Files
third_party_mesa3d/src/compiler/glsl/glsl_parser_extras.cpp
Timothy Arceri 9ce7d79cdc glsl: add a mechanism to allow layout qualifiers on function params
The spec is quite clear this is not allowed:

    From Section 4.4. (Layout Qualifiers) of the GLSL 4.60 spec:

       "Layout qualifiers can appear in several forms of declaration.
       They can appear as part of an interface block definition or
       block member, as shown in the grammar in the previous section.
       They can also appear with just an interface-qualifier to establish
       layouts of other declarations made with that qualifier:

          layout-qualifier interface-qualifier ;

       Or, they can appear with an individual variable declared with
       an interface qualifier:

          layout-qualifier interface-qualifier declaration ;"

    From Section 4.10 (Memory Qualifiers) of the GLSL 4.60 spec:

       "Layout qualifiers cannot be used on formal function parameters,
       and layout qualification is not included in parameter matching."

However on the Nvidia binary driver they actually fail to compile
if image function params don't have a layout qualifier. This results
in applications such as No Mans Sky using layout qualifiers on params.

I've submitted a CTS test to expose this problem in the Nvidia driver
but until that is resolved this patch will help Mesa drivers work
around the issue.

Reviewed-by: Marek Olšák <marek.olsak@amd.com>
2018-08-30 09:54:40 +10:00

2324 lines
75 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2008, 2009 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <inttypes.h> /* for PRIx64 macro */
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include "main/context.h"
#include "main/debug_output.h"
#include "main/formats.h"
#include "main/shaderobj.h"
#include "util/u_atomic.h" /* for p_atomic_cmpxchg */
#include "util/ralloc.h"
#include "util/disk_cache.h"
#include "util/mesa-sha1.h"
#include "ast.h"
#include "glsl_parser_extras.h"
#include "glsl_parser.h"
#include "ir_optimization.h"
#include "loop_analysis.h"
#include "builtin_functions.h"
/**
* Format a short human-readable description of the given GLSL version.
*/
const char *
glsl_compute_version_string(void *mem_ctx, bool is_es, unsigned version)
{
return ralloc_asprintf(mem_ctx, "GLSL%s %d.%02d", is_es ? " ES" : "",
version / 100, version % 100);
}
static const unsigned known_desktop_glsl_versions[] =
{ 110, 120, 130, 140, 150, 330, 400, 410, 420, 430, 440, 450, 460 };
static const unsigned known_desktop_gl_versions[] =
{ 20, 21, 30, 31, 32, 33, 40, 41, 42, 43, 44, 45, 46 };
_mesa_glsl_parse_state::_mesa_glsl_parse_state(struct gl_context *_ctx,
gl_shader_stage stage,
void *mem_ctx)
: ctx(_ctx), cs_input_local_size_specified(false), cs_input_local_size(),
switch_state()
{
assert(stage < MESA_SHADER_STAGES);
this->stage = stage;
this->scanner = NULL;
this->translation_unit.make_empty();
this->symbols = new(mem_ctx) glsl_symbol_table;
this->linalloc = linear_alloc_parent(this, 0);
this->info_log = ralloc_strdup(mem_ctx, "");
this->error = false;
this->loop_nesting_ast = NULL;
this->uses_builtin_functions = false;
/* Set default language version and extensions */
this->language_version = 110;
this->forced_language_version = ctx->Const.ForceGLSLVersion;
this->zero_init = ctx->Const.GLSLZeroInit;
this->gl_version = 20;
this->compat_shader = true;
this->es_shader = false;
this->ARB_texture_rectangle_enable = true;
/* OpenGL ES 2.0 has different defaults from desktop GL. */
if (ctx->API == API_OPENGLES2) {
this->language_version = 100;
this->es_shader = true;
this->ARB_texture_rectangle_enable = false;
}
this->extensions = &ctx->Extensions;
this->Const.MaxLights = ctx->Const.MaxLights;
this->Const.MaxClipPlanes = ctx->Const.MaxClipPlanes;
this->Const.MaxTextureUnits = ctx->Const.MaxTextureUnits;
this->Const.MaxTextureCoords = ctx->Const.MaxTextureCoordUnits;
this->Const.MaxVertexAttribs = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs;
this->Const.MaxVertexUniformComponents = ctx->Const.Program[MESA_SHADER_VERTEX].MaxUniformComponents;
this->Const.MaxVertexTextureImageUnits = ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits;
this->Const.MaxCombinedTextureImageUnits = ctx->Const.MaxCombinedTextureImageUnits;
this->Const.MaxTextureImageUnits = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits;
this->Const.MaxFragmentUniformComponents = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxUniformComponents;
this->Const.MinProgramTexelOffset = ctx->Const.MinProgramTexelOffset;
this->Const.MaxProgramTexelOffset = ctx->Const.MaxProgramTexelOffset;
this->Const.MaxDrawBuffers = ctx->Const.MaxDrawBuffers;
this->Const.MaxDualSourceDrawBuffers = ctx->Const.MaxDualSourceDrawBuffers;
/* 1.50 constants */
this->Const.MaxVertexOutputComponents = ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents;
this->Const.MaxGeometryInputComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents;
this->Const.MaxGeometryOutputComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents;
this->Const.MaxGeometryShaderInvocations = ctx->Const.MaxGeometryShaderInvocations;
this->Const.MaxFragmentInputComponents = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents;
this->Const.MaxGeometryTextureImageUnits = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits;
this->Const.MaxGeometryOutputVertices = ctx->Const.MaxGeometryOutputVertices;
this->Const.MaxGeometryTotalOutputComponents = ctx->Const.MaxGeometryTotalOutputComponents;
this->Const.MaxGeometryUniformComponents = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxUniformComponents;
this->Const.MaxVertexAtomicCounters = ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters;
this->Const.MaxTessControlAtomicCounters = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxAtomicCounters;
this->Const.MaxTessEvaluationAtomicCounters = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxAtomicCounters;
this->Const.MaxGeometryAtomicCounters = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters;
this->Const.MaxFragmentAtomicCounters = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters;
this->Const.MaxComputeAtomicCounters = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters;
this->Const.MaxCombinedAtomicCounters = ctx->Const.MaxCombinedAtomicCounters;
this->Const.MaxAtomicBufferBindings = ctx->Const.MaxAtomicBufferBindings;
this->Const.MaxVertexAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers;
this->Const.MaxTessControlAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxAtomicBuffers;
this->Const.MaxTessEvaluationAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxAtomicBuffers;
this->Const.MaxGeometryAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers;
this->Const.MaxFragmentAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers;
this->Const.MaxComputeAtomicCounterBuffers =
ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers;
this->Const.MaxCombinedAtomicCounterBuffers =
ctx->Const.MaxCombinedAtomicBuffers;
this->Const.MaxAtomicCounterBufferSize =
ctx->Const.MaxAtomicBufferSize;
/* ARB_enhanced_layouts constants */
this->Const.MaxTransformFeedbackBuffers = ctx->Const.MaxTransformFeedbackBuffers;
this->Const.MaxTransformFeedbackInterleavedComponents = ctx->Const.MaxTransformFeedbackInterleavedComponents;
/* Compute shader constants */
for (unsigned i = 0; i < ARRAY_SIZE(this->Const.MaxComputeWorkGroupCount); i++)
this->Const.MaxComputeWorkGroupCount[i] = ctx->Const.MaxComputeWorkGroupCount[i];
for (unsigned i = 0; i < ARRAY_SIZE(this->Const.MaxComputeWorkGroupSize); i++)
this->Const.MaxComputeWorkGroupSize[i] = ctx->Const.MaxComputeWorkGroupSize[i];
this->Const.MaxComputeTextureImageUnits = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
this->Const.MaxComputeUniformComponents = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxUniformComponents;
this->Const.MaxImageUnits = ctx->Const.MaxImageUnits;
this->Const.MaxCombinedShaderOutputResources = ctx->Const.MaxCombinedShaderOutputResources;
this->Const.MaxImageSamples = ctx->Const.MaxImageSamples;
this->Const.MaxVertexImageUniforms = ctx->Const.Program[MESA_SHADER_VERTEX].MaxImageUniforms;
this->Const.MaxTessControlImageUniforms = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxImageUniforms;
this->Const.MaxTessEvaluationImageUniforms = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxImageUniforms;
this->Const.MaxGeometryImageUniforms = ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxImageUniforms;
this->Const.MaxFragmentImageUniforms = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxImageUniforms;
this->Const.MaxComputeImageUniforms = ctx->Const.Program[MESA_SHADER_COMPUTE].MaxImageUniforms;
this->Const.MaxCombinedImageUniforms = ctx->Const.MaxCombinedImageUniforms;
/* ARB_viewport_array */
this->Const.MaxViewports = ctx->Const.MaxViewports;
/* tessellation shader constants */
this->Const.MaxPatchVertices = ctx->Const.MaxPatchVertices;
this->Const.MaxTessGenLevel = ctx->Const.MaxTessGenLevel;
this->Const.MaxTessControlInputComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents;
this->Const.MaxTessControlOutputComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents;
this->Const.MaxTessControlTextureImageUnits = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxTextureImageUnits;
this->Const.MaxTessEvaluationInputComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents;
this->Const.MaxTessEvaluationOutputComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents;
this->Const.MaxTessEvaluationTextureImageUnits = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxTextureImageUnits;
this->Const.MaxTessPatchComponents = ctx->Const.MaxTessPatchComponents;
this->Const.MaxTessControlTotalOutputComponents = ctx->Const.MaxTessControlTotalOutputComponents;
this->Const.MaxTessControlUniformComponents = ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxUniformComponents;
this->Const.MaxTessEvaluationUniformComponents = ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxUniformComponents;
/* GL 4.5 / OES_sample_variables */
this->Const.MaxSamples = ctx->Const.MaxSamples;
this->current_function = NULL;
this->toplevel_ir = NULL;
this->found_return = false;
this->all_invariant = false;
this->user_structures = NULL;
this->num_user_structures = 0;
this->num_subroutines = 0;
this->subroutines = NULL;
this->num_subroutine_types = 0;
this->subroutine_types = NULL;
/* supported_versions should be large enough to support the known desktop
* GLSL versions plus 4 GLES versions (ES 1.00, ES 3.00, ES 3.10, ES 3.20)
*/
STATIC_ASSERT((ARRAY_SIZE(known_desktop_glsl_versions) + 4) ==
ARRAY_SIZE(this->supported_versions));
/* Populate the list of supported GLSL versions */
/* FINISHME: Once the OpenGL 3.0 'forward compatible' context or
* the OpenGL 3.2 Core context is supported, this logic will need
* change. Older versions of GLSL are no longer supported
* outside the compatibility contexts of 3.x.
*/
this->num_supported_versions = 0;
if (_mesa_is_desktop_gl(ctx)) {
for (unsigned i = 0; i < ARRAY_SIZE(known_desktop_glsl_versions); i++) {
if (known_desktop_glsl_versions[i] <= ctx->Const.GLSLVersion) {
this->supported_versions[this->num_supported_versions].ver
= known_desktop_glsl_versions[i];
this->supported_versions[this->num_supported_versions].gl_ver
= known_desktop_gl_versions[i];
this->supported_versions[this->num_supported_versions].es = false;
this->num_supported_versions++;
}
}
}
if (ctx->API == API_OPENGLES2 || ctx->Extensions.ARB_ES2_compatibility) {
this->supported_versions[this->num_supported_versions].ver = 100;
this->supported_versions[this->num_supported_versions].gl_ver = 20;
this->supported_versions[this->num_supported_versions].es = true;
this->num_supported_versions++;
}
if (_mesa_is_gles3(ctx) || ctx->Extensions.ARB_ES3_compatibility) {
this->supported_versions[this->num_supported_versions].ver = 300;
this->supported_versions[this->num_supported_versions].gl_ver = 30;
this->supported_versions[this->num_supported_versions].es = true;
this->num_supported_versions++;
}
if (_mesa_is_gles31(ctx) || ctx->Extensions.ARB_ES3_1_compatibility) {
this->supported_versions[this->num_supported_versions].ver = 310;
this->supported_versions[this->num_supported_versions].gl_ver = 31;
this->supported_versions[this->num_supported_versions].es = true;
this->num_supported_versions++;
}
if ((ctx->API == API_OPENGLES2 && ctx->Version >= 32) ||
ctx->Extensions.ARB_ES3_2_compatibility) {
this->supported_versions[this->num_supported_versions].ver = 320;
this->supported_versions[this->num_supported_versions].gl_ver = 32;
this->supported_versions[this->num_supported_versions].es = true;
this->num_supported_versions++;
}
/* Create a string for use in error messages to tell the user which GLSL
* versions are supported.
*/
char *supported = ralloc_strdup(this, "");
for (unsigned i = 0; i < this->num_supported_versions; i++) {
unsigned ver = this->supported_versions[i].ver;
const char *const prefix = (i == 0)
? ""
: ((i == this->num_supported_versions - 1) ? ", and " : ", ");
const char *const suffix = (this->supported_versions[i].es) ? " ES" : "";
ralloc_asprintf_append(& supported, "%s%u.%02u%s",
prefix,
ver / 100, ver % 100,
suffix);
}
this->supported_version_string = supported;
if (ctx->Const.ForceGLSLExtensionsWarn)
_mesa_glsl_process_extension("all", NULL, "warn", NULL, this);
this->default_uniform_qualifier = new(this) ast_type_qualifier();
this->default_uniform_qualifier->flags.q.shared = 1;
this->default_uniform_qualifier->flags.q.column_major = 1;
this->default_shader_storage_qualifier = new(this) ast_type_qualifier();
this->default_shader_storage_qualifier->flags.q.shared = 1;
this->default_shader_storage_qualifier->flags.q.column_major = 1;
this->fs_uses_gl_fragcoord = false;
this->fs_redeclares_gl_fragcoord = false;
this->fs_origin_upper_left = false;
this->fs_pixel_center_integer = false;
this->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers = false;
this->gs_input_prim_type_specified = false;
this->tcs_output_vertices_specified = false;
this->gs_input_size = 0;
this->in_qualifier = new(this) ast_type_qualifier();
this->out_qualifier = new(this) ast_type_qualifier();
this->fs_early_fragment_tests = false;
this->fs_inner_coverage = false;
this->fs_post_depth_coverage = false;
this->fs_pixel_interlock_ordered = false;
this->fs_pixel_interlock_unordered = false;
this->fs_sample_interlock_ordered = false;
this->fs_sample_interlock_unordered = false;
this->fs_blend_support = 0;
memset(this->atomic_counter_offsets, 0,
sizeof(this->atomic_counter_offsets));
this->allow_extension_directive_midshader =
ctx->Const.AllowGLSLExtensionDirectiveMidShader;
this->allow_builtin_variable_redeclaration =
ctx->Const.AllowGLSLBuiltinVariableRedeclaration;
this->allow_layout_qualifier_on_function_parameter =
ctx->Const.AllowLayoutQualifiersOnFunctionParameters;
this->cs_input_local_size_variable_specified = false;
/* ARB_bindless_texture */
this->bindless_sampler_specified = false;
this->bindless_image_specified = false;
this->bound_sampler_specified = false;
this->bound_image_specified = false;
}
/**
* Determine whether the current GLSL version is sufficiently high to support
* a certain feature, and generate an error message if it isn't.
*
* \param required_glsl_version and \c required_glsl_es_version are
* interpreted as they are in _mesa_glsl_parse_state::is_version().
*
* \param locp is the parser location where the error should be reported.
*
* \param fmt (and additional arguments) constitute a printf-style error
* message to report if the version check fails. Information about the
* current and required GLSL versions will be appended. So, for example, if
* the GLSL version being compiled is 1.20, and check_version(130, 300, locp,
* "foo unsupported") is called, the error message will be "foo unsupported in
* GLSL 1.20 (GLSL 1.30 or GLSL 3.00 ES required)".
*/
bool
_mesa_glsl_parse_state::check_version(unsigned required_glsl_version,
unsigned required_glsl_es_version,
YYLTYPE *locp, const char *fmt, ...)
{
if (this->is_version(required_glsl_version, required_glsl_es_version))
return true;
va_list args;
va_start(args, fmt);
char *problem = ralloc_vasprintf(this, fmt, args);
va_end(args);
const char *glsl_version_string
= glsl_compute_version_string(this, false, required_glsl_version);
const char *glsl_es_version_string
= glsl_compute_version_string(this, true, required_glsl_es_version);
const char *requirement_string = "";
if (required_glsl_version && required_glsl_es_version) {
requirement_string = ralloc_asprintf(this, " (%s or %s required)",
glsl_version_string,
glsl_es_version_string);
} else if (required_glsl_version) {
requirement_string = ralloc_asprintf(this, " (%s required)",
glsl_version_string);
} else if (required_glsl_es_version) {
requirement_string = ralloc_asprintf(this, " (%s required)",
glsl_es_version_string);
}
_mesa_glsl_error(locp, this, "%s in %s%s",
problem, this->get_version_string(),
requirement_string);
return false;
}
/**
* Process a GLSL #version directive.
*
* \param version is the integer that follows the #version token.
*
* \param ident is a string identifier that follows the integer, if any is
* present. Otherwise NULL.
*/
void
_mesa_glsl_parse_state::process_version_directive(YYLTYPE *locp, int version,
const char *ident)
{
bool es_token_present = false;
bool compat_token_present = false;
if (ident) {
if (strcmp(ident, "es") == 0) {
es_token_present = true;
} else if (version >= 150) {
if (strcmp(ident, "core") == 0) {
/* Accept the token. There's no need to record that this is
* a core profile shader since that's the only profile we support.
*/
} else if (strcmp(ident, "compatibility") == 0) {
compat_token_present = true;
if (this->ctx->API != API_OPENGL_COMPAT) {
_mesa_glsl_error(locp, this,
"the compatibility profile is not supported");
}
} else {
_mesa_glsl_error(locp, this,
"\"%s\" is not a valid shading language profile; "
"if present, it must be \"core\"", ident);
}
} else {
_mesa_glsl_error(locp, this,
"illegal text following version number");
}
}
this->es_shader = es_token_present;
if (version == 100) {
if (es_token_present) {
_mesa_glsl_error(locp, this,
"GLSL 1.00 ES should be selected using "
"`#version 100'");
} else {
this->es_shader = true;
}
}
if (this->es_shader) {
this->ARB_texture_rectangle_enable = false;
}
if (this->forced_language_version)
this->language_version = this->forced_language_version;
else
this->language_version = version;
this->compat_shader = compat_token_present ||
(this->ctx->API == API_OPENGL_COMPAT &&
this->language_version == 140) ||
(!this->es_shader && this->language_version < 140);
bool supported = false;
for (unsigned i = 0; i < this->num_supported_versions; i++) {
if (this->supported_versions[i].ver == this->language_version
&& this->supported_versions[i].es == this->es_shader) {
this->gl_version = this->supported_versions[i].gl_ver;
supported = true;
break;
}
}
if (!supported) {
_mesa_glsl_error(locp, this, "%s is not supported. "
"Supported versions are: %s",
this->get_version_string(),
this->supported_version_string);
/* On exit, the language_version must be set to a valid value.
* Later calls to _mesa_glsl_initialize_types will misbehave if
* the version is invalid.
*/
switch (this->ctx->API) {
case API_OPENGL_COMPAT:
case API_OPENGL_CORE:
this->language_version = this->ctx->Const.GLSLVersion;
break;
case API_OPENGLES:
assert(!"Should not get here.");
/* FALLTHROUGH */
case API_OPENGLES2:
this->language_version = 100;
break;
}
}
}
/* This helper function will append the given message to the shader's
info log and report it via GL_ARB_debug_output. Per that extension,
'type' is one of the enum values classifying the message, and
'id' is the implementation-defined ID of the given message. */
static void
_mesa_glsl_msg(const YYLTYPE *locp, _mesa_glsl_parse_state *state,
GLenum type, const char *fmt, va_list ap)
{
bool error = (type == MESA_DEBUG_TYPE_ERROR);
GLuint msg_id = 0;
assert(state->info_log != NULL);
/* Get the offset that the new message will be written to. */
int msg_offset = strlen(state->info_log);
ralloc_asprintf_append(&state->info_log, "%u:%u(%u): %s: ",
locp->source,
locp->first_line,
locp->first_column,
error ? "error" : "warning");
ralloc_vasprintf_append(&state->info_log, fmt, ap);
const char *const msg = &state->info_log[msg_offset];
struct gl_context *ctx = state->ctx;
/* Report the error via GL_ARB_debug_output. */
_mesa_shader_debug(ctx, type, &msg_id, msg);
ralloc_strcat(&state->info_log, "\n");
}
void
_mesa_glsl_error(YYLTYPE *locp, _mesa_glsl_parse_state *state,
const char *fmt, ...)
{
va_list ap;
state->error = true;
va_start(ap, fmt);
_mesa_glsl_msg(locp, state, MESA_DEBUG_TYPE_ERROR, fmt, ap);
va_end(ap);
}
void
_mesa_glsl_warning(const YYLTYPE *locp, _mesa_glsl_parse_state *state,
const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
_mesa_glsl_msg(locp, state, MESA_DEBUG_TYPE_OTHER, fmt, ap);
va_end(ap);
}
/**
* Enum representing the possible behaviors that can be specified in
* an #extension directive.
*/
enum ext_behavior {
extension_disable,
extension_enable,
extension_require,
extension_warn
};
/**
* Element type for _mesa_glsl_supported_extensions
*/
struct _mesa_glsl_extension {
/**
* Name of the extension when referred to in a GLSL extension
* statement
*/
const char *name;
/**
* Whether this extension is a part of AEP
*/
bool aep;
/**
* Predicate that checks whether the relevant extension is available for
* this context.
*/
bool (*available_pred)(const struct gl_context *,
gl_api api, uint8_t version);
/**
* Flag in the _mesa_glsl_parse_state struct that should be set
* when this extension is enabled.
*
* See note in _mesa_glsl_extension::supported_flag about "pointer
* to member" types.
*/
bool _mesa_glsl_parse_state::* enable_flag;
/**
* Flag in the _mesa_glsl_parse_state struct that should be set
* when the shader requests "warn" behavior for this extension.
*
* See note in _mesa_glsl_extension::supported_flag about "pointer
* to member" types.
*/
bool _mesa_glsl_parse_state::* warn_flag;
bool compatible_with_state(const _mesa_glsl_parse_state *state,
gl_api api, uint8_t gl_version) const;
void set_flags(_mesa_glsl_parse_state *state, ext_behavior behavior) const;
};
/** Checks if the context supports a user-facing extension */
#define EXT(name_str, driver_cap, ...) \
static MAYBE_UNUSED bool \
has_##name_str(const struct gl_context *ctx, gl_api api, uint8_t version) \
{ \
return ctx->Extensions.driver_cap && (version >= \
_mesa_extension_table[MESA_EXTENSION_##name_str].version[api]); \
}
#include "main/extensions_table.h"
#undef EXT
#define EXT(NAME) \
{ "GL_" #NAME, false, has_##NAME, \
&_mesa_glsl_parse_state::NAME##_enable, \
&_mesa_glsl_parse_state::NAME##_warn }
#define EXT_AEP(NAME) \
{ "GL_" #NAME, true, has_##NAME, \
&_mesa_glsl_parse_state::NAME##_enable, \
&_mesa_glsl_parse_state::NAME##_warn }
/**
* Table of extensions that can be enabled/disabled within a shader,
* and the conditions under which they are supported.
*/
static const _mesa_glsl_extension _mesa_glsl_supported_extensions[] = {
/* ARB extensions go here, sorted alphabetically.
*/
EXT(ARB_ES3_1_compatibility),
EXT(ARB_ES3_2_compatibility),
EXT(ARB_arrays_of_arrays),
EXT(ARB_bindless_texture),
EXT(ARB_compatibility),
EXT(ARB_compute_shader),
EXT(ARB_compute_variable_group_size),
EXT(ARB_conservative_depth),
EXT(ARB_cull_distance),
EXT(ARB_derivative_control),
EXT(ARB_draw_buffers),
EXT(ARB_draw_instanced),
EXT(ARB_enhanced_layouts),
EXT(ARB_explicit_attrib_location),
EXT(ARB_explicit_uniform_location),
EXT(ARB_fragment_coord_conventions),
EXT(ARB_fragment_layer_viewport),
EXT(ARB_fragment_shader_interlock),
EXT(ARB_gpu_shader5),
EXT(ARB_gpu_shader_fp64),
EXT(ARB_gpu_shader_int64),
EXT(ARB_post_depth_coverage),
EXT(ARB_sample_shading),
EXT(ARB_separate_shader_objects),
EXT(ARB_shader_atomic_counter_ops),
EXT(ARB_shader_atomic_counters),
EXT(ARB_shader_ballot),
EXT(ARB_shader_bit_encoding),
EXT(ARB_shader_clock),
EXT(ARB_shader_draw_parameters),
EXT(ARB_shader_group_vote),
EXT(ARB_shader_image_load_store),
EXT(ARB_shader_image_size),
EXT(ARB_shader_precision),
EXT(ARB_shader_stencil_export),
EXT(ARB_shader_storage_buffer_object),
EXT(ARB_shader_subroutine),
EXT(ARB_shader_texture_image_samples),
EXT(ARB_shader_texture_lod),
EXT(ARB_shader_viewport_layer_array),
EXT(ARB_shading_language_420pack),
EXT(ARB_shading_language_packing),
EXT(ARB_tessellation_shader),
EXT(ARB_texture_cube_map_array),
EXT(ARB_texture_gather),
EXT(ARB_texture_multisample),
EXT(ARB_texture_query_levels),
EXT(ARB_texture_query_lod),
EXT(ARB_texture_rectangle),
EXT(ARB_uniform_buffer_object),
EXT(ARB_vertex_attrib_64bit),
EXT(ARB_viewport_array),
/* KHR extensions go here, sorted alphabetically.
*/
EXT_AEP(KHR_blend_equation_advanced),
/* OES extensions go here, sorted alphabetically.
*/
EXT(OES_EGL_image_external),
EXT(OES_EGL_image_external_essl3),
EXT(OES_geometry_point_size),
EXT(OES_geometry_shader),
EXT(OES_gpu_shader5),
EXT(OES_primitive_bounding_box),
EXT_AEP(OES_sample_variables),
EXT_AEP(OES_shader_image_atomic),
EXT(OES_shader_io_blocks),
EXT_AEP(OES_shader_multisample_interpolation),
EXT(OES_standard_derivatives),
EXT(OES_tessellation_point_size),
EXT(OES_tessellation_shader),
EXT(OES_texture_3D),
EXT(OES_texture_buffer),
EXT(OES_texture_cube_map_array),
EXT_AEP(OES_texture_storage_multisample_2d_array),
EXT(OES_viewport_array),
/* All other extensions go here, sorted alphabetically.
*/
EXT(AMD_conservative_depth),
EXT(AMD_gpu_shader_int64),
EXT(AMD_shader_stencil_export),
EXT(AMD_shader_trinary_minmax),
EXT(AMD_vertex_shader_layer),
EXT(AMD_vertex_shader_viewport_index),
EXT(ANDROID_extension_pack_es31a),
EXT(EXT_blend_func_extended),
EXT(EXT_frag_depth),
EXT(EXT_draw_buffers),
EXT(EXT_clip_cull_distance),
EXT(EXT_geometry_point_size),
EXT_AEP(EXT_geometry_shader),
EXT_AEP(EXT_gpu_shader5),
EXT_AEP(EXT_primitive_bounding_box),
EXT(EXT_separate_shader_objects),
EXT(EXT_shader_framebuffer_fetch),
EXT(EXT_shader_framebuffer_fetch_non_coherent),
EXT(EXT_shader_integer_mix),
EXT_AEP(EXT_shader_io_blocks),
EXT(EXT_shader_samples_identical),
EXT(EXT_tessellation_point_size),
EXT_AEP(EXT_tessellation_shader),
EXT(EXT_texture_array),
EXT_AEP(EXT_texture_buffer),
EXT_AEP(EXT_texture_cube_map_array),
EXT(INTEL_conservative_rasterization),
EXT(INTEL_fragment_shader_ordering),
EXT(INTEL_shader_atomic_float_minmax),
EXT(MESA_shader_integer_functions),
EXT(NV_fragment_shader_interlock),
EXT(NV_image_formats),
EXT(NV_shader_atomic_float),
};
#undef EXT
/**
* Determine whether a given extension is compatible with the target,
* API, and extension information in the current parser state.
*/
bool _mesa_glsl_extension::compatible_with_state(
const _mesa_glsl_parse_state *state, gl_api api, uint8_t gl_version) const
{
return this->available_pred(state->ctx, api, gl_version);
}
/**
* Set the appropriate flags in the parser state to establish the
* given behavior for this extension.
*/
void _mesa_glsl_extension::set_flags(_mesa_glsl_parse_state *state,
ext_behavior behavior) const
{
/* Note: the ->* operator indexes into state by the
* offsets this->enable_flag and this->warn_flag. See
* _mesa_glsl_extension::supported_flag for more info.
*/
state->*(this->enable_flag) = (behavior != extension_disable);
state->*(this->warn_flag) = (behavior == extension_warn);
}
/**
* Find an extension by name in _mesa_glsl_supported_extensions. If
* the name is not found, return NULL.
*/
static const _mesa_glsl_extension *find_extension(const char *name)
{
for (unsigned i = 0; i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) {
if (strcmp(name, _mesa_glsl_supported_extensions[i].name) == 0) {
return &_mesa_glsl_supported_extensions[i];
}
}
return NULL;
}
bool
_mesa_glsl_process_extension(const char *name, YYLTYPE *name_locp,
const char *behavior_string, YYLTYPE *behavior_locp,
_mesa_glsl_parse_state *state)
{
uint8_t gl_version = state->ctx->Extensions.Version;
gl_api api = state->ctx->API;
ext_behavior behavior;
if (strcmp(behavior_string, "warn") == 0) {
behavior = extension_warn;
} else if (strcmp(behavior_string, "require") == 0) {
behavior = extension_require;
} else if (strcmp(behavior_string, "enable") == 0) {
behavior = extension_enable;
} else if (strcmp(behavior_string, "disable") == 0) {
behavior = extension_disable;
} else {
_mesa_glsl_error(behavior_locp, state,
"unknown extension behavior `%s'",
behavior_string);
return false;
}
/* If we're in a desktop context but with an ES shader, use an ES API enum
* to verify extension availability.
*/
if (state->es_shader && api != API_OPENGLES2)
api = API_OPENGLES2;
/* Use the language-version derived GL version to extension checks, unless
* we're using meta, which sets the version to the max.
*/
if (gl_version != 0xff)
gl_version = state->gl_version;
if (strcmp(name, "all") == 0) {
if ((behavior == extension_enable) || (behavior == extension_require)) {
_mesa_glsl_error(name_locp, state, "cannot %s all extensions",
(behavior == extension_enable)
? "enable" : "require");
return false;
} else {
for (unsigned i = 0;
i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) {
const _mesa_glsl_extension *extension
= &_mesa_glsl_supported_extensions[i];
if (extension->compatible_with_state(state, api, gl_version)) {
_mesa_glsl_supported_extensions[i].set_flags(state, behavior);
}
}
}
} else {
const _mesa_glsl_extension *extension = find_extension(name);
if (extension && extension->compatible_with_state(state, api, gl_version)) {
extension->set_flags(state, behavior);
if (extension->available_pred == has_ANDROID_extension_pack_es31a) {
for (unsigned i = 0;
i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) {
const _mesa_glsl_extension *extension =
&_mesa_glsl_supported_extensions[i];
if (!extension->aep)
continue;
/* AEP should not be enabled if all of the sub-extensions can't
* also be enabled. This is not the proper layer to do such
* error-checking though.
*/
assert(extension->compatible_with_state(state, api, gl_version));
extension->set_flags(state, behavior);
}
}
} else {
static const char fmt[] = "extension `%s' unsupported in %s shader";
if (behavior == extension_require) {
_mesa_glsl_error(name_locp, state, fmt,
name, _mesa_shader_stage_to_string(state->stage));
return false;
} else {
_mesa_glsl_warning(name_locp, state, fmt,
name, _mesa_shader_stage_to_string(state->stage));
}
}
}
return true;
}
/**
* Recurses through <type> and <expr> if <expr> is an aggregate initializer
* and sets <expr>'s <constructor_type> field to <type>. Gives later functions
* (process_array_constructor, et al) sufficient information to do type
* checking.
*
* Operates on assignments involving an aggregate initializer. E.g.,
*
* vec4 pos = {1.0, -1.0, 0.0, 1.0};
*
* or more ridiculously,
*
* struct S {
* vec4 v[2];
* };
*
* struct {
* S a[2], b;
* int c;
* } aggregate = {
* {
* {
* {
* {1.0, 2.0, 3.0, 4.0}, // a[0].v[0]
* {5.0, 6.0, 7.0, 8.0} // a[0].v[1]
* } // a[0].v
* }, // a[0]
* {
* {
* {1.0, 2.0, 3.0, 4.0}, // a[1].v[0]
* {5.0, 6.0, 7.0, 8.0} // a[1].v[1]
* } // a[1].v
* } // a[1]
* }, // a
* {
* {
* {1.0, 2.0, 3.0, 4.0}, // b.v[0]
* {5.0, 6.0, 7.0, 8.0} // b.v[1]
* } // b.v
* }, // b
* 4 // c
* };
*
* This pass is necessary because the right-hand side of <type> e = { ... }
* doesn't contain sufficient information to determine if the types match.
*/
void
_mesa_ast_set_aggregate_type(const glsl_type *type,
ast_expression *expr)
{
ast_aggregate_initializer *ai = (ast_aggregate_initializer *)expr;
ai->constructor_type = type;
/* If the aggregate is an array, recursively set its elements' types. */
if (type->is_array()) {
/* Each array element has the type type->fields.array.
*
* E.g., if <type> if struct S[2] we want to set each element's type to
* struct S.
*/
for (exec_node *expr_node = ai->expressions.get_head_raw();
!expr_node->is_tail_sentinel();
expr_node = expr_node->next) {
ast_expression *expr = exec_node_data(ast_expression, expr_node,
link);
if (expr->oper == ast_aggregate)
_mesa_ast_set_aggregate_type(type->fields.array, expr);
}
/* If the aggregate is a struct, recursively set its fields' types. */
} else if (type->is_record()) {
exec_node *expr_node = ai->expressions.get_head_raw();
/* Iterate through the struct's fields. */
for (unsigned i = 0; !expr_node->is_tail_sentinel() && i < type->length;
i++, expr_node = expr_node->next) {
ast_expression *expr = exec_node_data(ast_expression, expr_node,
link);
if (expr->oper == ast_aggregate) {
_mesa_ast_set_aggregate_type(type->fields.structure[i].type, expr);
}
}
/* If the aggregate is a matrix, set its columns' types. */
} else if (type->is_matrix()) {
for (exec_node *expr_node = ai->expressions.get_head_raw();
!expr_node->is_tail_sentinel();
expr_node = expr_node->next) {
ast_expression *expr = exec_node_data(ast_expression, expr_node,
link);
if (expr->oper == ast_aggregate)
_mesa_ast_set_aggregate_type(type->column_type(), expr);
}
}
}
void
_mesa_ast_process_interface_block(YYLTYPE *locp,
_mesa_glsl_parse_state *state,
ast_interface_block *const block,
const struct ast_type_qualifier &q)
{
if (q.flags.q.buffer) {
if (!state->has_shader_storage_buffer_objects()) {
_mesa_glsl_error(locp, state,
"#version 430 / GL_ARB_shader_storage_buffer_object "
"required for defining shader storage blocks");
} else if (state->ARB_shader_storage_buffer_object_warn) {
_mesa_glsl_warning(locp, state,
"#version 430 / GL_ARB_shader_storage_buffer_object "
"required for defining shader storage blocks");
}
} else if (q.flags.q.uniform) {
if (!state->has_uniform_buffer_objects()) {
_mesa_glsl_error(locp, state,
"#version 140 / GL_ARB_uniform_buffer_object "
"required for defining uniform blocks");
} else if (state->ARB_uniform_buffer_object_warn) {
_mesa_glsl_warning(locp, state,
"#version 140 / GL_ARB_uniform_buffer_object "
"required for defining uniform blocks");
}
} else {
if (!state->has_shader_io_blocks()) {
if (state->es_shader) {
_mesa_glsl_error(locp, state,
"GL_OES_shader_io_blocks or #version 320 "
"required for using interface blocks");
} else {
_mesa_glsl_error(locp, state,
"#version 150 required for using "
"interface blocks");
}
}
}
/* From the GLSL 1.50.11 spec, section 4.3.7 ("Interface Blocks"):
* "It is illegal to have an input block in a vertex shader
* or an output block in a fragment shader"
*/
if ((state->stage == MESA_SHADER_VERTEX) && q.flags.q.in) {
_mesa_glsl_error(locp, state,
"`in' interface block is not allowed for "
"a vertex shader");
} else if ((state->stage == MESA_SHADER_FRAGMENT) && q.flags.q.out) {
_mesa_glsl_error(locp, state,
"`out' interface block is not allowed for "
"a fragment shader");
}
/* Since block arrays require names, and both features are added in
* the same language versions, we don't have to explicitly
* version-check both things.
*/
if (block->instance_name != NULL) {
state->check_version(150, 300, locp, "interface blocks with "
"an instance name are not allowed");
}
ast_type_qualifier::bitset_t interface_type_mask;
struct ast_type_qualifier temp_type_qualifier;
/* Get a bitmask containing only the in/out/uniform/buffer
* flags, allowing us to ignore other irrelevant flags like
* interpolation qualifiers.
*/
temp_type_qualifier.flags.i = 0;
temp_type_qualifier.flags.q.uniform = true;
temp_type_qualifier.flags.q.in = true;
temp_type_qualifier.flags.q.out = true;
temp_type_qualifier.flags.q.buffer = true;
temp_type_qualifier.flags.q.patch = true;
interface_type_mask = temp_type_qualifier.flags.i;
/* Get the block's interface qualifier. The interface_qualifier
* production rule guarantees that only one bit will be set (and
* it will be in/out/uniform).
*/
ast_type_qualifier::bitset_t block_interface_qualifier = q.flags.i;
block->default_layout.flags.i |= block_interface_qualifier;
if (state->stage == MESA_SHADER_GEOMETRY &&
state->has_explicit_attrib_stream() &&
block->default_layout.flags.q.out) {
/* Assign global layout's stream value. */
block->default_layout.flags.q.stream = 1;
block->default_layout.flags.q.explicit_stream = 0;
block->default_layout.stream = state->out_qualifier->stream;
}
if (state->has_enhanced_layouts() && block->default_layout.flags.q.out) {
/* Assign global layout's xfb_buffer value. */
block->default_layout.flags.q.xfb_buffer = 1;
block->default_layout.flags.q.explicit_xfb_buffer = 0;
block->default_layout.xfb_buffer = state->out_qualifier->xfb_buffer;
}
foreach_list_typed (ast_declarator_list, member, link, &block->declarations) {
ast_type_qualifier& qualifier = member->type->qualifier;
if ((qualifier.flags.i & interface_type_mask) == 0) {
/* GLSLangSpec.1.50.11, 4.3.7 (Interface Blocks):
* "If no optional qualifier is used in a member declaration, the
* qualifier of the variable is just in, out, or uniform as declared
* by interface-qualifier."
*/
qualifier.flags.i |= block_interface_qualifier;
} else if ((qualifier.flags.i & interface_type_mask) !=
block_interface_qualifier) {
/* GLSLangSpec.1.50.11, 4.3.7 (Interface Blocks):
* "If optional qualifiers are used, they can include interpolation
* and storage qualifiers and they must declare an input, output,
* or uniform variable consistent with the interface qualifier of
* the block."
*/
_mesa_glsl_error(locp, state,
"uniform/in/out qualifier on "
"interface block member does not match "
"the interface block");
}
if (!(q.flags.q.in || q.flags.q.out) && qualifier.flags.q.invariant)
_mesa_glsl_error(locp, state,
"invariant qualifiers can be used only "
"in interface block members for shader "
"inputs or outputs");
}
}
static void
_mesa_ast_type_qualifier_print(const struct ast_type_qualifier *q)
{
if (q->is_subroutine_decl())
printf("subroutine ");
if (q->subroutine_list) {
printf("subroutine (");
q->subroutine_list->print();
printf(")");
}
if (q->flags.q.constant)
printf("const ");
if (q->flags.q.invariant)
printf("invariant ");
if (q->flags.q.attribute)
printf("attribute ");
if (q->flags.q.varying)
printf("varying ");
if (q->flags.q.in && q->flags.q.out)
printf("inout ");
else {
if (q->flags.q.in)
printf("in ");
if (q->flags.q.out)
printf("out ");
}
if (q->flags.q.centroid)
printf("centroid ");
if (q->flags.q.sample)
printf("sample ");
if (q->flags.q.patch)
printf("patch ");
if (q->flags.q.uniform)
printf("uniform ");
if (q->flags.q.buffer)
printf("buffer ");
if (q->flags.q.smooth)
printf("smooth ");
if (q->flags.q.flat)
printf("flat ");
if (q->flags.q.noperspective)
printf("noperspective ");
}
void
ast_node::print(void) const
{
printf("unhandled node ");
}
ast_node::ast_node(void)
{
this->location.source = 0;
this->location.first_line = 0;
this->location.first_column = 0;
this->location.last_line = 0;
this->location.last_column = 0;
}
static void
ast_opt_array_dimensions_print(const ast_array_specifier *array_specifier)
{
if (array_specifier)
array_specifier->print();
}
void
ast_compound_statement::print(void) const
{
printf("{\n");
foreach_list_typed(ast_node, ast, link, &this->statements) {
ast->print();
}
printf("}\n");
}
ast_compound_statement::ast_compound_statement(int new_scope,
ast_node *statements)
{
this->new_scope = new_scope;
if (statements != NULL) {
this->statements.push_degenerate_list_at_head(&statements->link);
}
}
void
ast_expression::print(void) const
{
switch (oper) {
case ast_assign:
case ast_mul_assign:
case ast_div_assign:
case ast_mod_assign:
case ast_add_assign:
case ast_sub_assign:
case ast_ls_assign:
case ast_rs_assign:
case ast_and_assign:
case ast_xor_assign:
case ast_or_assign:
subexpressions[0]->print();
printf("%s ", operator_string(oper));
subexpressions[1]->print();
break;
case ast_field_selection:
subexpressions[0]->print();
printf(". %s ", primary_expression.identifier);
break;
case ast_plus:
case ast_neg:
case ast_bit_not:
case ast_logic_not:
case ast_pre_inc:
case ast_pre_dec:
printf("%s ", operator_string(oper));
subexpressions[0]->print();
break;
case ast_post_inc:
case ast_post_dec:
subexpressions[0]->print();
printf("%s ", operator_string(oper));
break;
case ast_conditional:
subexpressions[0]->print();
printf("? ");
subexpressions[1]->print();
printf(": ");
subexpressions[2]->print();
break;
case ast_array_index:
subexpressions[0]->print();
printf("[ ");
subexpressions[1]->print();
printf("] ");
break;
case ast_function_call: {
subexpressions[0]->print();
printf("( ");
foreach_list_typed (ast_node, ast, link, &this->expressions) {
if (&ast->link != this->expressions.get_head())
printf(", ");
ast->print();
}
printf(") ");
break;
}
case ast_identifier:
printf("%s ", primary_expression.identifier);
break;
case ast_int_constant:
printf("%d ", primary_expression.int_constant);
break;
case ast_uint_constant:
printf("%u ", primary_expression.uint_constant);
break;
case ast_float_constant:
printf("%f ", primary_expression.float_constant);
break;
case ast_double_constant:
printf("%f ", primary_expression.double_constant);
break;
case ast_int64_constant:
printf("%" PRId64 " ", primary_expression.int64_constant);
break;
case ast_uint64_constant:
printf("%" PRIu64 " ", primary_expression.uint64_constant);
break;
case ast_bool_constant:
printf("%s ",
primary_expression.bool_constant
? "true" : "false");
break;
case ast_sequence: {
printf("( ");
foreach_list_typed (ast_node, ast, link, & this->expressions) {
if (&ast->link != this->expressions.get_head())
printf(", ");
ast->print();
}
printf(") ");
break;
}
case ast_aggregate: {
printf("{ ");
foreach_list_typed (ast_node, ast, link, & this->expressions) {
if (&ast->link != this->expressions.get_head())
printf(", ");
ast->print();
}
printf("} ");
break;
}
default:
assert(0);
break;
}
}
ast_expression::ast_expression(int oper,
ast_expression *ex0,
ast_expression *ex1,
ast_expression *ex2) :
primary_expression()
{
this->oper = ast_operators(oper);
this->subexpressions[0] = ex0;
this->subexpressions[1] = ex1;
this->subexpressions[2] = ex2;
this->non_lvalue_description = NULL;
this->is_lhs = false;
}
void
ast_expression_statement::print(void) const
{
if (expression)
expression->print();
printf("; ");
}
ast_expression_statement::ast_expression_statement(ast_expression *ex) :
expression(ex)
{
/* empty */
}
void
ast_function::print(void) const
{
return_type->print();
printf(" %s (", identifier);
foreach_list_typed(ast_node, ast, link, & this->parameters) {
ast->print();
}
printf(")");
}
ast_function::ast_function(void)
: return_type(NULL), identifier(NULL), is_definition(false),
signature(NULL)
{
/* empty */
}
void
ast_fully_specified_type::print(void) const
{
_mesa_ast_type_qualifier_print(& qualifier);
specifier->print();
}
void
ast_parameter_declarator::print(void) const
{
type->print();
if (identifier)
printf("%s ", identifier);
ast_opt_array_dimensions_print(array_specifier);
}
void
ast_function_definition::print(void) const
{
prototype->print();
body->print();
}
void
ast_declaration::print(void) const
{
printf("%s ", identifier);
ast_opt_array_dimensions_print(array_specifier);
if (initializer) {
printf("= ");
initializer->print();
}
}
ast_declaration::ast_declaration(const char *identifier,
ast_array_specifier *array_specifier,
ast_expression *initializer)
{
this->identifier = identifier;
this->array_specifier = array_specifier;
this->initializer = initializer;
}
void
ast_declarator_list::print(void) const
{
assert(type || invariant);
if (type)
type->print();
else if (invariant)
printf("invariant ");
else
printf("precise ");
foreach_list_typed (ast_node, ast, link, & this->declarations) {
if (&ast->link != this->declarations.get_head())
printf(", ");
ast->print();
}
printf("; ");
}
ast_declarator_list::ast_declarator_list(ast_fully_specified_type *type)
{
this->type = type;
this->invariant = false;
this->precise = false;
}
void
ast_jump_statement::print(void) const
{
switch (mode) {
case ast_continue:
printf("continue; ");
break;
case ast_break:
printf("break; ");
break;
case ast_return:
printf("return ");
if (opt_return_value)
opt_return_value->print();
printf("; ");
break;
case ast_discard:
printf("discard; ");
break;
}
}
ast_jump_statement::ast_jump_statement(int mode, ast_expression *return_value)
: opt_return_value(NULL)
{
this->mode = ast_jump_modes(mode);
if (mode == ast_return)
opt_return_value = return_value;
}
void
ast_selection_statement::print(void) const
{
printf("if ( ");
condition->print();
printf(") ");
then_statement->print();
if (else_statement) {
printf("else ");
else_statement->print();
}
}
ast_selection_statement::ast_selection_statement(ast_expression *condition,
ast_node *then_statement,
ast_node *else_statement)
{
this->condition = condition;
this->then_statement = then_statement;
this->else_statement = else_statement;
}
void
ast_switch_statement::print(void) const
{
printf("switch ( ");
test_expression->print();
printf(") ");
body->print();
}
ast_switch_statement::ast_switch_statement(ast_expression *test_expression,
ast_node *body)
{
this->test_expression = test_expression;
this->body = body;
}
void
ast_switch_body::print(void) const
{
printf("{\n");
if (stmts != NULL) {
stmts->print();
}
printf("}\n");
}
ast_switch_body::ast_switch_body(ast_case_statement_list *stmts)
{
this->stmts = stmts;
}
void ast_case_label::print(void) const
{
if (test_value != NULL) {
printf("case ");
test_value->print();
printf(": ");
} else {
printf("default: ");
}
}
ast_case_label::ast_case_label(ast_expression *test_value)
{
this->test_value = test_value;
}
void ast_case_label_list::print(void) const
{
foreach_list_typed(ast_node, ast, link, & this->labels) {
ast->print();
}
printf("\n");
}
ast_case_label_list::ast_case_label_list(void)
{
}
void ast_case_statement::print(void) const
{
labels->print();
foreach_list_typed(ast_node, ast, link, & this->stmts) {
ast->print();
printf("\n");
}
}
ast_case_statement::ast_case_statement(ast_case_label_list *labels)
{
this->labels = labels;
}
void ast_case_statement_list::print(void) const
{
foreach_list_typed(ast_node, ast, link, & this->cases) {
ast->print();
}
}
ast_case_statement_list::ast_case_statement_list(void)
{
}
void
ast_iteration_statement::print(void) const
{
switch (mode) {
case ast_for:
printf("for( ");
if (init_statement)
init_statement->print();
printf("; ");
if (condition)
condition->print();
printf("; ");
if (rest_expression)
rest_expression->print();
printf(") ");
body->print();
break;
case ast_while:
printf("while ( ");
if (condition)
condition->print();
printf(") ");
body->print();
break;
case ast_do_while:
printf("do ");
body->print();
printf("while ( ");
if (condition)
condition->print();
printf("); ");
break;
}
}
ast_iteration_statement::ast_iteration_statement(int mode,
ast_node *init,
ast_node *condition,
ast_expression *rest_expression,
ast_node *body)
{
this->mode = ast_iteration_modes(mode);
this->init_statement = init;
this->condition = condition;
this->rest_expression = rest_expression;
this->body = body;
}
void
ast_struct_specifier::print(void) const
{
printf("struct %s { ", name);
foreach_list_typed(ast_node, ast, link, &this->declarations) {
ast->print();
}
printf("} ");
}
ast_struct_specifier::ast_struct_specifier(const char *identifier,
ast_declarator_list *declarator_list)
: name(identifier), layout(NULL), declarations(), is_declaration(true),
type(NULL)
{
this->declarations.push_degenerate_list_at_head(&declarator_list->link);
}
void ast_subroutine_list::print(void) const
{
foreach_list_typed (ast_node, ast, link, & this->declarations) {
if (&ast->link != this->declarations.get_head())
printf(", ");
ast->print();
}
}
static void
set_shader_inout_layout(struct gl_shader *shader,
struct _mesa_glsl_parse_state *state)
{
/* Should have been prevented by the parser. */
if (shader->Stage == MESA_SHADER_TESS_CTRL ||
shader->Stage == MESA_SHADER_VERTEX) {
assert(!state->in_qualifier->flags.i);
} else if (shader->Stage != MESA_SHADER_GEOMETRY &&
shader->Stage != MESA_SHADER_TESS_EVAL) {
assert(!state->in_qualifier->flags.i);
}
if (shader->Stage != MESA_SHADER_COMPUTE) {
/* Should have been prevented by the parser. */
assert(!state->cs_input_local_size_specified);
assert(!state->cs_input_local_size_variable_specified);
}
if (shader->Stage != MESA_SHADER_FRAGMENT) {
/* Should have been prevented by the parser. */
assert(!state->fs_uses_gl_fragcoord);
assert(!state->fs_redeclares_gl_fragcoord);
assert(!state->fs_pixel_center_integer);
assert(!state->fs_origin_upper_left);
assert(!state->fs_early_fragment_tests);
assert(!state->fs_inner_coverage);
assert(!state->fs_post_depth_coverage);
assert(!state->fs_pixel_interlock_ordered);
assert(!state->fs_pixel_interlock_unordered);
assert(!state->fs_sample_interlock_ordered);
assert(!state->fs_sample_interlock_unordered);
}
for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
if (state->out_qualifier->out_xfb_stride[i]) {
unsigned xfb_stride;
if (state->out_qualifier->out_xfb_stride[i]->
process_qualifier_constant(state, "xfb_stride", &xfb_stride,
true)) {
shader->TransformFeedbackBufferStride[i] = xfb_stride;
}
}
}
switch (shader->Stage) {
case MESA_SHADER_TESS_CTRL:
shader->info.TessCtrl.VerticesOut = 0;
if (state->tcs_output_vertices_specified) {
unsigned vertices;
if (state->out_qualifier->vertices->
process_qualifier_constant(state, "vertices", &vertices,
false)) {
YYLTYPE loc = state->out_qualifier->vertices->get_location();
if (vertices > state->Const.MaxPatchVertices) {
_mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
"GL_MAX_PATCH_VERTICES", vertices);
}
shader->info.TessCtrl.VerticesOut = vertices;
}
}
break;
case MESA_SHADER_TESS_EVAL:
shader->info.TessEval.PrimitiveMode = PRIM_UNKNOWN;
if (state->in_qualifier->flags.q.prim_type)
shader->info.TessEval.PrimitiveMode = state->in_qualifier->prim_type;
shader->info.TessEval.Spacing = TESS_SPACING_UNSPECIFIED;
if (state->in_qualifier->flags.q.vertex_spacing)
shader->info.TessEval.Spacing = state->in_qualifier->vertex_spacing;
shader->info.TessEval.VertexOrder = 0;
if (state->in_qualifier->flags.q.ordering)
shader->info.TessEval.VertexOrder = state->in_qualifier->ordering;
shader->info.TessEval.PointMode = -1;
if (state->in_qualifier->flags.q.point_mode)
shader->info.TessEval.PointMode = state->in_qualifier->point_mode;
break;
case MESA_SHADER_GEOMETRY:
shader->info.Geom.VerticesOut = -1;
if (state->out_qualifier->flags.q.max_vertices) {
unsigned qual_max_vertices;
if (state->out_qualifier->max_vertices->
process_qualifier_constant(state, "max_vertices",
&qual_max_vertices, true)) {
if (qual_max_vertices > state->Const.MaxGeometryOutputVertices) {
YYLTYPE loc = state->out_qualifier->max_vertices->get_location();
_mesa_glsl_error(&loc, state,
"maximum output vertices (%d) exceeds "
"GL_MAX_GEOMETRY_OUTPUT_VERTICES",
qual_max_vertices);
}
shader->info.Geom.VerticesOut = qual_max_vertices;
}
}
if (state->gs_input_prim_type_specified) {
shader->info.Geom.InputType = state->in_qualifier->prim_type;
} else {
shader->info.Geom.InputType = PRIM_UNKNOWN;
}
if (state->out_qualifier->flags.q.prim_type) {
shader->info.Geom.OutputType = state->out_qualifier->prim_type;
} else {
shader->info.Geom.OutputType = PRIM_UNKNOWN;
}
shader->info.Geom.Invocations = 0;
if (state->in_qualifier->flags.q.invocations) {
unsigned invocations;
if (state->in_qualifier->invocations->
process_qualifier_constant(state, "invocations",
&invocations, false)) {
YYLTYPE loc = state->in_qualifier->invocations->get_location();
if (invocations > state->Const.MaxGeometryShaderInvocations) {
_mesa_glsl_error(&loc, state,
"invocations (%d) exceeds "
"GL_MAX_GEOMETRY_SHADER_INVOCATIONS",
invocations);
}
shader->info.Geom.Invocations = invocations;
}
}
break;
case MESA_SHADER_COMPUTE:
if (state->cs_input_local_size_specified) {
for (int i = 0; i < 3; i++)
shader->info.Comp.LocalSize[i] = state->cs_input_local_size[i];
} else {
for (int i = 0; i < 3; i++)
shader->info.Comp.LocalSize[i] = 0;
}
shader->info.Comp.LocalSizeVariable =
state->cs_input_local_size_variable_specified;
break;
case MESA_SHADER_FRAGMENT:
shader->redeclares_gl_fragcoord = state->fs_redeclares_gl_fragcoord;
shader->uses_gl_fragcoord = state->fs_uses_gl_fragcoord;
shader->pixel_center_integer = state->fs_pixel_center_integer;
shader->origin_upper_left = state->fs_origin_upper_left;
shader->ARB_fragment_coord_conventions_enable =
state->ARB_fragment_coord_conventions_enable;
shader->EarlyFragmentTests = state->fs_early_fragment_tests;
shader->InnerCoverage = state->fs_inner_coverage;
shader->PostDepthCoverage = state->fs_post_depth_coverage;
shader->PixelInterlockOrdered = state->fs_pixel_interlock_ordered;
shader->PixelInterlockUnordered = state->fs_pixel_interlock_unordered;
shader->SampleInterlockOrdered = state->fs_sample_interlock_ordered;
shader->SampleInterlockUnordered = state->fs_sample_interlock_unordered;
shader->BlendSupport = state->fs_blend_support;
break;
default:
/* Nothing to do. */
break;
}
shader->bindless_sampler = state->bindless_sampler_specified;
shader->bindless_image = state->bindless_image_specified;
shader->bound_sampler = state->bound_sampler_specified;
shader->bound_image = state->bound_image_specified;
}
/* src can be NULL if only the symbols found in the exec_list should be
* copied
*/
void
_mesa_glsl_copy_symbols_from_table(struct exec_list *shader_ir,
struct glsl_symbol_table *src,
struct glsl_symbol_table *dest)
{
foreach_in_list (ir_instruction, ir, shader_ir) {
switch (ir->ir_type) {
case ir_type_function:
dest->add_function((ir_function *) ir);
break;
case ir_type_variable: {
ir_variable *const var = (ir_variable *) ir;
if (var->data.mode != ir_var_temporary)
dest->add_variable(var);
break;
}
default:
break;
}
}
if (src != NULL) {
/* Explicitly copy the gl_PerVertex interface definitions because these
* are needed to check they are the same during the interstage link.
* They cant necessarily be found via the exec_list because the members
* might not be referenced. The GL spec still requires that they match
* in that case.
*/
const glsl_type *iface =
src->get_interface("gl_PerVertex", ir_var_shader_in);
if (iface)
dest->add_interface(iface->name, iface, ir_var_shader_in);
iface = src->get_interface("gl_PerVertex", ir_var_shader_out);
if (iface)
dest->add_interface(iface->name, iface, ir_var_shader_out);
}
}
extern "C" {
static void
assign_subroutine_indexes(struct _mesa_glsl_parse_state *state)
{
int j, k;
int index = 0;
for (j = 0; j < state->num_subroutines; j++) {
while (state->subroutines[j]->subroutine_index == -1) {
for (k = 0; k < state->num_subroutines; k++) {
if (state->subroutines[k]->subroutine_index == index)
break;
else if (k == state->num_subroutines - 1) {
state->subroutines[j]->subroutine_index = index;
}
}
index++;
}
}
}
static void
add_builtin_defines(struct _mesa_glsl_parse_state *state,
void (*add_builtin_define)(struct glcpp_parser *, const char *, int),
struct glcpp_parser *data,
unsigned version,
bool es)
{
unsigned gl_version = state->ctx->Extensions.Version;
gl_api api = state->ctx->API;
if (gl_version != 0xff) {
unsigned i;
for (i = 0; i < state->num_supported_versions; i++) {
if (state->supported_versions[i].ver == version &&
state->supported_versions[i].es == es) {
gl_version = state->supported_versions[i].gl_ver;
break;
}
}
if (i == state->num_supported_versions)
return;
}
if (es)
api = API_OPENGLES2;
for (unsigned i = 0;
i < ARRAY_SIZE(_mesa_glsl_supported_extensions); ++i) {
const _mesa_glsl_extension *extension
= &_mesa_glsl_supported_extensions[i];
if (extension->compatible_with_state(state, api, gl_version)) {
add_builtin_define(data, extension->name, 1);
}
}
}
/* Implements parsing checks that we can't do during parsing */
static void
do_late_parsing_checks(struct _mesa_glsl_parse_state *state)
{
if (state->stage == MESA_SHADER_COMPUTE && !state->has_compute_shader()) {
YYLTYPE loc;
memset(&loc, 0, sizeof(loc));
_mesa_glsl_error(&loc, state, "Compute shaders require "
"GLSL 4.30 or GLSL ES 3.10");
}
}
static void
opt_shader_and_create_symbol_table(struct gl_context *ctx,
struct glsl_symbol_table *source_symbols,
struct gl_shader *shader)
{
assert(shader->CompileStatus != COMPILE_FAILURE &&
!shader->ir->is_empty());
struct gl_shader_compiler_options *options =
&ctx->Const.ShaderCompilerOptions[shader->Stage];
/* Do some optimization at compile time to reduce shader IR size
* and reduce later work if the same shader is linked multiple times
*/
if (ctx->Const.GLSLOptimizeConservatively) {
/* Run it just once. */
do_common_optimization(shader->ir, false, false, options,
ctx->Const.NativeIntegers);
} else {
/* Repeat it until it stops making changes. */
while (do_common_optimization(shader->ir, false, false, options,
ctx->Const.NativeIntegers))
;
}
validate_ir_tree(shader->ir);
enum ir_variable_mode other;
switch (shader->Stage) {
case MESA_SHADER_VERTEX:
other = ir_var_shader_in;
break;
case MESA_SHADER_FRAGMENT:
other = ir_var_shader_out;
break;
default:
/* Something invalid to ensure optimize_dead_builtin_uniforms
* doesn't remove anything other than uniforms or constants.
*/
other = ir_var_mode_count;
break;
}
optimize_dead_builtin_variables(shader->ir, other);
validate_ir_tree(shader->ir);
/* Retain any live IR, but trash the rest. */
reparent_ir(shader->ir, shader->ir);
/* Destroy the symbol table. Create a new symbol table that contains only
* the variables and functions that still exist in the IR. The symbol
* table will be used later during linking.
*
* There must NOT be any freed objects still referenced by the symbol
* table. That could cause the linker to dereference freed memory.
*
* We don't have to worry about types or interface-types here because those
* are fly-weights that are looked up by glsl_type.
*/
_mesa_glsl_copy_symbols_from_table(shader->ir, source_symbols,
shader->symbols);
}
void
_mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader,
bool dump_ast, bool dump_hir, bool force_recompile)
{
const char *source = force_recompile && shader->FallbackSource ?
shader->FallbackSource : shader->Source;
if (!force_recompile) {
if (ctx->Cache) {
char buf[41];
disk_cache_compute_key(ctx->Cache, source, strlen(source),
shader->sha1);
if (disk_cache_has_key(ctx->Cache, shader->sha1)) {
/* We've seen this shader before and know it compiles */
if (ctx->_Shader->Flags & GLSL_CACHE_INFO) {
_mesa_sha1_format(buf, shader->sha1);
fprintf(stderr, "deferring compile of shader: %s\n", buf);
}
shader->CompileStatus = COMPILE_SKIPPED;
free((void *)shader->FallbackSource);
shader->FallbackSource = NULL;
return;
}
}
} else {
/* We should only ever end up here if a re-compile has been forced by a
* shader cache miss. In which case we can skip the compile if its
* already be done by a previous fallback or the initial compile call.
*/
if (shader->CompileStatus == COMPILE_SUCCESS)
return;
if (shader->CompileStatus == COMPILED_NO_OPTS) {
opt_shader_and_create_symbol_table(ctx,
NULL, /* source_symbols */
shader);
shader->CompileStatus = COMPILE_SUCCESS;
return;
}
}
struct _mesa_glsl_parse_state *state =
new(shader) _mesa_glsl_parse_state(ctx, shader->Stage, shader);
if (ctx->Const.GenerateTemporaryNames)
(void) p_atomic_cmpxchg(&ir_variable::temporaries_allocate_names,
false, true);
state->error = glcpp_preprocess(state, &source, &state->info_log,
add_builtin_defines, state, ctx);
if (!state->error) {
_mesa_glsl_lexer_ctor(state, source);
_mesa_glsl_parse(state);
_mesa_glsl_lexer_dtor(state);
do_late_parsing_checks(state);
}
if (dump_ast) {
foreach_list_typed(ast_node, ast, link, &state->translation_unit) {
ast->print();
}
printf("\n\n");
}
ralloc_free(shader->ir);
shader->ir = new(shader) exec_list;
if (!state->error && !state->translation_unit.is_empty())
_mesa_ast_to_hir(shader->ir, state);
if (!state->error) {
validate_ir_tree(shader->ir);
/* Print out the unoptimized IR. */
if (dump_hir) {
_mesa_print_ir(stdout, shader->ir, state);
}
}
if (shader->InfoLog)
ralloc_free(shader->InfoLog);
if (!state->error)
set_shader_inout_layout(shader, state);
shader->symbols = new(shader->ir) glsl_symbol_table;
shader->CompileStatus = state->error ? COMPILE_FAILURE : COMPILE_SUCCESS;
shader->InfoLog = state->info_log;
shader->Version = state->language_version;
shader->IsES = state->es_shader;
if (!state->error && !shader->ir->is_empty()) {
assign_subroutine_indexes(state);
lower_subroutine(shader->ir, state);
if (!ctx->Cache || force_recompile)
opt_shader_and_create_symbol_table(ctx, state->symbols, shader);
else {
reparent_ir(shader->ir, shader->ir);
shader->CompileStatus = COMPILED_NO_OPTS;
}
}
if (!force_recompile) {
free((void *)shader->FallbackSource);
shader->FallbackSource = NULL;
}
delete state->symbols;
ralloc_free(state);
}
} /* extern "C" */
/**
* Do the set of common optimizations passes
*
* \param ir List of instructions to be optimized
* \param linked Is the shader linked? This enables
* optimizations passes that remove code at
* global scope and could cause linking to
* fail.
* \param uniform_locations_assigned Have locations already been assigned for
* uniforms? This prevents the declarations
* of unused uniforms from being removed.
* The setting of this flag only matters if
* \c linked is \c true.
* \param options The driver's preferred shader options.
* \param native_integers Selects optimizations that depend on the
* implementations supporting integers
* natively (as opposed to supporting
* integers in floating point registers).
*/
bool
do_common_optimization(exec_list *ir, bool linked,
bool uniform_locations_assigned,
const struct gl_shader_compiler_options *options,
bool native_integers)
{
const bool debug = false;
GLboolean progress = GL_FALSE;
#define OPT(PASS, ...) do { \
if (debug) { \
fprintf(stderr, "START GLSL optimization %s\n", #PASS); \
const bool opt_progress = PASS(__VA_ARGS__); \
progress = opt_progress || progress; \
if (opt_progress) \
_mesa_print_ir(stderr, ir, NULL); \
fprintf(stderr, "GLSL optimization %s: %s progress\n", \
#PASS, opt_progress ? "made" : "no"); \
} else { \
progress = PASS(__VA_ARGS__) || progress; \
} \
} while (false)
OPT(lower_instructions, ir, SUB_TO_ADD_NEG);
if (linked) {
OPT(do_function_inlining, ir);
OPT(do_dead_functions, ir);
OPT(do_structure_splitting, ir);
}
propagate_invariance(ir);
OPT(do_if_simplification, ir);
OPT(opt_flatten_nested_if_blocks, ir);
OPT(opt_conditional_discard, ir);
OPT(do_copy_propagation_elements, ir);
if (options->OptimizeForAOS && !linked)
OPT(opt_flip_matrices, ir);
if (linked && options->OptimizeForAOS) {
OPT(do_vectorize, ir);
}
if (linked)
OPT(do_dead_code, ir, uniform_locations_assigned);
else
OPT(do_dead_code_unlinked, ir);
OPT(do_dead_code_local, ir);
OPT(do_tree_grafting, ir);
OPT(do_constant_propagation, ir);
if (linked)
OPT(do_constant_variable, ir);
else
OPT(do_constant_variable_unlinked, ir);
OPT(do_constant_folding, ir);
OPT(do_minmax_prune, ir);
OPT(do_rebalance_tree, ir);
OPT(do_algebraic, ir, native_integers, options);
OPT(do_lower_jumps, ir, true, true, options->EmitNoMainReturn,
options->EmitNoCont, options->EmitNoLoops);
OPT(do_vec_index_to_swizzle, ir);
OPT(lower_vector_insert, ir, false);
OPT(optimize_swizzles, ir);
OPT(optimize_split_arrays, ir, linked);
OPT(optimize_redundant_jumps, ir);
if (options->MaxUnrollIterations) {
loop_state *ls = analyze_loop_variables(ir);
if (ls->loop_found) {
bool loop_progress = unroll_loops(ir, ls, options);
while (loop_progress) {
loop_progress = false;
loop_progress |= do_constant_propagation(ir);
loop_progress |= do_if_simplification(ir);
/* Some drivers only call do_common_optimization() once rather
* than in a loop. So we must call do_lower_jumps() after
* unrolling a loop because for drivers that use LLVM validation
* will fail if a jump is not the last instruction in the block.
* For example the following will fail LLVM validation:
*
* (loop (
* ...
* break
* (assign (x) (var_ref v124) (expression int + (var_ref v124)
* (constant int (1)) ) )
* ))
*/
loop_progress |= do_lower_jumps(ir, true, true,
options->EmitNoMainReturn,
options->EmitNoCont,
options->EmitNoLoops);
}
progress |= loop_progress;
}
delete ls;
}
#undef OPT
return progress;
}
extern "C" {
/**
* To be called at GL teardown time, this frees compiler datastructures.
*
* After calling this, any previously compiled shaders and shader
* programs would be invalid. So this should happen at approximately
* program exit.
*/
void
_mesa_destroy_shader_compiler(void)
{
_mesa_destroy_shader_compiler_caches();
_mesa_glsl_release_types();
}
/**
* Releases compiler caches to trade off performance for memory.
*
* Intended to be used with glReleaseShaderCompiler().
*/
void
_mesa_destroy_shader_compiler_caches(void)
{
_mesa_glsl_release_builtin_functions();
}
}