Files
third_party_mesa3d/src/intel/vulkan/gen8_cmd_buffer.c
2016-02-20 09:09:28 -08:00

917 lines
35 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"
static uint32_t
cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
{
static const uint32_t push_constant_opcodes[] = {
[MESA_SHADER_VERTEX] = 21,
[MESA_SHADER_TESS_CTRL] = 25, /* HS */
[MESA_SHADER_TESS_EVAL] = 26, /* DS */
[MESA_SHADER_GEOMETRY] = 22,
[MESA_SHADER_FRAGMENT] = 23,
[MESA_SHADER_COMPUTE] = 0,
};
VkShaderStageFlags flushed = 0;
anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
if (stage == MESA_SHADER_COMPUTE)
continue;
struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
if (state.offset == 0)
continue;
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS),
._3DCommandSubOpcode = push_constant_opcodes[stage],
.ConstantBody = {
.PointerToConstantBuffer2 = { &cmd_buffer->device->dynamic_state_block_pool.bo, state.offset },
.ConstantBuffer2ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
});
flushed |= mesa_to_vk_shader_stage(stage);
}
cmd_buffer->state.push_constants_dirty &= ~flushed;
return flushed;
}
#if GEN_GEN == 8
static void
emit_viewport_state(struct anv_cmd_buffer *cmd_buffer,
uint32_t count, const VkViewport *viewports)
{
struct anv_state sf_clip_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
for (uint32_t i = 0; i < count; i++) {
const VkViewport *vp = &viewports[i];
/* The gen7 state struct has just the matrix and guardband fields, the
* gen8 struct adds the min/max viewport fields. */
struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = {
.ViewportMatrixElementm00 = vp->width / 2,
.ViewportMatrixElementm11 = vp->height / 2,
.ViewportMatrixElementm22 = 1.0,
.ViewportMatrixElementm30 = vp->x + vp->width / 2,
.ViewportMatrixElementm31 = vp->y + vp->height / 2,
.ViewportMatrixElementm32 = 0.0,
.XMinClipGuardband = -1.0f,
.XMaxClipGuardband = 1.0f,
.YMinClipGuardband = -1.0f,
.YMaxClipGuardband = 1.0f,
.XMinViewPort = vp->x,
.XMaxViewPort = vp->x + vp->width - 1,
.YMinViewPort = vp->y,
.YMaxViewPort = vp->y + vp->height - 1,
};
struct GENX(CC_VIEWPORT) cc_viewport = {
.MinimumDepth = vp->minDepth,
.MaximumDepth = vp->maxDepth
};
GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64,
&sf_clip_viewport);
GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
}
if (!cmd_buffer->device->info.has_llc) {
anv_state_clflush(sf_clip_state);
anv_state_clflush(cc_state);
}
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC),
.CCViewportPointer = cc_state.offset);
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP),
.SFClipViewportPointer = sf_clip_state.offset);
}
void
gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->state.dynamic.viewport.count > 0) {
emit_viewport_state(cmd_buffer, cmd_buffer->state.dynamic.viewport.count,
cmd_buffer->state.dynamic.viewport.viewports);
} else {
/* If viewport count is 0, this is taken to mean "use the default" */
emit_viewport_state(cmd_buffer, 1,
&(VkViewport) {
.x = 0.0f,
.y = 0.0f,
.width = cmd_buffer->state.framebuffer->width,
.height = cmd_buffer->state.framebuffer->height,
.minDepth = 0.0f,
.maxDepth = 1.0f,
});
}
}
#endif
static void
emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM),
.RegisterOffset = reg,
.DataDWord = imm);
}
#define GEN8_L3CNTLREG 0x7034
static void
config_l3(struct anv_cmd_buffer *cmd_buffer, bool enable_slm)
{
/* References for GL state:
*
* - commits e307cfa..228d5a3
* - src/mesa/drivers/dri/i965/gen7_l3_state.c
*/
uint32_t val = enable_slm ?
/* All = 48 ways; URB = 16 ways; DC and RO = 0, SLM = 1 */
0x60000021 :
/* All = 48 ways; URB = 48 ways; DC, RO and SLM = 0 */
0x60000060;
bool changed = cmd_buffer->state.current_l3_config != val;
if (changed) {
/* According to the hardware docs, the L3 partitioning can only be changed
* while the pipeline is completely drained and the caches are flushed,
* which involves a first PIPE_CONTROL flush which stalls the pipeline and
* initiates invalidation of the relevant caches...
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.TextureCacheInvalidationEnable = true,
.ConstantCacheInvalidationEnable = true,
.InstructionCacheInvalidateEnable = true,
.DCFlushEnable = true,
.PostSyncOperation = NoWrite,
.CommandStreamerStallEnable = true);
/* ...followed by a second stalling flush which guarantees that
* invalidation is complete when the L3 configuration registers are
* modified.
*/
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.DCFlushEnable = true,
.PostSyncOperation = NoWrite,
.CommandStreamerStallEnable = true);
emit_lri(&cmd_buffer->batch, GEN8_L3CNTLREG, val);
cmd_buffer->state.current_l3_config = val;
}
}
static void
__emit_genx_sf_state(struct anv_cmd_buffer *cmd_buffer)
{
uint32_t sf_dw[GENX(3DSTATE_SF_length)];
struct GENX(3DSTATE_SF) sf = {
GENX(3DSTATE_SF_header),
.LineWidth = cmd_buffer->state.dynamic.line_width,
};
GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
/* FIXME: gen9.fs */
anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
cmd_buffer->state.pipeline->gen8.sf);
}
#include "genxml/gen9_pack.h"
static void
__emit_gen9_sf_state(struct anv_cmd_buffer *cmd_buffer)
{
uint32_t sf_dw[GENX(3DSTATE_SF_length)];
struct GEN9_3DSTATE_SF sf = {
GEN9_3DSTATE_SF_header,
.LineWidth = cmd_buffer->state.dynamic.line_width,
};
GEN9_3DSTATE_SF_pack(NULL, sf_dw, &sf);
/* FIXME: gen9.fs */
anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
cmd_buffer->state.pipeline->gen8.sf);
}
static void
__emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
{
if (cmd_buffer->device->info.is_cherryview)
__emit_gen9_sf_state(cmd_buffer);
else
__emit_genx_sf_state(cmd_buffer);
}
void
genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
uint32_t *p;
uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
config_l3(cmd_buffer, false);
genX(flush_pipeline_select_3d)(cmd_buffer);
if (vb_emit) {
const uint32_t num_buffers = __builtin_popcount(vb_emit);
const uint32_t num_dwords = 1 + num_buffers * 4;
p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
GENX(3DSTATE_VERTEX_BUFFERS));
uint32_t vb, i = 0;
for_each_bit(vb, vb_emit) {
struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
struct GENX(VERTEX_BUFFER_STATE) state = {
.VertexBufferIndex = vb,
.MemoryObjectControlState = GENX(MOCS),
.AddressModifyEnable = true,
.BufferPitch = pipeline->binding_stride[vb],
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
.BufferSize = buffer->size - offset
};
GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
i++;
}
}
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
/* If somebody compiled a pipeline after starting a command buffer the
* scratch bo may have grown since we started this cmd buffer (and
* emitted STATE_BASE_ADDRESS). If we're binding that pipeline now,
* reemit STATE_BASE_ADDRESS so that we use the bigger scratch bo. */
if (cmd_buffer->state.scratch_size < pipeline->total_scratch)
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
}
/* We emit the binding tables and sampler tables first, then emit push
* constants and then finally emit binding table and sampler table
* pointers. It has to happen in this order, since emitting the binding
* tables may change the push constants (in case of storage images). After
* emitting push constants, on SKL+ we have to emit the corresponding
* 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
*/
uint32_t dirty = 0;
if (cmd_buffer->state.descriptors_dirty)
dirty = gen7_cmd_buffer_flush_descriptor_sets(cmd_buffer);
if (cmd_buffer->state.push_constants_dirty)
dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
if (dirty)
gen7_cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
gen8_cmd_buffer_emit_viewport(cmd_buffer);
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
gen7_cmd_buffer_emit_scissor(cmd_buffer);
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) {
__emit_sf_state(cmd_buffer);
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){
bool enable_bias = cmd_buffer->state.dynamic.depth_bias.bias != 0.0f ||
cmd_buffer->state.dynamic.depth_bias.slope != 0.0f;
uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
struct GENX(3DSTATE_RASTER) raster = {
GENX(3DSTATE_RASTER_header),
.GlobalDepthOffsetEnableSolid = enable_bias,
.GlobalDepthOffsetEnableWireframe = enable_bias,
.GlobalDepthOffsetEnablePoint = enable_bias,
.GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
.GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
.GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
};
GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
pipeline->gen8.raster);
}
/* Stencil reference values moved from COLOR_CALC_STATE in gen8 to
* 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split
* across different state packets for gen8 and gen9. We handle that by
* using a big old #if switch here.
*/
#if GEN_GEN == 8
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GENX(COLOR_CALC_STATE_length) * 4,
64);
struct GENX(COLOR_CALC_STATE) cc = {
.BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
.BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
.BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
.BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
.StencilReferenceValue =
cmd_buffer->state.dynamic.stencil_reference.front,
.BackFaceStencilReferenceValue =
cmd_buffer->state.dynamic.stencil_reference.back,
};
GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(cc_state);
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_CC_STATE_POINTERS),
.ColorCalcStatePointer = cc_state.offset,
.ColorCalcStatePointerValid = true);
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
uint32_t wm_depth_stencil_dw[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
struct GENX(3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil) = {
GENX(3DSTATE_WM_DEPTH_STENCIL_header),
/* Is this what we need to do? */
.StencilBufferWriteEnable =
cmd_buffer->state.dynamic.stencil_write_mask.front != 0,
.StencilTestMask =
cmd_buffer->state.dynamic.stencil_compare_mask.front & 0xff,
.StencilWriteMask =
cmd_buffer->state.dynamic.stencil_write_mask.front & 0xff,
.BackfaceStencilTestMask =
cmd_buffer->state.dynamic.stencil_compare_mask.back & 0xff,
.BackfaceStencilWriteMask =
cmd_buffer->state.dynamic.stencil_write_mask.back & 0xff,
};
GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, wm_depth_stencil_dw,
&wm_depth_stencil);
anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw,
pipeline->gen8.wm_depth_stencil);
}
#else
if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) {
struct anv_state cc_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
GEN9_COLOR_CALC_STATE_length * 4,
64);
struct GEN9_COLOR_CALC_STATE cc = {
.BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
.BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
.BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
.BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
};
GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
if (!cmd_buffer->device->info.has_llc)
anv_state_clflush(cc_state);
anv_batch_emit(&cmd_buffer->batch,
GEN9_3DSTATE_CC_STATE_POINTERS,
.ColorCalcStatePointer = cc_state.offset,
.ColorCalcStatePointerValid = true);
}
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length];
struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
GEN9_3DSTATE_WM_DEPTH_STENCIL_header,
.StencilBufferWriteEnable = d->stencil_write_mask.front != 0 ||
d->stencil_write_mask.back != 0,
.StencilTestMask = d->stencil_compare_mask.front & 0xff,
.StencilWriteMask = d->stencil_write_mask.front & 0xff,
.BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
.BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
.StencilReferenceValue = d->stencil_reference.front,
.BackfaceStencilReferenceValue = d->stencil_reference.back
};
GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil);
anv_batch_emit_merge(&cmd_buffer->batch, dwords,
pipeline->gen9.wm_depth_stencil);
}
#endif
if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
ANV_CMD_DIRTY_INDEX_BUFFER)) {
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF),
.IndexedDrawCutIndexEnable = pipeline->primitive_restart,
.CutIndex = cmd_buffer->state.restart_index,
);
}
cmd_buffer->state.vb_dirty &= ~vb_emit;
cmd_buffer->state.dirty = 0;
}
void genX(CmdBindIndexBuffer)(
VkCommandBuffer commandBuffer,
VkBuffer _buffer,
VkDeviceSize offset,
VkIndexType indexType)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
static const uint32_t vk_to_gen_index_type[] = {
[VK_INDEX_TYPE_UINT16] = INDEX_WORD,
[VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
};
static const uint32_t restart_index_for_type[] = {
[VK_INDEX_TYPE_UINT16] = UINT16_MAX,
[VK_INDEX_TYPE_UINT32] = UINT32_MAX,
};
cmd_buffer->state.restart_index = restart_index_for_type[indexType];
anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER),
.IndexFormat = vk_to_gen_index_type[indexType],
.MemoryObjectControlState = GENX(MOCS),
.BufferStartingAddress = { buffer->bo, buffer->offset + offset },
.BufferSize = buffer->size - offset);
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
}
static VkResult
flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_device *device = cmd_buffer->device;
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
struct anv_state surfaces = { 0, }, samplers = { 0, };
VkResult result;
result = anv_cmd_buffer_emit_samplers(cmd_buffer,
MESA_SHADER_COMPUTE, &samplers);
if (result != VK_SUCCESS)
return result;
result = anv_cmd_buffer_emit_binding_table(cmd_buffer,
MESA_SHADER_COMPUTE, &surfaces);
if (result != VK_SUCCESS)
return result;
struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data;
const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
unsigned push_constant_data_size =
(prog_data->nr_params + local_id_dwords) * 4;
unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
unsigned push_constant_regs = reg_aligned_constant_size / 32;
if (push_state.alloc_size) {
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD),
.CURBETotalDataLength = push_state.alloc_size,
.CURBEDataStartAddress = push_state.offset);
}
assert(prog_data->total_shared <= 64 * 1024);
uint32_t slm_size = 0;
if (prog_data->total_shared > 0) {
/* slm_size is in 4k increments, but must be a power of 2. */
slm_size = 4 * 1024;
while (slm_size < prog_data->total_shared)
slm_size <<= 1;
slm_size /= 4 * 1024;
}
struct anv_state state =
anv_state_pool_emit(&device->dynamic_state_pool,
GENX(INTERFACE_DESCRIPTOR_DATA), 64,
.KernelStartPointer = pipeline->cs_simd,
.KernelStartPointerHigh = 0,
.BindingTablePointer = surfaces.offset,
.BindingTableEntryCount = 0,
.SamplerStatePointer = samplers.offset,
.SamplerCount = 0,
.ConstantIndirectURBEntryReadLength = push_constant_regs,
.ConstantURBEntryReadOffset = 0,
.BarrierEnable = cs_prog_data->uses_barrier,
.SharedLocalMemorySize = slm_size,
.NumberofThreadsinGPGPUThreadGroup =
pipeline->cs_thread_width_max);
uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD),
.InterfaceDescriptorTotalLength = size,
.InterfaceDescriptorDataStartAddress = state.offset);
return VK_SUCCESS;
}
void
genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
{
struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
VkResult result;
assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
bool needs_slm = pipeline->cs_prog_data.base.total_shared > 0;
config_l3(cmd_buffer, needs_slm);
if (cmd_buffer->state.current_pipeline != GPGPU) {
#if GEN_GEN < 10
/* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
*
* Software must clear the COLOR_CALC_STATE Valid field in
* 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
* with Pipeline Select set to GPGPU.
*
* The internal hardware docs recommend the same workaround for Gen9
* hardware too.
*/
anv_batch_emit(&cmd_buffer->batch,
GENX(3DSTATE_CC_STATE_POINTERS));
#endif
anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT),
#if GEN_GEN >= 9
.MaskBits = 3,
#endif
.PipelineSelection = GPGPU);
cmd_buffer->state.current_pipeline = GPGPU;
}
if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
(cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
result = flush_compute_descriptor_set(cmd_buffer);
assert(result == VK_SUCCESS);
cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
}
cmd_buffer->state.compute_dirty = 0;
}
static void
emit_ps_depth_count(struct anv_batch *batch,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WritePSDepthCount,
.DepthStallEnable = true,
.Address = { bo, offset });
}
static void
emit_query_availability(struct anv_batch *batch,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WriteImmediateData,
.Address = { bo, offset },
.ImmediateData = 1);
}
void genX(CmdBeginQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query,
VkQueryControlFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
/* Workaround: When meta uses the pipeline with the VS disabled, it seems
* that the pipelining of the depth write breaks. What we see is that
* samples from the render pass clear leaks into the first query
* immediately after the clear. Doing a pipecontrol with a post-sync
* operation and DepthStallEnable seems to work around the issue.
*/
if (cmd_buffer->state.need_query_wa) {
cmd_buffer->state.need_query_wa = false;
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.DepthCacheFlushEnable = true,
.DepthStallEnable = true);
}
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
query * sizeof(struct anv_query_pool_slot));
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
default:
unreachable("");
}
}
void genX(CmdEndQuery)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t query)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
query * sizeof(struct anv_query_pool_slot) + 8);
emit_query_availability(&cmd_buffer->batch, &pool->bo,
query * sizeof(struct anv_query_pool_slot) + 16);
break;
case VK_QUERY_TYPE_PIPELINE_STATISTICS:
default:
unreachable("");
}
}
#define TIMESTAMP 0x2358
void genX(CmdWriteTimestamp)(
VkCommandBuffer commandBuffer,
VkPipelineStageFlagBits pipelineStage,
VkQueryPool queryPool,
uint32_t query)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
uint32_t offset = query * sizeof(struct anv_query_pool_slot);
assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
switch (pipelineStage) {
case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM),
.RegisterAddress = TIMESTAMP,
.MemoryAddress = { &pool->bo, offset });
anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM),
.RegisterAddress = TIMESTAMP + 4,
.MemoryAddress = { &pool->bo, offset + 4 });
break;
default:
/* Everything else is bottom-of-pipe */
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WriteTimestamp,
.Address = { &pool->bo, offset });
break;
}
emit_query_availability(&cmd_buffer->batch, &pool->bo, query + 16);
}
#define alu_opcode(v) __gen_uint((v), 20, 31)
#define alu_operand1(v) __gen_uint((v), 10, 19)
#define alu_operand2(v) __gen_uint((v), 0, 9)
#define alu(opcode, operand1, operand2) \
alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
#define OPCODE_NOOP 0x000
#define OPCODE_LOAD 0x080
#define OPCODE_LOADINV 0x480
#define OPCODE_LOAD0 0x081
#define OPCODE_LOAD1 0x481
#define OPCODE_ADD 0x100
#define OPCODE_SUB 0x101
#define OPCODE_AND 0x102
#define OPCODE_OR 0x103
#define OPCODE_XOR 0x104
#define OPCODE_STORE 0x180
#define OPCODE_STOREINV 0x580
#define OPERAND_R0 0x00
#define OPERAND_R1 0x01
#define OPERAND_R2 0x02
#define OPERAND_R3 0x03
#define OPERAND_R4 0x04
#define OPERAND_SRCA 0x20
#define OPERAND_SRCB 0x21
#define OPERAND_ACCU 0x31
#define OPERAND_ZF 0x32
#define OPERAND_CF 0x33
#define CS_GPR(n) (0x2600 + (n) * 8)
static void
emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
struct anv_bo *bo, uint32_t offset)
{
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
.RegisterAddress = reg,
.MemoryAddress = { bo, offset });
anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
.RegisterAddress = reg + 4,
.MemoryAddress = { bo, offset + 4 });
}
static void
store_query_result(struct anv_batch *batch, uint32_t reg,
struct anv_bo *bo, uint32_t offset, VkQueryResultFlags flags)
{
anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM),
.RegisterAddress = reg,
.MemoryAddress = { bo, offset });
if (flags & VK_QUERY_RESULT_64_BIT)
anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM),
.RegisterAddress = reg + 4,
.MemoryAddress = { bo, offset + 4 });
}
void genX(CmdCopyQueryPoolResults)(
VkCommandBuffer commandBuffer,
VkQueryPool queryPool,
uint32_t firstQuery,
uint32_t queryCount,
VkBuffer destBuffer,
VkDeviceSize destOffset,
VkDeviceSize destStride,
VkQueryResultFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
uint32_t slot_offset, dst_offset;
if (flags & VK_QUERY_RESULT_WAIT_BIT)
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.CommandStreamerStallEnable = true,
.StallAtPixelScoreboard = true);
dst_offset = buffer->offset + destOffset;
for (uint32_t i = 0; i < queryCount; i++) {
slot_offset = (firstQuery + i) * sizeof(struct anv_query_pool_slot);
switch (pool->type) {
case VK_QUERY_TYPE_OCCLUSION:
emit_load_alu_reg_u64(&cmd_buffer->batch,
CS_GPR(0), &pool->bo, slot_offset);
emit_load_alu_reg_u64(&cmd_buffer->batch,
CS_GPR(1), &pool->bo, slot_offset + 8);
/* FIXME: We need to clamp the result for 32 bit. */
uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
dw[3] = alu(OPCODE_SUB, 0, 0);
dw[4] = alu(OPCODE_STORE, OPERAND_R2, OPERAND_ACCU);
break;
case VK_QUERY_TYPE_TIMESTAMP:
emit_load_alu_reg_u64(&cmd_buffer->batch,
CS_GPR(2), &pool->bo, slot_offset);
break;
default:
unreachable("unhandled query type");
}
store_query_result(&cmd_buffer->batch,
CS_GPR(2), buffer->bo, dst_offset, flags);
if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
&pool->bo, slot_offset + 16);
if (flags & VK_QUERY_RESULT_64_BIT)
store_query_result(&cmd_buffer->batch,
CS_GPR(0), buffer->bo, dst_offset + 8, flags);
else
store_query_result(&cmd_buffer->batch,
CS_GPR(0), buffer->bo, dst_offset + 4, flags);
}
dst_offset += destStride;
}
}
void genX(CmdSetEvent)(
VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WriteImmediateData,
.Address = {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
},
.ImmediateData = VK_EVENT_SET);
}
void genX(CmdResetEvent)(
VkCommandBuffer commandBuffer,
VkEvent _event,
VkPipelineStageFlags stageMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_event, event, _event);
anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
.DestinationAddressType = DAT_PPGTT,
.PostSyncOperation = WriteImmediateData,
.Address = {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
},
.ImmediateData = VK_EVENT_RESET);
}
void genX(CmdWaitEvents)(
VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
uint32_t memoryBarrierCount,
const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
for (uint32_t i = 0; i < eventCount; i++) {
ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT),
.WaitMode = PollingMode,
.CompareOperation = COMPARE_SAD_EQUAL_SDD,
.SemaphoreDataDword = VK_EVENT_SET,
.SemaphoreAddress = {
&cmd_buffer->device->dynamic_state_block_pool.bo,
event->state.offset
});
}
genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
false, /* byRegion */
memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
}