Files
third_party_mesa3d/src/amd/vulkan/radv_image.c
Dave Airlie 9ee67467c9 radv: predicate cmask eliminate when using DCC.
When using DCC some clear values don't require a cmask eliminate
step. This patch adds support for black and black with alpha 1,
there are other values, but I don't have access to a comprehensive list.

This works by setting the cmask eliminate predicate when doing the
fast clear, and later when doing the cmask elimination making sure
the draws are predicated.

This increases the fps on Sascha Willems deferred.

Tonga: 580fps->670fps on a Tonga PRO card.
Polaris 730->850fps

Reviewed-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2017-07-17 01:44:43 +01:00

1127 lines
37 KiB
C

/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "radv_private.h"
#include "vk_format.h"
#include "vk_util.h"
#include "radv_radeon_winsys.h"
#include "sid.h"
#include "gfx9d.h"
#include "util/debug.h"
#include "util/u_atomic.h"
static unsigned
radv_choose_tiling(struct radv_device *Device,
const struct radv_image_create_info *create_info)
{
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
if (pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) {
assert(pCreateInfo->samples <= 1);
return RADEON_SURF_MODE_LINEAR_ALIGNED;
}
/* Textures with a very small height are recommended to be linear. */
if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D ||
/* Only very thin and long 2D textures should benefit from
* linear_aligned. */
(pCreateInfo->extent.width > 8 && pCreateInfo->extent.height <= 2))
return RADEON_SURF_MODE_LINEAR_ALIGNED;
/* MSAA resources must be 2D tiled. */
if (pCreateInfo->samples > 1)
return RADEON_SURF_MODE_2D;
return RADEON_SURF_MODE_2D;
}
static int
radv_init_surface(struct radv_device *device,
struct radeon_surf *surface,
const struct radv_image_create_info *create_info)
{
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
unsigned array_mode = radv_choose_tiling(device, create_info);
const struct vk_format_description *desc =
vk_format_description(pCreateInfo->format);
bool is_depth, is_stencil, blendable;
is_depth = vk_format_has_depth(desc);
is_stencil = vk_format_has_stencil(desc);
surface->blk_w = vk_format_get_blockwidth(pCreateInfo->format);
surface->blk_h = vk_format_get_blockheight(pCreateInfo->format);
surface->bpe = vk_format_get_blocksize(vk_format_depth_only(pCreateInfo->format));
/* align byte per element on dword */
if (surface->bpe == 3) {
surface->bpe = 4;
}
surface->flags = RADEON_SURF_SET(array_mode, MODE);
switch (pCreateInfo->imageType){
case VK_IMAGE_TYPE_1D:
if (pCreateInfo->arrayLayers > 1)
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D_ARRAY, TYPE);
else
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_1D, TYPE);
break;
case VK_IMAGE_TYPE_2D:
if (pCreateInfo->arrayLayers > 1)
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D_ARRAY, TYPE);
else
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_2D, TYPE);
break;
case VK_IMAGE_TYPE_3D:
surface->flags |= RADEON_SURF_SET(RADEON_SURF_TYPE_3D, TYPE);
break;
default:
unreachable("unhandled image type");
}
if (is_depth) {
surface->flags |= RADEON_SURF_ZBUFFER;
}
if (is_stencil)
surface->flags |= RADEON_SURF_SBUFFER;
surface->flags |= RADEON_SURF_HAS_TILE_MODE_INDEX;
if ((pCreateInfo->usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_STORAGE_BIT)) ||
(pCreateInfo->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT) ||
(pCreateInfo->tiling == VK_IMAGE_TILING_LINEAR) ||
device->physical_device->rad_info.chip_class < VI ||
create_info->scanout || (device->debug_flags & RADV_DEBUG_NO_DCC) ||
!radv_is_colorbuffer_format_supported(pCreateInfo->format, &blendable))
surface->flags |= RADEON_SURF_DISABLE_DCC;
if (create_info->scanout)
surface->flags |= RADEON_SURF_SCANOUT;
return 0;
}
#define ATI_VENDOR_ID 0x1002
static uint32_t si_get_bo_metadata_word1(struct radv_device *device)
{
return (ATI_VENDOR_ID << 16) | device->physical_device->rad_info.pci_id;
}
static inline unsigned
si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil)
{
if (stencil)
return image->surface.u.legacy.stencil_tiling_index[level];
else
return image->surface.u.legacy.tiling_index[level];
}
static unsigned radv_map_swizzle(unsigned swizzle)
{
switch (swizzle) {
case VK_SWIZZLE_Y:
return V_008F0C_SQ_SEL_Y;
case VK_SWIZZLE_Z:
return V_008F0C_SQ_SEL_Z;
case VK_SWIZZLE_W:
return V_008F0C_SQ_SEL_W;
case VK_SWIZZLE_0:
return V_008F0C_SQ_SEL_0;
case VK_SWIZZLE_1:
return V_008F0C_SQ_SEL_1;
default: /* VK_SWIZZLE_X */
return V_008F0C_SQ_SEL_X;
}
}
static void
radv_make_buffer_descriptor(struct radv_device *device,
struct radv_buffer *buffer,
VkFormat vk_format,
unsigned offset,
unsigned range,
uint32_t *state)
{
const struct vk_format_description *desc;
unsigned stride;
uint64_t gpu_address = device->ws->buffer_get_va(buffer->bo);
uint64_t va = gpu_address + buffer->offset;
unsigned num_format, data_format;
int first_non_void;
desc = vk_format_description(vk_format);
first_non_void = vk_format_get_first_non_void_channel(vk_format);
stride = desc->block.bits / 8;
num_format = radv_translate_buffer_numformat(desc, first_non_void);
data_format = radv_translate_buffer_dataformat(desc, first_non_void);
va += offset;
state[0] = va;
state[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(stride);
state[2] = range;
state[3] = S_008F0C_DST_SEL_X(radv_map_swizzle(desc->swizzle[0])) |
S_008F0C_DST_SEL_Y(radv_map_swizzle(desc->swizzle[1])) |
S_008F0C_DST_SEL_Z(radv_map_swizzle(desc->swizzle[2])) |
S_008F0C_DST_SEL_W(radv_map_swizzle(desc->swizzle[3])) |
S_008F0C_NUM_FORMAT(num_format) |
S_008F0C_DATA_FORMAT(data_format);
}
static void
si_set_mutable_tex_desc_fields(struct radv_device *device,
struct radv_image *image,
const struct legacy_surf_level *base_level_info,
unsigned base_level, unsigned first_level,
unsigned block_width, bool is_stencil,
uint32_t *state)
{
uint64_t gpu_address = device->ws->buffer_get_va(image->bo) + image->offset;
uint64_t va = gpu_address;
unsigned pitch = base_level_info->nblk_x * block_width;
enum chip_class chip_class = device->physical_device->rad_info.chip_class;
uint64_t meta_va = 0;
if (chip_class >= GFX9) {
if (is_stencil)
va += image->surface.u.gfx9.stencil_offset;
else
va += image->surface.u.gfx9.surf_offset;
} else
va += base_level_info->offset;
state[0] = va >> 8;
if (chip_class < GFX9)
state[0] |= image->surface.u.legacy.tile_swizzle;
state[1] &= C_008F14_BASE_ADDRESS_HI;
state[1] |= S_008F14_BASE_ADDRESS_HI(va >> 40);
state[3] |= S_008F1C_TILING_INDEX(si_tile_mode_index(image, base_level,
is_stencil));
state[4] |= S_008F20_PITCH_GFX6(pitch - 1);
if (chip_class >= VI) {
state[6] &= C_008F28_COMPRESSION_EN;
state[7] = 0;
if (image->surface.dcc_size && first_level < image->surface.num_dcc_levels) {
uint64_t meta_va = gpu_address + image->dcc_offset;
if (chip_class <= VI)
meta_va += base_level_info->dcc_offset;
state[6] |= S_008F28_COMPRESSION_EN(1);
state[7] = meta_va >> 8;
if (chip_class < GFX9)
state[7] |= image->surface.u.legacy.tile_swizzle;
}
}
if (chip_class >= GFX9) {
state[3] &= C_008F1C_SW_MODE;
state[4] &= C_008F20_PITCH_GFX9;
if (is_stencil) {
state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.stencil.swizzle_mode);
state[4] |= S_008F20_PITCH_GFX9(image->surface.u.gfx9.stencil.epitch);
} else {
state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.surf.swizzle_mode);
state[4] |= S_008F20_PITCH_GFX9(image->surface.u.gfx9.surf.epitch);
}
state[5] &= C_008F24_META_DATA_ADDRESS &
C_008F24_META_PIPE_ALIGNED &
C_008F24_META_RB_ALIGNED;
if (meta_va) {
struct gfx9_surf_meta_flags meta;
if (image->dcc_offset)
meta = image->surface.u.gfx9.dcc;
else
meta = image->surface.u.gfx9.htile;
state[5] |= S_008F24_META_DATA_ADDRESS(meta_va >> 40) |
S_008F24_META_PIPE_ALIGNED(meta.pipe_aligned) |
S_008F24_META_RB_ALIGNED(meta.rb_aligned);
}
} else {
/* SI-CI-VI */
unsigned pitch = base_level_info->nblk_x * block_width;
unsigned index = si_tile_mode_index(image, base_level, is_stencil);
state[3] &= C_008F1C_TILING_INDEX;
state[3] |= S_008F1C_TILING_INDEX(index);
state[4] &= C_008F20_PITCH_GFX6;
state[4] |= S_008F20_PITCH_GFX6(pitch - 1);
}
}
static unsigned radv_tex_dim(VkImageType image_type, VkImageViewType view_type,
unsigned nr_layers, unsigned nr_samples, bool is_storage_image)
{
if (view_type == VK_IMAGE_VIEW_TYPE_CUBE || view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY)
return is_storage_image ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_CUBE;
switch (image_type) {
case VK_IMAGE_TYPE_1D:
return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_1D_ARRAY : V_008F1C_SQ_RSRC_IMG_1D;
case VK_IMAGE_TYPE_2D:
if (nr_samples > 1)
return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY : V_008F1C_SQ_RSRC_IMG_2D_MSAA;
else
return nr_layers > 1 ? V_008F1C_SQ_RSRC_IMG_2D_ARRAY : V_008F1C_SQ_RSRC_IMG_2D;
case VK_IMAGE_TYPE_3D:
if (view_type == VK_IMAGE_VIEW_TYPE_3D)
return V_008F1C_SQ_RSRC_IMG_3D;
else
return V_008F1C_SQ_RSRC_IMG_2D_ARRAY;
default:
unreachable("illegale image type");
}
}
static unsigned gfx9_border_color_swizzle(const unsigned char swizzle[4])
{
unsigned bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
if (swizzle[3] == VK_SWIZZLE_X) {
/* For the pre-defined border color values (white, opaque
* black, transparent black), the only thing that matters is
* that the alpha channel winds up in the correct place
* (because the RGB channels are all the same) so either of
* these enumerations will work.
*/
if (swizzle[2] == VK_SWIZZLE_Y)
bc_swizzle = V_008F20_BC_SWIZZLE_WZYX;
else
bc_swizzle = V_008F20_BC_SWIZZLE_WXYZ;
} else if (swizzle[0] == VK_SWIZZLE_X) {
if (swizzle[1] == VK_SWIZZLE_Y)
bc_swizzle = V_008F20_BC_SWIZZLE_XYZW;
else
bc_swizzle = V_008F20_BC_SWIZZLE_XWYZ;
} else if (swizzle[1] == VK_SWIZZLE_X) {
bc_swizzle = V_008F20_BC_SWIZZLE_YXWZ;
} else if (swizzle[2] == VK_SWIZZLE_X) {
bc_swizzle = V_008F20_BC_SWIZZLE_ZYXW;
}
return bc_swizzle;
}
/**
* Build the sampler view descriptor for a texture.
*/
static void
si_make_texture_descriptor(struct radv_device *device,
struct radv_image *image,
bool is_storage_image,
VkImageViewType view_type,
VkFormat vk_format,
const VkComponentMapping *mapping,
unsigned first_level, unsigned last_level,
unsigned first_layer, unsigned last_layer,
unsigned width, unsigned height, unsigned depth,
uint32_t *state,
uint32_t *fmask_state)
{
const struct vk_format_description *desc;
enum vk_swizzle swizzle[4];
int first_non_void;
unsigned num_format, data_format, type;
desc = vk_format_description(vk_format);
if (desc->colorspace == VK_FORMAT_COLORSPACE_ZS) {
const unsigned char swizzle_xxxx[4] = {0, 0, 0, 0};
vk_format_compose_swizzles(mapping, swizzle_xxxx, swizzle);
} else {
vk_format_compose_swizzles(mapping, desc->swizzle, swizzle);
}
first_non_void = vk_format_get_first_non_void_channel(vk_format);
num_format = radv_translate_tex_numformat(vk_format, desc, first_non_void);
if (num_format == ~0) {
num_format = 0;
}
data_format = radv_translate_tex_dataformat(vk_format, desc, first_non_void);
if (data_format == ~0) {
data_format = 0;
}
type = radv_tex_dim(image->type, view_type, image->info.array_size, image->info.samples,
is_storage_image);
if (type == V_008F1C_SQ_RSRC_IMG_1D_ARRAY) {
height = 1;
depth = image->info.array_size;
} else if (type == V_008F1C_SQ_RSRC_IMG_2D_ARRAY ||
type == V_008F1C_SQ_RSRC_IMG_2D_MSAA_ARRAY) {
if (view_type != VK_IMAGE_VIEW_TYPE_3D)
depth = image->info.array_size;
} else if (type == V_008F1C_SQ_RSRC_IMG_CUBE)
depth = image->info.array_size / 6;
state[0] = 0;
state[1] = (S_008F14_DATA_FORMAT_GFX6(data_format) |
S_008F14_NUM_FORMAT_GFX6(num_format));
state[2] = (S_008F18_WIDTH(width - 1) |
S_008F18_HEIGHT(height - 1) |
S_008F18_PERF_MOD(4));
state[3] = (S_008F1C_DST_SEL_X(radv_map_swizzle(swizzle[0])) |
S_008F1C_DST_SEL_Y(radv_map_swizzle(swizzle[1])) |
S_008F1C_DST_SEL_Z(radv_map_swizzle(swizzle[2])) |
S_008F1C_DST_SEL_W(radv_map_swizzle(swizzle[3])) |
S_008F1C_BASE_LEVEL(image->info.samples > 1 ?
0 : first_level) |
S_008F1C_LAST_LEVEL(image->info.samples > 1 ?
util_logbase2(image->info.samples) :
last_level) |
S_008F1C_TYPE(type));
state[4] = 0;
state[5] = S_008F24_BASE_ARRAY(first_layer);
state[6] = 0;
state[7] = 0;
if (device->physical_device->rad_info.chip_class >= GFX9) {
unsigned bc_swizzle = gfx9_border_color_swizzle(desc->swizzle);
/* Depth is the the last accessible layer on Gfx9.
* The hw doesn't need to know the total number of layers.
*/
if (type == V_008F1C_SQ_RSRC_IMG_3D)
state[4] |= S_008F20_DEPTH(depth - 1);
else
state[4] |= S_008F20_DEPTH(last_layer);
state[4] |= S_008F20_BC_SWIZZLE(bc_swizzle);
state[5] |= S_008F24_MAX_MIP(image->info.samples > 1 ?
util_logbase2(image->info.samples) :
last_level);
} else {
state[3] |= S_008F1C_POW2_PAD(image->info.levels > 1);
state[4] |= S_008F20_DEPTH(depth - 1);
state[5] |= S_008F24_LAST_ARRAY(last_layer);
}
if (image->dcc_offset) {
unsigned swap = radv_translate_colorswap(vk_format, FALSE);
state[6] = S_008F28_ALPHA_IS_ON_MSB(swap <= 1);
} else {
/* The last dword is unused by hw. The shader uses it to clear
* bits in the first dword of sampler state.
*/
if (device->physical_device->rad_info.chip_class <= CIK && image->info.samples <= 1) {
if (first_level == last_level)
state[7] = C_008F30_MAX_ANISO_RATIO;
else
state[7] = 0xffffffff;
}
}
/* Initialize the sampler view for FMASK. */
if (image->fmask.size) {
uint32_t fmask_format, num_format;
uint64_t gpu_address = device->ws->buffer_get_va(image->bo);
uint64_t va;
va = gpu_address + image->offset + image->fmask.offset;
if (device->physical_device->rad_info.chip_class >= GFX9) {
fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK;
switch (image->info.samples) {
case 2:
num_format = V_008F14_IMG_FMASK_8_2_2;
break;
case 4:
num_format = V_008F14_IMG_FMASK_8_4_4;
break;
case 8:
num_format = V_008F14_IMG_FMASK_32_8_8;
break;
default:
unreachable("invalid nr_samples");
}
} else {
switch (image->info.samples) {
case 2:
fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S2_F2;
break;
case 4:
fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK8_S4_F4;
break;
case 8:
fmask_format = V_008F14_IMG_DATA_FORMAT_FMASK32_S8_F8;
break;
default:
assert(0);
fmask_format = V_008F14_IMG_DATA_FORMAT_INVALID;
}
num_format = V_008F14_IMG_NUM_FORMAT_UINT;
}
fmask_state[0] = va >> 8;
if (device->physical_device->rad_info.chip_class < GFX9)
fmask_state[0] |= image->surface.u.legacy.tile_swizzle;
fmask_state[1] = S_008F14_BASE_ADDRESS_HI(va >> 40) |
S_008F14_DATA_FORMAT_GFX6(fmask_format) |
S_008F14_NUM_FORMAT_GFX6(num_format);
fmask_state[2] = S_008F18_WIDTH(width - 1) |
S_008F18_HEIGHT(height - 1);
fmask_state[3] = S_008F1C_DST_SEL_X(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_Y(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_Z(V_008F1C_SQ_SEL_X) |
S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_X) |
S_008F1C_TYPE(radv_tex_dim(image->type, view_type, 1, 0, false));
fmask_state[4] = 0;
fmask_state[5] = S_008F24_BASE_ARRAY(first_layer);
fmask_state[6] = 0;
fmask_state[7] = 0;
if (device->physical_device->rad_info.chip_class >= GFX9) {
fmask_state[3] |= S_008F1C_SW_MODE(image->surface.u.gfx9.fmask.swizzle_mode);
fmask_state[4] |= S_008F20_DEPTH(last_layer) |
S_008F20_PITCH_GFX9(image->surface.u.gfx9.fmask.epitch);
fmask_state[5] |= S_008F24_META_PIPE_ALIGNED(image->surface.u.gfx9.cmask.pipe_aligned) |
S_008F24_META_RB_ALIGNED(image->surface.u.gfx9.cmask.rb_aligned);
} else {
fmask_state[3] |= S_008F1C_TILING_INDEX(image->fmask.tile_mode_index);
fmask_state[4] |= S_008F20_DEPTH(depth - 1) |
S_008F20_PITCH_GFX6(image->fmask.pitch_in_pixels - 1);
fmask_state[5] |= S_008F24_LAST_ARRAY(last_layer);
}
} else if (fmask_state)
memset(fmask_state, 0, 8 * 4);
}
static void
radv_query_opaque_metadata(struct radv_device *device,
struct radv_image *image,
struct radeon_bo_metadata *md)
{
static const VkComponentMapping fixedmapping;
uint32_t desc[8], i;
/* Metadata image format format version 1:
* [0] = 1 (metadata format identifier)
* [1] = (VENDOR_ID << 16) | PCI_ID
* [2:9] = image descriptor for the whole resource
* [2] is always 0, because the base address is cleared
* [9] is the DCC offset bits [39:8] from the beginning of
* the buffer
* [10:10+LAST_LEVEL] = mipmap level offset bits [39:8] for each level
*/
md->metadata[0] = 1; /* metadata image format version 1 */
/* TILE_MODE_INDEX is ambiguous without a PCI ID. */
md->metadata[1] = si_get_bo_metadata_word1(device);
si_make_texture_descriptor(device, image, false,
(VkImageViewType)image->type, image->vk_format,
&fixedmapping, 0, image->info.levels - 1, 0,
image->info.array_size,
image->info.width, image->info.height,
image->info.depth,
desc, NULL);
si_set_mutable_tex_desc_fields(device, image, &image->surface.u.legacy.level[0], 0, 0,
image->surface.blk_w, false, desc);
/* Clear the base address and set the relative DCC offset. */
desc[0] = 0;
desc[1] &= C_008F14_BASE_ADDRESS_HI;
desc[7] = image->dcc_offset >> 8;
/* Dwords [2:9] contain the image descriptor. */
memcpy(&md->metadata[2], desc, sizeof(desc));
/* Dwords [10:..] contain the mipmap level offsets. */
for (i = 0; i <= image->info.levels - 1; i++)
md->metadata[10+i] = image->surface.u.legacy.level[i].offset >> 8;
md->size_metadata = (11 + image->info.levels - 1) * 4;
}
void
radv_init_metadata(struct radv_device *device,
struct radv_image *image,
struct radeon_bo_metadata *metadata)
{
struct radeon_surf *surface = &image->surface;
memset(metadata, 0, sizeof(*metadata));
if (device->physical_device->rad_info.chip_class >= GFX9) {
metadata->u.gfx9.swizzle_mode = surface->u.gfx9.surf.swizzle_mode;
} else {
metadata->u.legacy.microtile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_1D ?
RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
metadata->u.legacy.macrotile = surface->u.legacy.level[0].mode >= RADEON_SURF_MODE_2D ?
RADEON_LAYOUT_TILED : RADEON_LAYOUT_LINEAR;
metadata->u.legacy.pipe_config = surface->u.legacy.pipe_config;
metadata->u.legacy.bankw = surface->u.legacy.bankw;
metadata->u.legacy.bankh = surface->u.legacy.bankh;
metadata->u.legacy.tile_split = surface->u.legacy.tile_split;
metadata->u.legacy.mtilea = surface->u.legacy.mtilea;
metadata->u.legacy.num_banks = surface->u.legacy.num_banks;
metadata->u.legacy.stride = surface->u.legacy.level[0].nblk_x * surface->bpe;
metadata->u.legacy.scanout = (surface->flags & RADEON_SURF_SCANOUT) != 0;
}
radv_query_opaque_metadata(device, image, metadata);
}
/* The number of samples can be specified independently of the texture. */
static void
radv_image_get_fmask_info(struct radv_device *device,
struct radv_image *image,
unsigned nr_samples,
struct radv_fmask_info *out)
{
/* FMASK is allocated like an ordinary texture. */
struct radeon_surf fmask = {};
struct ac_surf_info info = image->info;
memset(out, 0, sizeof(*out));
if (device->physical_device->rad_info.chip_class >= GFX9) {
out->alignment = image->surface.u.gfx9.fmask_alignment;
out->size = image->surface.u.gfx9.fmask_size;
return;
}
fmask.blk_w = image->surface.blk_w;
fmask.blk_h = image->surface.blk_h;
info.samples = 1;
fmask.flags = image->surface.flags | RADEON_SURF_FMASK;
/* Force 2D tiling if it wasn't set. This may occur when creating
* FMASK for MSAA resolve on R6xx. On R6xx, the single-sample
* destination buffer must have an FMASK too. */
fmask.flags = RADEON_SURF_CLR(fmask.flags, MODE);
fmask.flags |= RADEON_SURF_SET(RADEON_SURF_MODE_2D, MODE);
switch (nr_samples) {
case 2:
case 4:
fmask.bpe = 1;
break;
case 8:
fmask.bpe = 4;
break;
default:
return;
}
device->ws->surface_init(device->ws, &info, &fmask);
assert(fmask.u.legacy.level[0].mode == RADEON_SURF_MODE_2D);
out->slice_tile_max = (fmask.u.legacy.level[0].nblk_x * fmask.u.legacy.level[0].nblk_y) / 64;
if (out->slice_tile_max)
out->slice_tile_max -= 1;
out->tile_mode_index = fmask.u.legacy.tiling_index[0];
out->pitch_in_pixels = fmask.u.legacy.level[0].nblk_x;
out->bank_height = fmask.u.legacy.bankh;
out->alignment = MAX2(256, fmask.surf_alignment);
out->size = fmask.surf_size;
}
static void
radv_image_alloc_fmask(struct radv_device *device,
struct radv_image *image)
{
radv_image_get_fmask_info(device, image, image->info.samples, &image->fmask);
image->fmask.offset = align64(image->size, image->fmask.alignment);
image->size = image->fmask.offset + image->fmask.size;
image->alignment = MAX2(image->alignment, image->fmask.alignment);
}
static void
radv_image_get_cmask_info(struct radv_device *device,
struct radv_image *image,
struct radv_cmask_info *out)
{
unsigned pipe_interleave_bytes = device->physical_device->rad_info.pipe_interleave_bytes;
unsigned num_pipes = device->physical_device->rad_info.num_tile_pipes;
unsigned cl_width, cl_height;
if (device->physical_device->rad_info.chip_class >= GFX9) {
out->alignment = image->surface.u.gfx9.cmask_alignment;
out->size = image->surface.u.gfx9.cmask_size;
return;
}
switch (num_pipes) {
case 2:
cl_width = 32;
cl_height = 16;
break;
case 4:
cl_width = 32;
cl_height = 32;
break;
case 8:
cl_width = 64;
cl_height = 32;
break;
case 16: /* Hawaii */
cl_width = 64;
cl_height = 64;
break;
default:
assert(0);
return;
}
unsigned base_align = num_pipes * pipe_interleave_bytes;
unsigned width = align(image->info.width, cl_width*8);
unsigned height = align(image->info.height, cl_height*8);
unsigned slice_elements = (width * height) / (8*8);
/* Each element of CMASK is a nibble. */
unsigned slice_bytes = slice_elements / 2;
out->slice_tile_max = (width * height) / (128*128);
if (out->slice_tile_max)
out->slice_tile_max -= 1;
out->alignment = MAX2(256, base_align);
out->size = (image->type == VK_IMAGE_TYPE_3D ? image->info.depth : image->info.array_size) *
align(slice_bytes, base_align);
}
static void
radv_image_alloc_cmask(struct radv_device *device,
struct radv_image *image)
{
uint32_t clear_value_size = 0;
radv_image_get_cmask_info(device, image, &image->cmask);
image->cmask.offset = align64(image->size, image->cmask.alignment);
/* + 8 for storing the clear values */
if (!image->clear_value_offset) {
image->clear_value_offset = image->cmask.offset + image->cmask.size;
clear_value_size = 8;
}
image->size = image->cmask.offset + image->cmask.size + clear_value_size;
image->alignment = MAX2(image->alignment, image->cmask.alignment);
}
static void
radv_image_alloc_dcc(struct radv_device *device,
struct radv_image *image)
{
image->dcc_offset = align64(image->size, image->surface.dcc_alignment);
/* + 16 for storing the clear values + dcc pred */
image->clear_value_offset = image->dcc_offset + image->surface.dcc_size;
image->dcc_pred_offset = image->clear_value_offset + 8;
image->size = image->dcc_offset + image->surface.dcc_size + 16;
image->alignment = MAX2(image->alignment, image->surface.dcc_alignment);
}
static void
radv_image_alloc_htile(struct radv_device *device,
struct radv_image *image)
{
if ((device->debug_flags & RADV_DEBUG_NO_HIZ) || image->info.levels > 1) {
image->surface.htile_size = 0;
return;
}
image->htile_offset = align64(image->size, image->surface.htile_alignment);
/* + 8 for storing the clear values */
image->clear_value_offset = image->htile_offset + image->surface.htile_size;
image->size = image->clear_value_offset + 8;
image->alignment = align64(image->alignment, image->surface.htile_alignment);
}
VkResult
radv_image_create(VkDevice _device,
const struct radv_image_create_info *create_info,
const VkAllocationCallbacks* alloc,
VkImage *pImage)
{
RADV_FROM_HANDLE(radv_device, device, _device);
const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
struct radv_image *image = NULL;
bool can_cmask_dcc = false;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO);
radv_assert(pCreateInfo->mipLevels > 0);
radv_assert(pCreateInfo->arrayLayers > 0);
radv_assert(pCreateInfo->samples > 0);
radv_assert(pCreateInfo->extent.width > 0);
radv_assert(pCreateInfo->extent.height > 0);
radv_assert(pCreateInfo->extent.depth > 0);
image = vk_alloc2(&device->alloc, alloc, sizeof(*image), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!image)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(image, 0, sizeof(*image));
image->type = pCreateInfo->imageType;
image->info.width = pCreateInfo->extent.width;
image->info.height = pCreateInfo->extent.height;
image->info.depth = pCreateInfo->extent.depth;
image->info.samples = pCreateInfo->samples;
image->info.array_size = pCreateInfo->arrayLayers;
image->info.levels = pCreateInfo->mipLevels;
image->vk_format = pCreateInfo->format;
image->tiling = pCreateInfo->tiling;
image->usage = pCreateInfo->usage;
image->flags = pCreateInfo->flags;
image->exclusive = pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE;
if (pCreateInfo->sharingMode == VK_SHARING_MODE_CONCURRENT) {
for (uint32_t i = 0; i < pCreateInfo->queueFamilyIndexCount; ++i)
if (pCreateInfo->pQueueFamilyIndices[i] == VK_QUEUE_FAMILY_EXTERNAL_KHR)
image->queue_family_mask |= (1u << RADV_MAX_QUEUE_FAMILIES) - 1u;
else
image->queue_family_mask |= 1u << pCreateInfo->pQueueFamilyIndices[i];
}
image->shareable = vk_find_struct_const(pCreateInfo->pNext,
EXTERNAL_MEMORY_IMAGE_CREATE_INFO_KHR) != NULL;
if (!vk_format_is_depth(pCreateInfo->format) && !create_info->scanout && !image->shareable) {
image->info.surf_index = p_atomic_inc_return(&device->image_mrt_offset_counter) - 1;
}
radv_init_surface(device, &image->surface, create_info);
device->ws->surface_init(device->ws, &image->info, &image->surface);
image->size = image->surface.surf_size;
image->alignment = image->surface.surf_alignment;
if (image->exclusive || image->queue_family_mask == 1)
can_cmask_dcc = true;
if ((pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) &&
image->surface.dcc_size && can_cmask_dcc)
radv_image_alloc_dcc(device, image);
else
image->surface.dcc_size = 0;
if ((pCreateInfo->usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) &&
pCreateInfo->mipLevels == 1 &&
!image->surface.dcc_size && image->info.depth == 1 && can_cmask_dcc)
radv_image_alloc_cmask(device, image);
if (image->info.samples > 1 && vk_format_is_color(pCreateInfo->format)) {
radv_image_alloc_fmask(device, image);
} else if (vk_format_is_depth(pCreateInfo->format)) {
radv_image_alloc_htile(device, image);
}
if (pCreateInfo->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT) {
image->alignment = MAX2(image->alignment, 4096);
image->size = align64(image->size, image->alignment);
image->offset = 0;
image->bo = device->ws->buffer_create(device->ws, image->size, image->alignment,
0, RADEON_FLAG_VIRTUAL);
if (!image->bo) {
vk_free2(&device->alloc, alloc, image);
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
}
*pImage = radv_image_to_handle(image);
return VK_SUCCESS;
}
static void
radv_image_view_make_descriptor(struct radv_image_view *iview,
struct radv_device *device,
const VkImageViewCreateInfo* pCreateInfo,
bool is_storage_image)
{
RADV_FROM_HANDLE(radv_image, image, pCreateInfo->image);
const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
bool is_stencil = iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT;
uint32_t blk_w;
uint32_t *descriptor;
uint32_t *fmask_descriptor;
if (is_storage_image) {
descriptor = iview->storage_descriptor;
fmask_descriptor = iview->storage_fmask_descriptor;
} else {
descriptor = iview->descriptor;
fmask_descriptor = iview->fmask_descriptor;
}
assert(image->surface.blk_w % vk_format_get_blockwidth(image->vk_format) == 0);
blk_w = image->surface.blk_w / vk_format_get_blockwidth(image->vk_format) * vk_format_get_blockwidth(iview->vk_format);
si_make_texture_descriptor(device, image, is_storage_image,
iview->type,
iview->vk_format,
&pCreateInfo->components,
0, radv_get_levelCount(image, range) - 1,
range->baseArrayLayer,
range->baseArrayLayer + radv_get_layerCount(image, range) - 1,
iview->extent.width,
iview->extent.height,
iview->extent.depth,
descriptor,
fmask_descriptor);
si_set_mutable_tex_desc_fields(device, image,
is_stencil ? &image->surface.u.legacy.stencil_level[range->baseMipLevel]
: &image->surface.u.legacy.level[range->baseMipLevel],
range->baseMipLevel,
range->baseMipLevel,
blk_w, is_stencil, descriptor);
}
void
radv_image_view_init(struct radv_image_view *iview,
struct radv_device *device,
const VkImageViewCreateInfo* pCreateInfo)
{
RADV_FROM_HANDLE(radv_image, image, pCreateInfo->image);
const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
switch (image->type) {
case VK_IMAGE_TYPE_1D:
case VK_IMAGE_TYPE_2D:
assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1 <= image->info.array_size);
break;
case VK_IMAGE_TYPE_3D:
assert(range->baseArrayLayer + radv_get_layerCount(image, range) - 1
<= radv_minify(image->info.depth, range->baseMipLevel));
break;
default:
unreachable("bad VkImageType");
}
iview->image = image;
iview->bo = image->bo;
iview->type = pCreateInfo->viewType;
iview->vk_format = pCreateInfo->format;
iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask;
if (iview->aspect_mask == VK_IMAGE_ASPECT_STENCIL_BIT) {
iview->vk_format = vk_format_stencil_only(iview->vk_format);
} else if (iview->aspect_mask == VK_IMAGE_ASPECT_DEPTH_BIT) {
iview->vk_format = vk_format_depth_only(iview->vk_format);
}
iview->extent = (VkExtent3D) {
.width = radv_minify(image->info.width , range->baseMipLevel),
.height = radv_minify(image->info.height, range->baseMipLevel),
.depth = radv_minify(image->info.depth , range->baseMipLevel),
};
iview->extent.width = round_up_u32(iview->extent.width * vk_format_get_blockwidth(iview->vk_format),
vk_format_get_blockwidth(image->vk_format));
iview->extent.height = round_up_u32(iview->extent.height * vk_format_get_blockheight(iview->vk_format),
vk_format_get_blockheight(image->vk_format));
iview->base_layer = range->baseArrayLayer;
iview->layer_count = radv_get_layerCount(image, range);
iview->base_mip = range->baseMipLevel;
radv_image_view_make_descriptor(iview, device, pCreateInfo, false);
/* For transfers we may use the image as a storage image. */
if (image->usage & (VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT))
radv_image_view_make_descriptor(iview, device, pCreateInfo, true);
}
bool radv_layout_has_htile(const struct radv_image *image,
VkImageLayout layout,
unsigned queue_mask)
{
return image->surface.htile_size &&
(layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) &&
queue_mask == (1u << RADV_QUEUE_GENERAL);
}
bool radv_layout_is_htile_compressed(const struct radv_image *image,
VkImageLayout layout,
unsigned queue_mask)
{
return image->surface.htile_size &&
(layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) &&
queue_mask == (1u << RADV_QUEUE_GENERAL);
}
bool radv_layout_can_fast_clear(const struct radv_image *image,
VkImageLayout layout,
unsigned queue_mask)
{
return layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL &&
queue_mask == (1u << RADV_QUEUE_GENERAL);
}
unsigned radv_image_queue_family_mask(const struct radv_image *image, uint32_t family, uint32_t queue_family)
{
if (!image->exclusive)
return image->queue_family_mask;
if (family == VK_QUEUE_FAMILY_EXTERNAL_KHR)
return (1u << RADV_MAX_QUEUE_FAMILIES) - 1u;
if (family == VK_QUEUE_FAMILY_IGNORED)
return 1u << queue_family;
return 1u << family;
}
VkResult
radv_CreateImage(VkDevice device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImage *pImage)
{
return radv_image_create(device,
&(struct radv_image_create_info) {
.vk_info = pCreateInfo,
.scanout = false,
},
pAllocator,
pImage);
}
void
radv_DestroyImage(VkDevice _device, VkImage _image,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_image, image, _image);
if (!image)
return;
if (image->flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT)
device->ws->buffer_destroy(image->bo);
vk_free2(&device->alloc, pAllocator, image);
}
void radv_GetImageSubresourceLayout(
VkDevice device,
VkImage _image,
const VkImageSubresource* pSubresource,
VkSubresourceLayout* pLayout)
{
RADV_FROM_HANDLE(radv_image, image, _image);
int level = pSubresource->mipLevel;
int layer = pSubresource->arrayLayer;
struct radeon_surf *surface = &image->surface;
pLayout->offset = surface->u.legacy.level[level].offset + surface->u.legacy.level[level].slice_size * layer;
pLayout->rowPitch = surface->u.legacy.level[level].nblk_x * surface->bpe;
pLayout->arrayPitch = surface->u.legacy.level[level].slice_size;
pLayout->depthPitch = surface->u.legacy.level[level].slice_size;
pLayout->size = surface->u.legacy.level[level].slice_size;
if (image->type == VK_IMAGE_TYPE_3D)
pLayout->size *= u_minify(image->info.depth, level);
}
VkResult
radv_CreateImageView(VkDevice _device,
const VkImageViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkImageView *pView)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_image_view *view;
view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (view == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
radv_image_view_init(view, device, pCreateInfo);
*pView = radv_image_view_to_handle(view);
return VK_SUCCESS;
}
void
radv_DestroyImageView(VkDevice _device, VkImageView _iview,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_image_view, iview, _iview);
if (!iview)
return;
vk_free2(&device->alloc, pAllocator, iview);
}
void radv_buffer_view_init(struct radv_buffer_view *view,
struct radv_device *device,
const VkBufferViewCreateInfo* pCreateInfo,
struct radv_cmd_buffer *cmd_buffer)
{
RADV_FROM_HANDLE(radv_buffer, buffer, pCreateInfo->buffer);
view->bo = buffer->bo;
view->range = pCreateInfo->range == VK_WHOLE_SIZE ?
buffer->size - pCreateInfo->offset : pCreateInfo->range;
view->vk_format = pCreateInfo->format;
radv_make_buffer_descriptor(device, buffer, view->vk_format,
pCreateInfo->offset, view->range, view->state);
}
VkResult
radv_CreateBufferView(VkDevice _device,
const VkBufferViewCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkBufferView *pView)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_buffer_view *view;
view = vk_alloc2(&device->alloc, pAllocator, sizeof(*view), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!view)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
radv_buffer_view_init(view, device, pCreateInfo, NULL);
*pView = radv_buffer_view_to_handle(view);
return VK_SUCCESS;
}
void
radv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
const VkAllocationCallbacks *pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer_view, view, bufferView);
if (!view)
return;
vk_free2(&device->alloc, pAllocator, view);
}