Files
third_party_mesa3d/src/gallium/drivers/vc4/vc4_qpu_schedule.c
Eric Anholt 88b41239f9 vc4: Rework scheduling of thread switch to cut one more NOP.
Jonas's patch got us most of the benefit of scheduling instructions into
the delay slots of thread switch, but if there had been nothing to pair
the thrsw with, it would move the thrsw up and leave a NOP where the thrsw
was.

Instead, don't pair anything with thrsw through the normal scheduling
path, and have a separate helper function that inserts the thrsw earlier
if possible and inserts any necessary NOPs.

total instructions in shared programs: 93027 -> 92643 (-0.41%)
instructions in affected programs:     14952 -> 14568 (-2.57%)
2016-12-29 15:22:54 -08:00

1171 lines
41 KiB
C

/*
* Copyright © 2010 Intel Corporation
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/**
* @file vc4_qpu_schedule.c
*
* The basic model of the list scheduler is to take a basic block, compute a
* DAG of the dependencies, and make a list of the DAG heads. Heuristically
* pick a DAG head, then put all the children that are now DAG heads into the
* list of things to schedule.
*
* The goal of scheduling here is to pack pairs of operations together in a
* single QPU instruction.
*/
#include "vc4_qir.h"
#include "vc4_qpu.h"
#include "util/ralloc.h"
static bool debug;
struct schedule_node_child;
struct schedule_node {
struct list_head link;
struct queued_qpu_inst *inst;
struct schedule_node_child *children;
uint32_t child_count;
uint32_t child_array_size;
uint32_t parent_count;
/* Longest cycles + instruction_latency() of any parent of this node. */
uint32_t unblocked_time;
/**
* Minimum number of cycles from scheduling this instruction until the
* end of the program, based on the slowest dependency chain through
* the children.
*/
uint32_t delay;
/**
* cycles between this instruction being scheduled and when its result
* can be consumed.
*/
uint32_t latency;
/**
* Which uniform from uniform_data[] this instruction read, or -1 if
* not reading a uniform.
*/
int uniform;
};
struct schedule_node_child {
struct schedule_node *node;
bool write_after_read;
};
/* When walking the instructions in reverse, we need to swap before/after in
* add_dep().
*/
enum direction { F, R };
struct schedule_state {
struct schedule_node *last_r[6];
struct schedule_node *last_ra[32];
struct schedule_node *last_rb[32];
struct schedule_node *last_sf;
struct schedule_node *last_vpm_read;
struct schedule_node *last_tmu_write;
struct schedule_node *last_tlb;
struct schedule_node *last_vpm;
struct schedule_node *last_uniforms_reset;
enum direction dir;
/* Estimated cycle when the current instruction would start. */
uint32_t time;
};
static void
add_dep(struct schedule_state *state,
struct schedule_node *before,
struct schedule_node *after,
bool write)
{
bool write_after_read = !write && state->dir == R;
if (!before || !after)
return;
assert(before != after);
if (state->dir == R) {
struct schedule_node *t = before;
before = after;
after = t;
}
for (int i = 0; i < before->child_count; i++) {
if (before->children[i].node == after &&
(before->children[i].write_after_read == write_after_read)) {
return;
}
}
if (before->child_array_size <= before->child_count) {
before->child_array_size = MAX2(before->child_array_size * 2, 16);
before->children = reralloc(before, before->children,
struct schedule_node_child,
before->child_array_size);
}
before->children[before->child_count].node = after;
before->children[before->child_count].write_after_read =
write_after_read;
before->child_count++;
after->parent_count++;
}
static void
add_read_dep(struct schedule_state *state,
struct schedule_node *before,
struct schedule_node *after)
{
add_dep(state, before, after, false);
}
static void
add_write_dep(struct schedule_state *state,
struct schedule_node **before,
struct schedule_node *after)
{
add_dep(state, *before, after, true);
*before = after;
}
static bool
qpu_writes_r4(uint64_t inst)
{
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
switch(sig) {
case QPU_SIG_COLOR_LOAD:
case QPU_SIG_LOAD_TMU0:
case QPU_SIG_LOAD_TMU1:
case QPU_SIG_ALPHA_MASK_LOAD:
return true;
default:
return false;
}
}
static void
process_raddr_deps(struct schedule_state *state, struct schedule_node *n,
uint32_t raddr, bool is_a)
{
switch (raddr) {
case QPU_R_VARY:
add_write_dep(state, &state->last_r[5], n);
break;
case QPU_R_VPM:
add_write_dep(state, &state->last_vpm_read, n);
break;
case QPU_R_UNIF:
add_read_dep(state, state->last_uniforms_reset, n);
break;
case QPU_R_NOP:
case QPU_R_ELEM_QPU:
case QPU_R_XY_PIXEL_COORD:
case QPU_R_MS_REV_FLAGS:
break;
default:
if (raddr < 32) {
if (is_a)
add_read_dep(state, state->last_ra[raddr], n);
else
add_read_dep(state, state->last_rb[raddr], n);
} else {
fprintf(stderr, "unknown raddr %d\n", raddr);
abort();
}
break;
}
}
static bool
is_tmu_write(uint32_t waddr)
{
switch (waddr) {
case QPU_W_TMU0_S:
case QPU_W_TMU0_T:
case QPU_W_TMU0_R:
case QPU_W_TMU0_B:
case QPU_W_TMU1_S:
case QPU_W_TMU1_T:
case QPU_W_TMU1_R:
case QPU_W_TMU1_B:
return true;
default:
return false;
}
}
static bool
reads_uniform(uint64_t inst)
{
if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_LOAD_IMM)
return false;
return (QPU_GET_FIELD(inst, QPU_RADDR_A) == QPU_R_UNIF ||
(QPU_GET_FIELD(inst, QPU_RADDR_B) == QPU_R_UNIF &&
QPU_GET_FIELD(inst, QPU_SIG) != QPU_SIG_SMALL_IMM) ||
is_tmu_write(QPU_GET_FIELD(inst, QPU_WADDR_ADD)) ||
is_tmu_write(QPU_GET_FIELD(inst, QPU_WADDR_MUL)));
}
static void
process_mux_deps(struct schedule_state *state, struct schedule_node *n,
uint32_t mux)
{
if (mux != QPU_MUX_A && mux != QPU_MUX_B)
add_read_dep(state, state->last_r[mux], n);
}
static void
process_waddr_deps(struct schedule_state *state, struct schedule_node *n,
uint32_t waddr, bool is_add)
{
uint64_t inst = n->inst->inst;
bool is_a = is_add ^ ((inst & QPU_WS) != 0);
if (waddr < 32) {
if (is_a) {
add_write_dep(state, &state->last_ra[waddr], n);
} else {
add_write_dep(state, &state->last_rb[waddr], n);
}
} else if (is_tmu_write(waddr)) {
add_write_dep(state, &state->last_tmu_write, n);
add_read_dep(state, state->last_uniforms_reset, n);
} else if (qpu_waddr_is_tlb(waddr) ||
waddr == QPU_W_MS_FLAGS) {
add_write_dep(state, &state->last_tlb, n);
} else {
switch (waddr) {
case QPU_W_ACC0:
case QPU_W_ACC1:
case QPU_W_ACC2:
case QPU_W_ACC3:
case QPU_W_ACC5:
add_write_dep(state, &state->last_r[waddr - QPU_W_ACC0],
n);
break;
case QPU_W_VPM:
add_write_dep(state, &state->last_vpm, n);
break;
case QPU_W_VPMVCD_SETUP:
if (is_a)
add_write_dep(state, &state->last_vpm_read, n);
else
add_write_dep(state, &state->last_vpm, n);
break;
case QPU_W_SFU_RECIP:
case QPU_W_SFU_RECIPSQRT:
case QPU_W_SFU_EXP:
case QPU_W_SFU_LOG:
add_write_dep(state, &state->last_r[4], n);
break;
case QPU_W_TLB_STENCIL_SETUP:
/* This isn't a TLB operation that does things like
* implicitly lock the scoreboard, but it does have to
* appear before TLB_Z, and each of the TLB_STENCILs
* have to schedule in the same order relative to each
* other.
*/
add_write_dep(state, &state->last_tlb, n);
break;
case QPU_W_MS_FLAGS:
add_write_dep(state, &state->last_tlb, n);
break;
case QPU_W_UNIFORMS_ADDRESS:
add_write_dep(state, &state->last_uniforms_reset, n);
break;
case QPU_W_NOP:
break;
default:
fprintf(stderr, "Unknown waddr %d\n", waddr);
abort();
}
}
}
static void
process_cond_deps(struct schedule_state *state, struct schedule_node *n,
uint32_t cond)
{
switch (cond) {
case QPU_COND_NEVER:
case QPU_COND_ALWAYS:
break;
default:
add_read_dep(state, state->last_sf, n);
break;
}
}
/**
* Common code for dependencies that need to be tracked both forward and
* backward.
*
* This is for things like "all reads of r4 have to happen between the r4
* writes that surround them".
*/
static void
calculate_deps(struct schedule_state *state, struct schedule_node *n)
{
uint64_t inst = n->inst->inst;
uint32_t add_op = QPU_GET_FIELD(inst, QPU_OP_ADD);
uint32_t mul_op = QPU_GET_FIELD(inst, QPU_OP_MUL);
uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
uint32_t add_a = QPU_GET_FIELD(inst, QPU_ADD_A);
uint32_t add_b = QPU_GET_FIELD(inst, QPU_ADD_B);
uint32_t mul_a = QPU_GET_FIELD(inst, QPU_MUL_A);
uint32_t mul_b = QPU_GET_FIELD(inst, QPU_MUL_B);
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
if (sig != QPU_SIG_LOAD_IMM) {
process_raddr_deps(state, n, raddr_a, true);
if (sig != QPU_SIG_SMALL_IMM &&
sig != QPU_SIG_BRANCH)
process_raddr_deps(state, n, raddr_b, false);
}
if (add_op != QPU_A_NOP) {
process_mux_deps(state, n, add_a);
process_mux_deps(state, n, add_b);
}
if (mul_op != QPU_M_NOP) {
process_mux_deps(state, n, mul_a);
process_mux_deps(state, n, mul_b);
}
process_waddr_deps(state, n, waddr_add, true);
process_waddr_deps(state, n, waddr_mul, false);
if (qpu_writes_r4(inst))
add_write_dep(state, &state->last_r[4], n);
switch (sig) {
case QPU_SIG_SW_BREAKPOINT:
case QPU_SIG_NONE:
case QPU_SIG_SMALL_IMM:
case QPU_SIG_LOAD_IMM:
break;
case QPU_SIG_THREAD_SWITCH:
case QPU_SIG_LAST_THREAD_SWITCH:
/* All accumulator contents and flags are undefined after the
* switch.
*/
for (int i = 0; i < ARRAY_SIZE(state->last_r); i++)
add_write_dep(state, &state->last_r[i], n);
add_write_dep(state, &state->last_sf, n);
/* Scoreboard-locking operations have to stay after the last
* thread switch.
*/
add_write_dep(state, &state->last_tlb, n);
add_write_dep(state, &state->last_tmu_write, n);
break;
case QPU_SIG_LOAD_TMU0:
case QPU_SIG_LOAD_TMU1:
/* TMU loads are coming from a FIFO, so ordering is important.
*/
add_write_dep(state, &state->last_tmu_write, n);
break;
case QPU_SIG_COLOR_LOAD:
add_read_dep(state, state->last_tlb, n);
break;
case QPU_SIG_BRANCH:
add_read_dep(state, state->last_sf, n);
break;
case QPU_SIG_PROG_END:
case QPU_SIG_WAIT_FOR_SCOREBOARD:
case QPU_SIG_SCOREBOARD_UNLOCK:
case QPU_SIG_COVERAGE_LOAD:
case QPU_SIG_COLOR_LOAD_END:
case QPU_SIG_ALPHA_MASK_LOAD:
fprintf(stderr, "Unhandled signal bits %d\n", sig);
abort();
}
process_cond_deps(state, n, QPU_GET_FIELD(inst, QPU_COND_ADD));
process_cond_deps(state, n, QPU_GET_FIELD(inst, QPU_COND_MUL));
if ((inst & QPU_SF) && sig != QPU_SIG_BRANCH)
add_write_dep(state, &state->last_sf, n);
}
static void
calculate_forward_deps(struct vc4_compile *c, struct list_head *schedule_list)
{
struct schedule_state state;
memset(&state, 0, sizeof(state));
state.dir = F;
list_for_each_entry(struct schedule_node, node, schedule_list, link)
calculate_deps(&state, node);
}
static void
calculate_reverse_deps(struct vc4_compile *c, struct list_head *schedule_list)
{
struct list_head *node;
struct schedule_state state;
memset(&state, 0, sizeof(state));
state.dir = R;
for (node = schedule_list->prev; schedule_list != node; node = node->prev) {
calculate_deps(&state, (struct schedule_node *)node);
}
}
struct choose_scoreboard {
int tick;
int last_sfu_write_tick;
int last_uniforms_reset_tick;
uint32_t last_waddr_a, last_waddr_b;
bool tlb_locked;
};
static bool
reads_too_soon_after_write(struct choose_scoreboard *scoreboard, uint64_t inst)
{
uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
/* Full immediate loads don't read any registers. */
if (sig == QPU_SIG_LOAD_IMM)
return false;
uint32_t src_muxes[] = {
QPU_GET_FIELD(inst, QPU_ADD_A),
QPU_GET_FIELD(inst, QPU_ADD_B),
QPU_GET_FIELD(inst, QPU_MUL_A),
QPU_GET_FIELD(inst, QPU_MUL_B),
};
for (int i = 0; i < ARRAY_SIZE(src_muxes); i++) {
if ((src_muxes[i] == QPU_MUX_A &&
raddr_a < 32 &&
scoreboard->last_waddr_a == raddr_a) ||
(src_muxes[i] == QPU_MUX_B &&
sig != QPU_SIG_SMALL_IMM &&
raddr_b < 32 &&
scoreboard->last_waddr_b == raddr_b)) {
return true;
}
if (src_muxes[i] == QPU_MUX_R4) {
if (scoreboard->tick -
scoreboard->last_sfu_write_tick <= 2) {
return true;
}
}
}
if (sig == QPU_SIG_SMALL_IMM &&
QPU_GET_FIELD(inst, QPU_SMALL_IMM) >= QPU_SMALL_IMM_MUL_ROT) {
uint32_t mux_a = QPU_GET_FIELD(inst, QPU_MUL_A);
uint32_t mux_b = QPU_GET_FIELD(inst, QPU_MUL_B);
if (scoreboard->last_waddr_a == mux_a + QPU_W_ACC0 ||
scoreboard->last_waddr_a == mux_b + QPU_W_ACC0 ||
scoreboard->last_waddr_b == mux_a + QPU_W_ACC0 ||
scoreboard->last_waddr_b == mux_b + QPU_W_ACC0) {
return true;
}
}
if (reads_uniform(inst) &&
scoreboard->tick - scoreboard->last_uniforms_reset_tick <= 2) {
return true;
}
return false;
}
static bool
pixel_scoreboard_too_soon(struct choose_scoreboard *scoreboard, uint64_t inst)
{
return (scoreboard->tick < 2 && qpu_inst_is_tlb(inst));
}
static int
get_instruction_priority(uint64_t inst)
{
uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
uint32_t baseline_score;
uint32_t next_score = 0;
/* Schedule TLB operations as late as possible, to get more
* parallelism between shaders.
*/
if (qpu_inst_is_tlb(inst))
return next_score;
next_score++;
/* Schedule texture read results collection late to hide latency. */
if (sig == QPU_SIG_LOAD_TMU0 || sig == QPU_SIG_LOAD_TMU1)
return next_score;
next_score++;
/* Default score for things that aren't otherwise special. */
baseline_score = next_score;
next_score++;
/* Schedule texture read setup early to hide their latency better. */
if (is_tmu_write(waddr_add) || is_tmu_write(waddr_mul))
return next_score;
next_score++;
return baseline_score;
}
static struct schedule_node *
choose_instruction_to_schedule(struct choose_scoreboard *scoreboard,
struct list_head *schedule_list,
struct schedule_node *prev_inst)
{
struct schedule_node *chosen = NULL;
int chosen_prio = 0;
/* Don't pair up anything with a thread switch signal -- emit_thrsw()
* will handle pairing it along with filling the delay slots.
*/
if (prev_inst) {
uint32_t prev_sig = QPU_GET_FIELD(prev_inst->inst->inst,
QPU_SIG);
if (prev_sig == QPU_SIG_THREAD_SWITCH ||
prev_sig == QPU_SIG_LAST_THREAD_SWITCH) {
return NULL;
}
}
list_for_each_entry(struct schedule_node, n, schedule_list, link) {
uint64_t inst = n->inst->inst;
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
/* Don't choose the branch instruction until it's the last one
* left. XXX: We could potentially choose it before it's the
* last one, if the remaining instructions fit in the delay
* slots.
*/
if (sig == QPU_SIG_BRANCH &&
!list_is_singular(schedule_list)) {
continue;
}
/* "An instruction must not read from a location in physical
* regfile A or B that was written to by the previous
* instruction."
*/
if (reads_too_soon_after_write(scoreboard, inst))
continue;
/* "A scoreboard wait must not occur in the first two
* instructions of a fragment shader. This is either the
* explicit Wait for Scoreboard signal or an implicit wait
* with the first tile-buffer read or write instruction."
*/
if (pixel_scoreboard_too_soon(scoreboard, inst))
continue;
/* If we're trying to pair with another instruction, check
* that they're compatible.
*/
if (prev_inst) {
/* Don't pair up a thread switch signal -- we'll
* handle pairing it when we pick it on its own.
*/
if (sig == QPU_SIG_THREAD_SWITCH ||
sig == QPU_SIG_LAST_THREAD_SWITCH) {
continue;
}
if (prev_inst->uniform != -1 && n->uniform != -1)
continue;
/* Don't merge in something that will lock the TLB.
* Hopwefully what we have in inst will release some
* other instructions, allowing us to delay the
* TLB-locking instruction until later.
*/
if (!scoreboard->tlb_locked && qpu_inst_is_tlb(inst))
continue;
inst = qpu_merge_inst(prev_inst->inst->inst, inst);
if (!inst)
continue;
}
int prio = get_instruction_priority(inst);
/* Found a valid instruction. If nothing better comes along,
* this one works.
*/
if (!chosen) {
chosen = n;
chosen_prio = prio;
continue;
}
if (prio > chosen_prio) {
chosen = n;
chosen_prio = prio;
} else if (prio < chosen_prio) {
continue;
}
if (n->delay > chosen->delay) {
chosen = n;
chosen_prio = prio;
} else if (n->delay < chosen->delay) {
continue;
}
}
return chosen;
}
static void
update_scoreboard_for_chosen(struct choose_scoreboard *scoreboard,
uint64_t inst)
{
uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
if (!(inst & QPU_WS)) {
scoreboard->last_waddr_a = waddr_add;
scoreboard->last_waddr_b = waddr_mul;
} else {
scoreboard->last_waddr_b = waddr_add;
scoreboard->last_waddr_a = waddr_mul;
}
if ((waddr_add >= QPU_W_SFU_RECIP && waddr_add <= QPU_W_SFU_LOG) ||
(waddr_mul >= QPU_W_SFU_RECIP && waddr_mul <= QPU_W_SFU_LOG)) {
scoreboard->last_sfu_write_tick = scoreboard->tick;
}
if (waddr_add == QPU_W_UNIFORMS_ADDRESS ||
waddr_mul == QPU_W_UNIFORMS_ADDRESS) {
scoreboard->last_uniforms_reset_tick = scoreboard->tick;
}
if (qpu_inst_is_tlb(inst))
scoreboard->tlb_locked = true;
}
static void
dump_state(struct list_head *schedule_list)
{
list_for_each_entry(struct schedule_node, n, schedule_list, link) {
fprintf(stderr, " t=%4d: ", n->unblocked_time);
vc4_qpu_disasm(&n->inst->inst, 1);
fprintf(stderr, "\n");
for (int i = 0; i < n->child_count; i++) {
struct schedule_node *child = n->children[i].node;
if (!child)
continue;
fprintf(stderr, " - ");
vc4_qpu_disasm(&child->inst->inst, 1);
fprintf(stderr, " (%d parents, %c)\n",
child->parent_count,
n->children[i].write_after_read ? 'w' : 'r');
}
}
}
static uint32_t waddr_latency(uint32_t waddr, uint64_t after)
{
if (waddr < 32)
return 2;
/* Apply some huge latency between texture fetch requests and getting
* their results back.
*
* FIXME: This is actually pretty bogus. If we do:
*
* mov tmu0_s, a
* <a bit of math>
* mov tmu0_s, b
* load_tmu0
* <more math>
* load_tmu0
*
* we count that as worse than
*
* mov tmu0_s, a
* mov tmu0_s, b
* <lots of math>
* load_tmu0
* <more math>
* load_tmu0
*
* because we associate the first load_tmu0 with the *second* tmu0_s.
*/
if (waddr == QPU_W_TMU0_S) {
if (QPU_GET_FIELD(after, QPU_SIG) == QPU_SIG_LOAD_TMU0)
return 100;
}
if (waddr == QPU_W_TMU1_S) {
if (QPU_GET_FIELD(after, QPU_SIG) == QPU_SIG_LOAD_TMU1)
return 100;
}
switch(waddr) {
case QPU_W_SFU_RECIP:
case QPU_W_SFU_RECIPSQRT:
case QPU_W_SFU_EXP:
case QPU_W_SFU_LOG:
return 3;
default:
return 1;
}
}
static uint32_t
instruction_latency(struct schedule_node *before, struct schedule_node *after)
{
uint64_t before_inst = before->inst->inst;
uint64_t after_inst = after->inst->inst;
return MAX2(waddr_latency(QPU_GET_FIELD(before_inst, QPU_WADDR_ADD),
after_inst),
waddr_latency(QPU_GET_FIELD(before_inst, QPU_WADDR_MUL),
after_inst));
}
/** Recursive computation of the delay member of a node. */
static void
compute_delay(struct schedule_node *n)
{
if (!n->child_count) {
n->delay = 1;
} else {
for (int i = 0; i < n->child_count; i++) {
if (!n->children[i].node->delay)
compute_delay(n->children[i].node);
n->delay = MAX2(n->delay,
n->children[i].node->delay +
instruction_latency(n, n->children[i].node));
}
}
}
static void
mark_instruction_scheduled(struct list_head *schedule_list,
uint32_t time,
struct schedule_node *node,
bool war_only)
{
if (!node)
return;
for (int i = node->child_count - 1; i >= 0; i--) {
struct schedule_node *child =
node->children[i].node;
if (!child)
continue;
if (war_only && !node->children[i].write_after_read)
continue;
/* If the requirement is only that the node not appear before
* the last read of its destination, then it can be scheduled
* immediately after (or paired with!) the thing reading the
* destination.
*/
uint32_t latency = 0;
if (!war_only) {
latency = instruction_latency(node,
node->children[i].node);
}
child->unblocked_time = MAX2(child->unblocked_time,
time + latency);
child->parent_count--;
if (child->parent_count == 0)
list_add(&child->link, schedule_list);
node->children[i].node = NULL;
}
}
/**
* Emits a THRSW/LTHRSW signal in the stream, trying to move it up to pair
* with another instruction.
*/
static void
emit_thrsw(struct vc4_compile *c,
struct choose_scoreboard *scoreboard,
uint64_t inst)
{
uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
/* There should be nothing in a thrsw inst being scheduled other than
* the signal bits.
*/
assert(QPU_GET_FIELD(inst, QPU_OP_ADD) == QPU_A_NOP);
assert(QPU_GET_FIELD(inst, QPU_OP_MUL) == QPU_M_NOP);
/* Try to find an earlier scheduled instruction that we can merge the
* thrsw into.
*/
int thrsw_ip = c->qpu_inst_count;
for (int i = 1; i <= MIN2(c->qpu_inst_count, 3); i++) {
uint64_t prev_instr = c->qpu_insts[c->qpu_inst_count - i];
uint32_t prev_sig = QPU_GET_FIELD(prev_instr, QPU_SIG);
if (prev_sig == QPU_SIG_NONE)
thrsw_ip = c->qpu_inst_count - i;
}
if (thrsw_ip != c->qpu_inst_count) {
/* Merge the thrsw into the existing instruction. */
c->qpu_insts[thrsw_ip] =
QPU_UPDATE_FIELD(c->qpu_insts[thrsw_ip], sig, QPU_SIG);
} else {
qpu_serialize_one_inst(c, inst);
update_scoreboard_for_chosen(scoreboard, inst);
}
/* Fill the delay slots. */
while (c->qpu_inst_count < thrsw_ip + 3) {
update_scoreboard_for_chosen(scoreboard, qpu_NOP());
qpu_serialize_one_inst(c, qpu_NOP());
}
}
static uint32_t
schedule_instructions(struct vc4_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
struct list_head *schedule_list,
enum quniform_contents *orig_uniform_contents,
uint32_t *orig_uniform_data,
uint32_t *next_uniform)
{
uint32_t time = 0;
if (debug) {
fprintf(stderr, "initial deps:\n");
dump_state(schedule_list);
fprintf(stderr, "\n");
}
/* Remove non-DAG heads from the list. */
list_for_each_entry_safe(struct schedule_node, n, schedule_list, link) {
if (n->parent_count != 0)
list_del(&n->link);
}
while (!list_empty(schedule_list)) {
struct schedule_node *chosen =
choose_instruction_to_schedule(scoreboard,
schedule_list,
NULL);
struct schedule_node *merge = NULL;
/* If there are no valid instructions to schedule, drop a NOP
* in.
*/
uint64_t inst = chosen ? chosen->inst->inst : qpu_NOP();
if (debug) {
fprintf(stderr, "t=%4d: current list:\n",
time);
dump_state(schedule_list);
fprintf(stderr, "t=%4d: chose: ", time);
vc4_qpu_disasm(&inst, 1);
fprintf(stderr, "\n");
}
/* Schedule this instruction onto the QPU list. Also try to
* find an instruction to pair with it.
*/
if (chosen) {
time = MAX2(chosen->unblocked_time, time);
list_del(&chosen->link);
mark_instruction_scheduled(schedule_list, time,
chosen, true);
if (chosen->uniform != -1) {
c->uniform_data[*next_uniform] =
orig_uniform_data[chosen->uniform];
c->uniform_contents[*next_uniform] =
orig_uniform_contents[chosen->uniform];
(*next_uniform)++;
}
merge = choose_instruction_to_schedule(scoreboard,
schedule_list,
chosen);
if (merge) {
time = MAX2(merge->unblocked_time, time);
list_del(&merge->link);
inst = qpu_merge_inst(inst, merge->inst->inst);
assert(inst != 0);
if (merge->uniform != -1) {
c->uniform_data[*next_uniform] =
orig_uniform_data[merge->uniform];
c->uniform_contents[*next_uniform] =
orig_uniform_contents[merge->uniform];
(*next_uniform)++;
}
if (debug) {
fprintf(stderr, "t=%4d: merging: ",
time);
vc4_qpu_disasm(&merge->inst->inst, 1);
fprintf(stderr, "\n");
fprintf(stderr, " resulting in: ");
vc4_qpu_disasm(&inst, 1);
fprintf(stderr, "\n");
}
}
}
if (debug) {
fprintf(stderr, "\n");
}
/* Now that we've scheduled a new instruction, some of its
* children can be promoted to the list of instructions ready to
* be scheduled. Update the children's unblocked time for this
* DAG edge as we do so.
*/
mark_instruction_scheduled(schedule_list, time, chosen, false);
mark_instruction_scheduled(schedule_list, time, merge, false);
if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_THREAD_SWITCH ||
QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_LAST_THREAD_SWITCH) {
emit_thrsw(c, scoreboard, inst);
} else {
qpu_serialize_one_inst(c, inst);
update_scoreboard_for_chosen(scoreboard, inst);
}
scoreboard->tick++;
time++;
if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_BRANCH) {
block->branch_qpu_ip = c->qpu_inst_count - 1;
/* Fill the delay slots.
*
* We should fill these with actual instructions,
* instead, but that will probably need to be done
* after this, once we know what the leading
* instructions of the successors are (so we can
* handle A/B register file write latency)
*/
inst = qpu_NOP();
update_scoreboard_for_chosen(scoreboard, inst);
qpu_serialize_one_inst(c, inst);
qpu_serialize_one_inst(c, inst);
qpu_serialize_one_inst(c, inst);
}
}
return time;
}
static uint32_t
qpu_schedule_instructions_block(struct vc4_compile *c,
struct choose_scoreboard *scoreboard,
struct qblock *block,
enum quniform_contents *orig_uniform_contents,
uint32_t *orig_uniform_data,
uint32_t *next_uniform)
{
void *mem_ctx = ralloc_context(NULL);
struct list_head schedule_list;
list_inithead(&schedule_list);
/* Wrap each instruction in a scheduler structure. */
uint32_t next_sched_uniform = *next_uniform;
while (!list_empty(&block->qpu_inst_list)) {
struct queued_qpu_inst *inst =
(struct queued_qpu_inst *)block->qpu_inst_list.next;
struct schedule_node *n = rzalloc(mem_ctx, struct schedule_node);
n->inst = inst;
if (reads_uniform(inst->inst)) {
n->uniform = next_sched_uniform++;
} else {
n->uniform = -1;
}
list_del(&inst->link);
list_addtail(&n->link, &schedule_list);
}
calculate_forward_deps(c, &schedule_list);
calculate_reverse_deps(c, &schedule_list);
list_for_each_entry(struct schedule_node, n, &schedule_list, link) {
compute_delay(n);
}
uint32_t cycles = schedule_instructions(c, scoreboard, block,
&schedule_list,
orig_uniform_contents,
orig_uniform_data,
next_uniform);
ralloc_free(mem_ctx);
return cycles;
}
static void
qpu_set_branch_targets(struct vc4_compile *c)
{
qir_for_each_block(block, c) {
/* The end block of the program has no branch. */
if (!block->successors[0])
continue;
/* If there was no branch instruction, then the successor
* block must follow immediately after this one.
*/
if (block->branch_qpu_ip == ~0) {
assert(block->end_qpu_ip + 1 ==
block->successors[0]->start_qpu_ip);
continue;
}
/* Set the branch target for the block that doesn't follow
* immediately after ours.
*/
uint64_t *branch_inst = &c->qpu_insts[block->branch_qpu_ip];
assert(QPU_GET_FIELD(*branch_inst, QPU_SIG) == QPU_SIG_BRANCH);
assert(QPU_GET_FIELD(*branch_inst, QPU_BRANCH_TARGET) == 0);
uint32_t branch_target =
(block->successors[0]->start_qpu_ip -
(block->branch_qpu_ip + 4)) * sizeof(uint64_t);
*branch_inst = (*branch_inst |
QPU_SET_FIELD(branch_target, QPU_BRANCH_TARGET));
/* Make sure that the if-we-don't-jump successor was scheduled
* just after the delay slots.
*/
if (block->successors[1]) {
assert(block->successors[1]->start_qpu_ip ==
block->branch_qpu_ip + 4);
}
}
}
uint32_t
qpu_schedule_instructions(struct vc4_compile *c)
{
/* We reorder the uniforms as we schedule instructions, so save the
* old data off and replace it.
*/
uint32_t *uniform_data = c->uniform_data;
enum quniform_contents *uniform_contents = c->uniform_contents;
c->uniform_contents = ralloc_array(c, enum quniform_contents,
c->num_uniforms);
c->uniform_data = ralloc_array(c, uint32_t, c->num_uniforms);
c->uniform_array_size = c->num_uniforms;
uint32_t next_uniform = 0;
struct choose_scoreboard scoreboard;
memset(&scoreboard, 0, sizeof(scoreboard));
scoreboard.last_waddr_a = ~0;
scoreboard.last_waddr_b = ~0;
scoreboard.last_sfu_write_tick = -10;
scoreboard.last_uniforms_reset_tick = -10;
if (debug) {
fprintf(stderr, "Pre-schedule instructions\n");
qir_for_each_block(block, c) {
fprintf(stderr, "BLOCK %d\n", block->index);
list_for_each_entry(struct queued_qpu_inst, q,
&block->qpu_inst_list, link) {
vc4_qpu_disasm(&q->inst, 1);
fprintf(stderr, "\n");
}
}
fprintf(stderr, "\n");
}
uint32_t cycles = 0;
qir_for_each_block(block, c) {
block->start_qpu_ip = c->qpu_inst_count;
block->branch_qpu_ip = ~0;
cycles += qpu_schedule_instructions_block(c,
&scoreboard,
block,
uniform_contents,
uniform_data,
&next_uniform);
block->end_qpu_ip = c->qpu_inst_count - 1;
}
qpu_set_branch_targets(c);
assert(next_uniform == c->num_uniforms);
if (debug) {
fprintf(stderr, "Post-schedule instructions\n");
vc4_qpu_disasm(c->qpu_insts, c->qpu_inst_count);
fprintf(stderr, "\n");
}
return cycles;
}