
On pre-4.13 kernels, which don't support I915_EXEC_BATCH_FIRST, we move
the validation list entry to the end...but incorrectly left the exec_bo
array alone, causing a mismatch where exec_bos[0] no longer corresponded
with validation_list[0] (and similarly for the last entry).
One example of resulting breakage is that we'd update bo->gtt_offset
based on the wrong buffer. This wreaked total havoc when trying to use
softpin, and likely caused unnecessary relocations in the normal case.
Fixes: 29ba502a4e
(i965: Use I915_EXEC_BATCH_FIRST when available.)
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
1259 lines
40 KiB
C
1259 lines
40 KiB
C
/*
|
|
* Copyright 2006 VMware, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the
|
|
* next paragraph) shall be included in all copies or substantial portions
|
|
* of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
|
|
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "intel_batchbuffer.h"
|
|
#include "intel_buffer_objects.h"
|
|
#include "brw_bufmgr.h"
|
|
#include "intel_buffers.h"
|
|
#include "intel_fbo.h"
|
|
#include "brw_context.h"
|
|
#include "brw_defines.h"
|
|
#include "brw_state.h"
|
|
#include "common/gen_decoder.h"
|
|
|
|
#include "util/hash_table.h"
|
|
|
|
#include <xf86drm.h>
|
|
#include <i915_drm.h>
|
|
|
|
#define FILE_DEBUG_FLAG DEBUG_BUFMGR
|
|
|
|
/**
|
|
* Target sizes of the batch and state buffers. We create the initial
|
|
* buffers at these sizes, and flush when they're nearly full. If we
|
|
* underestimate how close we are to the end, and suddenly need more space
|
|
* in the middle of a draw, we can grow the buffers, and finish the draw.
|
|
* At that point, we'll be over our target size, so the next operation
|
|
* should flush. Each time we flush the batch, we recreate both buffers
|
|
* at the original target size, so it doesn't grow without bound.
|
|
*/
|
|
#define BATCH_SZ (20 * 1024)
|
|
#define STATE_SZ (16 * 1024)
|
|
|
|
static void
|
|
intel_batchbuffer_reset(struct brw_context *brw);
|
|
|
|
static void
|
|
dump_validation_list(struct intel_batchbuffer *batch)
|
|
{
|
|
fprintf(stderr, "Validation list (length %d):\n", batch->exec_count);
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
uint64_t flags = batch->validation_list[i].flags;
|
|
assert(batch->validation_list[i].handle ==
|
|
batch->exec_bos[i]->gem_handle);
|
|
fprintf(stderr, "[%2d]: %2d %-14s %p %s%-7s @ 0x%016llx%s (%"PRIu64"B)\n",
|
|
i,
|
|
batch->validation_list[i].handle,
|
|
batch->exec_bos[i]->name,
|
|
batch->exec_bos[i],
|
|
(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) ? "(48b" : "(32b",
|
|
(flags & EXEC_OBJECT_WRITE) ? " write)" : ")",
|
|
batch->validation_list[i].offset,
|
|
(flags & EXEC_OBJECT_PINNED) ? " (pinned)" : "",
|
|
batch->exec_bos[i]->size);
|
|
}
|
|
}
|
|
|
|
static struct gen_batch_decode_bo
|
|
decode_get_bo(void *v_brw, uint64_t address)
|
|
{
|
|
struct brw_context *brw = v_brw;
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
struct brw_bo *bo = batch->exec_bos[i];
|
|
/* The decoder zeroes out the top 16 bits, so we need to as well */
|
|
uint64_t bo_address = bo->gtt_offset & (~0ull >> 16);
|
|
|
|
if (address >= bo_address && address < bo_address + bo->size) {
|
|
return (struct gen_batch_decode_bo) {
|
|
.addr = address,
|
|
.size = bo->size,
|
|
.map = brw_bo_map(brw, bo, MAP_READ) + (address - bo_address),
|
|
};
|
|
}
|
|
}
|
|
|
|
return (struct gen_batch_decode_bo) { };
|
|
}
|
|
|
|
static unsigned
|
|
decode_get_state_size(void *v_brw, uint32_t offset_from_dsba)
|
|
{
|
|
struct brw_context *brw = v_brw;
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
struct hash_entry *entry =
|
|
_mesa_hash_table_search(batch->state_batch_sizes,
|
|
(void *) (uintptr_t) offset_from_dsba);
|
|
return entry ? (uintptr_t) entry->data : 0;
|
|
}
|
|
|
|
static bool
|
|
uint_key_compare(const void *a, const void *b)
|
|
{
|
|
return a == b;
|
|
}
|
|
|
|
static uint32_t
|
|
uint_key_hash(const void *key)
|
|
{
|
|
return (uintptr_t) key;
|
|
}
|
|
|
|
static void
|
|
init_reloc_list(struct brw_reloc_list *rlist, int count)
|
|
{
|
|
rlist->reloc_count = 0;
|
|
rlist->reloc_array_size = count;
|
|
rlist->relocs = malloc(rlist->reloc_array_size *
|
|
sizeof(struct drm_i915_gem_relocation_entry));
|
|
}
|
|
|
|
void
|
|
intel_batchbuffer_init(struct brw_context *brw)
|
|
{
|
|
struct intel_screen *screen = brw->screen;
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
const struct gen_device_info *devinfo = &screen->devinfo;
|
|
|
|
batch->use_shadow_copy = !devinfo->has_llc;
|
|
|
|
init_reloc_list(&batch->batch_relocs, 250);
|
|
init_reloc_list(&batch->state_relocs, 250);
|
|
|
|
batch->batch.map = NULL;
|
|
batch->state.map = NULL;
|
|
batch->exec_count = 0;
|
|
batch->exec_array_size = 100;
|
|
batch->exec_bos =
|
|
malloc(batch->exec_array_size * sizeof(batch->exec_bos[0]));
|
|
batch->validation_list =
|
|
malloc(batch->exec_array_size * sizeof(batch->validation_list[0]));
|
|
|
|
if (INTEL_DEBUG & DEBUG_BATCH) {
|
|
batch->state_batch_sizes =
|
|
_mesa_hash_table_create(NULL, uint_key_hash, uint_key_compare);
|
|
|
|
const unsigned decode_flags =
|
|
GEN_BATCH_DECODE_FULL |
|
|
((INTEL_DEBUG & DEBUG_COLOR) ? GEN_BATCH_DECODE_IN_COLOR : 0) |
|
|
GEN_BATCH_DECODE_OFFSETS |
|
|
GEN_BATCH_DECODE_FLOATS;
|
|
|
|
gen_batch_decode_ctx_init(&batch->decoder, devinfo, stderr,
|
|
decode_flags, NULL, decode_get_bo,
|
|
decode_get_state_size, brw);
|
|
batch->decoder.max_vbo_decoded_lines = 100;
|
|
}
|
|
|
|
batch->use_batch_first =
|
|
screen->kernel_features & KERNEL_ALLOWS_EXEC_BATCH_FIRST;
|
|
|
|
/* PIPE_CONTROL needs a w/a but only on gen6 */
|
|
batch->valid_reloc_flags = EXEC_OBJECT_WRITE;
|
|
if (devinfo->gen == 6)
|
|
batch->valid_reloc_flags |= EXEC_OBJECT_NEEDS_GTT;
|
|
|
|
intel_batchbuffer_reset(brw);
|
|
}
|
|
|
|
#define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
|
|
|
|
static unsigned
|
|
add_exec_bo(struct intel_batchbuffer *batch, struct brw_bo *bo)
|
|
{
|
|
unsigned index = READ_ONCE(bo->index);
|
|
|
|
if (index < batch->exec_count && batch->exec_bos[index] == bo)
|
|
return index;
|
|
|
|
/* May have been shared between multiple active batches */
|
|
for (index = 0; index < batch->exec_count; index++) {
|
|
if (batch->exec_bos[index] == bo)
|
|
return index;
|
|
}
|
|
|
|
brw_bo_reference(bo);
|
|
|
|
if (batch->exec_count == batch->exec_array_size) {
|
|
batch->exec_array_size *= 2;
|
|
batch->exec_bos =
|
|
realloc(batch->exec_bos,
|
|
batch->exec_array_size * sizeof(batch->exec_bos[0]));
|
|
batch->validation_list =
|
|
realloc(batch->validation_list,
|
|
batch->exec_array_size * sizeof(batch->validation_list[0]));
|
|
}
|
|
|
|
batch->validation_list[batch->exec_count] =
|
|
(struct drm_i915_gem_exec_object2) {
|
|
.handle = bo->gem_handle,
|
|
.offset = bo->gtt_offset,
|
|
.flags = bo->kflags,
|
|
};
|
|
|
|
bo->index = batch->exec_count;
|
|
batch->exec_bos[batch->exec_count] = bo;
|
|
batch->aperture_space += bo->size;
|
|
|
|
return batch->exec_count++;
|
|
}
|
|
|
|
static void
|
|
recreate_growing_buffer(struct brw_context *brw,
|
|
struct brw_growing_bo *grow,
|
|
const char *name, unsigned size,
|
|
enum brw_memory_zone memzone)
|
|
{
|
|
struct intel_screen *screen = brw->screen;
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
struct brw_bufmgr *bufmgr = screen->bufmgr;
|
|
|
|
grow->bo = brw_bo_alloc(bufmgr, name, size, memzone);
|
|
grow->bo->kflags |= can_do_exec_capture(screen) ? EXEC_OBJECT_CAPTURE : 0;
|
|
grow->partial_bo = NULL;
|
|
grow->partial_bo_map = NULL;
|
|
grow->partial_bytes = 0;
|
|
grow->memzone = memzone;
|
|
|
|
if (batch->use_shadow_copy)
|
|
grow->map = realloc(grow->map, grow->bo->size);
|
|
else
|
|
grow->map = brw_bo_map(brw, grow->bo, MAP_READ | MAP_WRITE);
|
|
}
|
|
|
|
static void
|
|
intel_batchbuffer_reset(struct brw_context *brw)
|
|
{
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
|
|
if (batch->last_bo != NULL) {
|
|
brw_bo_unreference(batch->last_bo);
|
|
batch->last_bo = NULL;
|
|
}
|
|
batch->last_bo = batch->batch.bo;
|
|
|
|
recreate_growing_buffer(brw, &batch->batch, "batchbuffer", BATCH_SZ,
|
|
BRW_MEMZONE_OTHER);
|
|
batch->map_next = batch->batch.map;
|
|
|
|
recreate_growing_buffer(brw, &batch->state, "statebuffer", STATE_SZ,
|
|
BRW_MEMZONE_DYNAMIC);
|
|
|
|
/* Avoid making 0 a valid state offset - otherwise the decoder will try
|
|
* and decode data when we use offset 0 as a null pointer.
|
|
*/
|
|
batch->state_used = 1;
|
|
|
|
add_exec_bo(batch, batch->batch.bo);
|
|
assert(batch->batch.bo->index == 0);
|
|
|
|
batch->needs_sol_reset = false;
|
|
batch->state_base_address_emitted = false;
|
|
|
|
if (batch->state_batch_sizes)
|
|
_mesa_hash_table_clear(batch->state_batch_sizes, NULL);
|
|
}
|
|
|
|
static void
|
|
intel_batchbuffer_reset_and_clear_render_cache(struct brw_context *brw)
|
|
{
|
|
intel_batchbuffer_reset(brw);
|
|
brw_cache_sets_clear(brw);
|
|
}
|
|
|
|
void
|
|
intel_batchbuffer_save_state(struct brw_context *brw)
|
|
{
|
|
brw->batch.saved.map_next = brw->batch.map_next;
|
|
brw->batch.saved.batch_reloc_count = brw->batch.batch_relocs.reloc_count;
|
|
brw->batch.saved.state_reloc_count = brw->batch.state_relocs.reloc_count;
|
|
brw->batch.saved.exec_count = brw->batch.exec_count;
|
|
}
|
|
|
|
void
|
|
intel_batchbuffer_reset_to_saved(struct brw_context *brw)
|
|
{
|
|
for (int i = brw->batch.saved.exec_count;
|
|
i < brw->batch.exec_count; i++) {
|
|
brw_bo_unreference(brw->batch.exec_bos[i]);
|
|
}
|
|
brw->batch.batch_relocs.reloc_count = brw->batch.saved.batch_reloc_count;
|
|
brw->batch.state_relocs.reloc_count = brw->batch.saved.state_reloc_count;
|
|
brw->batch.exec_count = brw->batch.saved.exec_count;
|
|
|
|
brw->batch.map_next = brw->batch.saved.map_next;
|
|
}
|
|
|
|
void
|
|
intel_batchbuffer_free(struct intel_batchbuffer *batch)
|
|
{
|
|
if (batch->use_shadow_copy) {
|
|
free(batch->batch.map);
|
|
free(batch->state.map);
|
|
}
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
brw_bo_unreference(batch->exec_bos[i]);
|
|
}
|
|
free(batch->batch_relocs.relocs);
|
|
free(batch->state_relocs.relocs);
|
|
free(batch->exec_bos);
|
|
free(batch->validation_list);
|
|
|
|
brw_bo_unreference(batch->last_bo);
|
|
brw_bo_unreference(batch->batch.bo);
|
|
brw_bo_unreference(batch->state.bo);
|
|
if (batch->state_batch_sizes) {
|
|
_mesa_hash_table_destroy(batch->state_batch_sizes, NULL);
|
|
gen_batch_decode_ctx_finish(&batch->decoder);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Finish copying the old batch/state buffer's contents to the new one
|
|
* after we tried to "grow" the buffer in an earlier operation.
|
|
*/
|
|
static void
|
|
finish_growing_bos(struct brw_growing_bo *grow)
|
|
{
|
|
struct brw_bo *old_bo = grow->partial_bo;
|
|
if (!old_bo)
|
|
return;
|
|
|
|
memcpy(grow->map, grow->partial_bo_map, grow->partial_bytes);
|
|
|
|
grow->partial_bo = NULL;
|
|
grow->partial_bo_map = NULL;
|
|
grow->partial_bytes = 0;
|
|
|
|
brw_bo_unreference(old_bo);
|
|
}
|
|
|
|
static void
|
|
replace_bo_in_reloc_list(struct brw_reloc_list *rlist,
|
|
uint32_t old_handle, uint32_t new_handle)
|
|
{
|
|
for (int i = 0; i < rlist->reloc_count; i++) {
|
|
if (rlist->relocs[i].target_handle == old_handle)
|
|
rlist->relocs[i].target_handle = new_handle;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Grow either the batch or state buffer to a new larger size.
|
|
*
|
|
* We can't actually grow buffers, so we allocate a new one, copy over
|
|
* the existing contents, and update our lists to refer to the new one.
|
|
*
|
|
* Note that this is only temporary - each new batch recreates the buffers
|
|
* at their original target size (BATCH_SZ or STATE_SZ).
|
|
*/
|
|
static void
|
|
grow_buffer(struct brw_context *brw,
|
|
struct brw_growing_bo *grow,
|
|
unsigned existing_bytes,
|
|
unsigned new_size)
|
|
{
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
struct brw_bufmgr *bufmgr = brw->bufmgr;
|
|
struct brw_bo *bo = grow->bo;
|
|
|
|
perf_debug("Growing %s - ran out of space\n", bo->name);
|
|
|
|
if (grow->partial_bo) {
|
|
/* We've already grown once, and now we need to do it again.
|
|
* Finish our last grow operation so we can start a new one.
|
|
* This should basically never happen.
|
|
*/
|
|
perf_debug("Had to grow multiple times");
|
|
finish_growing_bos(grow);
|
|
}
|
|
|
|
struct brw_bo *new_bo =
|
|
brw_bo_alloc(bufmgr, bo->name, new_size, grow->memzone);
|
|
|
|
/* Copy existing data to the new larger buffer */
|
|
grow->partial_bo_map = grow->map;
|
|
|
|
if (batch->use_shadow_copy) {
|
|
/* We can't safely use realloc, as it may move the existing buffer,
|
|
* breaking existing pointers the caller may still be using. Just
|
|
* malloc a new copy and memcpy it like the normal BO path.
|
|
*
|
|
* Use bo->size rather than new_size because the bufmgr may have
|
|
* rounded up the size, and we want the shadow size to match.
|
|
*/
|
|
grow->map = malloc(new_bo->size);
|
|
} else {
|
|
grow->map = brw_bo_map(brw, new_bo, MAP_READ | MAP_WRITE);
|
|
}
|
|
|
|
/* Try to put the new BO at the same GTT offset as the old BO (which
|
|
* we're throwing away, so it doesn't need to be there).
|
|
*
|
|
* This guarantees that our relocations continue to work: values we've
|
|
* already written into the buffer, values we're going to write into the
|
|
* buffer, and the validation/relocation lists all will match.
|
|
*
|
|
* Also preserve kflags for EXEC_OBJECT_CAPTURE.
|
|
*/
|
|
new_bo->gtt_offset = bo->gtt_offset;
|
|
new_bo->index = bo->index;
|
|
new_bo->kflags = bo->kflags;
|
|
|
|
/* Batch/state buffers are per-context, and if we've run out of space,
|
|
* we must have actually used them before, so...they will be in the list.
|
|
*/
|
|
assert(bo->index < batch->exec_count);
|
|
assert(batch->exec_bos[bo->index] == bo);
|
|
|
|
/* Update the validation list to use the new BO. */
|
|
batch->validation_list[bo->index].handle = new_bo->gem_handle;
|
|
|
|
if (!batch->use_batch_first) {
|
|
/* We're not using I915_EXEC_HANDLE_LUT, which means we need to go
|
|
* update the relocation list entries to point at the new BO as well.
|
|
* (With newer kernels, the "handle" is an offset into the validation
|
|
* list, which remains unchanged, so we can skip this.)
|
|
*/
|
|
replace_bo_in_reloc_list(&batch->batch_relocs,
|
|
bo->gem_handle, new_bo->gem_handle);
|
|
replace_bo_in_reloc_list(&batch->state_relocs,
|
|
bo->gem_handle, new_bo->gem_handle);
|
|
}
|
|
|
|
/* Exchange the two BOs...without breaking pointers to the old BO.
|
|
*
|
|
* Consider this scenario:
|
|
*
|
|
* 1. Somebody calls brw_state_batch() to get a region of memory, and
|
|
* and then creates a brw_address pointing to brw->batch.state.bo.
|
|
* 2. They then call brw_state_batch() a second time, which happens to
|
|
* grow and replace the state buffer. They then try to emit a
|
|
* relocation to their first section of memory.
|
|
*
|
|
* If we replace the brw->batch.state.bo pointer at step 2, we would
|
|
* break the address created in step 1. They'd have a pointer to the
|
|
* old destroyed BO. Emitting a relocation would add this dead BO to
|
|
* the validation list...causing /both/ statebuffers to be in the list,
|
|
* and all kinds of disasters.
|
|
*
|
|
* This is not a contrived case - BLORP vertex data upload hits this.
|
|
*
|
|
* There are worse scenarios too. Fences for GL sync objects reference
|
|
* brw->batch.batch.bo. If we replaced the batch pointer when growing,
|
|
* we'd need to chase down every fence and update it to point to the
|
|
* new BO. Otherwise, it would refer to a "batch" that never actually
|
|
* gets submitted, and would fail to trigger.
|
|
*
|
|
* To work around both of these issues, we transmutate the buffers in
|
|
* place, making the existing struct brw_bo represent the new buffer,
|
|
* and "new_bo" represent the old BO. This is highly unusual, but it
|
|
* seems like a necessary evil.
|
|
*
|
|
* We also defer the memcpy of the existing batch's contents. Callers
|
|
* may make multiple brw_state_batch calls, and retain pointers to the
|
|
* old BO's map. We'll perform the memcpy in finish_growing_bo() when
|
|
* we finally submit the batch, at which point we've finished uploading
|
|
* state, and nobody should have any old references anymore.
|
|
*
|
|
* To do that, we keep a reference to the old BO in grow->partial_bo,
|
|
* and store the number of bytes to copy in grow->partial_bytes. We
|
|
* can monkey with the refcounts directly without atomics because these
|
|
* are per-context BOs and they can only be touched by this thread.
|
|
*/
|
|
assert(new_bo->refcount == 1);
|
|
new_bo->refcount = bo->refcount;
|
|
bo->refcount = 1;
|
|
|
|
struct brw_bo tmp;
|
|
memcpy(&tmp, bo, sizeof(struct brw_bo));
|
|
memcpy(bo, new_bo, sizeof(struct brw_bo));
|
|
memcpy(new_bo, &tmp, sizeof(struct brw_bo));
|
|
|
|
grow->partial_bo = new_bo; /* the one reference of the OLD bo */
|
|
grow->partial_bytes = existing_bytes;
|
|
}
|
|
|
|
void
|
|
intel_batchbuffer_require_space(struct brw_context *brw, GLuint sz)
|
|
{
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
|
|
const unsigned batch_used = USED_BATCH(*batch) * 4;
|
|
if (batch_used + sz >= BATCH_SZ && !batch->no_wrap) {
|
|
intel_batchbuffer_flush(brw);
|
|
} else if (batch_used + sz >= batch->batch.bo->size) {
|
|
const unsigned new_size =
|
|
MIN2(batch->batch.bo->size + batch->batch.bo->size / 2,
|
|
MAX_BATCH_SIZE);
|
|
grow_buffer(brw, &batch->batch, batch_used, new_size);
|
|
batch->map_next = (void *) batch->batch.map + batch_used;
|
|
assert(batch_used + sz < batch->batch.bo->size);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Called when starting a new batch buffer.
|
|
*/
|
|
static void
|
|
brw_new_batch(struct brw_context *brw)
|
|
{
|
|
/* Unreference any BOs held by the previous batch, and reset counts. */
|
|
for (int i = 0; i < brw->batch.exec_count; i++) {
|
|
brw_bo_unreference(brw->batch.exec_bos[i]);
|
|
brw->batch.exec_bos[i] = NULL;
|
|
}
|
|
brw->batch.batch_relocs.reloc_count = 0;
|
|
brw->batch.state_relocs.reloc_count = 0;
|
|
brw->batch.exec_count = 0;
|
|
brw->batch.aperture_space = 0;
|
|
|
|
brw_bo_unreference(brw->batch.state.bo);
|
|
|
|
/* Create a new batchbuffer and reset the associated state: */
|
|
intel_batchbuffer_reset_and_clear_render_cache(brw);
|
|
|
|
/* If the kernel supports hardware contexts, then most hardware state is
|
|
* preserved between batches; we only need to re-emit state that is required
|
|
* to be in every batch. Otherwise we need to re-emit all the state that
|
|
* would otherwise be stored in the context (which for all intents and
|
|
* purposes means everything).
|
|
*/
|
|
if (brw->hw_ctx == 0) {
|
|
brw->ctx.NewDriverState |= BRW_NEW_CONTEXT;
|
|
brw_upload_invariant_state(brw);
|
|
}
|
|
|
|
brw->ctx.NewDriverState |= BRW_NEW_BATCH;
|
|
|
|
brw->ib.index_size = -1;
|
|
|
|
/* We need to periodically reap the shader time results, because rollover
|
|
* happens every few seconds. We also want to see results every once in a
|
|
* while, because many programs won't cleanly destroy our context, so the
|
|
* end-of-run printout may not happen.
|
|
*/
|
|
if (INTEL_DEBUG & DEBUG_SHADER_TIME)
|
|
brw_collect_and_report_shader_time(brw);
|
|
}
|
|
|
|
/**
|
|
* Called from intel_batchbuffer_flush before emitting MI_BATCHBUFFER_END and
|
|
* sending it off.
|
|
*
|
|
* This function can emit state (say, to preserve registers that aren't saved
|
|
* between batches).
|
|
*/
|
|
static void
|
|
brw_finish_batch(struct brw_context *brw)
|
|
{
|
|
const struct gen_device_info *devinfo = &brw->screen->devinfo;
|
|
|
|
brw->batch.no_wrap = true;
|
|
|
|
/* Capture the closing pipeline statistics register values necessary to
|
|
* support query objects (in the non-hardware context world).
|
|
*/
|
|
brw_emit_query_end(brw);
|
|
|
|
/* Work around L3 state leaks into contexts set MI_RESTORE_INHIBIT which
|
|
* assume that the L3 cache is configured according to the hardware
|
|
* defaults. On Kernel 4.16+, we no longer need to do this.
|
|
*/
|
|
if (devinfo->gen >= 7 &&
|
|
!(brw->screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION))
|
|
gen7_restore_default_l3_config(brw);
|
|
|
|
if (devinfo->is_haswell) {
|
|
/* From the Haswell PRM, Volume 2b, Command Reference: Instructions,
|
|
* 3DSTATE_CC_STATE_POINTERS > "Note":
|
|
*
|
|
* "SW must program 3DSTATE_CC_STATE_POINTERS command at the end of every
|
|
* 3D batch buffer followed by a PIPE_CONTROL with RC flush and CS stall."
|
|
*
|
|
* From the example in the docs, it seems to expect a regular pipe control
|
|
* flush here as well. We may have done it already, but meh.
|
|
*
|
|
* See also WaAvoidRCZCounterRollover.
|
|
*/
|
|
brw_emit_mi_flush(brw);
|
|
BEGIN_BATCH(2);
|
|
OUT_BATCH(_3DSTATE_CC_STATE_POINTERS << 16 | (2 - 2));
|
|
OUT_BATCH(brw->cc.state_offset | 1);
|
|
ADVANCE_BATCH();
|
|
brw_emit_pipe_control_flush(brw, PIPE_CONTROL_RENDER_TARGET_FLUSH |
|
|
PIPE_CONTROL_CS_STALL);
|
|
}
|
|
|
|
/* Do not restore push constant packets during context restore. */
|
|
if (devinfo->gen >= 7)
|
|
gen10_emit_isp_disable(brw);
|
|
|
|
/* Emit MI_BATCH_BUFFER_END to finish our batch. Note that execbuf2
|
|
* requires our batch size to be QWord aligned, so we pad it out if
|
|
* necessary by emitting an extra MI_NOOP after the end.
|
|
*/
|
|
intel_batchbuffer_require_space(brw, 8);
|
|
*brw->batch.map_next++ = MI_BATCH_BUFFER_END;
|
|
if (USED_BATCH(brw->batch) & 1) {
|
|
*brw->batch.map_next++ = MI_NOOP;
|
|
}
|
|
|
|
brw->batch.no_wrap = false;
|
|
}
|
|
|
|
static void
|
|
throttle(struct brw_context *brw)
|
|
{
|
|
/* Wait for the swapbuffers before the one we just emitted, so we
|
|
* don't get too many swaps outstanding for apps that are GPU-heavy
|
|
* but not CPU-heavy.
|
|
*
|
|
* We're using intelDRI2Flush (called from the loader before
|
|
* swapbuffer) and glFlush (for front buffer rendering) as the
|
|
* indicator that a frame is done and then throttle when we get
|
|
* here as we prepare to render the next frame. At this point for
|
|
* round trips for swap/copy and getting new buffers are done and
|
|
* we'll spend less time waiting on the GPU.
|
|
*
|
|
* Unfortunately, we don't have a handle to the batch containing
|
|
* the swap, and getting our hands on that doesn't seem worth it,
|
|
* so we just use the first batch we emitted after the last swap.
|
|
*/
|
|
if (brw->need_swap_throttle && brw->throttle_batch[0]) {
|
|
if (brw->throttle_batch[1]) {
|
|
if (!brw->disable_throttling) {
|
|
brw_bo_wait_rendering(brw->throttle_batch[1]);
|
|
}
|
|
brw_bo_unreference(brw->throttle_batch[1]);
|
|
}
|
|
brw->throttle_batch[1] = brw->throttle_batch[0];
|
|
brw->throttle_batch[0] = NULL;
|
|
brw->need_swap_throttle = false;
|
|
/* Throttling here is more precise than the throttle ioctl, so skip it */
|
|
brw->need_flush_throttle = false;
|
|
}
|
|
|
|
if (brw->need_flush_throttle) {
|
|
__DRIscreen *dri_screen = brw->screen->driScrnPriv;
|
|
drmCommandNone(dri_screen->fd, DRM_I915_GEM_THROTTLE);
|
|
brw->need_flush_throttle = false;
|
|
}
|
|
}
|
|
|
|
static int
|
|
execbuffer(int fd,
|
|
struct intel_batchbuffer *batch,
|
|
uint32_t ctx_id,
|
|
int used,
|
|
int in_fence,
|
|
int *out_fence,
|
|
int flags)
|
|
{
|
|
struct drm_i915_gem_execbuffer2 execbuf = {
|
|
.buffers_ptr = (uintptr_t) batch->validation_list,
|
|
.buffer_count = batch->exec_count,
|
|
.batch_start_offset = 0,
|
|
.batch_len = used,
|
|
.flags = flags,
|
|
.rsvd1 = ctx_id, /* rsvd1 is actually the context ID */
|
|
};
|
|
|
|
unsigned long cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2;
|
|
|
|
if (in_fence != -1) {
|
|
execbuf.rsvd2 = in_fence;
|
|
execbuf.flags |= I915_EXEC_FENCE_IN;
|
|
}
|
|
|
|
if (out_fence != NULL) {
|
|
cmd = DRM_IOCTL_I915_GEM_EXECBUFFER2_WR;
|
|
*out_fence = -1;
|
|
execbuf.flags |= I915_EXEC_FENCE_OUT;
|
|
}
|
|
|
|
int ret = drmIoctl(fd, cmd, &execbuf);
|
|
if (ret != 0)
|
|
ret = -errno;
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
struct brw_bo *bo = batch->exec_bos[i];
|
|
|
|
bo->idle = false;
|
|
bo->index = -1;
|
|
|
|
/* Update brw_bo::gtt_offset */
|
|
if (batch->validation_list[i].offset != bo->gtt_offset) {
|
|
DBG("BO %d migrated: 0x%" PRIx64 " -> 0x%llx\n",
|
|
bo->gem_handle, bo->gtt_offset,
|
|
batch->validation_list[i].offset);
|
|
bo->gtt_offset = batch->validation_list[i].offset;
|
|
}
|
|
}
|
|
|
|
if (ret == 0 && out_fence != NULL)
|
|
*out_fence = execbuf.rsvd2 >> 32;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
submit_batch(struct brw_context *brw, int in_fence_fd, int *out_fence_fd)
|
|
{
|
|
__DRIscreen *dri_screen = brw->screen->driScrnPriv;
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
int ret = 0;
|
|
|
|
if (batch->use_shadow_copy) {
|
|
void *bo_map = brw_bo_map(brw, batch->batch.bo, MAP_WRITE);
|
|
memcpy(bo_map, batch->batch.map, 4 * USED_BATCH(*batch));
|
|
|
|
bo_map = brw_bo_map(brw, batch->state.bo, MAP_WRITE);
|
|
memcpy(bo_map, batch->state.map, batch->state_used);
|
|
}
|
|
|
|
brw_bo_unmap(batch->batch.bo);
|
|
brw_bo_unmap(batch->state.bo);
|
|
|
|
if (!brw->screen->no_hw) {
|
|
/* The requirement for using I915_EXEC_NO_RELOC are:
|
|
*
|
|
* The addresses written in the objects must match the corresponding
|
|
* reloc.gtt_offset which in turn must match the corresponding
|
|
* execobject.offset.
|
|
*
|
|
* Any render targets written to in the batch must be flagged with
|
|
* EXEC_OBJECT_WRITE.
|
|
*
|
|
* To avoid stalling, execobject.offset should match the current
|
|
* address of that object within the active context.
|
|
*/
|
|
int flags = I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
|
|
|
|
if (batch->needs_sol_reset)
|
|
flags |= I915_EXEC_GEN7_SOL_RESET;
|
|
|
|
/* Set statebuffer relocations */
|
|
const unsigned state_index = batch->state.bo->index;
|
|
if (state_index < batch->exec_count &&
|
|
batch->exec_bos[state_index] == batch->state.bo) {
|
|
struct drm_i915_gem_exec_object2 *entry =
|
|
&batch->validation_list[state_index];
|
|
assert(entry->handle == batch->state.bo->gem_handle);
|
|
entry->relocation_count = batch->state_relocs.reloc_count;
|
|
entry->relocs_ptr = (uintptr_t) batch->state_relocs.relocs;
|
|
}
|
|
|
|
/* Set batchbuffer relocations */
|
|
struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[0];
|
|
assert(entry->handle == batch->batch.bo->gem_handle);
|
|
entry->relocation_count = batch->batch_relocs.reloc_count;
|
|
entry->relocs_ptr = (uintptr_t) batch->batch_relocs.relocs;
|
|
|
|
if (batch->use_batch_first) {
|
|
flags |= I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT;
|
|
} else {
|
|
/* Move the batch to the end of the validation list */
|
|
struct drm_i915_gem_exec_object2 tmp;
|
|
struct brw_bo *tmp_bo;
|
|
const unsigned index = batch->exec_count - 1;
|
|
|
|
tmp = *entry;
|
|
*entry = batch->validation_list[index];
|
|
batch->validation_list[index] = tmp;
|
|
|
|
tmp_bo = batch->exec_bos[0];
|
|
batch->exec_bos[0] = batch->exec_bos[index];
|
|
batch->exec_bos[index] = tmp_bo;
|
|
}
|
|
|
|
ret = execbuffer(dri_screen->fd, batch, brw->hw_ctx,
|
|
4 * USED_BATCH(*batch),
|
|
in_fence_fd, out_fence_fd, flags);
|
|
|
|
throttle(brw);
|
|
}
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
|
|
gen_print_batch(&batch->decoder, batch->batch.map,
|
|
4 * USED_BATCH(*batch),
|
|
batch->batch.bo->gtt_offset);
|
|
}
|
|
|
|
if (brw->ctx.Const.ResetStrategy == GL_LOSE_CONTEXT_ON_RESET_ARB)
|
|
brw_check_for_reset(brw);
|
|
|
|
if (ret != 0) {
|
|
fprintf(stderr, "i965: Failed to submit batchbuffer: %s\n",
|
|
strerror(-ret));
|
|
exit(1);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* The in_fence_fd is ignored if -1. Otherwise this function takes ownership
|
|
* of the fd.
|
|
*
|
|
* The out_fence_fd is ignored if NULL. Otherwise, the caller takes ownership
|
|
* of the returned fd.
|
|
*/
|
|
int
|
|
_intel_batchbuffer_flush_fence(struct brw_context *brw,
|
|
int in_fence_fd, int *out_fence_fd,
|
|
const char *file, int line)
|
|
{
|
|
int ret;
|
|
|
|
if (USED_BATCH(brw->batch) == 0)
|
|
return 0;
|
|
|
|
/* Check that we didn't just wrap our batchbuffer at a bad time. */
|
|
assert(!brw->batch.no_wrap);
|
|
|
|
brw_finish_batch(brw);
|
|
brw_upload_finish(&brw->upload);
|
|
|
|
finish_growing_bos(&brw->batch.batch);
|
|
finish_growing_bos(&brw->batch.state);
|
|
|
|
if (brw->throttle_batch[0] == NULL) {
|
|
brw->throttle_batch[0] = brw->batch.batch.bo;
|
|
brw_bo_reference(brw->throttle_batch[0]);
|
|
}
|
|
|
|
if (unlikely(INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT))) {
|
|
int bytes_for_commands = 4 * USED_BATCH(brw->batch);
|
|
int bytes_for_state = brw->batch.state_used;
|
|
fprintf(stderr, "%19s:%-3d: Batchbuffer flush with %5db (%0.1f%%) (pkt),"
|
|
" %5db (%0.1f%%) (state), %4d BOs (%0.1fMb aperture),"
|
|
" %4d batch relocs, %4d state relocs\n", file, line,
|
|
bytes_for_commands, 100.0f * bytes_for_commands / BATCH_SZ,
|
|
bytes_for_state, 100.0f * bytes_for_state / STATE_SZ,
|
|
brw->batch.exec_count,
|
|
(float) brw->batch.aperture_space / (1024 * 1024),
|
|
brw->batch.batch_relocs.reloc_count,
|
|
brw->batch.state_relocs.reloc_count);
|
|
|
|
dump_validation_list(&brw->batch);
|
|
}
|
|
|
|
ret = submit_batch(brw, in_fence_fd, out_fence_fd);
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) {
|
|
fprintf(stderr, "waiting for idle\n");
|
|
brw_bo_wait_rendering(brw->batch.batch.bo);
|
|
}
|
|
|
|
/* Start a new batch buffer. */
|
|
brw_new_batch(brw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool
|
|
brw_batch_has_aperture_space(struct brw_context *brw, unsigned extra_space)
|
|
{
|
|
return brw->batch.aperture_space + extra_space <=
|
|
brw->screen->aperture_threshold;
|
|
}
|
|
|
|
bool
|
|
brw_batch_references(struct intel_batchbuffer *batch, struct brw_bo *bo)
|
|
{
|
|
unsigned index = READ_ONCE(bo->index);
|
|
if (index < batch->exec_count && batch->exec_bos[index] == bo)
|
|
return true;
|
|
|
|
for (int i = 0; i < batch->exec_count; i++) {
|
|
if (batch->exec_bos[i] == bo)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* This is the only way buffers get added to the validate list.
|
|
*/
|
|
static uint64_t
|
|
emit_reloc(struct intel_batchbuffer *batch,
|
|
struct brw_reloc_list *rlist, uint32_t offset,
|
|
struct brw_bo *target, int32_t target_offset,
|
|
unsigned int reloc_flags)
|
|
{
|
|
assert(target != NULL);
|
|
|
|
if (rlist->reloc_count == rlist->reloc_array_size) {
|
|
rlist->reloc_array_size *= 2;
|
|
rlist->relocs = realloc(rlist->relocs,
|
|
rlist->reloc_array_size *
|
|
sizeof(struct drm_i915_gem_relocation_entry));
|
|
}
|
|
|
|
unsigned int index = add_exec_bo(batch, target);
|
|
struct drm_i915_gem_exec_object2 *entry = &batch->validation_list[index];
|
|
|
|
if (reloc_flags & RELOC_32BIT) {
|
|
/* Restrict this buffer to the low 32 bits of the address space.
|
|
*
|
|
* Altering the validation list flags restricts it for this batch,
|
|
* but we also alter the BO's kflags to restrict it permanently
|
|
* (until the BO is destroyed and put back in the cache). Buffers
|
|
* may stay bound across batches, and we want keep it constrained.
|
|
*/
|
|
target->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
|
|
entry->flags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
|
|
|
|
/* RELOC_32BIT is not an EXEC_OBJECT_* flag, so get rid of it. */
|
|
reloc_flags &= ~RELOC_32BIT;
|
|
}
|
|
|
|
if (reloc_flags)
|
|
entry->flags |= reloc_flags & batch->valid_reloc_flags;
|
|
|
|
rlist->relocs[rlist->reloc_count++] =
|
|
(struct drm_i915_gem_relocation_entry) {
|
|
.offset = offset,
|
|
.delta = target_offset,
|
|
.target_handle = batch->use_batch_first ? index : target->gem_handle,
|
|
.presumed_offset = entry->offset,
|
|
};
|
|
|
|
/* Using the old buffer offset, write in what the right data would be, in
|
|
* case the buffer doesn't move and we can short-circuit the relocation
|
|
* processing in the kernel
|
|
*/
|
|
return entry->offset + target_offset;
|
|
}
|
|
|
|
uint64_t
|
|
brw_batch_reloc(struct intel_batchbuffer *batch, uint32_t batch_offset,
|
|
struct brw_bo *target, uint32_t target_offset,
|
|
unsigned int reloc_flags)
|
|
{
|
|
assert(batch_offset <= batch->batch.bo->size - sizeof(uint32_t));
|
|
|
|
return emit_reloc(batch, &batch->batch_relocs, batch_offset,
|
|
target, target_offset, reloc_flags);
|
|
}
|
|
|
|
uint64_t
|
|
brw_state_reloc(struct intel_batchbuffer *batch, uint32_t state_offset,
|
|
struct brw_bo *target, uint32_t target_offset,
|
|
unsigned int reloc_flags)
|
|
{
|
|
assert(state_offset <= batch->state.bo->size - sizeof(uint32_t));
|
|
|
|
return emit_reloc(batch, &batch->state_relocs, state_offset,
|
|
target, target_offset, reloc_flags);
|
|
}
|
|
|
|
/**
|
|
* Reserve some space in the statebuffer, or flush.
|
|
*
|
|
* This is used to estimate when we're near the end of the batch,
|
|
* so we can flush early.
|
|
*/
|
|
void
|
|
brw_require_statebuffer_space(struct brw_context *brw, int size)
|
|
{
|
|
if (brw->batch.state_used + size >= STATE_SZ)
|
|
intel_batchbuffer_flush(brw);
|
|
}
|
|
|
|
/**
|
|
* Allocates a block of space in the batchbuffer for indirect state.
|
|
*/
|
|
void *
|
|
brw_state_batch(struct brw_context *brw,
|
|
int size,
|
|
int alignment,
|
|
uint32_t *out_offset)
|
|
{
|
|
struct intel_batchbuffer *batch = &brw->batch;
|
|
|
|
assert(size < batch->state.bo->size);
|
|
|
|
uint32_t offset = ALIGN(batch->state_used, alignment);
|
|
|
|
if (offset + size >= STATE_SZ && !batch->no_wrap) {
|
|
intel_batchbuffer_flush(brw);
|
|
offset = ALIGN(batch->state_used, alignment);
|
|
} else if (offset + size >= batch->state.bo->size) {
|
|
const unsigned new_size =
|
|
MIN2(batch->state.bo->size + batch->state.bo->size / 2,
|
|
MAX_STATE_SIZE);
|
|
grow_buffer(brw, &batch->state, batch->state_used, new_size);
|
|
assert(offset + size < batch->state.bo->size);
|
|
}
|
|
|
|
if (unlikely(INTEL_DEBUG & DEBUG_BATCH)) {
|
|
_mesa_hash_table_insert(batch->state_batch_sizes,
|
|
(void *) (uintptr_t) offset,
|
|
(void *) (uintptr_t) size);
|
|
}
|
|
|
|
batch->state_used = offset + size;
|
|
|
|
*out_offset = offset;
|
|
return batch->state.map + (offset >> 2);
|
|
}
|
|
|
|
void
|
|
intel_batchbuffer_data(struct brw_context *brw,
|
|
const void *data, GLuint bytes)
|
|
{
|
|
assert((bytes & 3) == 0);
|
|
intel_batchbuffer_require_space(brw, bytes);
|
|
memcpy(brw->batch.map_next, data, bytes);
|
|
brw->batch.map_next += bytes >> 2;
|
|
}
|
|
|
|
static void
|
|
load_sized_register_mem(struct brw_context *brw,
|
|
uint32_t reg,
|
|
struct brw_bo *bo,
|
|
uint32_t offset,
|
|
int size)
|
|
{
|
|
const struct gen_device_info *devinfo = &brw->screen->devinfo;
|
|
int i;
|
|
|
|
/* MI_LOAD_REGISTER_MEM only exists on Gen7+. */
|
|
assert(devinfo->gen >= 7);
|
|
|
|
if (devinfo->gen >= 8) {
|
|
BEGIN_BATCH(4 * size);
|
|
for (i = 0; i < size; i++) {
|
|
OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (4 - 2));
|
|
OUT_BATCH(reg + i * 4);
|
|
OUT_RELOC64(bo, 0, offset + i * 4);
|
|
}
|
|
ADVANCE_BATCH();
|
|
} else {
|
|
BEGIN_BATCH(3 * size);
|
|
for (i = 0; i < size; i++) {
|
|
OUT_BATCH(GEN7_MI_LOAD_REGISTER_MEM | (3 - 2));
|
|
OUT_BATCH(reg + i * 4);
|
|
OUT_RELOC(bo, 0, offset + i * 4);
|
|
}
|
|
ADVANCE_BATCH();
|
|
}
|
|
}
|
|
|
|
void
|
|
brw_load_register_mem(struct brw_context *brw,
|
|
uint32_t reg,
|
|
struct brw_bo *bo,
|
|
uint32_t offset)
|
|
{
|
|
load_sized_register_mem(brw, reg, bo, offset, 1);
|
|
}
|
|
|
|
void
|
|
brw_load_register_mem64(struct brw_context *brw,
|
|
uint32_t reg,
|
|
struct brw_bo *bo,
|
|
uint32_t offset)
|
|
{
|
|
load_sized_register_mem(brw, reg, bo, offset, 2);
|
|
}
|
|
|
|
/*
|
|
* Write an arbitrary 32-bit register to a buffer via MI_STORE_REGISTER_MEM.
|
|
*/
|
|
void
|
|
brw_store_register_mem32(struct brw_context *brw,
|
|
struct brw_bo *bo, uint32_t reg, uint32_t offset)
|
|
{
|
|
const struct gen_device_info *devinfo = &brw->screen->devinfo;
|
|
|
|
assert(devinfo->gen >= 6);
|
|
|
|
if (devinfo->gen >= 8) {
|
|
BEGIN_BATCH(4);
|
|
OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
|
|
OUT_BATCH(reg);
|
|
OUT_RELOC64(bo, RELOC_WRITE, offset);
|
|
ADVANCE_BATCH();
|
|
} else {
|
|
BEGIN_BATCH(3);
|
|
OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
|
|
OUT_BATCH(reg);
|
|
OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
|
|
ADVANCE_BATCH();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write an arbitrary 64-bit register to a buffer via MI_STORE_REGISTER_MEM.
|
|
*/
|
|
void
|
|
brw_store_register_mem64(struct brw_context *brw,
|
|
struct brw_bo *bo, uint32_t reg, uint32_t offset)
|
|
{
|
|
const struct gen_device_info *devinfo = &brw->screen->devinfo;
|
|
|
|
assert(devinfo->gen >= 6);
|
|
|
|
/* MI_STORE_REGISTER_MEM only stores a single 32-bit value, so to
|
|
* read a full 64-bit register, we need to do two of them.
|
|
*/
|
|
if (devinfo->gen >= 8) {
|
|
BEGIN_BATCH(8);
|
|
OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
|
|
OUT_BATCH(reg);
|
|
OUT_RELOC64(bo, RELOC_WRITE, offset);
|
|
OUT_BATCH(MI_STORE_REGISTER_MEM | (4 - 2));
|
|
OUT_BATCH(reg + sizeof(uint32_t));
|
|
OUT_RELOC64(bo, RELOC_WRITE, offset + sizeof(uint32_t));
|
|
ADVANCE_BATCH();
|
|
} else {
|
|
BEGIN_BATCH(6);
|
|
OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
|
|
OUT_BATCH(reg);
|
|
OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset);
|
|
OUT_BATCH(MI_STORE_REGISTER_MEM | (3 - 2));
|
|
OUT_BATCH(reg + sizeof(uint32_t));
|
|
OUT_RELOC(bo, RELOC_WRITE | RELOC_NEEDS_GGTT, offset + sizeof(uint32_t));
|
|
ADVANCE_BATCH();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write a 32-bit register using immediate data.
|
|
*/
|
|
void
|
|
brw_load_register_imm32(struct brw_context *brw, uint32_t reg, uint32_t imm)
|
|
{
|
|
assert(brw->screen->devinfo.gen >= 6);
|
|
|
|
BEGIN_BATCH(3);
|
|
OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
|
|
OUT_BATCH(reg);
|
|
OUT_BATCH(imm);
|
|
ADVANCE_BATCH();
|
|
}
|
|
|
|
/*
|
|
* Write a 64-bit register using immediate data.
|
|
*/
|
|
void
|
|
brw_load_register_imm64(struct brw_context *brw, uint32_t reg, uint64_t imm)
|
|
{
|
|
assert(brw->screen->devinfo.gen >= 6);
|
|
|
|
BEGIN_BATCH(5);
|
|
OUT_BATCH(MI_LOAD_REGISTER_IMM | (5 - 2));
|
|
OUT_BATCH(reg);
|
|
OUT_BATCH(imm & 0xffffffff);
|
|
OUT_BATCH(reg + 4);
|
|
OUT_BATCH(imm >> 32);
|
|
ADVANCE_BATCH();
|
|
}
|
|
|
|
/*
|
|
* Copies a 32-bit register.
|
|
*/
|
|
void
|
|
brw_load_register_reg(struct brw_context *brw, uint32_t src, uint32_t dest)
|
|
{
|
|
assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
|
|
|
|
BEGIN_BATCH(3);
|
|
OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
|
|
OUT_BATCH(src);
|
|
OUT_BATCH(dest);
|
|
ADVANCE_BATCH();
|
|
}
|
|
|
|
/*
|
|
* Copies a 64-bit register.
|
|
*/
|
|
void
|
|
brw_load_register_reg64(struct brw_context *brw, uint32_t src, uint32_t dest)
|
|
{
|
|
assert(brw->screen->devinfo.gen >= 8 || brw->screen->devinfo.is_haswell);
|
|
|
|
BEGIN_BATCH(6);
|
|
OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
|
|
OUT_BATCH(src);
|
|
OUT_BATCH(dest);
|
|
OUT_BATCH(MI_LOAD_REGISTER_REG | (3 - 2));
|
|
OUT_BATCH(src + sizeof(uint32_t));
|
|
OUT_BATCH(dest + sizeof(uint32_t));
|
|
ADVANCE_BATCH();
|
|
}
|
|
|
|
/*
|
|
* Write 32-bits of immediate data to a GPU memory buffer.
|
|
*/
|
|
void
|
|
brw_store_data_imm32(struct brw_context *brw, struct brw_bo *bo,
|
|
uint32_t offset, uint32_t imm)
|
|
{
|
|
const struct gen_device_info *devinfo = &brw->screen->devinfo;
|
|
|
|
assert(devinfo->gen >= 6);
|
|
|
|
BEGIN_BATCH(4);
|
|
OUT_BATCH(MI_STORE_DATA_IMM | (4 - 2));
|
|
if (devinfo->gen >= 8)
|
|
OUT_RELOC64(bo, RELOC_WRITE, offset);
|
|
else {
|
|
OUT_BATCH(0); /* MBZ */
|
|
OUT_RELOC(bo, RELOC_WRITE, offset);
|
|
}
|
|
OUT_BATCH(imm);
|
|
ADVANCE_BATCH();
|
|
}
|
|
|
|
/*
|
|
* Write 64-bits of immediate data to a GPU memory buffer.
|
|
*/
|
|
void
|
|
brw_store_data_imm64(struct brw_context *brw, struct brw_bo *bo,
|
|
uint32_t offset, uint64_t imm)
|
|
{
|
|
const struct gen_device_info *devinfo = &brw->screen->devinfo;
|
|
|
|
assert(devinfo->gen >= 6);
|
|
|
|
BEGIN_BATCH(5);
|
|
OUT_BATCH(MI_STORE_DATA_IMM | (5 - 2));
|
|
if (devinfo->gen >= 8)
|
|
OUT_RELOC64(bo, RELOC_WRITE, offset);
|
|
else {
|
|
OUT_BATCH(0); /* MBZ */
|
|
OUT_RELOC(bo, RELOC_WRITE, offset);
|
|
}
|
|
OUT_BATCH(imm & 0xffffffffu);
|
|
OUT_BATCH(imm >> 32);
|
|
ADVANCE_BATCH();
|
|
}
|