subpass *subpass = cmd_buffer->state.subpass;
|
|
unsigned subpass_idx = subpass - pass->subpasses;
|
|
assert(subpass_idx < pass->subpass_count);
|
|
|
|
/* We handle this subpass specially based on the current stage */
|
|
enum anv_subpass_usage usage = att->subpass_usage[subpass_idx];
|
|
switch (stage) {
|
|
case SUBPASS_STAGE_LOAD:
|
|
if (usage & (ANV_SUBPASS_USAGE_INPUT | ANV_SUBPASS_USAGE_RESOLVE_SRC))
|
|
return true;
|
|
break;
|
|
|
|
case SUBPASS_STAGE_DRAW:
|
|
if (usage & ANV_SUBPASS_USAGE_RESOLVE_SRC)
|
|
return true;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (uint32_t s = subpass_idx + 1; s < pass->subpass_count; s++) {
|
|
usage = att->subpass_usage[s];
|
|
|
|
/* If this attachment is going to be used as an input in this or any
|
|
* future subpass, then we need to flush its cache and invalidate the
|
|
* texture cache.
|
|
*/
|
|
if (att->subpass_usage[s] & ANV_SUBPASS_USAGE_INPUT)
|
|
return true;
|
|
|
|
if (usage & (ANV_SUBPASS_USAGE_DRAW | ANV_SUBPASS_USAGE_RESOLVE_DST)) {
|
|
/* We found another subpass that draws to this attachment. We'll
|
|
* wait to resolve until then.
|
|
*/
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
anv_cmd_buffer_flush_attachments(struct anv_cmd_buffer *cmd_buffer,
|
|
enum subpass_stage stage)
|
|
{
|
|
struct anv_subpass *subpass = cmd_buffer->state.subpass;
|
|
struct anv_render_pass *pass = cmd_buffer->state.pass;
|
|
|
|
for (uint32_t i = 0; i < subpass->color_count; ++i) {
|
|
uint32_t att = subpass->color_attachments[i];
|
|
assert(att < pass->attachment_count);
|
|
if (attachment_needs_flush(cmd_buffer, &pass->attachments[att], stage)) {
|
|
cmd_buffer->state.pending_pipe_bits |=
|
|
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
|
|
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
|
|
}
|
|
}
|
|
|
|
if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
|
|
uint32_t att = subpass->depth_stencil_attachment;
|
|
assert(att < pass->attachment_count);
|
|
if (attachment_needs_flush(cmd_buffer, &pass->attachments[att], stage)) {
|
|
cmd_buffer->state.pending_pipe_bits |=
|
|
ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
|
|
ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
subpass_needs_clear(const struct anv_cmd_buffer *cmd_buffer)
|
|
{
|
|
const struct anv_cmd_state *cmd_state = &cmd_buffer->state;
|
|
uint32_t ds = cmd_state->subpass->depth_stencil_attachment;
|
|
|
|
for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
|
|
uint32_t a = cmd_state->subpass->color_attachments[i];
|
|
if (cmd_state->attachments[a].pending_clear_aspects) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (ds != VK_ATTACHMENT_UNUSED &&
|
|
cmd_state->attachments[ds].pending_clear_aspects) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void
|
|
anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer)
|
|
{
|
|
const struct anv_cmd_state *cmd_state = &cmd_buffer->state;
|
|
const VkRect2D render_area = cmd_buffer->state.render_area;
|
|
|
|
|
|
if (!subpass_needs_clear(cmd_buffer))
|
|
return;
|
|
|
|
/* Because this gets called within a render pass, we tell blorp not to
|
|
* trash our depth and stencil buffers.
|
|
*/
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer,
|
|
BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
|
|
|
|
VkClearRect clear_rect = {
|
|
.rect = cmd_buffer->state.render_area,
|
|
.baseArrayLayer = 0,
|
|
.layerCount = cmd_buffer->state.framebuffer->layers,
|
|
};
|
|
|
|
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
|
|
for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
|
|
const uint32_t a = cmd_state->subpass->color_attachments[i];
|
|
struct anv_attachment_state *att_state = &cmd_state->attachments[a];
|
|
|
|
if (!att_state->pending_clear_aspects)
|
|
continue;
|
|
|
|
assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
|
|
|
|
struct anv_image_view *iview = fb->attachments[a];
|
|
const struct anv_image *image = iview->image;
|
|
struct blorp_surf surf;
|
|
get_blorp_surf_for_anv_image(image, VK_IMAGE_ASPECT_COLOR_BIT,
|
|
att_state->aux_usage, &surf);
|
|
surf.clear_color = vk_to_isl_color(att_state->clear_value.color);
|
|
|
|
if (att_state->fast_clear) {
|
|
blorp_fast_clear(&batch, &surf, iview->isl.format,
|
|
iview->isl.base_level,
|
|
iview->isl.base_array_layer, fb->layers,
|
|
render_area.offset.x, render_area.offset.y,
|
|
render_area.offset.x + render_area.extent.width,
|
|
render_area.offset.y + render_area.extent.height);
|
|
|
|
/* From the Sky Lake PRM Vol. 7, "Render Target Fast Clear":
|
|
*
|
|
* "After Render target fast clear, pipe-control with color cache
|
|
* write-flush must be issued before sending any DRAW commands on
|
|
* that render target."
|
|
*/
|
|
cmd_buffer->state.pending_pipe_bits |=
|
|
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
|
|
} else {
|
|
blorp_clear(&batch, &surf, iview->isl.format, iview->isl.swizzle,
|
|
iview->isl.base_level,
|
|
iview->isl.base_array_layer, fb->layers,
|
|
render_area.offset.x, render_area.offset.y,
|
|
render_area.offset.x + render_area.extent.width,
|
|
render_area.offset.y + render_area.extent.height,
|
|
surf.clear_color, NULL);
|
|
}
|
|
|
|
att_state->pending_clear_aspects = 0;
|
|
}
|
|
|
|
const uint32_t ds = cmd_state->subpass->depth_stencil_attachment;
|
|
|
|
if (ds != VK_ATTACHMENT_UNUSED &&
|
|
cmd_state->attachments[ds].pending_clear_aspects) {
|
|
|
|
VkClearAttachment clear_att = {
|
|
.aspectMask = cmd_state->attachments[ds].pending_clear_aspects,
|
|
.clearValue = cmd_state->attachments[ds].clear_value,
|
|
};
|
|
|
|
|
|
const uint8_t gen = cmd_buffer->device->info.gen;
|
|
bool clear_with_hiz = gen >= 8 && cmd_state->attachments[ds].aux_usage ==
|
|
ISL_AUX_USAGE_HIZ;
|
|
const struct anv_image_view *iview = fb->attachments[ds];
|
|
|
|
if (clear_with_hiz) {
|
|
const bool clear_depth = clear_att.aspectMask &
|
|
VK_IMAGE_ASPECT_DEPTH_BIT;
|
|
const bool clear_stencil = clear_att.aspectMask &
|
|
VK_IMAGE_ASPECT_STENCIL_BIT;
|
|
|
|
/* Check against restrictions for depth buffer clearing. A great GPU
|
|
* performance benefit isn't expected when using the HZ sequence for
|
|
* stencil-only clears. Therefore, we don't emit a HZ op sequence for
|
|
* a stencil clear in addition to using the BLORP-fallback for depth.
|
|
*/
|
|
if (clear_depth) {
|
|
if (!blorp_can_hiz_clear_depth(gen, iview->isl.format,
|
|
iview->image->samples,
|
|
render_area.offset.x,
|
|
render_area.offset.y,
|
|
render_area.offset.x +
|
|
render_area.extent.width,
|
|
render_area.offset.y +
|
|
render_area.extent.height)) {
|
|
clear_with_hiz = false;
|
|
} else if (clear_att.clearValue.depthStencil.depth !=
|
|
ANV_HZ_FC_VAL) {
|
|
/* Don't enable fast depth clears for any color not equal to
|
|
* ANV_HZ_FC_VAL.
|
|
*/
|
|
clear_with_hiz = false;
|
|
}
|
|
}
|
|
|
|
if (clear_with_hiz) {
|
|
blorp_gen8_hiz_clear_attachments(&batch, iview->image->samples,
|
|
render_area.offset.x,
|
|
render_area.offset.y,
|
|
render_area.offset.x +
|
|
render_area.extent.width,
|
|
render_area.offset.y +
|
|
render_area.extent.height,
|
|
clear_depth, clear_stencil,
|
|
clear_att.clearValue.
|
|
depthStencil.stencil);
|
|
}
|
|
}
|
|
|
|
if (!clear_with_hiz) {
|
|
clear_depth_stencil_attachment(cmd_buffer, &batch,
|
|
&clear_att, 1, &clear_rect);
|
|
}
|
|
|
|
cmd_state->attachments[ds].pending_clear_aspects = 0;
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
|
|
anv_cmd_buffer_flush_attachments(cmd_buffer, SUBPASS_STAGE_LOAD);
|
|
}
|
|
|
|
static void
|
|
resolve_image(struct blorp_batch *batch,
|
|
const struct anv_image *src_image,
|
|
uint32_t src_level, uint32_t src_layer,
|
|
const struct anv_image *dst_image,
|
|
uint32_t dst_level, uint32_t dst_layer,
|
|
VkImageAspectFlags aspect_mask,
|
|
uint32_t src_x, uint32_t src_y, uint32_t dst_x, uint32_t dst_y,
|
|
uint32_t width, uint32_t height)
|
|
{
|
|
assert(src_image->type == VK_IMAGE_TYPE_2D);
|
|
assert(src_image->samples > 1);
|
|
assert(dst_image->type == VK_IMAGE_TYPE_2D);
|
|
assert(dst_image->samples == 1);
|
|
|
|
uint32_t a;
|
|
for_each_bit(a, aspect_mask) {
|
|
VkImageAspectFlagBits aspect = 1 << a;
|
|
|
|
struct blorp_surf src_surf, dst_surf;
|
|
get_blorp_surf_for_anv_image(src_image, aspect,
|
|
src_image->aux_usage, &src_surf);
|
|
get_blorp_surf_for_anv_image(dst_image, aspect,
|
|
dst_image->aux_usage, &dst_surf);
|
|
|
|
blorp_blit(batch,
|
|
&src_surf, src_level, src_layer,
|
|
ISL_FORMAT_UNSUPPORTED, ISL_SWIZZLE_IDENTITY,
|
|
&dst_surf, dst_level, dst_layer,
|
|
ISL_FORMAT_UNSUPPORTED, ISL_SWIZZLE_IDENTITY,
|
|
src_x, src_y, src_x + width, src_y + height,
|
|
dst_x, dst_y, dst_x + width, dst_y + height,
|
|
0x2600 /* GL_NEAREST */, false, false);
|
|
}
|
|
}
|
|
|
|
void anv_CmdResolveImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage srcImage,
|
|
VkImageLayout srcImageLayout,
|
|
VkImage dstImage,
|
|
VkImageLayout dstImageLayout,
|
|
uint32_t regionCount,
|
|
const VkImageResolve* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
|
|
ANV_FROM_HANDLE(anv_image, dst_image, dstImage);
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
for (uint32_t r = 0; r < regionCount; r++) {
|
|
assert(pRegions[r].srcSubresource.aspectMask ==
|
|
pRegions[r].dstSubresource.aspectMask);
|
|
assert(pRegions[r].srcSubresource.layerCount ==
|
|
pRegions[r].dstSubresource.layerCount);
|
|
|
|
const uint32_t layer_count = pRegions[r].dstSubresource.layerCount;
|
|
|
|
for (uint32_t layer = 0; layer < layer_count; layer++) {
|
|
resolve_image(&batch,
|
|
src_image, pRegions[r].srcSubresource.mipLevel,
|
|
pRegions[r].srcSubresource.baseArrayLayer + layer,
|
|
dst_image, pRegions[r].dstSubresource.mipLevel,
|
|
pRegions[r].dstSubresource.baseArrayLayer + layer,
|
|
pRegions[r].dstSubresource.aspectMask,
|
|
pRegions[r].srcOffset.x, pRegions[r].srcOffset.y,
|
|
pRegions[r].dstOffset.x, pRegions[r].dstOffset.y,
|
|
pRegions[r].extent.width, pRegions[r].extent.height);
|
|
}
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
static void
|
|
ccs_resolve_attachment(struct anv_cmd_buffer *cmd_buffer,
|
|
struct blorp_batch *batch,
|
|
uint32_t att)
|
|
{
|
|
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
|
|
struct anv_attachment_state *att_state =
|
|
&cmd_buffer->state.attachments[att];
|
|
|
|
if (att_state->aux_usage == ISL_AUX_USAGE_NONE)
|
|
return; /* Nothing to resolve */
|
|
|
|
assert(att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
|
|
att_state->aux_usage == ISL_AUX_USAGE_CCS_D);
|
|
|
|
struct anv_render_pass *pass = cmd_buffer->state.pass;
|
|
struct anv_subpass *subpass = cmd_buffer->state.subpass;
|
|
unsigned subpass_idx = subpass - pass->subpasses;
|
|
assert(subpass_idx < pass->subpass_count);
|
|
|
|
/* Scan forward to see what all ways this attachment will be used.
|
|
* Ideally, we would like to resolve in the same subpass as the last write
|
|
* of a particular attachment. That way we only resolve once but it's
|
|
* still hot in the cache.
|
|
*/
|
|
bool found_draw = false;
|
|
enum anv_subpass_usage usage = 0;
|
|
for (uint32_t s = subpass_idx + 1; s < pass->subpass_count; s++) {
|
|
usage |= pass->attachments[att].subpass_usage[s];
|
|
|
|
if (usage & (ANV_SUBPASS_USAGE_DRAW | ANV_SUBPASS_USAGE_RESOLVE_DST)) {
|
|
/* We found another subpass that draws to this attachment. We'll
|
|
* wait to resolve until then.
|
|
*/
|
|
found_draw = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
struct anv_image_view *iview = fb->attachments[att];
|
|
const struct anv_image *image = iview->image;
|
|
assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
|
|
|
|
enum blorp_fast_clear_op resolve_op = BLORP_FAST_CLEAR_OP_NONE;
|
|
if (!found_draw) {
|
|
/* This is the last subpass that writes to this attachment so we need to
|
|
* resolve here. Ideally, we would like to only resolve if the storeOp
|
|
* is set to VK_ATTACHMENT_STORE_OP_STORE. However, we need to ensure
|
|
* that the CCS bits are set to "resolved" because there may be copy or
|
|
* blit operations (which may ignore CCS) between now and the next time
|
|
* we render and we need to ensure that anything they write will be
|
|
* respected in the next render. Unfortunately, the hardware does not
|
|
* provide us with any sort of "invalidate" pass that sets the CCS to
|
|
* "resolved" without writing to the render target.
|
|
*/
|
|
if (iview->image->aux_usage != ISL_AUX_USAGE_CCS_E) {
|
|
/* The image destination surface doesn't support compression outside
|
|
* the render pass. We need a full resolve.
|
|
*/
|
|
resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
|
|
} else if (att_state->fast_clear) {
|
|
/* We don't know what to do with clear colors outside the render
|
|
* pass. We need a partial resolve.
|
|
*/
|
|
resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
|
|
} else {
|
|
/* The image "natively" supports all the compression we care about
|
|
* and we don't need to resolve at all. If this is the case, we also
|
|
* don't need to resolve for any of the input attachment cases below.
|
|
*/
|
|
}
|
|
} else if (usage & ANV_SUBPASS_USAGE_INPUT) {
|
|
/* Input attachments are clear-color aware so, at least on Sky Lake, we
|
|
* can frequently sample from them with no resolves at all.
|
|
*/
|
|
if (att_state->aux_usage != att_state->input_aux_usage) {
|
|
assert(att_state->input_aux_usage == ISL_AUX_USAGE_NONE);
|
|
resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
|
|
} else if (!att_state->clear_color_is_zero_one) {
|
|
/* Sky Lake PRM, Vol. 2d, RENDER_SURFACE_STATE::Red Clear Color:
|
|
*
|
|
* "If Number of Multisamples is MULTISAMPLECOUNT_1 AND if this RT
|
|
* is fast cleared with non-0/1 clear value, this RT must be
|
|
* partially resolved (refer to Partial Resolve operation) before
|
|
* binding this surface to Sampler."
|
|
*/
|
|
resolve_op = BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
|
|
}
|
|
}
|
|
|
|
if (resolve_op == BLORP_FAST_CLEAR_OP_NONE)
|
|
return;
|
|
|
|
struct blorp_surf surf;
|
|
get_blorp_surf_for_anv_image(image, VK_IMAGE_ASPECT_COLOR_BIT,
|
|
att_state->aux_usage, &surf);
|
|
surf.clear_color = vk_to_isl_color(att_state->clear_value.color);
|
|
|
|
/* From the Sky Lake PRM Vol. 7, "Render Target Resolve":
|
|
*
|
|
* "When performing a render target resolve, PIPE_CONTROL with end of
|
|
* pipe sync must be delivered."
|
|
*
|
|
* This comment is a bit cryptic and doesn't really tell you what's going
|
|
* or what's really needed. It appears that fast clear ops are not
|
|
* properly synchronized with other drawing. We need to use a PIPE_CONTROL
|
|
* to ensure that the contents of the previous draw hit the render target
|
|
* before we resolve and then use a second PIPE_CONTROL after the resolve
|
|
* to ensure that it is completed before any additional drawing occurs.
|
|
*/
|
|
cmd_buffer->state.pending_pipe_bits |=
|
|
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
|
|
|
|
for (uint32_t layer = 0; layer < fb->layers; layer++) {
|
|
blorp_ccs_resolve(batch, &surf,
|
|
iview->isl.base_level,
|
|
iview->isl.base_array_layer + layer,
|
|
iview->isl.format, resolve_op);
|
|
}
|
|
|
|
cmd_buffer->state.pending_pipe_bits |=
|
|
ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
|
|
|
|
/* Once we've done any sort of resolve, we're no longer fast-cleared */
|
|
att_state->fast_clear = false;
|
|
}
|
|
|
|
void
|
|
anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer)
|
|
{
|
|
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
|
|
struct anv_subpass *subpass = cmd_buffer->state.subpass;
|
|
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
for (uint32_t i = 0; i < subpass->color_count; ++i) {
|
|
ccs_resolve_attachment(cmd_buffer, &batch,
|
|
subpass->color_attachments[i]);
|
|
}
|
|
|
|
anv_cmd_buffer_flush_attachments(cmd_buffer, SUBPASS_STAGE_DRAW);
|
|
|
|
if (subpass->has_resolve) {
|
|
for (uint32_t i = 0; i < subpass->color_count; ++i) {
|
|
uint32_t src_att = subpass->color_attachments[i];
|
|
uint32_t dst_att = subpass->resolve_attachments[i];
|
|
|
|
if (dst_att == VK_ATTACHMENT_UNUSED)
|
|
continue;
|
|
|
|
if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
|
|
/* From the Vulkan 1.0 spec:
|
|
*
|
|
* If the first use of an attachment in a render pass is as a
|
|
* resolve attachment, then the loadOp is effectively ignored
|
|
* as the resolve is guaranteed to overwrite all pixels in the
|
|
* render area.
|
|
*/
|
|
cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
|
|
}
|
|
|
|
struct anv_image_view *src_iview = fb->attachments[src_att];
|
|
struct anv_image_view *dst_iview = fb->attachments[dst_att];
|
|
|
|
const VkRect2D render_area = cmd_buffer->state.render_area;
|
|
|
|
assert(src_iview->aspect_mask == dst_iview->aspect_mask);
|
|
resolve_image(&batch, src_iview->image,
|
|
src_iview->isl.base_level,
|
|
src_iview->isl.base_array_layer,
|
|
dst_iview->image,
|
|
dst_iview->isl.base_level,
|
|
dst_iview->isl.base_array_layer,
|
|
src_iview->aspect_mask,
|
|
render_area.offset.x, render_area.offset.y,
|
|
render_area.offset.x, render_area.offset.y,
|
|
render_area.extent.width, render_area.extent.height);
|
|
|
|
ccs_resolve_attachment(cmd_buffer, &batch, dst_att);
|
|
}
|
|
|
|
anv_cmd_buffer_flush_attachments(cmd_buffer, SUBPASS_STAGE_RESOLVE);
|
|
}
|
|
|
|
blorp_batch_finish(&batch);
|
|
}
|
|
|
|
void
|
|
anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
|
|
const struct anv_image *image,
|
|
enum blorp_hiz_op op)
|
|
{
|
|
assert(image);
|
|
|
|
/* Don't resolve depth buffers without an auxiliary HiZ buffer and
|
|
* don't perform such a resolve on gens that don't support it.
|
|
*/
|
|
if (cmd_buffer->device->info.gen < 8 ||
|
|
image->aux_usage != ISL_AUX_USAGE_HIZ)
|
|
return;
|
|
|
|
const struct anv_cmd_state *cmd_state = &cmd_buffer->state;
|
|
const uint32_t ds = cmd_state->subpass->depth_stencil_attachment;
|
|
|
|
/* Section 7.4. of the Vulkan 1.0.27 spec states:
|
|
*
|
|
* "The render area must be contained within the framebuffer dimensions."
|
|
*
|
|
* Therefore, the only way the extent of the render area can match that of
|
|
* the image view is if the render area offset equals (0, 0).
|
|
*/
|
|
const bool full_surface_op =
|
|
cmd_state->render_area.extent.width == image->extent.width &&
|
|
cmd_state->render_area.extent.height == image->extent.height;
|
|
if (full_surface_op)
|
|
assert(cmd_state->render_area.offset.x == 0 &&
|
|
cmd_state->render_area.offset.y == 0);
|
|
|
|
/* Check the subpass index to determine if skipping a resolve is allowed */
|
|
const uint32_t subpass_idx = cmd_state->subpass - cmd_state->pass->subpasses;
|
|
switch (op) {
|
|
case BLORP_HIZ_OP_DEPTH_RESOLVE:
|
|
if (cmd_buffer->state.pass->attachments[ds].store_op !=
|
|
VK_ATTACHMENT_STORE_OP_STORE &&
|
|
subpass_idx == cmd_state->pass->subpass_count - 1)
|
|
return;
|
|
break;
|
|
case BLORP_HIZ_OP_HIZ_RESOLVE:
|
|
/* If the render area covers the entire surface *and* load_op is either
|
|
* CLEAR or DONT_CARE then the previous contents of the depth buffer
|
|
* will be entirely discarded. In this case, we can skip the HiZ
|
|
* resolve.
|
|
*
|
|
* If the render area is not the full surface, we need to do
|
|
* the resolve because otherwise data outside the render area may get
|
|
* garbled by the resolve at the end of the render pass.
|
|
*/
|
|
if (full_surface_op &&
|
|
cmd_buffer->state.pass->attachments[ds].load_op !=
|
|
VK_ATTACHMENT_LOAD_OP_LOAD && subpass_idx == 0)
|
|
return;
|
|
break;
|
|
case BLORP_HIZ_OP_DEPTH_CLEAR:
|
|
case BLORP_HIZ_OP_NONE:
|
|
unreachable("Invalid HiZ OP");
|
|
}
|
|
|
|
|
|
struct blorp_batch batch;
|
|
blorp_batch_init(&cmd_buffer->device->blorp, &batch, cmd_buffer, 0);
|
|
|
|
struct blorp_surf surf;
|
|
get_blorp_surf_for_anv_image(image, VK_IMAGE_ASPECT_DEPTH_BIT,
|
|
ISL_AUX_USAGE_NONE, &surf);
|
|
|
|
/* Manually add the aux HiZ surf */
|
|
surf.aux_surf = &image->aux_surface.isl,
|
|
surf.aux_addr = (struct blorp_address) {
|
|
.buffer = image->bo,
|
|
.offset = image->offset + image->aux_surface.offset,
|
|
};
|
|
surf.aux_usage = ISL_AUX_USAGE_HIZ;
|
|
|
|
surf.clear_color.u32[0] = (uint32_t) ANV_HZ_FC_VAL;
|
|
|
|
blorp_gen6_hiz_op(&batch, &surf, 0, 0, op);
|
|
blorp_batch_finish(&batch);
|
|
}
|