Files
third_party_mesa3d/src/gallium/drivers/radeonsi/si_compute.c
Marek Olšák a5b4ae67ae ac: add radeon_info::has_scratch_base_registers
Fixes: 3b0bfd254f - radeonsi/gfx11: make flat_scratch changes for compute

Reviewed-by: Qiang Yu <yuq825@gmail.com>
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/30071>
2024-07-15 13:52:25 -04:00

1381 lines
56 KiB
C

/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* SPDX-License-Identifier: MIT
*/
#include "ac_rtld.h"
#include "amd_kernel_code_t.h"
#include "nir/tgsi_to_nir.h"
#include "si_build_pm4.h"
#include "si_shader_internal.h"
#include "util/u_async_debug.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
#include "si_tracepoints.h"
#define COMPUTE_DBG(sscreen, fmt, args...) \
do { \
if ((sscreen->debug_flags & DBG(COMPUTE))) \
fprintf(stderr, fmt, ##args); \
} while (0);
struct dispatch_packet {
uint16_t header;
uint16_t setup;
uint16_t workgroup_size_x;
uint16_t workgroup_size_y;
uint16_t workgroup_size_z;
uint16_t reserved0;
uint32_t grid_size_x;
uint32_t grid_size_y;
uint32_t grid_size_z;
uint32_t group_segment_size;
uint64_t kernel_object;
uint64_t kernarg_address;
uint64_t reserved2;
};
static const amd_kernel_code_t *si_compute_get_code_object(const struct si_compute *program,
uint64_t symbol_offset)
{
const struct si_shader_selector *sel = &program->sel;
if (program->ir_type != PIPE_SHADER_IR_NATIVE)
return NULL;
struct ac_rtld_binary rtld;
if (!ac_rtld_open(&rtld,
(struct ac_rtld_open_info){.info = &sel->screen->info,
.shader_type = MESA_SHADER_COMPUTE,
.num_parts = 1,
.elf_ptrs = &program->shader.binary.code_buffer,
.elf_sizes = &program->shader.binary.code_size}))
return NULL;
const amd_kernel_code_t *result = NULL;
const char *text;
size_t size;
if (!ac_rtld_get_section_by_name(&rtld, ".text", &text, &size))
goto out;
if (symbol_offset + sizeof(amd_kernel_code_t) > size)
goto out;
result = (const amd_kernel_code_t *)(text + symbol_offset);
out:
ac_rtld_close(&rtld);
return result;
}
static void code_object_to_config(const amd_kernel_code_t *code_object,
struct ac_shader_config *out_config)
{
uint32_t rsrc1 = code_object->compute_pgm_resource_registers;
uint32_t rsrc2 = code_object->compute_pgm_resource_registers >> 32;
out_config->num_sgprs = code_object->wavefront_sgpr_count;
out_config->num_vgprs = code_object->workitem_vgpr_count;
out_config->float_mode = G_00B028_FLOAT_MODE(rsrc1);
out_config->rsrc1 = rsrc1;
out_config->lds_size = MAX2(out_config->lds_size, G_00B84C_LDS_SIZE(rsrc2));
out_config->rsrc2 = rsrc2;
out_config->scratch_bytes_per_wave =
align(code_object->workitem_private_segment_byte_size * 64, 1024);
}
/* Asynchronous compute shader compilation. */
static void si_create_compute_state_async(void *job, void *gdata, int thread_index)
{
struct si_compute *program = (struct si_compute *)job;
struct si_shader_selector *sel = &program->sel;
struct si_shader *shader = &program->shader;
struct ac_llvm_compiler **compiler;
struct util_debug_callback *debug = &sel->compiler_ctx_state.debug;
struct si_screen *sscreen = sel->screen;
assert(!debug->debug_message || debug->async);
assert(thread_index >= 0);
assert(thread_index < ARRAY_SIZE(sscreen->compiler));
compiler = &sscreen->compiler[thread_index];
assert(program->ir_type == PIPE_SHADER_IR_NIR);
si_nir_scan_shader(sscreen, sel->nir, &sel->info);
if (!sel->info.base.use_aco_amd && !*compiler)
*compiler = si_create_llvm_compiler(sscreen);
si_get_active_slot_masks(sscreen, &sel->info, &sel->active_const_and_shader_buffers,
&sel->active_samplers_and_images);
program->shader.is_monolithic = true;
program->shader.wave_size = si_determine_wave_size(sscreen, &program->shader);
/* Variable block sizes need 10 bits (1 + log2(SI_MAX_VARIABLE_THREADS_PER_BLOCK)) per dim.
* We pack them into a single user SGPR.
*/
unsigned user_sgprs = SI_NUM_RESOURCE_SGPRS + (sel->info.uses_grid_size ? 3 : 0) +
(sel->info.uses_variable_block_size ? 1 : 0) +
sel->info.base.cs.user_data_components_amd;
/* Fast path for compute shaders - some descriptors passed via user SGPRs. */
/* Shader buffers in user SGPRs. */
for (unsigned i = 0; i < MIN2(3, sel->info.base.num_ssbos) && user_sgprs <= 12; i++) {
user_sgprs = align(user_sgprs, 4);
if (i == 0)
sel->cs_shaderbufs_sgpr_index = user_sgprs;
user_sgprs += 4;
sel->cs_num_shaderbufs_in_user_sgprs++;
}
/* Images in user SGPRs. */
unsigned non_fmask_images = u_bit_consecutive(0, sel->info.base.num_images);
/* Remove images with FMASK from the bitmask. We only care about the first
* 3 anyway, so we can take msaa_images[0] and ignore the rest.
*/
if (sscreen->info.gfx_level < GFX11)
non_fmask_images &= ~sel->info.base.msaa_images[0];
for (unsigned i = 0; i < 3 && non_fmask_images & (1 << i); i++) {
unsigned num_sgprs = BITSET_TEST(sel->info.base.image_buffers, i) ? 4 : 8;
if (align(user_sgprs, num_sgprs) + num_sgprs > 16)
break;
user_sgprs = align(user_sgprs, num_sgprs);
if (i == 0)
sel->cs_images_sgpr_index = user_sgprs;
user_sgprs += num_sgprs;
sel->cs_num_images_in_user_sgprs++;
}
sel->cs_images_num_sgprs = user_sgprs - sel->cs_images_sgpr_index;
assert(user_sgprs <= 16);
unsigned char ir_sha1_cache_key[20];
si_get_ir_cache_key(sel, false, false, shader->wave_size, ir_sha1_cache_key);
/* Try to load the shader from the shader cache. */
simple_mtx_lock(&sscreen->shader_cache_mutex);
if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
simple_mtx_unlock(&sscreen->shader_cache_mutex);
shader->complete_shader_binary_size = si_get_shader_binary_size(sscreen, shader);
if (!si_shader_binary_upload(sscreen, shader, 0))
program->shader.compilation_failed = true;
si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
si_shader_dump(sscreen, shader, debug, stderr, true);
} else {
simple_mtx_unlock(&sscreen->shader_cache_mutex);
if (!si_create_shader_variant(sscreen, *compiler, &program->shader, debug)) {
program->shader.compilation_failed = true;
return;
}
shader->config.rsrc1 = S_00B848_VGPRS((shader->config.num_vgprs - 1) /
((shader->wave_size == 32 ||
sscreen->info.wave64_vgpr_alloc_granularity == 8) ? 8 : 4)) |
S_00B848_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
S_00B848_MEM_ORDERED(si_shader_mem_ordered(shader)) |
S_00B848_FLOAT_MODE(shader->config.float_mode);
if (sscreen->info.gfx_level < GFX10) {
shader->config.rsrc1 |= S_00B848_SGPRS((shader->config.num_sgprs - 1) / 8);
}
shader->config.rsrc2 = S_00B84C_USER_SGPR(user_sgprs) |
S_00B84C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
S_00B84C_TGID_X_EN(sel->info.uses_block_id[0]) |
S_00B84C_TGID_Y_EN(sel->info.uses_block_id[1]) |
S_00B84C_TGID_Z_EN(sel->info.uses_block_id[2]) |
S_00B84C_TG_SIZE_EN(sel->info.uses_tg_size) |
S_00B84C_TIDIG_COMP_CNT(sel->info.uses_thread_id[2]
? 2
: sel->info.uses_thread_id[1] ? 1 : 0) |
S_00B84C_LDS_SIZE(shader->config.lds_size);
simple_mtx_lock(&sscreen->shader_cache_mutex);
si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
simple_mtx_unlock(&sscreen->shader_cache_mutex);
}
ralloc_free(sel->nir);
sel->nir = NULL;
}
static void *si_create_compute_state(struct pipe_context *ctx, const struct pipe_compute_state *cso)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_screen *sscreen = (struct si_screen *)ctx->screen;
struct si_compute *program = CALLOC_STRUCT(si_compute);
struct si_shader_selector *sel = &program->sel;
pipe_reference_init(&sel->base.reference, 1);
sel->stage = MESA_SHADER_COMPUTE;
sel->screen = sscreen;
sel->const_and_shader_buf_descriptors_index =
si_const_and_shader_buffer_descriptors_idx(PIPE_SHADER_COMPUTE);
sel->sampler_and_images_descriptors_index =
si_sampler_and_image_descriptors_idx(PIPE_SHADER_COMPUTE);
sel->info.base.shared_size = cso->static_shared_mem;
program->shader.selector = &program->sel;
program->ir_type = cso->ir_type;
program->input_size = cso->req_input_mem;
if (cso->ir_type != PIPE_SHADER_IR_NATIVE) {
if (cso->ir_type == PIPE_SHADER_IR_TGSI) {
program->ir_type = PIPE_SHADER_IR_NIR;
sel->nir = tgsi_to_nir(cso->prog, ctx->screen, true);
} else {
assert(cso->ir_type == PIPE_SHADER_IR_NIR);
sel->nir = (struct nir_shader *)cso->prog;
}
if (si_can_dump_shader(sscreen, sel->stage, SI_DUMP_INIT_NIR))
nir_print_shader(sel->nir, stderr);
sel->compiler_ctx_state.debug = sctx->debug;
sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
p_atomic_inc(&sscreen->num_shaders_created);
si_schedule_initial_compile(sctx, MESA_SHADER_COMPUTE, &sel->ready, &sel->compiler_ctx_state,
program, si_create_compute_state_async);
} else {
const struct pipe_binary_program_header *header;
header = cso->prog;
program->shader.binary.type = SI_SHADER_BINARY_ELF;
program->shader.binary.code_size = header->num_bytes;
program->shader.binary.code_buffer = malloc(header->num_bytes);
if (!program->shader.binary.code_buffer) {
FREE(program);
return NULL;
}
memcpy((void *)program->shader.binary.code_buffer, header->blob, header->num_bytes);
const amd_kernel_code_t *code_object = si_compute_get_code_object(program, 0);
code_object_to_config(code_object, &program->shader.config);
if (AMD_HSA_BITS_GET(code_object->code_properties, AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32))
program->shader.wave_size = 32;
else
program->shader.wave_size = 64;
bool ok = si_shader_binary_upload(sctx->screen, &program->shader, 0);
si_shader_dump(sctx->screen, &program->shader, &sctx->debug, stderr, true);
if (!ok) {
fprintf(stderr, "LLVM failed to upload shader\n");
free((void *)program->shader.binary.code_buffer);
FREE(program);
return NULL;
}
}
return program;
}
static void si_get_compute_state_info(struct pipe_context *ctx, void *state,
struct pipe_compute_state_object_info *info)
{
struct si_compute *program = (struct si_compute *)state;
struct si_shader_selector *sel = &program->sel;
assert(program->ir_type != PIPE_SHADER_IR_NATIVE);
/* Wait because we need the compilation to finish first */
util_queue_fence_wait(&sel->ready);
uint8_t wave_size = program->shader.wave_size;
info->private_memory = DIV_ROUND_UP(program->shader.config.scratch_bytes_per_wave, wave_size);
info->preferred_simd_size = wave_size;
info->simd_sizes = wave_size;
info->max_threads = si_get_max_workgroup_size(&program->shader);
}
static void si_bind_compute_state(struct pipe_context *ctx, void *state)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_compute *program = (struct si_compute *)state;
struct si_shader_selector *sel = &program->sel;
sctx->cs_shader_state.program = program;
if (!program)
return;
/* Wait because we need active slot usage masks. */
if (program->ir_type != PIPE_SHADER_IR_NATIVE)
util_queue_fence_wait(&sel->ready);
si_set_active_descriptors(sctx,
SI_DESCS_FIRST_COMPUTE + SI_SHADER_DESCS_CONST_AND_SHADER_BUFFERS,
sel->active_const_and_shader_buffers);
si_set_active_descriptors(sctx, SI_DESCS_FIRST_COMPUTE + SI_SHADER_DESCS_SAMPLERS_AND_IMAGES,
sel->active_samplers_and_images);
sctx->compute_shaderbuf_sgprs_dirty = true;
sctx->compute_image_sgprs_dirty = true;
if (unlikely((sctx->screen->debug_flags & DBG(SQTT)) && sctx->sqtt)) {
uint32_t pipeline_code_hash = _mesa_hash_data_with_seed(
program->shader.binary.code_buffer,
program->shader.binary.code_size,
0);
if (!si_sqtt_pipeline_is_registered(sctx->sqtt, pipeline_code_hash)) {
/* Short lived fake pipeline: we don't need to reupload the compute shaders,
* as we do for the gfx ones so just create a temp pipeline to be able to
* call si_sqtt_register_pipeline, and then drop it.
*/
struct si_sqtt_fake_pipeline pipeline = { 0 };
pipeline.code_hash = pipeline_code_hash;
pipeline.bo = program->shader.bo;
si_sqtt_register_pipeline(sctx, &pipeline, true);
}
si_sqtt_describe_pipeline_bind(sctx, pipeline_code_hash, 1);
}
}
static void si_set_global_binding(struct pipe_context *ctx, unsigned first, unsigned n,
struct pipe_resource **resources, uint32_t **handles)
{
unsigned i;
struct si_context *sctx = (struct si_context *)ctx;
struct si_compute *program = sctx->cs_shader_state.program;
if (first + n > program->max_global_buffers) {
unsigned old_max = program->max_global_buffers;
program->max_global_buffers = first + n;
program->global_buffers = realloc(
program->global_buffers, program->max_global_buffers * sizeof(program->global_buffers[0]));
if (!program->global_buffers) {
fprintf(stderr, "radeonsi: failed to allocate compute global_buffers\n");
return;
}
memset(&program->global_buffers[old_max], 0,
(program->max_global_buffers - old_max) * sizeof(program->global_buffers[0]));
}
if (!resources) {
for (i = 0; i < n; i++) {
pipe_resource_reference(&program->global_buffers[first + i], NULL);
}
return;
}
for (i = 0; i < n; i++) {
uint64_t va;
uint32_t offset;
pipe_resource_reference(&program->global_buffers[first + i], resources[i]);
va = si_resource(resources[i])->gpu_address;
offset = util_le32_to_cpu(*handles[i]);
va += offset;
va = util_cpu_to_le64(va);
memcpy(handles[i], &va, sizeof(va));
}
}
static bool si_setup_compute_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
{
uint64_t scratch_bo_size =
sctx->compute_scratch_buffer ? sctx->compute_scratch_buffer->b.b.width0 : 0;
uint64_t scratch_needed = sctx->max_seen_compute_scratch_bytes_per_wave *
sctx->screen->info.max_scratch_waves;
assert(scratch_needed);
if (scratch_bo_size < scratch_needed) {
si_resource_reference(&sctx->compute_scratch_buffer, NULL);
sctx->compute_scratch_buffer =
si_aligned_buffer_create(&sctx->screen->b,
PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
SI_RESOURCE_FLAG_DISCARDABLE,
PIPE_USAGE_DEFAULT,
scratch_needed, sctx->screen->info.pte_fragment_size);
if (!sctx->compute_scratch_buffer)
return false;
}
/* Set the scratch address in the shader binary. */
if (!sctx->screen->info.has_scratch_base_registers) {
uint64_t scratch_va = sctx->compute_scratch_buffer->gpu_address;
if (shader->scratch_va != scratch_va) {
if (!si_shader_binary_upload(sctx->screen, shader, scratch_va))
return false;
shader->scratch_va = scratch_va;
}
}
return true;
}
static bool si_switch_compute_shader(struct si_context *sctx, struct si_compute *program,
struct si_shader *shader, const amd_kernel_code_t *code_object,
unsigned offset, bool *prefetch, unsigned variable_shared_size)
{
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
struct ac_shader_config inline_config = {0};
const struct ac_shader_config *config;
unsigned rsrc2;
uint64_t shader_va;
unsigned stage = shader->selector->info.base.stage;
*prefetch = false;
assert(variable_shared_size == 0 || stage == MESA_SHADER_KERNEL || program->ir_type == PIPE_SHADER_IR_NATIVE);
if (sctx->cs_shader_state.emitted_program == program && sctx->cs_shader_state.offset == offset &&
sctx->cs_shader_state.variable_shared_size == variable_shared_size)
return true;
if (program->ir_type != PIPE_SHADER_IR_NATIVE) {
config = &shader->config;
} else {
code_object_to_config(code_object, &inline_config);
config = &inline_config;
}
/* copy rsrc2 so we don't have to change it inside the si_shader object */
rsrc2 = config->rsrc2;
/* only do this for OpenCL */
if (program->ir_type == PIPE_SHADER_IR_NATIVE || stage == MESA_SHADER_KERNEL) {
unsigned shared_size = program->sel.info.base.shared_size + variable_shared_size;
unsigned lds_blocks;
/* Clover uses the compute API differently than other frontends and expects drivers to parse
* the shared_size out of the shader headers.
*/
if (program->ir_type == PIPE_SHADER_IR_NATIVE) {
lds_blocks = config->lds_size;
} else {
lds_blocks = 0;
}
/* XXX: We are over allocating LDS. For GFX6, the shader reports
* LDS in blocks of 256 bytes, so if there are 4 bytes lds
* allocated in the shader and 4 bytes allocated by the state
* tracker, then we will set LDS_SIZE to 512 bytes rather than 256.
*/
if (sctx->gfx_level <= GFX6) {
lds_blocks += align(shared_size, 256) >> 8;
} else {
lds_blocks += align(shared_size, 512) >> 9;
}
/* TODO: use si_multiwave_lds_size_workaround */
assert(lds_blocks <= 0xFF);
rsrc2 &= C_00B84C_LDS_SIZE;
rsrc2 |= S_00B84C_LDS_SIZE(lds_blocks);
}
if (config->scratch_bytes_per_wave) {
/* Update max_seen_compute_scratch_bytes_per_wave and compute_tmpring_size. */
ac_get_scratch_tmpring_size(&sctx->screen->info,
config->scratch_bytes_per_wave,
&sctx->max_seen_compute_scratch_bytes_per_wave,
&sctx->compute_tmpring_size);
if (!si_setup_compute_scratch_buffer(sctx, shader))
return false;
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->compute_scratch_buffer,
RADEON_USAGE_READWRITE | RADEON_PRIO_SCRATCH_BUFFER);
}
shader_va = shader->bo->gpu_address + offset;
if (program->ir_type == PIPE_SHADER_IR_NATIVE) {
/* Shader code is placed after the amd_kernel_code_t
* struct. */
shader_va += sizeof(amd_kernel_code_t);
}
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, shader->bo,
RADEON_USAGE_READ | RADEON_PRIO_SHADER_BINARY);
if (sctx->gfx_level >= GFX12) {
unsigned rsrc3 = S_00B8A0_INST_PREF_SIZE_GFX12(si_get_shader_prefetch_size(shader));
gfx12_push_compute_sh_reg(R_00B830_COMPUTE_PGM_LO, shader_va >> 8);
gfx12_opt_push_compute_sh_reg(R_00B848_COMPUTE_PGM_RSRC1,
SI_TRACKED_COMPUTE_PGM_RSRC1, config->rsrc1);
gfx12_opt_push_compute_sh_reg(R_00B84C_COMPUTE_PGM_RSRC2,
SI_TRACKED_COMPUTE_PGM_RSRC2, rsrc2);
gfx12_opt_push_compute_sh_reg(R_00B8A0_COMPUTE_PGM_RSRC3,
SI_TRACKED_COMPUTE_PGM_RSRC3, rsrc3);
gfx12_opt_push_compute_sh_reg(R_00B860_COMPUTE_TMPRING_SIZE,
SI_TRACKED_COMPUTE_TMPRING_SIZE, sctx->compute_tmpring_size);
if (config->scratch_bytes_per_wave) {
gfx12_opt_push_compute_sh_reg(R_00B840_COMPUTE_DISPATCH_SCRATCH_BASE_LO,
SI_TRACKED_COMPUTE_DISPATCH_SCRATCH_BASE_LO,
sctx->compute_scratch_buffer->gpu_address >> 8);
gfx12_opt_push_compute_sh_reg(R_00B844_COMPUTE_DISPATCH_SCRATCH_BASE_HI,
SI_TRACKED_COMPUTE_DISPATCH_SCRATCH_BASE_HI,
sctx->compute_scratch_buffer->gpu_address >> 40);
}
} else if (sctx->screen->info.has_set_sh_pairs_packed) {
unsigned rsrc3 = S_00B8A0_INST_PREF_SIZE_GFX11(si_get_shader_prefetch_size(shader));
gfx11_push_compute_sh_reg(R_00B830_COMPUTE_PGM_LO, shader_va >> 8);
gfx11_opt_push_compute_sh_reg(R_00B848_COMPUTE_PGM_RSRC1,
SI_TRACKED_COMPUTE_PGM_RSRC1, config->rsrc1);
gfx11_opt_push_compute_sh_reg(R_00B84C_COMPUTE_PGM_RSRC2,
SI_TRACKED_COMPUTE_PGM_RSRC2, rsrc2);
gfx11_opt_push_compute_sh_reg(R_00B8A0_COMPUTE_PGM_RSRC3,
SI_TRACKED_COMPUTE_PGM_RSRC3, rsrc3);
gfx11_opt_push_compute_sh_reg(R_00B860_COMPUTE_TMPRING_SIZE,
SI_TRACKED_COMPUTE_TMPRING_SIZE, sctx->compute_tmpring_size);
if (config->scratch_bytes_per_wave) {
gfx11_opt_push_compute_sh_reg(R_00B840_COMPUTE_DISPATCH_SCRATCH_BASE_LO,
SI_TRACKED_COMPUTE_DISPATCH_SCRATCH_BASE_LO,
sctx->compute_scratch_buffer->gpu_address >> 8);
gfx11_opt_push_compute_sh_reg(R_00B844_COMPUTE_DISPATCH_SCRATCH_BASE_HI,
SI_TRACKED_COMPUTE_DISPATCH_SCRATCH_BASE_HI,
sctx->compute_scratch_buffer->gpu_address >> 40);
}
} else {
radeon_begin(cs);
radeon_set_sh_reg(R_00B830_COMPUTE_PGM_LO, shader_va >> 8);
radeon_opt_set_sh_reg2(R_00B848_COMPUTE_PGM_RSRC1,
SI_TRACKED_COMPUTE_PGM_RSRC1,
config->rsrc1, rsrc2);
radeon_opt_set_sh_reg(R_00B860_COMPUTE_TMPRING_SIZE,
SI_TRACKED_COMPUTE_TMPRING_SIZE, sctx->compute_tmpring_size);
if (config->scratch_bytes_per_wave && sctx->screen->info.has_scratch_base_registers) {
radeon_opt_set_sh_reg2(R_00B840_COMPUTE_DISPATCH_SCRATCH_BASE_LO,
SI_TRACKED_COMPUTE_DISPATCH_SCRATCH_BASE_LO,
sctx->compute_scratch_buffer->gpu_address >> 8,
sctx->compute_scratch_buffer->gpu_address >> 40);
}
if (sctx->gfx_level >= GFX11) {
radeon_opt_set_sh_reg(R_00B8A0_COMPUTE_PGM_RSRC3,
SI_TRACKED_COMPUTE_PGM_RSRC3,
S_00B8A0_INST_PREF_SIZE_GFX11(si_get_shader_prefetch_size(shader)));
}
radeon_end();
}
COMPUTE_DBG(sctx->screen,
"COMPUTE_PGM_RSRC1: 0x%08x "
"COMPUTE_PGM_RSRC2: 0x%08x\n",
config->rsrc1, config->rsrc2);
sctx->cs_shader_state.emitted_program = program;
sctx->cs_shader_state.offset = offset;
sctx->cs_shader_state.variable_shared_size = variable_shared_size;
*prefetch = true;
return true;
}
static void setup_scratch_rsrc_user_sgprs(struct si_context *sctx,
const amd_kernel_code_t *code_object, unsigned user_sgpr)
{
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
uint64_t scratch_va = sctx->compute_scratch_buffer->gpu_address;
unsigned max_private_element_size =
AMD_HSA_BITS_GET(code_object->code_properties, AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE);
uint32_t scratch_dword0 = scratch_va & 0xffffffff;
uint32_t scratch_dword1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
if (sctx->gfx_level >= GFX11)
scratch_dword1 |= S_008F04_SWIZZLE_ENABLE_GFX11(1);
else
scratch_dword1 |= S_008F04_SWIZZLE_ENABLE_GFX6(1);
/* Disable address clamping */
uint32_t scratch_dword2 = 0xffffffff;
uint32_t index_stride = sctx->cs_shader_state.program->shader.wave_size == 32 ? 2 : 3;
uint32_t scratch_dword3 = S_008F0C_INDEX_STRIDE(index_stride) | S_008F0C_ADD_TID_ENABLE(1);
if (sctx->gfx_level >= GFX9) {
assert(max_private_element_size == 1); /* only 4 bytes on GFX9 */
} else {
scratch_dword3 |= S_008F0C_ELEMENT_SIZE(max_private_element_size);
if (sctx->gfx_level < GFX8) {
/* BUF_DATA_FORMAT is ignored, but it cannot be
* BUF_DATA_FORMAT_INVALID. */
scratch_dword3 |= S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_8);
}
}
radeon_begin(cs);
radeon_set_sh_reg_seq(R_00B900_COMPUTE_USER_DATA_0 + (user_sgpr * 4), 4);
radeon_emit(scratch_dword0);
radeon_emit(scratch_dword1);
radeon_emit(scratch_dword2);
radeon_emit(scratch_dword3);
radeon_end();
}
static void si_setup_user_sgprs_co_v2(struct si_context *sctx, const amd_kernel_code_t *code_object,
const struct pipe_grid_info *info, uint64_t kernel_args_va)
{
struct si_compute *program = sctx->cs_shader_state.program;
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
static const enum amd_code_property_mask_t workgroup_count_masks[] = {
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X,
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y,
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z};
unsigned i, user_sgpr = 0;
if (AMD_HSA_BITS_GET(code_object->code_properties,
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER)) {
if (code_object->workitem_private_segment_byte_size > 0) {
setup_scratch_rsrc_user_sgprs(sctx, code_object, user_sgpr);
}
user_sgpr += 4;
}
radeon_begin(cs);
if (AMD_HSA_BITS_GET(code_object->code_properties, AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR)) {
struct dispatch_packet dispatch;
unsigned dispatch_offset;
struct si_resource *dispatch_buf = NULL;
uint64_t dispatch_va;
/* Upload dispatch ptr */
memset(&dispatch, 0, sizeof(dispatch));
dispatch.workgroup_size_x = util_cpu_to_le16(info->block[0]);
dispatch.workgroup_size_y = util_cpu_to_le16(info->block[1]);
dispatch.workgroup_size_z = util_cpu_to_le16(info->block[2]);
dispatch.grid_size_x = util_cpu_to_le32(info->grid[0] * info->block[0]);
dispatch.grid_size_y = util_cpu_to_le32(info->grid[1] * info->block[1]);
dispatch.grid_size_z = util_cpu_to_le32(info->grid[2] * info->block[2]);
dispatch.group_segment_size =
util_cpu_to_le32(program->sel.info.base.shared_size + info->variable_shared_mem);
dispatch.kernarg_address = util_cpu_to_le64(kernel_args_va);
u_upload_data(sctx->b.const_uploader, 0, sizeof(dispatch), 256, &dispatch, &dispatch_offset,
(struct pipe_resource **)&dispatch_buf);
if (!dispatch_buf) {
fprintf(stderr, "Error: Failed to allocate dispatch "
"packet.");
}
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, dispatch_buf,
RADEON_USAGE_READ | RADEON_PRIO_CONST_BUFFER);
dispatch_va = dispatch_buf->gpu_address + dispatch_offset;
radeon_set_sh_reg_seq(R_00B900_COMPUTE_USER_DATA_0 + (user_sgpr * 4), 2);
radeon_emit(dispatch_va);
radeon_emit(S_008F04_BASE_ADDRESS_HI(dispatch_va >> 32) | S_008F04_STRIDE(0));
si_resource_reference(&dispatch_buf, NULL);
user_sgpr += 2;
}
if (AMD_HSA_BITS_GET(code_object->code_properties,
AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR)) {
radeon_set_sh_reg_seq(R_00B900_COMPUTE_USER_DATA_0 + (user_sgpr * 4), 2);
radeon_emit(kernel_args_va);
radeon_emit(S_008F04_BASE_ADDRESS_HI(kernel_args_va >> 32) | S_008F04_STRIDE(0));
user_sgpr += 2;
}
for (i = 0; i < 3 && user_sgpr < 16; i++) {
if (code_object->code_properties & workgroup_count_masks[i]) {
radeon_set_sh_reg_seq(R_00B900_COMPUTE_USER_DATA_0 + (user_sgpr * 4), 1);
radeon_emit(info->grid[i]);
user_sgpr += 1;
}
}
radeon_end();
}
static bool si_upload_compute_input(struct si_context *sctx, const amd_kernel_code_t *code_object,
const struct pipe_grid_info *info)
{
struct si_compute *program = sctx->cs_shader_state.program;
struct si_resource *input_buffer = NULL;
uint32_t kernel_args_offset = 0;
uint32_t *kernel_args;
void *kernel_args_ptr;
uint64_t kernel_args_va;
u_upload_alloc(sctx->b.const_uploader, 0, program->input_size,
sctx->screen->info.tcc_cache_line_size, &kernel_args_offset,
(struct pipe_resource **)&input_buffer, &kernel_args_ptr);
if (unlikely(!kernel_args_ptr))
return false;
kernel_args = (uint32_t *)kernel_args_ptr;
kernel_args_va = input_buffer->gpu_address + kernel_args_offset;
memcpy(kernel_args, info->input, program->input_size);
for (unsigned i = 0; i < program->input_size / 4; i++) {
COMPUTE_DBG(sctx->screen, "input %u : %u\n", i, kernel_args[i]);
}
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, input_buffer,
RADEON_USAGE_READ | RADEON_PRIO_CONST_BUFFER);
si_setup_user_sgprs_co_v2(sctx, code_object, info, kernel_args_va);
si_resource_reference(&input_buffer, NULL);
return true;
}
static void si_setup_nir_user_data(struct si_context *sctx, const struct pipe_grid_info *info)
{
struct si_compute *program = sctx->cs_shader_state.program;
struct si_shader_selector *sel = &program->sel;
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
unsigned grid_size_reg = R_00B900_COMPUTE_USER_DATA_0 + 4 * SI_NUM_RESOURCE_SGPRS;
unsigned block_size_reg = grid_size_reg +
/* 12 bytes = 3 dwords. */
12 * sel->info.uses_grid_size;
unsigned cs_user_data_reg = block_size_reg + 4 * program->sel.info.uses_variable_block_size;
if (sel->info.uses_grid_size && info->indirect) {
for (unsigned i = 0; i < 3; ++i) {
si_cp_copy_data(sctx, &sctx->gfx_cs, COPY_DATA_REG, NULL, (grid_size_reg >> 2) + i,
COPY_DATA_SRC_MEM, si_resource(info->indirect),
info->indirect_offset + 4 * i);
}
}
if (sctx->gfx_level >= GFX12) {
if (sel->info.uses_grid_size && !info->indirect) {
gfx12_push_compute_sh_reg(grid_size_reg, info->grid[0]);
gfx12_push_compute_sh_reg(grid_size_reg + 4, info->grid[1]);
gfx12_push_compute_sh_reg(grid_size_reg + 8, info->grid[2]);
}
if (sel->info.uses_variable_block_size) {
uint32_t value = info->block[0] | (info->block[1] << 10) | (info->block[2] << 20);
gfx12_push_compute_sh_reg(block_size_reg, value);
}
if (sel->info.base.cs.user_data_components_amd) {
unsigned num = sel->info.base.cs.user_data_components_amd;
for (unsigned i = 0; i < num; i++)
gfx12_push_compute_sh_reg(cs_user_data_reg + i * 4, sctx->cs_user_data[i]);
}
} else if (sctx->screen->info.has_set_sh_pairs_packed) {
if (sel->info.uses_grid_size && !info->indirect) {
gfx11_push_compute_sh_reg(grid_size_reg, info->grid[0]);
gfx11_push_compute_sh_reg(grid_size_reg + 4, info->grid[1]);
gfx11_push_compute_sh_reg(grid_size_reg + 8, info->grid[2]);
}
if (sel->info.uses_variable_block_size) {
uint32_t value = info->block[0] | (info->block[1] << 10) | (info->block[2] << 20);
gfx11_push_compute_sh_reg(block_size_reg, value);
}
if (sel->info.base.cs.user_data_components_amd) {
unsigned num = sel->info.base.cs.user_data_components_amd;
for (unsigned i = 0; i < num; i++)
gfx11_push_compute_sh_reg(cs_user_data_reg + i * 4, sctx->cs_user_data[i]);
}
} else {
radeon_begin(cs);
if (sel->info.uses_grid_size && !info->indirect) {
radeon_set_sh_reg_seq(grid_size_reg, 3);
radeon_emit(info->grid[0]);
radeon_emit(info->grid[1]);
radeon_emit(info->grid[2]);
}
if (sel->info.uses_variable_block_size) {
uint32_t value = info->block[0] | (info->block[1] << 10) | (info->block[2] << 20);
radeon_set_sh_reg(block_size_reg, value);
}
if (sel->info.base.cs.user_data_components_amd) {
unsigned num = sel->info.base.cs.user_data_components_amd;
radeon_set_sh_reg_seq(cs_user_data_reg, num);
radeon_emit_array(sctx->cs_user_data, num);
}
radeon_end();
}
}
static bool si_get_2d_interleave_size(const struct pipe_grid_info *info,
unsigned *log_x, unsigned *log_y)
{
/* The following code produces this behavior:
*
* WG size | WG block/SE | Thread block/SE
* ( 1, 32) = 32 | (16, 1) = 16 | ( 16, 32) = 512
* ( 2, 16) = 32 | ( 8, 2) = 16 | ( 16, 32) = 512
* ( 2, 32) = 64 | (16, 1) = 16 | ( 32, 32) = 1024
* ( 4, 8) = 32 | ( 4, 4) = 16 | ( 16, 32) = 512
* ( 4, 16) = 64 | ( 8, 2) = 16 | ( 32, 32) = 1024
* ( 4, 32) = 128 | ( 8, 1) = 8 | ( 32, 32) = 1024
* ( 8, 4) = 32 | ( 2, 8) = 16 | ( 16, 32) = 512
* ( 8, 8) = 64 | ( 4, 4) = 16 | ( 32, 32) = 1024
* ( 8, 16) = 128 | ( 4, 2) = 8 | ( 32, 32) = 1024
* ( 8, 32) = 256 | ( 4, 1) = 4 | ( 32, 32) = 1024
* (16, 2) = 32 | ( 1, 16) = 16 | ( 16, 32) = 512
* (16, 4) = 64 | ( 2, 8) = 16 | ( 32, 32) = 1024
* (16, 8) = 128 | ( 2, 4) = 8 | ( 32, 32) = 1024
* (16, 16) = 256 | ( 2, 2) = 4 | ( 32, 32) = 1024
* (16, 32) = 512 | ( 2, 1) = 2 | ( 32, 32) = 1024
* (32, 1) = 32 | ( 1, 16) = 16 | ( 32, 16) = 512
* (32, 2) = 64 | ( 1, 16) = 16 | ( 32, 32) = 1024
* (32, 4) = 128 | ( 1, 8) = 8 | ( 32, 32) = 1024
* (32, 8) = 256 | ( 1, 4) = 4 | ( 32, 32) = 1024
* (32, 16) = 512 | ( 1, 2) = 2 | ( 32, 32) = 1024
*
* For 3D workgroups, the total 2D thread count is divided by Z.
* Example with Z=8, showing only a 2D slice of the grid:
*
* WG size | WG block/SE | Thread block/SE
* ( 1, 32) = 32 | ( 4, 1) = 4 | ( 4, 32) = 128
* ( 2, 16) = 32 | ( 4, 1) = 4 | ( 8, 16) = 128
* ( 2, 32) = 64 | ( 2, 1) = 2 | ( 4, 32) = 128
* ( 4, 8) = 32 | ( 2, 2) = 4 | ( 8, 16) = 128
* ( 4, 16) = 64 | ( 2, 1) = 2 | ( 8, 16) = 128
* ( 8, 4) = 32 | ( 1, 4) = 4 | ( 8, 16) = 128
* ( 8, 8) = 64 | ( 1, 2) = 2 | ( 8, 16) = 128
* (16, 2) = 32 | ( 1, 4) = 4 | ( 16, 8) = 128
* (16, 4) = 64 | ( 1, 2) = 2 | ( 16, 8) = 128
* (32, 1) = 32 | ( 1, 4) = 4 | ( 32, 4) = 128
* (32, 2) = 64 | ( 1, 2) = 2 | ( 32, 4) = 128
*
* It tries to find a WG block size that corresponds to (N, N) or (N, 2*N) threads,
* but it's limited by the maximum WGs/SE, which is 16, and the number of threads/SE,
* which we set to 1024.
*/
unsigned max_threads_per_se = 1024;
unsigned threads_per_threadgroup = info->block[0] * info->block[1] * info->block[2];
unsigned workgroups_per_se = MIN2(max_threads_per_se / threads_per_threadgroup, 16);
unsigned log_workgroups_per_se = util_logbase2(workgroups_per_se);
if (!log_workgroups_per_se)
return false;
assert(log_workgroups_per_se <= 4);
*log_x = MIN2(log_workgroups_per_se, 4);
*log_y = log_workgroups_per_se - *log_x;
while (*log_x > 0 && *log_y < 4 &&
info->block[0] * (1 << *log_x) > info->block[1] * (1 << *log_y)) {
(*log_x)--;
(*log_y)++;
}
assert(*log_x + *log_y <= 4);
return true;
}
static void si_emit_dispatch_packets(struct si_context *sctx, const struct pipe_grid_info *info)
{
struct si_screen *sscreen = sctx->screen;
struct radeon_cmdbuf *cs = &sctx->gfx_cs;
bool render_cond_bit = sctx->render_cond_enabled;
unsigned threads_per_threadgroup = info->block[0] * info->block[1] * info->block[2];
unsigned waves_per_threadgroup =
DIV_ROUND_UP(threads_per_threadgroup, sctx->cs_shader_state.program->shader.wave_size);
unsigned threadgroups_per_cu = 1;
if (sctx->gfx_level >= GFX10 && waves_per_threadgroup == 1)
threadgroups_per_cu = 2;
if (unlikely(sctx->sqtt_enabled)) {
if (info->indirect) {
si_sqtt_write_event_marker(sctx, &sctx->gfx_cs,
EventCmdDispatchIndirect,
UINT_MAX, UINT_MAX, UINT_MAX);
} else {
si_write_event_with_dims_marker(sctx, &sctx->gfx_cs,
EventCmdDispatch,
info->grid[0], info->grid[1], info->grid[2]);
}
}
radeon_begin(cs);
unsigned compute_resource_limits =
ac_get_compute_resource_limits(&sscreen->info, waves_per_threadgroup,
sctx->cs_max_waves_per_sh,
threadgroups_per_cu);
if (sctx->gfx_level >= GFX12) {
gfx12_opt_push_compute_sh_reg(R_00B854_COMPUTE_RESOURCE_LIMITS,
SI_TRACKED_COMPUTE_RESOURCE_LIMITS,
compute_resource_limits);
} else if (sctx->screen->info.has_set_sh_pairs_packed) {
gfx11_opt_push_compute_sh_reg(R_00B854_COMPUTE_RESOURCE_LIMITS,
SI_TRACKED_COMPUTE_RESOURCE_LIMITS,
compute_resource_limits);
} else {
radeon_opt_set_sh_reg(R_00B854_COMPUTE_RESOURCE_LIMITS,
SI_TRACKED_COMPUTE_RESOURCE_LIMITS,
compute_resource_limits);
}
unsigned dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1) | S_00B800_FORCE_START_AT_000(1) |
/* If the KMD allows it (there is a KMD hw register for it),
* allow launching waves out-of-order. (same as Vulkan)
* Not available in gfx940.
*/
S_00B800_ORDER_MODE(!sctx->cs_shader_state.program->sel.info.uses_atomic_ordered_add &&
sctx->gfx_level >= GFX7 &&
(sctx->family < CHIP_GFX940 || sctx->screen->info.has_graphics)) |
S_00B800_CS_W32_EN(sctx->cs_shader_state.program->shader.wave_size == 32);
const uint *last_block = info->last_block;
bool partial_block_en = last_block[0] || last_block[1] || last_block[2];
uint32_t num_threads[3];
if (sctx->gfx_level >= GFX12) {
num_threads[0] = S_00B81C_NUM_THREAD_FULL_GFX12(info->block[0]);
num_threads[1] = S_00B820_NUM_THREAD_FULL_GFX12(info->block[1]);
} else {
num_threads[0] = S_00B81C_NUM_THREAD_FULL_GFX6(info->block[0]);
num_threads[1] = S_00B820_NUM_THREAD_FULL_GFX6(info->block[1]);
}
num_threads[2] = S_00B824_NUM_THREAD_FULL(info->block[2]);
if (partial_block_en) {
unsigned partial[3];
/* If no partial_block, these should be an entire block size, not 0. */
partial[0] = last_block[0] ? last_block[0] : info->block[0];
partial[1] = last_block[1] ? last_block[1] : info->block[1];
partial[2] = last_block[2] ? last_block[2] : info->block[2];
num_threads[0] |= S_00B81C_NUM_THREAD_PARTIAL(partial[0]);
num_threads[1] |= S_00B820_NUM_THREAD_PARTIAL(partial[1]);
num_threads[2] |= S_00B824_NUM_THREAD_PARTIAL(partial[2]);
dispatch_initiator |= S_00B800_PARTIAL_TG_EN(1);
}
if (sctx->gfx_level >= GFX12) {
/* Set PING_PONG_EN for every other dispatch.
* Only allowed on a gfx queue, and PARTIAL_TG_EN and USE_THREAD_DIMENSIONS must be 0.
*/
if (sctx->has_graphics && !partial_block_en &&
!sctx->cs_shader_state.program->sel.info.uses_atomic_ordered_add) {
dispatch_initiator |= S_00B800_PING_PONG_EN(sctx->compute_ping_pong_launch);
sctx->compute_ping_pong_launch ^= 1;
}
/* Thread tiling within a workgroup. */
switch (sctx->cs_shader_state.program->shader.selector->info.base.cs.derivative_group) {
case DERIVATIVE_GROUP_LINEAR:
break;
case DERIVATIVE_GROUP_QUADS:
num_threads[0] |= S_00B81C_INTERLEAVE_BITS_X(1); /* 2x2 */
num_threads[1] |= S_00B820_INTERLEAVE_BITS_Y(1);
break;
case DERIVATIVE_GROUP_NONE:
/* These are the only legal combinations. */
if (info->block[0] % 8 == 0 && info->block[1] % 8 == 0) {
num_threads[0] |= S_00B81C_INTERLEAVE_BITS_X(3); /* 8x8 */
num_threads[1] |= S_00B820_INTERLEAVE_BITS_Y(3);
} else if (info->block[0] % 4 == 0 && info->block[1] % 8 == 0) {
num_threads[0] |= S_00B81C_INTERLEAVE_BITS_X(2); /* 4x8 */
num_threads[1] |= S_00B820_INTERLEAVE_BITS_Y(3);
} else if (info->block[0] % 4 == 0 && info->block[1] % 4 == 0) {
num_threads[0] |= S_00B81C_INTERLEAVE_BITS_X(2); /* 4x4 */
num_threads[1] |= S_00B820_INTERLEAVE_BITS_Y(2);
} else if (info->block[0] % 2 == 0 && info->block[1] % 2 == 0) {
num_threads[0] |= S_00B81C_INTERLEAVE_BITS_X(1); /* 2x2 */
num_threads[1] |= S_00B820_INTERLEAVE_BITS_Y(1);
}
break;
}
/* How many threads should go to 1 SE before moving onto the next if INTERLEAVE_2D_EN == 0.
* Only these values are valid: 0 (disabled), 64, 128, 256, 512
* 64 = RT, 256 = non-RT (run benchmarks to be sure)
*/
unsigned dispatch_interleave = S_00B8BC_INTERLEAVE_1D(256);
unsigned log_x, log_y;
/* Launch a 2D subgrid on each SE instead of a 1D subgrid. If enabled, INTERLEAVE_1D is
* ignored and each SE gets 1 subgrid up to a certain number of threads.
*
* Constraints:
* - Only supported by the gfx queue.
* - Max 16 workgroups per SE can be launched, max 4 in each dimension.
* - PARTIAL_TG_EN, USE_THREAD_DIMENSIONS, and ORDERED_APPEND_ENBL must be 0.
*/
if (sctx->has_graphics && !partial_block_en &&
(info->indirect || info->grid[1] >= 4) && MIN2(info->block[0], info->block[1]) >= 4 &&
si_get_2d_interleave_size(info, &log_x, &log_y)) {
dispatch_interleave = S_00B8BC_INTERLEAVE_1D(1) || /* 1D is disabled */
S_00B8BC_INTERLEAVE_2D_X_SIZE(log_x) |
S_00B8BC_INTERLEAVE_2D_Y_SIZE(log_y);
dispatch_initiator |= S_00B800_INTERLEAVE_2D_EN(1);
}
if (sctx->has_graphics) {
radeon_opt_set_sh_reg_idx(R_00B8BC_COMPUTE_DISPATCH_INTERLEAVE,
SI_TRACKED_COMPUTE_DISPATCH_INTERLEAVE, 2, dispatch_interleave);
} else {
gfx12_opt_push_compute_sh_reg(R_00B8BC_COMPUTE_DISPATCH_INTERLEAVE,
SI_TRACKED_COMPUTE_DISPATCH_INTERLEAVE, dispatch_interleave);
}
}
if (sctx->gfx_level >= GFX12) {
gfx12_opt_push_compute_sh_reg(R_00B81C_COMPUTE_NUM_THREAD_X,
SI_TRACKED_COMPUTE_NUM_THREAD_X, num_threads[0]);
gfx12_opt_push_compute_sh_reg(R_00B820_COMPUTE_NUM_THREAD_Y,
SI_TRACKED_COMPUTE_NUM_THREAD_Y, num_threads[1]);
gfx12_opt_push_compute_sh_reg(R_00B824_COMPUTE_NUM_THREAD_Z,
SI_TRACKED_COMPUTE_NUM_THREAD_Z, num_threads[2]);
} else if (sctx->screen->info.has_set_sh_pairs_packed) {
gfx11_opt_push_compute_sh_reg(R_00B81C_COMPUTE_NUM_THREAD_X,
SI_TRACKED_COMPUTE_NUM_THREAD_X, num_threads[0]);
gfx11_opt_push_compute_sh_reg(R_00B820_COMPUTE_NUM_THREAD_Y,
SI_TRACKED_COMPUTE_NUM_THREAD_Y, num_threads[1]);
gfx11_opt_push_compute_sh_reg(R_00B824_COMPUTE_NUM_THREAD_Z,
SI_TRACKED_COMPUTE_NUM_THREAD_Z, num_threads[2]);
} else {
radeon_opt_set_sh_reg3(R_00B81C_COMPUTE_NUM_THREAD_X,
SI_TRACKED_COMPUTE_NUM_THREAD_X,
num_threads[0], num_threads[1], num_threads[2]);
}
if (sctx->gfx_level >= GFX12 || sctx->screen->info.has_set_sh_pairs_packed) {
radeon_end();
si_emit_buffered_compute_sh_regs(sctx);
radeon_begin_again(cs);
}
if (info->indirect) {
uint64_t base_va = si_resource(info->indirect)->gpu_address;
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(info->indirect),
RADEON_USAGE_READ | RADEON_PRIO_DRAW_INDIRECT);
radeon_emit(PKT3(PKT3_SET_BASE, 2, 0) | PKT3_SHADER_TYPE_S(1));
radeon_emit(1);
radeon_emit(base_va);
radeon_emit(base_va >> 32);
unsigned pkt = PKT3_DISPATCH_INDIRECT;
if (sctx->gfx_level >= GFX12 && G_00B800_INTERLEAVE_2D_EN(dispatch_initiator))
pkt = PKT3_DISPATCH_INDIRECT_INTERLEAVED;
radeon_emit(PKT3(pkt, 1, render_cond_bit) | PKT3_SHADER_TYPE_S(1));
radeon_emit(info->indirect_offset);
radeon_emit(dispatch_initiator);
} else {
unsigned pkt = PKT3_DISPATCH_DIRECT;
if (sctx->gfx_level >= GFX12 && G_00B800_INTERLEAVE_2D_EN(dispatch_initiator))
pkt = PKT3_DISPATCH_DIRECT_INTERLEAVED;
radeon_emit(PKT3(pkt, 3, render_cond_bit) | PKT3_SHADER_TYPE_S(1));
radeon_emit(info->grid[0]);
radeon_emit(info->grid[1]);
radeon_emit(info->grid[2]);
radeon_emit(dispatch_initiator);
}
if (unlikely(sctx->sqtt_enabled && sctx->gfx_level >= GFX9)) {
radeon_emit(PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(EVENT_TYPE(V_028A90_THREAD_TRACE_MARKER) | EVENT_INDEX(0));
}
radeon_end();
}
static bool si_check_needs_implicit_sync(struct si_context *sctx, uint32_t usage)
{
/* If the compute shader is going to read from a texture/image written by a
* previous draw, we must wait for its completion before continuing.
* Buffers and image stores (from the draw) are not taken into consideration
* because that's the app responsibility.
*
* The OpenGL 4.6 spec says:
*
* buffer object and texture stores performed by shaders are not
* automatically synchronized
*
* TODO: Bindless textures are not handled, and thus are not synchronized.
*/
struct si_shader_info *info = &sctx->cs_shader_state.program->sel.info;
struct si_samplers *samplers = &sctx->samplers[PIPE_SHADER_COMPUTE];
unsigned mask = samplers->enabled_mask & info->base.textures_used[0];
while (mask) {
int i = u_bit_scan(&mask);
struct si_sampler_view *sview = (struct si_sampler_view *)samplers->views[i];
struct si_resource *res = si_resource(sview->base.texture);
if (sctx->ws->cs_is_buffer_referenced(&sctx->gfx_cs, res->buf, usage))
return true;
}
struct si_images *images = &sctx->images[PIPE_SHADER_COMPUTE];
mask = u_bit_consecutive(0, info->base.num_images) & images->enabled_mask;
while (mask) {
int i = u_bit_scan(&mask);
struct pipe_image_view *sview = &images->views[i];
struct si_resource *res = si_resource(sview->resource);
if (sctx->ws->cs_is_buffer_referenced(&sctx->gfx_cs, res->buf, usage))
return true;
}
return false;
}
static void si_launch_grid(struct pipe_context *ctx, const struct pipe_grid_info *info)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_screen *sscreen = sctx->screen;
struct si_compute *program = sctx->cs_shader_state.program;
const amd_kernel_code_t *code_object = si_compute_get_code_object(program, info->pc);
int i;
bool cs_regalloc_hang = sscreen->info.has_cs_regalloc_hang_bug &&
info->block[0] * info->block[1] * info->block[2] > 256;
if (cs_regalloc_hang) {
sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH;
si_mark_atom_dirty(sctx, &sctx->atoms.s.cache_flush);
}
if (program->ir_type != PIPE_SHADER_IR_NATIVE && program->shader.compilation_failed)
return;
si_check_dirty_buffers_textures(sctx);
if (sctx->has_graphics) {
if (sctx->last_num_draw_calls != sctx->num_draw_calls) {
si_update_fb_dirtiness_after_rendering(sctx);
sctx->last_num_draw_calls = sctx->num_draw_calls;
if (sctx->force_shader_coherency.with_cb ||
si_check_needs_implicit_sync(sctx, RADEON_USAGE_CB_NEEDS_IMPLICIT_SYNC))
si_make_CB_shader_coherent(sctx, 0,
sctx->framebuffer.CB_has_shader_readable_metadata,
sctx->framebuffer.all_DCC_pipe_aligned);
if (sctx->gfx_level == GFX12 &&
(sctx->force_shader_coherency.with_db ||
si_check_needs_implicit_sync(sctx, RADEON_USAGE_DB_NEEDS_IMPLICIT_SYNC)))
si_make_DB_shader_coherent(sctx, 0, false, false);
}
if (sctx->gfx_level < GFX11)
gfx6_decompress_textures(sctx, 1 << PIPE_SHADER_COMPUTE);
else if (sctx->gfx_level < GFX12)
gfx11_decompress_textures(sctx, 1 << PIPE_SHADER_COMPUTE);
}
if (info->indirect) {
/* Indirect buffers use TC L2 on GFX9-GFX11, but not other hw. */
if ((sctx->gfx_level <= GFX8 || sctx->gfx_level == GFX12) &&
si_resource(info->indirect)->TC_L2_dirty) {
sctx->flags |= SI_CONTEXT_WB_L2;
si_mark_atom_dirty(sctx, &sctx->atoms.s.cache_flush);
si_resource(info->indirect)->TC_L2_dirty = false;
}
}
si_need_gfx_cs_space(sctx, 0);
/* If we're using a secure context, determine if cs must be secure or not */
if (unlikely(radeon_uses_secure_bos(sctx->ws))) {
bool secure = si_compute_resources_check_encrypted(sctx);
if (secure != sctx->ws->cs_is_secure(&sctx->gfx_cs)) {
si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW |
RADEON_FLUSH_TOGGLE_SECURE_SUBMISSION,
NULL);
}
}
if (u_trace_perfetto_active(&sctx->ds.trace_context))
trace_si_begin_compute(&sctx->trace);
if (sctx->bo_list_add_all_compute_resources)
si_compute_resources_add_all_to_bo_list(sctx);
/* Skipping setting redundant registers on compute queues breaks compute. */
if (!sctx->has_graphics) {
BITSET_CLEAR_RANGE(sctx->tracked_regs.reg_saved_mask,
SI_FIRST_TRACKED_OTHER_REG, SI_NUM_ALL_TRACKED_REGS - 1);
}
/* First emit registers. */
bool prefetch;
if (!si_switch_compute_shader(sctx, program, &program->shader, code_object, info->pc, &prefetch,
info->variable_shared_mem))
return;
si_emit_compute_shader_pointers(sctx);
if (program->ir_type == PIPE_SHADER_IR_NATIVE &&
unlikely(!si_upload_compute_input(sctx, code_object, info)))
return;
/* Global buffers */
for (i = 0; i < program->max_global_buffers; i++) {
struct si_resource *buffer = si_resource(program->global_buffers[i]);
if (!buffer) {
continue;
}
radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, buffer,
RADEON_USAGE_READWRITE | RADEON_PRIO_SHADER_RW_BUFFER);
}
/* Registers that are not read from memory should be set before this: */
if (sctx->flags)
si_emit_cache_flush_direct(sctx);
if (sctx->has_graphics && si_is_atom_dirty(sctx, &sctx->atoms.s.render_cond)) {
sctx->atoms.s.render_cond.emit(sctx, -1);
si_set_atom_dirty(sctx, &sctx->atoms.s.render_cond, false);
}
/* Prefetch the compute shader to L2. */
if (sctx->gfx_level >= GFX7 && sctx->screen->info.has_cp_dma && prefetch)
si_cp_dma_prefetch(sctx, &program->shader.bo->b.b, 0, program->shader.bo->b.b.width0);
if (program->ir_type != PIPE_SHADER_IR_NATIVE)
si_setup_nir_user_data(sctx, info);
si_emit_dispatch_packets(sctx, info);
if (unlikely(sctx->current_saved_cs)) {
si_trace_emit(sctx);
si_log_compute_state(sctx, sctx->log);
}
if (sctx->gfx_level < GFX12) {
/* Mark displayable DCC as dirty for bound images. */
unsigned display_dcc_store_mask = sctx->images[PIPE_SHADER_COMPUTE].display_dcc_store_mask &
BITFIELD_MASK(program->sel.info.base.num_images);
while (display_dcc_store_mask) {
struct si_texture *tex = (struct si_texture *)
sctx->images[PIPE_SHADER_COMPUTE].views[u_bit_scan(&display_dcc_store_mask)].resource;
si_mark_display_dcc_dirty(sctx, tex);
}
/* TODO: Bindless images don't set displayable_dcc_dirty after image stores. */
}
sctx->compute_is_busy = true;
sctx->num_compute_calls++;
if (u_trace_perfetto_active(&sctx->ds.trace_context))
trace_si_end_compute(&sctx->trace, info->grid[0], info->grid[1], info->grid[2]);
if (cs_regalloc_hang) {
sctx->flags |= SI_CONTEXT_CS_PARTIAL_FLUSH;
si_mark_atom_dirty(sctx, &sctx->atoms.s.cache_flush);
}
}
void si_destroy_compute(struct si_compute *program)
{
struct si_shader_selector *sel = &program->sel;
if (program->ir_type != PIPE_SHADER_IR_NATIVE) {
util_queue_drop_job(&sel->screen->shader_compiler_queue, &sel->ready);
util_queue_fence_destroy(&sel->ready);
}
for (unsigned i = 0; i < program->max_global_buffers; i++)
pipe_resource_reference(&program->global_buffers[i], NULL);
FREE(program->global_buffers);
si_shader_destroy(&program->shader);
ralloc_free(program->sel.nir);
FREE(program);
}
static void si_delete_compute_state(struct pipe_context *ctx, void *state)
{
struct si_compute *program = (struct si_compute *)state;
struct si_context *sctx = (struct si_context *)ctx;
if (!state)
return;
if (program == sctx->cs_shader_state.program)
sctx->cs_shader_state.program = NULL;
if (program == sctx->cs_shader_state.emitted_program)
sctx->cs_shader_state.emitted_program = NULL;
si_compute_reference(&program, NULL);
}
static void si_set_compute_resources(struct pipe_context *ctx_, unsigned start, unsigned count,
struct pipe_surface **surfaces)
{
}
void si_init_compute_functions(struct si_context *sctx)
{
sctx->b.create_compute_state = si_create_compute_state;
sctx->b.delete_compute_state = si_delete_compute_state;
sctx->b.bind_compute_state = si_bind_compute_state;
sctx->b.get_compute_state_info = si_get_compute_state_info;
sctx->b.set_compute_resources = si_set_compute_resources;
sctx->b.set_global_binding = si_set_global_binding;
sctx->b.launch_grid = si_launch_grid;
#if 0 /* test for si_get_2d_interleave_size */
static bool visited = false;
if (visited)
return;
visited = true;
struct pipe_grid_info info = {};
info.grid[0] = info.grid[1] = info.grid[2] = 1024;
info.block[2] = 1;
for (unsigned block_3d = 0; block_3d < 2; block_3d++) {
printf(" WG size | WG block/SE | Thread block/SE\n");
for (unsigned x = 1; x <= 32; x *= 2) {
for (unsigned y = 1; y <= 32; y *= 2) {
info.block[0] = x;
info.block[1] = y;
info.block[2] = block_3d ? 8 : 1;
if ((x * y) % 32)
continue;
unsigned log_x, log_y;
if (!si_get_2d_interleave_size(&info, &log_x, &log_y))
continue;
printf(" (%2u, %2u) = %3u | (%2u, %2u) = %2u | (%3u,%3u) = %u\n",
info.block[0], info.block[1], info.block[0] * info.block[1],
1 << log_x, 1 << log_y, (1 << log_x) * (1 << log_y),
info.block[0] * (1 << log_x), info.block[1] * (1 << log_y),
info.block[0] * (1 << log_x) * info.block[1] * (1 << log_y));
}
}
}
#endif
}