
Signed-off-by: Jason Ekstrand <jason@jlekstrand.net> Reviewed-by: Topi Pohjolainen <topi.pohjolainen@intel.com>
1872 lines
66 KiB
C
1872 lines
66 KiB
C
/*
|
|
* Copyright 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
|
|
#include "isl.h"
|
|
#include "isl_gen4.h"
|
|
#include "isl_gen6.h"
|
|
#include "isl_gen7.h"
|
|
#include "isl_gen8.h"
|
|
#include "isl_gen9.h"
|
|
#include "isl_priv.h"
|
|
|
|
void PRINTFLIKE(3, 4) UNUSED
|
|
__isl_finishme(const char *file, int line, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
char buf[512];
|
|
|
|
va_start(ap, fmt);
|
|
vsnprintf(buf, sizeof(buf), fmt, ap);
|
|
va_end(ap);
|
|
|
|
fprintf(stderr, "%s:%d: FINISHME: %s\n", file, line, buf);
|
|
}
|
|
|
|
static const struct {
|
|
uint8_t size;
|
|
uint8_t align;
|
|
uint8_t addr_offset;
|
|
uint8_t aux_addr_offset;
|
|
} ss_infos[] = {
|
|
[4] = {24, 32, 4},
|
|
[5] = {24, 32, 4},
|
|
[6] = {24, 32, 4},
|
|
[7] = {32, 32, 4, 24},
|
|
[8] = {52, 64, 32, 40},
|
|
[9] = {64, 64, 32, 40},
|
|
};
|
|
|
|
void
|
|
isl_device_init(struct isl_device *dev,
|
|
const struct gen_device_info *info,
|
|
bool has_bit6_swizzling)
|
|
{
|
|
dev->info = info;
|
|
dev->use_separate_stencil = ISL_DEV_GEN(dev) >= 6;
|
|
dev->has_bit6_swizzling = has_bit6_swizzling;
|
|
|
|
/* The ISL_DEV macros may be defined in the CFLAGS, thus hardcoding some
|
|
* device properties at buildtime. Verify that the macros with the device
|
|
* properties chosen during runtime.
|
|
*/
|
|
ISL_DEV_GEN_SANITIZE(dev);
|
|
ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(dev);
|
|
|
|
/* Did we break hiz or stencil? */
|
|
if (ISL_DEV_USE_SEPARATE_STENCIL(dev))
|
|
assert(info->has_hiz_and_separate_stencil);
|
|
if (info->must_use_separate_stencil)
|
|
assert(ISL_DEV_USE_SEPARATE_STENCIL(dev));
|
|
|
|
dev->ss.size = ss_infos[ISL_DEV_GEN(dev)].size;
|
|
dev->ss.align = ss_infos[ISL_DEV_GEN(dev)].align;
|
|
dev->ss.addr_offset = ss_infos[ISL_DEV_GEN(dev)].addr_offset;
|
|
dev->ss.aux_addr_offset = ss_infos[ISL_DEV_GEN(dev)].aux_addr_offset;
|
|
}
|
|
|
|
/**
|
|
* @brief Query the set of multisamples supported by the device.
|
|
*
|
|
* This function always returns non-zero, as ISL_SAMPLE_COUNT_1_BIT is always
|
|
* supported.
|
|
*/
|
|
isl_sample_count_mask_t ATTRIBUTE_CONST
|
|
isl_device_get_sample_counts(struct isl_device *dev)
|
|
{
|
|
if (ISL_DEV_GEN(dev) >= 9) {
|
|
return ISL_SAMPLE_COUNT_1_BIT |
|
|
ISL_SAMPLE_COUNT_2_BIT |
|
|
ISL_SAMPLE_COUNT_4_BIT |
|
|
ISL_SAMPLE_COUNT_8_BIT |
|
|
ISL_SAMPLE_COUNT_16_BIT;
|
|
} else if (ISL_DEV_GEN(dev) >= 8) {
|
|
return ISL_SAMPLE_COUNT_1_BIT |
|
|
ISL_SAMPLE_COUNT_2_BIT |
|
|
ISL_SAMPLE_COUNT_4_BIT |
|
|
ISL_SAMPLE_COUNT_8_BIT;
|
|
} else if (ISL_DEV_GEN(dev) >= 7) {
|
|
return ISL_SAMPLE_COUNT_1_BIT |
|
|
ISL_SAMPLE_COUNT_4_BIT |
|
|
ISL_SAMPLE_COUNT_8_BIT;
|
|
} else if (ISL_DEV_GEN(dev) >= 6) {
|
|
return ISL_SAMPLE_COUNT_1_BIT |
|
|
ISL_SAMPLE_COUNT_4_BIT;
|
|
} else {
|
|
return ISL_SAMPLE_COUNT_1_BIT;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param[out] info is written only on success
|
|
*/
|
|
static bool
|
|
isl_tiling_get_info(const struct isl_device *dev,
|
|
enum isl_tiling tiling,
|
|
uint32_t format_bpb,
|
|
struct isl_tile_info *tile_info)
|
|
{
|
|
const uint32_t bs = format_bpb / 8;
|
|
struct isl_extent2d logical_el, phys_B;
|
|
|
|
if (tiling != ISL_TILING_LINEAR && !isl_is_pow2(format_bpb)) {
|
|
/* It is possible to have non-power-of-two formats in a tiled buffer.
|
|
* The easiest way to handle this is to treat the tile as if it is three
|
|
* times as wide. This way no pixel will ever cross a tile boundary.
|
|
* This really only works on legacy X and Y tiling formats.
|
|
*/
|
|
assert(tiling == ISL_TILING_X || tiling == ISL_TILING_Y0);
|
|
assert(bs % 3 == 0 && isl_is_pow2(format_bpb / 3));
|
|
return isl_tiling_get_info(dev, tiling, format_bpb / 3, tile_info);
|
|
}
|
|
|
|
switch (tiling) {
|
|
case ISL_TILING_LINEAR:
|
|
assert(bs > 0);
|
|
logical_el = isl_extent2d(1, 1);
|
|
phys_B = isl_extent2d(bs, 1);
|
|
break;
|
|
|
|
case ISL_TILING_X:
|
|
assert(bs > 0);
|
|
logical_el = isl_extent2d(512 / bs, 8);
|
|
phys_B = isl_extent2d(512, 8);
|
|
break;
|
|
|
|
case ISL_TILING_Y0:
|
|
assert(bs > 0);
|
|
logical_el = isl_extent2d(128 / bs, 32);
|
|
phys_B = isl_extent2d(128, 32);
|
|
break;
|
|
|
|
case ISL_TILING_W:
|
|
assert(bs == 1);
|
|
logical_el = isl_extent2d(64, 64);
|
|
/* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfacePitch:
|
|
*
|
|
* "If the surface is a stencil buffer (and thus has Tile Mode set
|
|
* to TILEMODE_WMAJOR), the pitch must be set to 2x the value
|
|
* computed based on width, as the stencil buffer is stored with two
|
|
* rows interleaved."
|
|
*
|
|
* This, together with the fact that stencil buffers are referred to as
|
|
* being Y-tiled in the PRMs for older hardware implies that the
|
|
* physical size of a W-tile is actually the same as for a Y-tile.
|
|
*/
|
|
phys_B = isl_extent2d(128, 32);
|
|
break;
|
|
|
|
case ISL_TILING_Yf:
|
|
case ISL_TILING_Ys: {
|
|
if (ISL_DEV_GEN(dev) < 9)
|
|
return false;
|
|
|
|
if (!isl_is_pow2(bs))
|
|
return false;
|
|
|
|
bool is_Ys = tiling == ISL_TILING_Ys;
|
|
|
|
assert(bs > 0);
|
|
unsigned width = 1 << (6 + (ffs(bs) / 2) + (2 * is_Ys));
|
|
unsigned height = 1 << (6 - (ffs(bs) / 2) + (2 * is_Ys));
|
|
|
|
logical_el = isl_extent2d(width / bs, height);
|
|
phys_B = isl_extent2d(width, height);
|
|
break;
|
|
}
|
|
|
|
case ISL_TILING_HIZ:
|
|
/* HiZ buffers are required to have ISL_FORMAT_HIZ which is an 8x4
|
|
* 128bpb format. The tiling has the same physical dimensions as
|
|
* Y-tiling but actually has two HiZ columns per Y-tiled column.
|
|
*/
|
|
assert(bs == 16);
|
|
logical_el = isl_extent2d(16, 16);
|
|
phys_B = isl_extent2d(128, 32);
|
|
break;
|
|
|
|
case ISL_TILING_CCS:
|
|
/* CCS surfaces are required to have one of the GENX_CCS_* formats which
|
|
* have a block size of 1 or 2 bits per block and each CCS element
|
|
* corresponds to one cache-line pair in the main surface. From the Sky
|
|
* Lake PRM Vol. 12 in the section on planes:
|
|
*
|
|
* "The Color Control Surface (CCS) contains the compression status
|
|
* of the cache-line pairs. The compression state of the cache-line
|
|
* pair is specified by 2 bits in the CCS. Each CCS cache-line
|
|
* represents an area on the main surface of 16x16 sets of 128 byte
|
|
* Y-tiled cache-line-pairs. CCS is always Y tiled."
|
|
*
|
|
* The CCS being Y-tiled implies that it's an 8x8 grid of cache-lines.
|
|
* Since each cache line corresponds to a 16x16 set of cache-line pairs,
|
|
* that yields total tile area of 128x128 cache-line pairs or CCS
|
|
* elements. On older hardware, each CCS element is 1 bit and the tile
|
|
* is 128x256 elements.
|
|
*/
|
|
assert(format_bpb == 1 || format_bpb == 2);
|
|
logical_el = isl_extent2d(128, 256 / format_bpb);
|
|
phys_B = isl_extent2d(128, 32);
|
|
break;
|
|
|
|
default:
|
|
unreachable("not reached");
|
|
} /* end switch */
|
|
|
|
*tile_info = (struct isl_tile_info) {
|
|
.tiling = tiling,
|
|
.format_bpb = format_bpb,
|
|
.logical_extent_el = logical_el,
|
|
.phys_extent_B = phys_B,
|
|
};
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @param[out] tiling is set only on success
|
|
*/
|
|
static bool
|
|
isl_surf_choose_tiling(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
enum isl_tiling *tiling)
|
|
{
|
|
isl_tiling_flags_t tiling_flags = info->tiling_flags;
|
|
|
|
/* HiZ surfaces always use the HiZ tiling */
|
|
if (info->usage & ISL_SURF_USAGE_HIZ_BIT) {
|
|
assert(info->format == ISL_FORMAT_HIZ);
|
|
assert(tiling_flags == ISL_TILING_HIZ_BIT);
|
|
*tiling = ISL_TILING_HIZ;
|
|
return true;
|
|
}
|
|
|
|
/* CCS surfaces always use the CCS tiling */
|
|
if (info->usage & ISL_SURF_USAGE_CCS_BIT) {
|
|
assert(isl_format_get_layout(info->format)->txc == ISL_TXC_CCS);
|
|
assert(tiling_flags == ISL_TILING_CCS_BIT);
|
|
*tiling = ISL_TILING_CCS;
|
|
return true;
|
|
}
|
|
|
|
if (ISL_DEV_GEN(dev) >= 6) {
|
|
isl_gen6_filter_tiling(dev, info, &tiling_flags);
|
|
} else {
|
|
isl_finishme("%s: gen%u", __func__, ISL_DEV_GEN(dev));
|
|
isl_gen6_filter_tiling(dev, info, &tiling_flags);
|
|
}
|
|
|
|
#define CHOOSE(__tiling) \
|
|
do { \
|
|
if (tiling_flags & (1u << (__tiling))) { \
|
|
*tiling = (__tiling); \
|
|
return true; \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Of the tiling modes remaining, choose the one that offers the best
|
|
* performance.
|
|
*/
|
|
|
|
if (info->dim == ISL_SURF_DIM_1D) {
|
|
/* Prefer linear for 1D surfaces because they do not benefit from
|
|
* tiling. To the contrary, tiling leads to wasted memory and poor
|
|
* memory locality due to the swizzling and alignment restrictions
|
|
* required in tiled surfaces.
|
|
*/
|
|
CHOOSE(ISL_TILING_LINEAR);
|
|
}
|
|
|
|
CHOOSE(ISL_TILING_Ys);
|
|
CHOOSE(ISL_TILING_Yf);
|
|
CHOOSE(ISL_TILING_Y0);
|
|
CHOOSE(ISL_TILING_X);
|
|
CHOOSE(ISL_TILING_W);
|
|
CHOOSE(ISL_TILING_LINEAR);
|
|
|
|
#undef CHOOSE
|
|
|
|
/* No tiling mode accomodates the inputs. */
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
isl_choose_msaa_layout(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *info,
|
|
enum isl_tiling tiling,
|
|
enum isl_msaa_layout *msaa_layout)
|
|
{
|
|
if (ISL_DEV_GEN(dev) >= 8) {
|
|
return isl_gen8_choose_msaa_layout(dev, info, tiling, msaa_layout);
|
|
} else if (ISL_DEV_GEN(dev) >= 7) {
|
|
return isl_gen7_choose_msaa_layout(dev, info, tiling, msaa_layout);
|
|
} else if (ISL_DEV_GEN(dev) >= 6) {
|
|
return isl_gen6_choose_msaa_layout(dev, info, tiling, msaa_layout);
|
|
} else {
|
|
return isl_gen4_choose_msaa_layout(dev, info, tiling, msaa_layout);
|
|
}
|
|
}
|
|
|
|
struct isl_extent2d
|
|
isl_get_interleaved_msaa_px_size_sa(uint32_t samples)
|
|
{
|
|
assert(isl_is_pow2(samples));
|
|
|
|
/* From the Broadwell PRM >> Volume 5: Memory Views >> Computing Mip Level
|
|
* Sizes (p133):
|
|
*
|
|
* If the surface is multisampled and it is a depth or stencil surface
|
|
* or Multisampled Surface StorageFormat in SURFACE_STATE is
|
|
* MSFMT_DEPTH_STENCIL, W_L and H_L must be adjusted as follows before
|
|
* proceeding: [...]
|
|
*/
|
|
return (struct isl_extent2d) {
|
|
.width = 1 << ((ffs(samples) - 0) / 2),
|
|
.height = 1 << ((ffs(samples) - 1) / 2),
|
|
};
|
|
}
|
|
|
|
static void
|
|
isl_msaa_interleaved_scale_px_to_sa(uint32_t samples,
|
|
uint32_t *width, uint32_t *height)
|
|
{
|
|
const struct isl_extent2d px_size_sa =
|
|
isl_get_interleaved_msaa_px_size_sa(samples);
|
|
|
|
if (width)
|
|
*width = isl_align(*width, 2) * px_size_sa.width;
|
|
if (height)
|
|
*height = isl_align(*height, 2) * px_size_sa.height;
|
|
}
|
|
|
|
static enum isl_array_pitch_span
|
|
isl_choose_array_pitch_span(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
enum isl_dim_layout dim_layout,
|
|
const struct isl_extent4d *phys_level0_sa)
|
|
{
|
|
switch (dim_layout) {
|
|
case ISL_DIM_LAYOUT_GEN9_1D:
|
|
case ISL_DIM_LAYOUT_GEN4_2D:
|
|
if (ISL_DEV_GEN(dev) >= 8) {
|
|
/* QPitch becomes programmable in Broadwell. So choose the
|
|
* most compact QPitch possible in order to conserve memory.
|
|
*
|
|
* From the Broadwell PRM >> Volume 2d: Command Reference: Structures
|
|
* >> RENDER_SURFACE_STATE Surface QPitch (p325):
|
|
*
|
|
* - Software must ensure that this field is set to a value
|
|
* sufficiently large such that the array slices in the surface
|
|
* do not overlap. Refer to the Memory Data Formats section for
|
|
* information on how surfaces are stored in memory.
|
|
*
|
|
* - This field specifies the distance in rows between array
|
|
* slices. It is used only in the following cases:
|
|
*
|
|
* - Surface Array is enabled OR
|
|
* - Number of Mulitsamples is not NUMSAMPLES_1 and
|
|
* Multisampled Surface Storage Format set to MSFMT_MSS OR
|
|
* - Surface Type is SURFTYPE_CUBE
|
|
*/
|
|
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
|
} else if (ISL_DEV_GEN(dev) >= 7) {
|
|
/* Note that Ivybridge introduces
|
|
* RENDER_SURFACE_STATE.SurfaceArraySpacing, which provides the
|
|
* driver more control over the QPitch.
|
|
*/
|
|
|
|
if (phys_level0_sa->array_len == 1) {
|
|
/* The hardware will never use the QPitch. So choose the most
|
|
* compact QPitch possible in order to conserve memory.
|
|
*/
|
|
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
|
}
|
|
|
|
if (isl_surf_usage_is_depth_or_stencil(info->usage) ||
|
|
(info->usage & ISL_SURF_USAGE_HIZ_BIT)) {
|
|
/* From the Ivybridge PRM >> Volume 1 Part 1: Graphics Core >>
|
|
* Section 6.18.4.7: Surface Arrays (p112):
|
|
*
|
|
* If Surface Array Spacing is set to ARYSPC_FULL (note that
|
|
* the depth buffer and stencil buffer have an implied value of
|
|
* ARYSPC_FULL):
|
|
*/
|
|
return ISL_ARRAY_PITCH_SPAN_FULL;
|
|
}
|
|
|
|
if (info->levels == 1) {
|
|
/* We are able to set RENDER_SURFACE_STATE.SurfaceArraySpacing
|
|
* to ARYSPC_LOD0.
|
|
*/
|
|
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
|
}
|
|
|
|
return ISL_ARRAY_PITCH_SPAN_FULL;
|
|
} else if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
|
|
ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
|
|
isl_surf_usage_is_stencil(info->usage)) {
|
|
/* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
|
|
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
|
|
*
|
|
* The separate stencil buffer does not support mip mapping, thus
|
|
* the storage for LODs other than LOD 0 is not needed.
|
|
*/
|
|
assert(info->levels == 1);
|
|
assert(phys_level0_sa->array_len == 1);
|
|
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
|
} else {
|
|
if ((ISL_DEV_GEN(dev) == 5 || ISL_DEV_GEN(dev) == 6) &&
|
|
ISL_DEV_USE_SEPARATE_STENCIL(dev) &&
|
|
isl_surf_usage_is_stencil(info->usage)) {
|
|
/* [ILK-SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
|
|
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
|
|
*
|
|
* The separate stencil buffer does not support mip mapping,
|
|
* thus the storage for LODs other than LOD 0 is not needed.
|
|
*/
|
|
assert(info->levels == 1);
|
|
assert(phys_level0_sa->array_len == 1);
|
|
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
|
}
|
|
|
|
if (phys_level0_sa->array_len == 1) {
|
|
/* The hardware will never use the QPitch. So choose the most
|
|
* compact QPitch possible in order to conserve memory.
|
|
*/
|
|
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
|
}
|
|
|
|
return ISL_ARRAY_PITCH_SPAN_FULL;
|
|
}
|
|
|
|
case ISL_DIM_LAYOUT_GEN4_3D:
|
|
/* The hardware will never use the QPitch. So choose the most
|
|
* compact QPitch possible in order to conserve memory.
|
|
*/
|
|
return ISL_ARRAY_PITCH_SPAN_COMPACT;
|
|
}
|
|
|
|
unreachable("bad isl_dim_layout");
|
|
return ISL_ARRAY_PITCH_SPAN_FULL;
|
|
}
|
|
|
|
static void
|
|
isl_choose_image_alignment_el(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
enum isl_tiling tiling,
|
|
enum isl_dim_layout dim_layout,
|
|
enum isl_msaa_layout msaa_layout,
|
|
struct isl_extent3d *image_align_el)
|
|
{
|
|
if (info->format == ISL_FORMAT_HIZ) {
|
|
assert(ISL_DEV_GEN(dev) >= 6);
|
|
/* HiZ surfaces are always aligned to 16x8 pixels in the primary surface
|
|
* which works out to 2x2 HiZ elments.
|
|
*/
|
|
*image_align_el = isl_extent3d(2, 2, 1);
|
|
return;
|
|
}
|
|
|
|
if (ISL_DEV_GEN(dev) >= 9) {
|
|
isl_gen9_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
|
msaa_layout, image_align_el);
|
|
} else if (ISL_DEV_GEN(dev) >= 8) {
|
|
isl_gen8_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
|
msaa_layout, image_align_el);
|
|
} else if (ISL_DEV_GEN(dev) >= 7) {
|
|
isl_gen7_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
|
msaa_layout, image_align_el);
|
|
} else if (ISL_DEV_GEN(dev) >= 6) {
|
|
isl_gen6_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
|
msaa_layout, image_align_el);
|
|
} else {
|
|
isl_gen4_choose_image_alignment_el(dev, info, tiling, dim_layout,
|
|
msaa_layout, image_align_el);
|
|
}
|
|
}
|
|
|
|
static enum isl_dim_layout
|
|
isl_surf_choose_dim_layout(const struct isl_device *dev,
|
|
enum isl_surf_dim logical_dim,
|
|
enum isl_tiling tiling)
|
|
{
|
|
if (ISL_DEV_GEN(dev) >= 9) {
|
|
switch (logical_dim) {
|
|
case ISL_SURF_DIM_1D:
|
|
/* From the Sky Lake PRM Vol. 5, "1D Surfaces":
|
|
*
|
|
* One-dimensional surfaces use a tiling mode of linear.
|
|
* Technically, they are not tiled resources, but the Tiled
|
|
* Resource Mode field in RENDER_SURFACE_STATE is still used to
|
|
* indicate the alignment requirements for this linear surface
|
|
* (See 1D Alignment requirements for how 4K and 64KB Tiled
|
|
* Resource Modes impact alignment). Alternatively, a 1D surface
|
|
* can be defined as a 2D tiled surface (e.g. TileY or TileX) with
|
|
* a height of 0.
|
|
*
|
|
* In other words, ISL_DIM_LAYOUT_GEN9_1D is only used for linear
|
|
* surfaces and, for tiled surfaces, ISL_DIM_LAYOUT_GEN4_2D is used.
|
|
*/
|
|
if (tiling == ISL_TILING_LINEAR)
|
|
return ISL_DIM_LAYOUT_GEN9_1D;
|
|
else
|
|
return ISL_DIM_LAYOUT_GEN4_2D;
|
|
case ISL_SURF_DIM_2D:
|
|
case ISL_SURF_DIM_3D:
|
|
return ISL_DIM_LAYOUT_GEN4_2D;
|
|
}
|
|
} else {
|
|
switch (logical_dim) {
|
|
case ISL_SURF_DIM_1D:
|
|
case ISL_SURF_DIM_2D:
|
|
return ISL_DIM_LAYOUT_GEN4_2D;
|
|
case ISL_SURF_DIM_3D:
|
|
return ISL_DIM_LAYOUT_GEN4_3D;
|
|
}
|
|
}
|
|
|
|
unreachable("bad isl_surf_dim");
|
|
return ISL_DIM_LAYOUT_GEN4_2D;
|
|
}
|
|
|
|
/**
|
|
* Calculate the physical extent of the surface's first level, in units of
|
|
* surface samples. The result is aligned to the format's compression block.
|
|
*/
|
|
static void
|
|
isl_calc_phys_level0_extent_sa(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
enum isl_dim_layout dim_layout,
|
|
enum isl_tiling tiling,
|
|
enum isl_msaa_layout msaa_layout,
|
|
struct isl_extent4d *phys_level0_sa)
|
|
{
|
|
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
|
|
|
if (isl_format_is_yuv(info->format))
|
|
isl_finishme("%s:%s: YUV format", __FILE__, __func__);
|
|
|
|
switch (info->dim) {
|
|
case ISL_SURF_DIM_1D:
|
|
assert(info->height == 1);
|
|
assert(info->depth == 1);
|
|
assert(info->samples == 1);
|
|
|
|
switch (dim_layout) {
|
|
case ISL_DIM_LAYOUT_GEN4_3D:
|
|
unreachable("bad isl_dim_layout");
|
|
|
|
case ISL_DIM_LAYOUT_GEN9_1D:
|
|
case ISL_DIM_LAYOUT_GEN4_2D:
|
|
*phys_level0_sa = (struct isl_extent4d) {
|
|
.w = isl_align_npot(info->width, fmtl->bw),
|
|
.h = fmtl->bh,
|
|
.d = 1,
|
|
.a = info->array_len,
|
|
};
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case ISL_SURF_DIM_2D:
|
|
assert(dim_layout == ISL_DIM_LAYOUT_GEN4_2D);
|
|
|
|
if (tiling == ISL_TILING_Ys && info->samples > 1)
|
|
isl_finishme("%s:%s: multisample TileYs layout", __FILE__, __func__);
|
|
|
|
switch (msaa_layout) {
|
|
case ISL_MSAA_LAYOUT_NONE:
|
|
assert(info->depth == 1);
|
|
assert(info->samples == 1);
|
|
|
|
*phys_level0_sa = (struct isl_extent4d) {
|
|
.w = isl_align_npot(info->width, fmtl->bw),
|
|
.h = isl_align_npot(info->height, fmtl->bh),
|
|
.d = 1,
|
|
.a = info->array_len,
|
|
};
|
|
break;
|
|
|
|
case ISL_MSAA_LAYOUT_ARRAY:
|
|
assert(info->depth == 1);
|
|
assert(info->levels == 1);
|
|
assert(isl_format_supports_multisampling(dev->info, info->format));
|
|
assert(fmtl->bw == 1 && fmtl->bh == 1);
|
|
|
|
*phys_level0_sa = (struct isl_extent4d) {
|
|
.w = info->width,
|
|
.h = info->height,
|
|
.d = 1,
|
|
.a = info->array_len * info->samples,
|
|
};
|
|
break;
|
|
|
|
case ISL_MSAA_LAYOUT_INTERLEAVED:
|
|
assert(info->depth == 1);
|
|
assert(info->levels == 1);
|
|
assert(isl_format_supports_multisampling(dev->info, info->format));
|
|
|
|
*phys_level0_sa = (struct isl_extent4d) {
|
|
.w = info->width,
|
|
.h = info->height,
|
|
.d = 1,
|
|
.a = info->array_len,
|
|
};
|
|
|
|
isl_msaa_interleaved_scale_px_to_sa(info->samples,
|
|
&phys_level0_sa->w,
|
|
&phys_level0_sa->h);
|
|
|
|
phys_level0_sa->w = isl_align(phys_level0_sa->w, fmtl->bw);
|
|
phys_level0_sa->h = isl_align(phys_level0_sa->h, fmtl->bh);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case ISL_SURF_DIM_3D:
|
|
assert(info->array_len == 1);
|
|
assert(info->samples == 1);
|
|
|
|
if (fmtl->bd > 1) {
|
|
isl_finishme("%s:%s: compression block with depth > 1",
|
|
__FILE__, __func__);
|
|
}
|
|
|
|
switch (dim_layout) {
|
|
case ISL_DIM_LAYOUT_GEN9_1D:
|
|
unreachable("bad isl_dim_layout");
|
|
|
|
case ISL_DIM_LAYOUT_GEN4_2D:
|
|
assert(ISL_DEV_GEN(dev) >= 9);
|
|
|
|
*phys_level0_sa = (struct isl_extent4d) {
|
|
.w = isl_align_npot(info->width, fmtl->bw),
|
|
.h = isl_align_npot(info->height, fmtl->bh),
|
|
.d = 1,
|
|
.a = info->depth,
|
|
};
|
|
break;
|
|
|
|
case ISL_DIM_LAYOUT_GEN4_3D:
|
|
assert(ISL_DEV_GEN(dev) < 9);
|
|
*phys_level0_sa = (struct isl_extent4d) {
|
|
.w = isl_align(info->width, fmtl->bw),
|
|
.h = isl_align(info->height, fmtl->bh),
|
|
.d = info->depth,
|
|
.a = 1,
|
|
};
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A variant of isl_calc_phys_slice0_extent_sa() specific to
|
|
* ISL_DIM_LAYOUT_GEN4_2D.
|
|
*/
|
|
static void
|
|
isl_calc_phys_slice0_extent_sa_gen4_2d(
|
|
const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
enum isl_msaa_layout msaa_layout,
|
|
const struct isl_extent3d *image_align_sa,
|
|
const struct isl_extent4d *phys_level0_sa,
|
|
struct isl_extent2d *phys_slice0_sa)
|
|
{
|
|
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
|
|
|
assert(phys_level0_sa->depth == 1);
|
|
|
|
if (info->levels == 1) {
|
|
/* Do not pad the surface to the image alignment. Instead, pad it only
|
|
* to the pixel format's block alignment.
|
|
*
|
|
* For tiled surfaces, using a reduced alignment here avoids wasting CPU
|
|
* cycles on the below mipmap layout caluclations. Reducing the
|
|
* alignment here is safe because we later align the row pitch and array
|
|
* pitch to the tile boundary. It is safe even for
|
|
* ISL_MSAA_LAYOUT_INTERLEAVED, because phys_level0_sa is already scaled
|
|
* to accomodate the interleaved samples.
|
|
*
|
|
* For linear surfaces, reducing the alignment here permits us to later
|
|
* choose an arbitrary, non-aligned row pitch. If the surface backs
|
|
* a VkBuffer, then an arbitrary pitch may be needed to accomodate
|
|
* VkBufferImageCopy::bufferRowLength.
|
|
*/
|
|
*phys_slice0_sa = (struct isl_extent2d) {
|
|
.w = isl_align_npot(phys_level0_sa->w, fmtl->bw),
|
|
.h = isl_align_npot(phys_level0_sa->h, fmtl->bh),
|
|
};
|
|
return;
|
|
}
|
|
|
|
uint32_t slice_top_w = 0;
|
|
uint32_t slice_bottom_w = 0;
|
|
uint32_t slice_left_h = 0;
|
|
uint32_t slice_right_h = 0;
|
|
|
|
uint32_t W0 = phys_level0_sa->w;
|
|
uint32_t H0 = phys_level0_sa->h;
|
|
|
|
for (uint32_t l = 0; l < info->levels; ++l) {
|
|
uint32_t W = isl_minify(W0, l);
|
|
uint32_t H = isl_minify(H0, l);
|
|
|
|
uint32_t w = isl_align_npot(W, image_align_sa->w);
|
|
uint32_t h = isl_align_npot(H, image_align_sa->h);
|
|
|
|
if (l == 0) {
|
|
slice_top_w = w;
|
|
slice_left_h = h;
|
|
slice_right_h = h;
|
|
} else if (l == 1) {
|
|
slice_bottom_w = w;
|
|
slice_left_h += h;
|
|
} else if (l == 2) {
|
|
slice_bottom_w += w;
|
|
slice_right_h += h;
|
|
} else {
|
|
slice_right_h += h;
|
|
}
|
|
}
|
|
|
|
*phys_slice0_sa = (struct isl_extent2d) {
|
|
.w = MAX(slice_top_w, slice_bottom_w),
|
|
.h = MAX(slice_left_h, slice_right_h),
|
|
};
|
|
}
|
|
|
|
/**
|
|
* A variant of isl_calc_phys_slice0_extent_sa() specific to
|
|
* ISL_DIM_LAYOUT_GEN4_3D.
|
|
*/
|
|
static void
|
|
isl_calc_phys_slice0_extent_sa_gen4_3d(
|
|
const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
const struct isl_extent3d *image_align_sa,
|
|
const struct isl_extent4d *phys_level0_sa,
|
|
struct isl_extent2d *phys_slice0_sa)
|
|
{
|
|
assert(info->samples == 1);
|
|
assert(phys_level0_sa->array_len == 1);
|
|
|
|
uint32_t slice_w = 0;
|
|
uint32_t slice_h = 0;
|
|
|
|
uint32_t W0 = phys_level0_sa->w;
|
|
uint32_t H0 = phys_level0_sa->h;
|
|
uint32_t D0 = phys_level0_sa->d;
|
|
|
|
for (uint32_t l = 0; l < info->levels; ++l) {
|
|
uint32_t level_w = isl_align_npot(isl_minify(W0, l), image_align_sa->w);
|
|
uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa->h);
|
|
uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa->d);
|
|
|
|
uint32_t max_layers_horiz = MIN(level_d, 1u << l);
|
|
uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
|
|
|
|
slice_w = MAX(slice_w, level_w * max_layers_horiz);
|
|
slice_h += level_h * max_layers_vert;
|
|
}
|
|
|
|
*phys_slice0_sa = (struct isl_extent2d) {
|
|
.w = slice_w,
|
|
.h = slice_h,
|
|
};
|
|
}
|
|
|
|
/**
|
|
* A variant of isl_calc_phys_slice0_extent_sa() specific to
|
|
* ISL_DIM_LAYOUT_GEN9_1D.
|
|
*/
|
|
static void
|
|
isl_calc_phys_slice0_extent_sa_gen9_1d(
|
|
const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
const struct isl_extent3d *image_align_sa,
|
|
const struct isl_extent4d *phys_level0_sa,
|
|
struct isl_extent2d *phys_slice0_sa)
|
|
{
|
|
MAYBE_UNUSED const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
|
|
|
assert(phys_level0_sa->height == 1);
|
|
assert(phys_level0_sa->depth == 1);
|
|
assert(info->samples == 1);
|
|
assert(image_align_sa->w >= fmtl->bw);
|
|
|
|
uint32_t slice_w = 0;
|
|
const uint32_t W0 = phys_level0_sa->w;
|
|
|
|
for (uint32_t l = 0; l < info->levels; ++l) {
|
|
uint32_t W = isl_minify(W0, l);
|
|
uint32_t w = isl_align_npot(W, image_align_sa->w);
|
|
|
|
slice_w += w;
|
|
}
|
|
|
|
*phys_slice0_sa = isl_extent2d(slice_w, 1);
|
|
}
|
|
|
|
/**
|
|
* Calculate the physical extent of the surface's first array slice, in units
|
|
* of surface samples. If the surface is multi-leveled, then the result will
|
|
* be aligned to \a image_align_sa.
|
|
*/
|
|
static void
|
|
isl_calc_phys_slice0_extent_sa(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
enum isl_dim_layout dim_layout,
|
|
enum isl_msaa_layout msaa_layout,
|
|
const struct isl_extent3d *image_align_sa,
|
|
const struct isl_extent4d *phys_level0_sa,
|
|
struct isl_extent2d *phys_slice0_sa)
|
|
{
|
|
switch (dim_layout) {
|
|
case ISL_DIM_LAYOUT_GEN9_1D:
|
|
isl_calc_phys_slice0_extent_sa_gen9_1d(dev, info,
|
|
image_align_sa, phys_level0_sa,
|
|
phys_slice0_sa);
|
|
return;
|
|
case ISL_DIM_LAYOUT_GEN4_2D:
|
|
isl_calc_phys_slice0_extent_sa_gen4_2d(dev, info, msaa_layout,
|
|
image_align_sa, phys_level0_sa,
|
|
phys_slice0_sa);
|
|
return;
|
|
case ISL_DIM_LAYOUT_GEN4_3D:
|
|
isl_calc_phys_slice0_extent_sa_gen4_3d(dev, info, image_align_sa,
|
|
phys_level0_sa, phys_slice0_sa);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Calculate the pitch between physical array slices, in units of rows of
|
|
* surface elements.
|
|
*/
|
|
static uint32_t
|
|
isl_calc_array_pitch_el_rows(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
const struct isl_tile_info *tile_info,
|
|
enum isl_dim_layout dim_layout,
|
|
enum isl_array_pitch_span array_pitch_span,
|
|
const struct isl_extent3d *image_align_sa,
|
|
const struct isl_extent4d *phys_level0_sa,
|
|
const struct isl_extent2d *phys_slice0_sa)
|
|
{
|
|
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
|
uint32_t pitch_sa_rows = 0;
|
|
|
|
switch (dim_layout) {
|
|
case ISL_DIM_LAYOUT_GEN9_1D:
|
|
/* Each row is an array slice */
|
|
pitch_sa_rows = 1;
|
|
break;
|
|
case ISL_DIM_LAYOUT_GEN4_2D:
|
|
switch (array_pitch_span) {
|
|
case ISL_ARRAY_PITCH_SPAN_COMPACT:
|
|
pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
|
|
break;
|
|
case ISL_ARRAY_PITCH_SPAN_FULL: {
|
|
/* The QPitch equation is found in the Broadwell PRM >> Volume 5:
|
|
* Memory Views >> Common Surface Formats >> Surface Layout >> 2D
|
|
* Surfaces >> Surface Arrays.
|
|
*/
|
|
uint32_t H0_sa = phys_level0_sa->h;
|
|
uint32_t H1_sa = isl_minify(H0_sa, 1);
|
|
|
|
uint32_t h0_sa = isl_align_npot(H0_sa, image_align_sa->h);
|
|
uint32_t h1_sa = isl_align_npot(H1_sa, image_align_sa->h);
|
|
|
|
uint32_t m;
|
|
if (ISL_DEV_GEN(dev) >= 7) {
|
|
/* The QPitch equation changed slightly in Ivybridge. */
|
|
m = 12;
|
|
} else {
|
|
m = 11;
|
|
}
|
|
|
|
pitch_sa_rows = h0_sa + h1_sa + (m * image_align_sa->h);
|
|
|
|
if (ISL_DEV_GEN(dev) == 6 && info->samples > 1 &&
|
|
(info->height % 4 == 1)) {
|
|
/* [SNB] Errata from the Sandy Bridge PRM >> Volume 4 Part 1:
|
|
* Graphics Core >> Section 7.18.3.7: Surface Arrays:
|
|
*
|
|
* [SNB] Errata: Sampler MSAA Qpitch will be 4 greater than
|
|
* the value calculated in the equation above , for every
|
|
* other odd Surface Height starting from 1 i.e. 1,5,9,13.
|
|
*
|
|
* XXX(chadv): Is the errata natural corollary of the physical
|
|
* layout of interleaved samples?
|
|
*/
|
|
pitch_sa_rows += 4;
|
|
}
|
|
|
|
pitch_sa_rows = isl_align_npot(pitch_sa_rows, fmtl->bh);
|
|
} /* end case */
|
|
break;
|
|
}
|
|
break;
|
|
case ISL_DIM_LAYOUT_GEN4_3D:
|
|
assert(array_pitch_span == ISL_ARRAY_PITCH_SPAN_COMPACT);
|
|
pitch_sa_rows = isl_align_npot(phys_slice0_sa->h, image_align_sa->h);
|
|
break;
|
|
default:
|
|
unreachable("bad isl_dim_layout");
|
|
break;
|
|
}
|
|
|
|
assert(pitch_sa_rows % fmtl->bh == 0);
|
|
uint32_t pitch_el_rows = pitch_sa_rows / fmtl->bh;
|
|
|
|
if (ISL_DEV_GEN(dev) >= 9 && fmtl->txc == ISL_TXC_CCS) {
|
|
/*
|
|
* From the Sky Lake PRM Vol 7, "MCS Buffer for Render Target(s)" (p. 632):
|
|
*
|
|
* "Mip-mapped and arrayed surfaces are supported with MCS buffer
|
|
* layout with these alignments in the RT space: Horizontal
|
|
* Alignment = 128 and Vertical Alignment = 64."
|
|
*
|
|
* From the Sky Lake PRM Vol. 2d, "RENDER_SURFACE_STATE" (p. 435):
|
|
*
|
|
* "For non-multisampled render target's CCS auxiliary surface,
|
|
* QPitch must be computed with Horizontal Alignment = 128 and
|
|
* Surface Vertical Alignment = 256. These alignments are only for
|
|
* CCS buffer and not for associated render target."
|
|
*
|
|
* The first restriction is already handled by isl_choose_image_alignment_el
|
|
* but the second restriction, which is an extension of the first, only
|
|
* applies to qpitch and must be applied here.
|
|
*/
|
|
assert(fmtl->bh == 4);
|
|
pitch_el_rows = isl_align(pitch_el_rows, 256 / 4);
|
|
}
|
|
|
|
if (ISL_DEV_GEN(dev) >= 9 &&
|
|
info->dim == ISL_SURF_DIM_3D &&
|
|
tile_info->tiling != ISL_TILING_LINEAR) {
|
|
/* From the Skylake BSpec >> RENDER_SURFACE_STATE >> Surface QPitch:
|
|
*
|
|
* Tile Mode != Linear: This field must be set to an integer multiple
|
|
* of the tile height
|
|
*/
|
|
pitch_el_rows = isl_align(pitch_el_rows, tile_info->logical_extent_el.height);
|
|
}
|
|
|
|
return pitch_el_rows;
|
|
}
|
|
|
|
/**
|
|
* Calculate the pitch of each surface row, in bytes.
|
|
*/
|
|
static uint32_t
|
|
isl_calc_linear_row_pitch(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
const struct isl_extent2d *phys_slice0_sa)
|
|
{
|
|
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
|
|
|
uint32_t row_pitch = info->min_pitch;
|
|
|
|
/* First, align the surface to a cache line boundary, as the PRM explains
|
|
* below.
|
|
*
|
|
* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
|
|
* Formats >> Surface Padding Requirements >> Render Target and Media
|
|
* Surfaces:
|
|
*
|
|
* The data port accesses data (pixels) outside of the surface if they
|
|
* are contained in the same cache request as pixels that are within the
|
|
* surface. These pixels will not be returned by the requesting message,
|
|
* however if these pixels lie outside of defined pages in the GTT,
|
|
* a GTT error will result when the cache request is processed. In order
|
|
* to avoid these GTT errors, “padding” at the bottom of the surface is
|
|
* sometimes necessary.
|
|
*
|
|
* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
|
|
* Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
|
|
*
|
|
* The sampling engine accesses texels outside of the surface if they
|
|
* are contained in the same cache line as texels that are within the
|
|
* surface. These texels will not participate in any calculation
|
|
* performed by the sampling engine and will not affect the result of
|
|
* any sampling engine operation, however if these texels lie outside of
|
|
* defined pages in the GTT, a GTT error will result when the cache line
|
|
* is accessed. In order to avoid these GTT errors, “padding” at the
|
|
* bottom and right side of a sampling engine surface is sometimes
|
|
* necessary.
|
|
*
|
|
* It is possible that a cache line will straddle a page boundary if the
|
|
* base address or pitch is not aligned. All pages included in the cache
|
|
* lines that are part of the surface must map to valid GTT entries to
|
|
* avoid errors. To determine the necessary padding on the bottom and
|
|
* right side of the surface, refer to the table in Alignment Unit Size
|
|
* section for the i and j parameters for the surface format in use. The
|
|
* surface must then be extended to the next multiple of the alignment
|
|
* unit size in each dimension, and all texels contained in this
|
|
* extended surface must have valid GTT entries.
|
|
*
|
|
* For example, suppose the surface size is 15 texels by 10 texels and
|
|
* the alignment parameters are i=4 and j=2. In this case, the extended
|
|
* surface would be 16 by 10. Note that these calculations are done in
|
|
* texels, and must be converted to bytes based on the surface format
|
|
* being used to determine whether additional pages need to be defined.
|
|
*/
|
|
assert(phys_slice0_sa->w % fmtl->bw == 0);
|
|
const uint32_t bs = fmtl->bpb / 8;
|
|
row_pitch = MAX(row_pitch, bs * (phys_slice0_sa->w / fmtl->bw));
|
|
|
|
/* From the Broadwel PRM >> Volume 2d: Command Reference: Structures >>
|
|
* RENDER_SURFACE_STATE Surface Pitch (p349):
|
|
*
|
|
* - For linear render target surfaces and surfaces accessed with the
|
|
* typed data port messages, the pitch must be a multiple of the
|
|
* element size for non-YUV surface formats. Pitch must be
|
|
* a multiple of 2 * element size for YUV surface formats.
|
|
*
|
|
* - [Requirements for SURFTYPE_BUFFER and SURFTYPE_STRBUF, which we
|
|
* ignore because isl doesn't do buffers.]
|
|
*
|
|
* - For other linear surfaces, the pitch can be any multiple of
|
|
* bytes.
|
|
*/
|
|
if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
|
|
if (isl_format_is_yuv(info->format)) {
|
|
row_pitch = isl_align_npot(row_pitch, 2 * bs);
|
|
} else {
|
|
row_pitch = isl_align_npot(row_pitch, bs);
|
|
}
|
|
}
|
|
|
|
return row_pitch;
|
|
}
|
|
|
|
/**
|
|
* Calculate and apply any padding required for the surface.
|
|
*
|
|
* @param[inout] total_h_el is updated with the new height
|
|
* @param[out] pad_bytes is overwritten with additional padding requirements.
|
|
*/
|
|
static void
|
|
isl_apply_surface_padding(const struct isl_device *dev,
|
|
const struct isl_surf_init_info *restrict info,
|
|
const struct isl_tile_info *tile_info,
|
|
uint32_t *total_h_el,
|
|
uint32_t *pad_bytes)
|
|
{
|
|
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
|
|
|
*pad_bytes = 0;
|
|
|
|
/* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
|
|
* Formats >> Surface Padding Requirements >> Render Target and Media
|
|
* Surfaces:
|
|
*
|
|
* The data port accesses data (pixels) outside of the surface if they
|
|
* are contained in the same cache request as pixels that are within the
|
|
* surface. These pixels will not be returned by the requesting message,
|
|
* however if these pixels lie outside of defined pages in the GTT,
|
|
* a GTT error will result when the cache request is processed. In
|
|
* order to avoid these GTT errors, “padding” at the bottom of the
|
|
* surface is sometimes necessary.
|
|
*
|
|
* From the Broadwell PRM >> Volume 5: Memory Views >> Common Surface
|
|
* Formats >> Surface Padding Requirements >> Sampling Engine Surfaces:
|
|
*
|
|
* ... Lots of padding requirements, all listed separately below.
|
|
*/
|
|
|
|
/* We can safely ignore the first padding requirement, quoted below,
|
|
* because isl doesn't do buffers.
|
|
*
|
|
* - [pre-BDW] For buffers, which have no inherent “height,” padding
|
|
* requirements are different. A buffer must be padded to the next
|
|
* multiple of 256 array elements, with an additional 16 bytes added
|
|
* beyond that to account for the L1 cache line.
|
|
*/
|
|
|
|
/*
|
|
* - For compressed textures [...], padding at the bottom of the surface
|
|
* is to an even compressed row.
|
|
*/
|
|
if (isl_format_is_compressed(info->format))
|
|
*total_h_el = isl_align(*total_h_el, 2);
|
|
|
|
/*
|
|
* - For cube surfaces, an additional two rows of padding are required
|
|
* at the bottom of the surface.
|
|
*/
|
|
if (info->usage & ISL_SURF_USAGE_CUBE_BIT)
|
|
*total_h_el += 2;
|
|
|
|
/*
|
|
* - For packed YUV, 96 bpt, 48 bpt, and 24 bpt surface formats,
|
|
* additional padding is required. These surfaces require an extra row
|
|
* plus 16 bytes of padding at the bottom in addition to the general
|
|
* padding requirements.
|
|
*/
|
|
if (isl_format_is_yuv(info->format) &&
|
|
(fmtl->bpb == 96 || fmtl->bpb == 48|| fmtl->bpb == 24)) {
|
|
*total_h_el += 1;
|
|
*pad_bytes += 16;
|
|
}
|
|
|
|
/*
|
|
* - For linear surfaces, additional padding of 64 bytes is required at
|
|
* the bottom of the surface. This is in addition to the padding
|
|
* required above.
|
|
*/
|
|
if (tile_info->tiling == ISL_TILING_LINEAR)
|
|
*pad_bytes += 64;
|
|
|
|
/* The below text weakens, not strengthens, the padding requirements for
|
|
* linear surfaces. Therefore we can safely ignore it.
|
|
*
|
|
* - [BDW+] For SURFTYPE_BUFFER, SURFTYPE_1D, and SURFTYPE_2D non-array,
|
|
* non-MSAA, non-mip-mapped surfaces in linear memory, the only
|
|
* padding requirement is to the next aligned 64-byte boundary beyond
|
|
* the end of the surface. The rest of the padding requirements
|
|
* documented above do not apply to these surfaces.
|
|
*/
|
|
|
|
/*
|
|
* - [SKL+] For SURFTYPE_2D and SURFTYPE_3D with linear mode and
|
|
* height % 4 != 0, the surface must be padded with
|
|
* 4-(height % 4)*Surface Pitch # of bytes.
|
|
*/
|
|
if (ISL_DEV_GEN(dev) >= 9 &&
|
|
tile_info->tiling == ISL_TILING_LINEAR &&
|
|
(info->dim == ISL_SURF_DIM_2D || info->dim == ISL_SURF_DIM_3D)) {
|
|
*total_h_el = isl_align(*total_h_el, 4);
|
|
}
|
|
|
|
/*
|
|
* - [SKL+] For SURFTYPE_1D with linear mode, the surface must be padded
|
|
* to 4 times the Surface Pitch # of bytes
|
|
*/
|
|
if (ISL_DEV_GEN(dev) >= 9 &&
|
|
tile_info->tiling == ISL_TILING_LINEAR &&
|
|
info->dim == ISL_SURF_DIM_1D) {
|
|
*total_h_el += 4;
|
|
}
|
|
}
|
|
|
|
bool
|
|
isl_surf_init_s(const struct isl_device *dev,
|
|
struct isl_surf *surf,
|
|
const struct isl_surf_init_info *restrict info)
|
|
{
|
|
const struct isl_format_layout *fmtl = isl_format_get_layout(info->format);
|
|
|
|
const struct isl_extent4d logical_level0_px = {
|
|
.w = info->width,
|
|
.h = info->height,
|
|
.d = info->depth,
|
|
.a = info->array_len,
|
|
};
|
|
|
|
enum isl_tiling tiling;
|
|
if (!isl_surf_choose_tiling(dev, info, &tiling))
|
|
return false;
|
|
|
|
struct isl_tile_info tile_info;
|
|
if (!isl_tiling_get_info(dev, tiling, fmtl->bpb, &tile_info))
|
|
return false;
|
|
|
|
const enum isl_dim_layout dim_layout =
|
|
isl_surf_choose_dim_layout(dev, info->dim, tiling);
|
|
|
|
enum isl_msaa_layout msaa_layout;
|
|
if (!isl_choose_msaa_layout(dev, info, tiling, &msaa_layout))
|
|
return false;
|
|
|
|
struct isl_extent3d image_align_el;
|
|
isl_choose_image_alignment_el(dev, info, tiling, dim_layout, msaa_layout,
|
|
&image_align_el);
|
|
|
|
struct isl_extent3d image_align_sa =
|
|
isl_extent3d_el_to_sa(info->format, image_align_el);
|
|
|
|
struct isl_extent4d phys_level0_sa;
|
|
isl_calc_phys_level0_extent_sa(dev, info, dim_layout, tiling, msaa_layout,
|
|
&phys_level0_sa);
|
|
assert(phys_level0_sa.w % fmtl->bw == 0);
|
|
assert(phys_level0_sa.h % fmtl->bh == 0);
|
|
|
|
enum isl_array_pitch_span array_pitch_span =
|
|
isl_choose_array_pitch_span(dev, info, dim_layout, &phys_level0_sa);
|
|
|
|
struct isl_extent2d phys_slice0_sa;
|
|
isl_calc_phys_slice0_extent_sa(dev, info, dim_layout, msaa_layout,
|
|
&image_align_sa, &phys_level0_sa,
|
|
&phys_slice0_sa);
|
|
assert(phys_slice0_sa.w % fmtl->bw == 0);
|
|
assert(phys_slice0_sa.h % fmtl->bh == 0);
|
|
|
|
const uint32_t array_pitch_el_rows =
|
|
isl_calc_array_pitch_el_rows(dev, info, &tile_info, dim_layout,
|
|
array_pitch_span, &image_align_sa,
|
|
&phys_level0_sa, &phys_slice0_sa);
|
|
|
|
uint32_t total_h_el = phys_level0_sa.array_len * array_pitch_el_rows;
|
|
|
|
uint32_t pad_bytes;
|
|
isl_apply_surface_padding(dev, info, &tile_info, &total_h_el, &pad_bytes);
|
|
|
|
uint32_t row_pitch, size, base_alignment;
|
|
if (tiling == ISL_TILING_LINEAR) {
|
|
row_pitch = isl_calc_linear_row_pitch(dev, info, &phys_slice0_sa);
|
|
size = row_pitch * total_h_el + pad_bytes;
|
|
|
|
/* From the Broadwell PRM Vol 2d, RENDER_SURFACE_STATE::SurfaceBaseAddress:
|
|
*
|
|
* "The Base Address for linear render target surfaces and surfaces
|
|
* accessed with the typed surface read/write data port messages must
|
|
* be element-size aligned, for non-YUV surface formats, or a
|
|
* multiple of 2 element-sizes for YUV surface formats. Other linear
|
|
* surfaces have no alignment requirements (byte alignment is
|
|
* sufficient.)"
|
|
*/
|
|
base_alignment = MAX(1, info->min_alignment);
|
|
if (info->usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) {
|
|
if (isl_format_is_yuv(info->format)) {
|
|
base_alignment = MAX(base_alignment, fmtl->bpb / 4);
|
|
} else {
|
|
base_alignment = MAX(base_alignment, fmtl->bpb / 8);
|
|
}
|
|
}
|
|
base_alignment = isl_round_up_to_power_of_two(base_alignment);
|
|
} else {
|
|
assert(fmtl->bpb % tile_info.format_bpb == 0);
|
|
const uint32_t tile_el_scale = fmtl->bpb / tile_info.format_bpb;
|
|
|
|
assert(phys_slice0_sa.w % fmtl->bw == 0);
|
|
const uint32_t total_w_el = phys_slice0_sa.width / fmtl->bw;
|
|
const uint32_t total_w_tl =
|
|
isl_align_div(total_w_el * tile_el_scale,
|
|
tile_info.logical_extent_el.width);
|
|
|
|
row_pitch = total_w_tl * tile_info.phys_extent_B.width;
|
|
if (row_pitch < info->min_pitch) {
|
|
row_pitch = isl_align_npot(info->min_pitch,
|
|
tile_info.phys_extent_B.width);
|
|
}
|
|
|
|
total_h_el += isl_align_div_npot(pad_bytes, row_pitch);
|
|
const uint32_t total_h_tl =
|
|
isl_align_div(total_h_el, tile_info.logical_extent_el.height);
|
|
|
|
size = total_h_tl * tile_info.phys_extent_B.height * row_pitch;
|
|
|
|
const uint32_t tile_size = tile_info.phys_extent_B.width *
|
|
tile_info.phys_extent_B.height;
|
|
assert(isl_is_pow2(info->min_alignment) && isl_is_pow2(tile_size));
|
|
base_alignment = MAX(info->min_alignment, tile_size);
|
|
}
|
|
|
|
*surf = (struct isl_surf) {
|
|
.dim = info->dim,
|
|
.dim_layout = dim_layout,
|
|
.msaa_layout = msaa_layout,
|
|
.tiling = tiling,
|
|
.format = info->format,
|
|
|
|
.levels = info->levels,
|
|
.samples = info->samples,
|
|
|
|
.image_alignment_el = image_align_el,
|
|
.logical_level0_px = logical_level0_px,
|
|
.phys_level0_sa = phys_level0_sa,
|
|
|
|
.size = size,
|
|
.alignment = base_alignment,
|
|
.row_pitch = row_pitch,
|
|
.array_pitch_el_rows = array_pitch_el_rows,
|
|
.array_pitch_span = array_pitch_span,
|
|
|
|
.usage = info->usage,
|
|
};
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
isl_surf_get_tile_info(const struct isl_device *dev,
|
|
const struct isl_surf *surf,
|
|
struct isl_tile_info *tile_info)
|
|
{
|
|
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
|
|
isl_tiling_get_info(dev, surf->tiling, fmtl->bpb, tile_info);
|
|
}
|
|
|
|
void
|
|
isl_surf_get_hiz_surf(const struct isl_device *dev,
|
|
const struct isl_surf *surf,
|
|
struct isl_surf *hiz_surf)
|
|
{
|
|
assert(ISL_DEV_GEN(dev) >= 5 && ISL_DEV_USE_SEPARATE_STENCIL(dev));
|
|
|
|
/* Multisampled depth is always interleaved */
|
|
assert(surf->msaa_layout == ISL_MSAA_LAYOUT_NONE ||
|
|
surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
|
|
|
|
/* From the Broadwell PRM Vol. 7, "Hierarchical Depth Buffer":
|
|
*
|
|
* "The Surface Type, Height, Width, Depth, Minimum Array Element, Render
|
|
* Target View Extent, and Depth Coordinate Offset X/Y of the
|
|
* hierarchical depth buffer are inherited from the depth buffer. The
|
|
* height and width of the hierarchical depth buffer that must be
|
|
* allocated are computed by the following formulas, where HZ is the
|
|
* hierarchical depth buffer and Z is the depth buffer. The Z_Height,
|
|
* Z_Width, and Z_Depth values given in these formulas are those present
|
|
* in 3DSTATE_DEPTH_BUFFER incremented by one.
|
|
*
|
|
* "The value of Z_Height and Z_Width must each be multiplied by 2 before
|
|
* being applied to the table below if Number of Multisamples is set to
|
|
* NUMSAMPLES_4. The value of Z_Height must be multiplied by 2 and
|
|
* Z_Width must be multiplied by 4 before being applied to the table
|
|
* below if Number of Multisamples is set to NUMSAMPLES_8."
|
|
*
|
|
* In the Sky Lake PRM, the second paragraph is replaced with this:
|
|
*
|
|
* "The Z_Height and Z_Width values must equal those present in
|
|
* 3DSTATE_DEPTH_BUFFER incremented by one."
|
|
*
|
|
* In other words, on Sandy Bridge through Broadwell, each 128-bit HiZ
|
|
* block corresponds to a region of 8x4 samples in the primary depth
|
|
* surface. On Sky Lake, on the other hand, each HiZ block corresponds to
|
|
* a region of 8x4 pixels in the primary depth surface regardless of the
|
|
* number of samples. The dimensions of a HiZ block in both pixels and
|
|
* samples are given in the table below:
|
|
*
|
|
* | SNB - BDW | SKL+
|
|
* ------+-----------+-------------
|
|
* 1x | 8 x 4 sa | 8 x 4 sa
|
|
* MSAA | 8 x 4 px | 8 x 4 px
|
|
* ------+-----------+-------------
|
|
* 2x | 8 x 4 sa | 16 x 4 sa
|
|
* MSAA | 4 x 4 px | 8 x 4 px
|
|
* ------+-----------+-------------
|
|
* 4x | 8 x 4 sa | 16 x 8 sa
|
|
* MSAA | 4 x 2 px | 8 x 4 px
|
|
* ------+-----------+-------------
|
|
* 8x | 8 x 4 sa | 32 x 8 sa
|
|
* MSAA | 2 x 2 px | 8 x 4 px
|
|
* ------+-----------+-------------
|
|
* 16x | N/A | 32 x 16 sa
|
|
* MSAA | N/A | 8 x 4 px
|
|
* ------+-----------+-------------
|
|
*
|
|
* There are a number of different ways that this discrepency could be
|
|
* handled. The way we have chosen is to simply make MSAA HiZ have the
|
|
* same number of samples as the parent surface pre-Sky Lake and always be
|
|
* single-sampled on Sky Lake and above. Since the block sizes of
|
|
* compressed formats are given in samples, this neatly handles everything
|
|
* without the need for additional HiZ formats with different block sizes
|
|
* on SKL+.
|
|
*/
|
|
const unsigned samples = ISL_DEV_GEN(dev) >= 9 ? 1 : surf->samples;
|
|
|
|
isl_surf_init(dev, hiz_surf,
|
|
.dim = surf->dim,
|
|
.format = ISL_FORMAT_HIZ,
|
|
.width = surf->logical_level0_px.width,
|
|
.height = surf->logical_level0_px.height,
|
|
.depth = surf->logical_level0_px.depth,
|
|
.levels = surf->levels,
|
|
.array_len = surf->logical_level0_px.array_len,
|
|
.samples = samples,
|
|
.usage = ISL_SURF_USAGE_HIZ_BIT,
|
|
.tiling_flags = ISL_TILING_HIZ_BIT);
|
|
}
|
|
|
|
void
|
|
isl_surf_get_mcs_surf(const struct isl_device *dev,
|
|
const struct isl_surf *surf,
|
|
struct isl_surf *mcs_surf)
|
|
{
|
|
/* It must be multisampled with an array layout */
|
|
assert(surf->samples > 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
|
|
|
|
/* The following are true of all multisampled surfaces */
|
|
assert(surf->dim == ISL_SURF_DIM_2D);
|
|
assert(surf->levels == 1);
|
|
assert(surf->logical_level0_px.depth == 1);
|
|
|
|
enum isl_format mcs_format;
|
|
switch (surf->samples) {
|
|
case 2: mcs_format = ISL_FORMAT_MCS_2X; break;
|
|
case 4: mcs_format = ISL_FORMAT_MCS_4X; break;
|
|
case 8: mcs_format = ISL_FORMAT_MCS_8X; break;
|
|
case 16: mcs_format = ISL_FORMAT_MCS_16X; break;
|
|
default:
|
|
unreachable("Invalid sample count");
|
|
}
|
|
|
|
isl_surf_init(dev, mcs_surf,
|
|
.dim = ISL_SURF_DIM_2D,
|
|
.format = mcs_format,
|
|
.width = surf->logical_level0_px.width,
|
|
.height = surf->logical_level0_px.height,
|
|
.depth = 1,
|
|
.levels = 1,
|
|
.array_len = surf->logical_level0_px.array_len,
|
|
.samples = 1, /* MCS surfaces are really single-sampled */
|
|
.usage = ISL_SURF_USAGE_MCS_BIT,
|
|
.tiling_flags = ISL_TILING_Y0_BIT);
|
|
}
|
|
|
|
bool
|
|
isl_surf_get_ccs_surf(const struct isl_device *dev,
|
|
const struct isl_surf *surf,
|
|
struct isl_surf *ccs_surf)
|
|
{
|
|
assert(surf->samples == 1 && surf->msaa_layout == ISL_MSAA_LAYOUT_NONE);
|
|
assert(ISL_DEV_GEN(dev) >= 7);
|
|
|
|
assert(ISL_DEV_GEN(dev) >= 8 || surf->dim == ISL_SURF_DIM_2D);
|
|
|
|
assert(surf->logical_level0_px.depth == 1);
|
|
|
|
/* TODO: More conditions where it can fail. */
|
|
|
|
enum isl_format ccs_format;
|
|
if (ISL_DEV_GEN(dev) >= 9) {
|
|
if (!isl_tiling_is_any_y(surf->tiling))
|
|
return false;
|
|
|
|
switch (isl_format_get_layout(surf->format)->bpb) {
|
|
case 32: ccs_format = ISL_FORMAT_GEN9_CCS_32BPP; break;
|
|
case 64: ccs_format = ISL_FORMAT_GEN9_CCS_64BPP; break;
|
|
case 128: ccs_format = ISL_FORMAT_GEN9_CCS_128BPP; break;
|
|
default:
|
|
return false;
|
|
}
|
|
} else if (surf->tiling == ISL_TILING_Y0) {
|
|
switch (isl_format_get_layout(surf->format)->bpb) {
|
|
case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_Y; break;
|
|
case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_Y; break;
|
|
case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_Y; break;
|
|
default:
|
|
return false;
|
|
}
|
|
} else if (surf->tiling == ISL_TILING_X) {
|
|
switch (isl_format_get_layout(surf->format)->bpb) {
|
|
case 32: ccs_format = ISL_FORMAT_GEN7_CCS_32BPP_X; break;
|
|
case 64: ccs_format = ISL_FORMAT_GEN7_CCS_64BPP_X; break;
|
|
case 128: ccs_format = ISL_FORMAT_GEN7_CCS_128BPP_X; break;
|
|
default:
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
isl_surf_init(dev, ccs_surf,
|
|
.dim = ISL_SURF_DIM_2D,
|
|
.format = ccs_format,
|
|
.width = surf->logical_level0_px.width,
|
|
.height = surf->logical_level0_px.height,
|
|
.depth = 1,
|
|
.levels = surf->levels,
|
|
.array_len = surf->logical_level0_px.array_len,
|
|
.samples = 1,
|
|
.usage = ISL_SURF_USAGE_CCS_BIT,
|
|
.tiling_flags = ISL_TILING_CCS_BIT);
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
isl_surf_fill_state_s(const struct isl_device *dev, void *state,
|
|
const struct isl_surf_fill_state_info *restrict info)
|
|
{
|
|
#ifndef NDEBUG
|
|
isl_surf_usage_flags_t _base_usage =
|
|
info->view->usage & (ISL_SURF_USAGE_RENDER_TARGET_BIT |
|
|
ISL_SURF_USAGE_TEXTURE_BIT |
|
|
ISL_SURF_USAGE_STORAGE_BIT);
|
|
/* They may only specify one of the above bits at a time */
|
|
assert(__builtin_popcount(_base_usage) == 1);
|
|
/* The only other allowed bit is ISL_SURF_USAGE_CUBE_BIT */
|
|
assert((info->view->usage & ~ISL_SURF_USAGE_CUBE_BIT) == _base_usage);
|
|
#endif
|
|
|
|
if (info->surf->dim == ISL_SURF_DIM_3D) {
|
|
assert(info->view->base_array_layer + info->view->array_len <=
|
|
info->surf->logical_level0_px.depth);
|
|
} else {
|
|
assert(info->view->base_array_layer + info->view->array_len <=
|
|
info->surf->logical_level0_px.array_len);
|
|
}
|
|
|
|
switch (ISL_DEV_GEN(dev)) {
|
|
case 4:
|
|
if (ISL_DEV_IS_G4X(dev)) {
|
|
/* G45 surface state is the same as gen5 */
|
|
isl_gen5_surf_fill_state_s(dev, state, info);
|
|
} else {
|
|
isl_gen4_surf_fill_state_s(dev, state, info);
|
|
}
|
|
break;
|
|
case 5:
|
|
isl_gen5_surf_fill_state_s(dev, state, info);
|
|
break;
|
|
case 6:
|
|
isl_gen6_surf_fill_state_s(dev, state, info);
|
|
break;
|
|
case 7:
|
|
if (ISL_DEV_IS_HASWELL(dev)) {
|
|
isl_gen75_surf_fill_state_s(dev, state, info);
|
|
} else {
|
|
isl_gen7_surf_fill_state_s(dev, state, info);
|
|
}
|
|
break;
|
|
case 8:
|
|
isl_gen8_surf_fill_state_s(dev, state, info);
|
|
break;
|
|
case 9:
|
|
isl_gen9_surf_fill_state_s(dev, state, info);
|
|
break;
|
|
default:
|
|
assert(!"Cannot fill surface state for this gen");
|
|
}
|
|
}
|
|
|
|
void
|
|
isl_buffer_fill_state_s(const struct isl_device *dev, void *state,
|
|
const struct isl_buffer_fill_state_info *restrict info)
|
|
{
|
|
switch (ISL_DEV_GEN(dev)) {
|
|
case 4:
|
|
case 5:
|
|
/* Gen 4-5 are all the same when it comes to buffer surfaces */
|
|
isl_gen5_buffer_fill_state_s(state, info);
|
|
break;
|
|
case 6:
|
|
isl_gen6_buffer_fill_state_s(state, info);
|
|
break;
|
|
case 7:
|
|
if (ISL_DEV_IS_HASWELL(dev)) {
|
|
isl_gen75_buffer_fill_state_s(state, info);
|
|
} else {
|
|
isl_gen7_buffer_fill_state_s(state, info);
|
|
}
|
|
break;
|
|
case 8:
|
|
isl_gen8_buffer_fill_state_s(state, info);
|
|
break;
|
|
case 9:
|
|
isl_gen9_buffer_fill_state_s(state, info);
|
|
break;
|
|
default:
|
|
assert(!"Cannot fill surface state for this gen");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* A variant of isl_surf_get_image_offset_sa() specific to
|
|
* ISL_DIM_LAYOUT_GEN4_2D.
|
|
*/
|
|
static void
|
|
get_image_offset_sa_gen4_2d(const struct isl_surf *surf,
|
|
uint32_t level, uint32_t logical_array_layer,
|
|
uint32_t *x_offset_sa,
|
|
uint32_t *y_offset_sa)
|
|
{
|
|
assert(level < surf->levels);
|
|
if (surf->dim == ISL_SURF_DIM_3D)
|
|
assert(logical_array_layer < surf->logical_level0_px.depth);
|
|
else
|
|
assert(logical_array_layer < surf->logical_level0_px.array_len);
|
|
|
|
const struct isl_extent3d image_align_sa =
|
|
isl_surf_get_image_alignment_sa(surf);
|
|
|
|
const uint32_t W0 = surf->phys_level0_sa.width;
|
|
const uint32_t H0 = surf->phys_level0_sa.height;
|
|
|
|
const uint32_t phys_layer = logical_array_layer *
|
|
(surf->msaa_layout == ISL_MSAA_LAYOUT_ARRAY ? surf->samples : 1);
|
|
|
|
uint32_t x = 0;
|
|
uint32_t y = phys_layer * isl_surf_get_array_pitch_sa_rows(surf);
|
|
|
|
for (uint32_t l = 0; l < level; ++l) {
|
|
if (l == 1) {
|
|
uint32_t W = isl_minify(W0, l);
|
|
x += isl_align_npot(W, image_align_sa.w);
|
|
} else {
|
|
uint32_t H = isl_minify(H0, l);
|
|
y += isl_align_npot(H, image_align_sa.h);
|
|
}
|
|
}
|
|
|
|
*x_offset_sa = x;
|
|
*y_offset_sa = y;
|
|
}
|
|
|
|
/**
|
|
* A variant of isl_surf_get_image_offset_sa() specific to
|
|
* ISL_DIM_LAYOUT_GEN4_3D.
|
|
*/
|
|
static void
|
|
get_image_offset_sa_gen4_3d(const struct isl_surf *surf,
|
|
uint32_t level, uint32_t logical_z_offset_px,
|
|
uint32_t *x_offset_sa,
|
|
uint32_t *y_offset_sa)
|
|
{
|
|
assert(level < surf->levels);
|
|
assert(logical_z_offset_px < isl_minify(surf->phys_level0_sa.depth, level));
|
|
assert(surf->phys_level0_sa.array_len == 1);
|
|
|
|
const struct isl_extent3d image_align_sa =
|
|
isl_surf_get_image_alignment_sa(surf);
|
|
|
|
const uint32_t W0 = surf->phys_level0_sa.width;
|
|
const uint32_t H0 = surf->phys_level0_sa.height;
|
|
const uint32_t D0 = surf->phys_level0_sa.depth;
|
|
|
|
uint32_t x = 0;
|
|
uint32_t y = 0;
|
|
|
|
for (uint32_t l = 0; l < level; ++l) {
|
|
const uint32_t level_h = isl_align_npot(isl_minify(H0, l), image_align_sa.h);
|
|
const uint32_t level_d = isl_align_npot(isl_minify(D0, l), image_align_sa.d);
|
|
const uint32_t max_layers_vert = isl_align(level_d, 1u << l) / (1u << l);
|
|
|
|
y += level_h * max_layers_vert;
|
|
}
|
|
|
|
const uint32_t level_w = isl_align_npot(isl_minify(W0, level), image_align_sa.w);
|
|
const uint32_t level_h = isl_align_npot(isl_minify(H0, level), image_align_sa.h);
|
|
const uint32_t level_d = isl_align_npot(isl_minify(D0, level), image_align_sa.d);
|
|
|
|
const uint32_t max_layers_horiz = MIN(level_d, 1u << level);
|
|
|
|
x += level_w * (logical_z_offset_px % max_layers_horiz);
|
|
y += level_h * (logical_z_offset_px / max_layers_horiz);
|
|
|
|
*x_offset_sa = x;
|
|
*y_offset_sa = y;
|
|
}
|
|
|
|
/**
|
|
* A variant of isl_surf_get_image_offset_sa() specific to
|
|
* ISL_DIM_LAYOUT_GEN9_1D.
|
|
*/
|
|
static void
|
|
get_image_offset_sa_gen9_1d(const struct isl_surf *surf,
|
|
uint32_t level, uint32_t layer,
|
|
uint32_t *x_offset_sa,
|
|
uint32_t *y_offset_sa)
|
|
{
|
|
assert(level < surf->levels);
|
|
assert(layer < surf->phys_level0_sa.array_len);
|
|
assert(surf->phys_level0_sa.height == 1);
|
|
assert(surf->phys_level0_sa.depth == 1);
|
|
assert(surf->samples == 1);
|
|
|
|
const uint32_t W0 = surf->phys_level0_sa.width;
|
|
const struct isl_extent3d image_align_sa =
|
|
isl_surf_get_image_alignment_sa(surf);
|
|
|
|
uint32_t x = 0;
|
|
|
|
for (uint32_t l = 0; l < level; ++l) {
|
|
uint32_t W = isl_minify(W0, l);
|
|
uint32_t w = isl_align_npot(W, image_align_sa.w);
|
|
|
|
x += w;
|
|
}
|
|
|
|
*x_offset_sa = x;
|
|
*y_offset_sa = layer * isl_surf_get_array_pitch_sa_rows(surf);
|
|
}
|
|
|
|
/**
|
|
* Calculate the offset, in units of surface samples, to a subimage in the
|
|
* surface.
|
|
*
|
|
* @invariant level < surface levels
|
|
* @invariant logical_array_layer < logical array length of surface
|
|
* @invariant logical_z_offset_px < logical depth of surface at level
|
|
*/
|
|
void
|
|
isl_surf_get_image_offset_sa(const struct isl_surf *surf,
|
|
uint32_t level,
|
|
uint32_t logical_array_layer,
|
|
uint32_t logical_z_offset_px,
|
|
uint32_t *x_offset_sa,
|
|
uint32_t *y_offset_sa)
|
|
{
|
|
assert(level < surf->levels);
|
|
assert(logical_array_layer < surf->logical_level0_px.array_len);
|
|
assert(logical_z_offset_px
|
|
< isl_minify(surf->logical_level0_px.depth, level));
|
|
|
|
switch (surf->dim_layout) {
|
|
case ISL_DIM_LAYOUT_GEN9_1D:
|
|
get_image_offset_sa_gen9_1d(surf, level, logical_array_layer,
|
|
x_offset_sa, y_offset_sa);
|
|
break;
|
|
case ISL_DIM_LAYOUT_GEN4_2D:
|
|
get_image_offset_sa_gen4_2d(surf, level, logical_array_layer
|
|
+ logical_z_offset_px,
|
|
x_offset_sa, y_offset_sa);
|
|
break;
|
|
case ISL_DIM_LAYOUT_GEN4_3D:
|
|
get_image_offset_sa_gen4_3d(surf, level, logical_z_offset_px,
|
|
x_offset_sa, y_offset_sa);
|
|
break;
|
|
|
|
default:
|
|
unreachable("not reached");
|
|
}
|
|
}
|
|
|
|
void
|
|
isl_surf_get_image_offset_el(const struct isl_surf *surf,
|
|
uint32_t level,
|
|
uint32_t logical_array_layer,
|
|
uint32_t logical_z_offset_px,
|
|
uint32_t *x_offset_el,
|
|
uint32_t *y_offset_el)
|
|
{
|
|
const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format);
|
|
|
|
assert(level < surf->levels);
|
|
assert(logical_array_layer < surf->logical_level0_px.array_len);
|
|
assert(logical_z_offset_px
|
|
< isl_minify(surf->logical_level0_px.depth, level));
|
|
|
|
uint32_t x_offset_sa, y_offset_sa;
|
|
isl_surf_get_image_offset_sa(surf, level,
|
|
logical_array_layer,
|
|
logical_z_offset_px,
|
|
&x_offset_sa,
|
|
&y_offset_sa);
|
|
|
|
*x_offset_el = x_offset_sa / fmtl->bw;
|
|
*y_offset_el = y_offset_sa / fmtl->bh;
|
|
}
|
|
|
|
void
|
|
isl_tiling_get_intratile_offset_el(const struct isl_device *dev,
|
|
enum isl_tiling tiling,
|
|
uint8_t bs,
|
|
uint32_t row_pitch,
|
|
uint32_t total_x_offset_el,
|
|
uint32_t total_y_offset_el,
|
|
uint32_t *base_address_offset,
|
|
uint32_t *x_offset_el,
|
|
uint32_t *y_offset_el)
|
|
{
|
|
if (tiling == ISL_TILING_LINEAR) {
|
|
*base_address_offset = total_y_offset_el * row_pitch +
|
|
total_x_offset_el * bs;
|
|
*x_offset_el = 0;
|
|
*y_offset_el = 0;
|
|
return;
|
|
}
|
|
|
|
const uint32_t bpb = bs * 8;
|
|
|
|
struct isl_tile_info tile_info;
|
|
isl_tiling_get_info(dev, tiling, bpb, &tile_info);
|
|
|
|
assert(row_pitch % tile_info.phys_extent_B.width == 0);
|
|
|
|
/* For non-power-of-two formats, we need the address to be both tile and
|
|
* element-aligned. The easiest way to achieve this is to work with a tile
|
|
* that is three times as wide as the regular tile.
|
|
*
|
|
* The tile info returned by get_tile_info has a logical size that is an
|
|
* integer number of tile_info.format_bpb size elements. To scale the
|
|
* tile, we scale up the physical width and then treat the logical tile
|
|
* size as if it has bpb size elements.
|
|
*/
|
|
const uint32_t tile_el_scale = bpb / tile_info.format_bpb;
|
|
tile_info.phys_extent_B.width *= tile_el_scale;
|
|
|
|
/* Compute the offset into the tile */
|
|
*x_offset_el = total_x_offset_el % tile_info.logical_extent_el.w;
|
|
*y_offset_el = total_y_offset_el % tile_info.logical_extent_el.h;
|
|
|
|
/* Compute the offset of the tile in units of whole tiles */
|
|
uint32_t x_offset_tl = total_x_offset_el / tile_info.logical_extent_el.w;
|
|
uint32_t y_offset_tl = total_y_offset_el / tile_info.logical_extent_el.h;
|
|
|
|
*base_address_offset =
|
|
y_offset_tl * tile_info.phys_extent_B.h * row_pitch +
|
|
x_offset_tl * tile_info.phys_extent_B.h * tile_info.phys_extent_B.w;
|
|
}
|
|
|
|
uint32_t
|
|
isl_surf_get_depth_format(const struct isl_device *dev,
|
|
const struct isl_surf *surf)
|
|
{
|
|
/* Support for separate stencil buffers began in gen5. Support for
|
|
* interleaved depthstencil buffers ceased in gen7. The intermediate gens,
|
|
* those that supported separate and interleaved stencil, were gen5 and
|
|
* gen6.
|
|
*
|
|
* For a list of all available formats, see the Sandybridge PRM >> Volume
|
|
* 2 Part 1: 3D/Media - 3D Pipeline >> 3DSTATE_DEPTH_BUFFER >> Surface
|
|
* Format (p321).
|
|
*/
|
|
|
|
bool has_stencil = surf->usage & ISL_SURF_USAGE_STENCIL_BIT;
|
|
|
|
assert(surf->usage & ISL_SURF_USAGE_DEPTH_BIT);
|
|
|
|
if (has_stencil)
|
|
assert(ISL_DEV_GEN(dev) < 7);
|
|
|
|
switch (surf->format) {
|
|
default:
|
|
unreachable("bad isl depth format");
|
|
case ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS:
|
|
assert(ISL_DEV_GEN(dev) < 7);
|
|
return 0; /* D32_FLOAT_S8X24_UINT */
|
|
case ISL_FORMAT_R32_FLOAT:
|
|
assert(!has_stencil);
|
|
return 1; /* D32_FLOAT */
|
|
case ISL_FORMAT_R24_UNORM_X8_TYPELESS:
|
|
if (has_stencil) {
|
|
assert(ISL_DEV_GEN(dev) < 7);
|
|
return 2; /* D24_UNORM_S8_UINT */
|
|
} else {
|
|
assert(ISL_DEV_GEN(dev) >= 5);
|
|
return 3; /* D24_UNORM_X8_UINT */
|
|
}
|
|
case ISL_FORMAT_R16_UNORM:
|
|
assert(!has_stencil);
|
|
return 5; /* D16_UNORM */
|
|
}
|
|
}
|