1443 lines
53 KiB
C
1443 lines
53 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "anv_meta.h"
|
|
#include "nir/nir_builder.h"
|
|
|
|
struct blit_region {
|
|
VkOffset3D src_offset;
|
|
VkExtent3D src_extent;
|
|
VkOffset3D dest_offset;
|
|
VkExtent3D dest_extent;
|
|
};
|
|
|
|
static nir_shader *
|
|
build_nir_vertex_shader(void)
|
|
{
|
|
const struct glsl_type *vec4 = glsl_vec4_type();
|
|
nir_builder b;
|
|
|
|
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
|
|
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs");
|
|
|
|
nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
vec4, "a_pos");
|
|
pos_in->data.location = VERT_ATTRIB_GENERIC0;
|
|
nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "gl_Position");
|
|
pos_out->data.location = VARYING_SLOT_POS;
|
|
nir_copy_var(&b, pos_out, pos_in);
|
|
|
|
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
vec4, "a_tex_pos");
|
|
tex_pos_in->data.location = VERT_ATTRIB_GENERIC1;
|
|
nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "v_tex_pos");
|
|
tex_pos_out->data.location = VARYING_SLOT_VAR0;
|
|
tex_pos_out->data.interpolation = INTERP_QUALIFIER_SMOOTH;
|
|
nir_copy_var(&b, tex_pos_out, tex_pos_in);
|
|
|
|
return b.shader;
|
|
}
|
|
|
|
static nir_shader *
|
|
build_nir_copy_fragment_shader(enum glsl_sampler_dim tex_dim)
|
|
{
|
|
const struct glsl_type *vec4 = glsl_vec4_type();
|
|
nir_builder b;
|
|
|
|
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
|
|
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_fs");
|
|
|
|
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
vec4, "v_tex_pos");
|
|
tex_pos_in->data.location = VARYING_SLOT_VAR0;
|
|
|
|
/* Swizzle the array index which comes in as Z coordinate into the right
|
|
* position.
|
|
*/
|
|
unsigned swz[] = { 0, (tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 1), 2 };
|
|
nir_ssa_def *const tex_pos =
|
|
nir_swizzle(&b, nir_load_var(&b, tex_pos_in), swz,
|
|
(tex_dim == GLSL_SAMPLER_DIM_1D ? 2 : 3), false);
|
|
|
|
const struct glsl_type *sampler_type =
|
|
glsl_sampler_type(tex_dim, false, tex_dim != GLSL_SAMPLER_DIM_3D,
|
|
glsl_get_base_type(vec4));
|
|
nir_variable *sampler = nir_variable_create(b.shader, nir_var_uniform,
|
|
sampler_type, "s_tex");
|
|
sampler->data.descriptor_set = 0;
|
|
sampler->data.binding = 0;
|
|
|
|
nir_tex_instr *tex = nir_tex_instr_create(b.shader, 1);
|
|
tex->sampler_dim = tex_dim;
|
|
tex->op = nir_texop_tex;
|
|
tex->src[0].src_type = nir_tex_src_coord;
|
|
tex->src[0].src = nir_src_for_ssa(tex_pos);
|
|
tex->dest_type = nir_type_float; /* TODO */
|
|
tex->is_array = glsl_sampler_type_is_array(sampler_type);
|
|
tex->coord_components = tex_pos->num_components;
|
|
tex->texture = nir_deref_var_create(tex, sampler);
|
|
tex->sampler = nir_deref_var_create(tex, sampler);
|
|
|
|
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, "tex");
|
|
nir_builder_instr_insert(&b, &tex->instr);
|
|
|
|
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "f_color");
|
|
color_out->data.location = FRAG_RESULT_DATA0;
|
|
nir_store_var(&b, color_out, &tex->dest.ssa, 4);
|
|
|
|
return b.shader;
|
|
}
|
|
|
|
static void
|
|
meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_saved_state *saved_state)
|
|
{
|
|
anv_meta_save(saved_state, cmd_buffer,
|
|
(1 << VK_DYNAMIC_STATE_VIEWPORT));
|
|
}
|
|
|
|
/* Returns the user-provided VkBufferImageCopy::imageOffset in units of
|
|
* elements rather than texels. One element equals one texel or one block
|
|
* if Image is uncompressed or compressed, respectively.
|
|
*/
|
|
static struct VkOffset3D
|
|
meta_region_offset_el(const struct anv_image * image,
|
|
const struct VkOffset3D * offset)
|
|
{
|
|
const struct isl_format_layout * isl_layout = image->format->isl_layout;
|
|
return (VkOffset3D) {
|
|
.x = offset->x / isl_layout->bw,
|
|
.y = offset->y / isl_layout->bh,
|
|
.z = offset->z / isl_layout->bd,
|
|
};
|
|
}
|
|
|
|
/* Returns the user-provided VkBufferImageCopy::imageExtent in units of
|
|
* elements rather than texels. One element equals one texel or one block
|
|
* if Image is uncompressed or compressed, respectively.
|
|
*/
|
|
static struct VkExtent3D
|
|
meta_region_extent_el(const VkFormat format,
|
|
const struct VkExtent3D * extent)
|
|
{
|
|
const struct isl_format_layout * isl_layout =
|
|
anv_format_for_vk_format(format)->isl_layout;
|
|
return (VkExtent3D) {
|
|
.width = DIV_ROUND_UP(extent->width , isl_layout->bw),
|
|
.height = DIV_ROUND_UP(extent->height, isl_layout->bh),
|
|
.depth = DIV_ROUND_UP(extent->depth , isl_layout->bd),
|
|
};
|
|
}
|
|
|
|
static void
|
|
meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_image *src_image,
|
|
struct anv_image_view *src_iview,
|
|
VkOffset3D src_offset,
|
|
VkExtent3D src_extent,
|
|
struct anv_image *dest_image,
|
|
struct anv_image_view *dest_iview,
|
|
VkOffset3D dest_offset,
|
|
VkExtent3D dest_extent,
|
|
VkFilter blit_filter)
|
|
{
|
|
struct anv_device *device = cmd_buffer->device;
|
|
VkDescriptorPool dummy_desc_pool = (VkDescriptorPool)1;
|
|
|
|
struct blit_vb_data {
|
|
float pos[2];
|
|
float tex_coord[3];
|
|
} *vb_data;
|
|
|
|
assert(src_image->samples == dest_image->samples);
|
|
|
|
unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
|
|
|
|
struct anv_state vb_state =
|
|
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
|
|
memset(vb_state.map, 0, sizeof(struct anv_vue_header));
|
|
vb_data = vb_state.map + sizeof(struct anv_vue_header);
|
|
|
|
vb_data[0] = (struct blit_vb_data) {
|
|
.pos = {
|
|
dest_offset.x + dest_extent.width,
|
|
dest_offset.y + dest_extent.height,
|
|
},
|
|
.tex_coord = {
|
|
(float)(src_offset.x + src_extent.width) / (float)src_iview->extent.width,
|
|
(float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
|
|
(float)src_offset.z / (float)src_iview->extent.depth,
|
|
},
|
|
};
|
|
|
|
vb_data[1] = (struct blit_vb_data) {
|
|
.pos = {
|
|
dest_offset.x,
|
|
dest_offset.y + dest_extent.height,
|
|
},
|
|
.tex_coord = {
|
|
(float)src_offset.x / (float)src_iview->extent.width,
|
|
(float)(src_offset.y + src_extent.height) / (float)src_iview->extent.height,
|
|
(float)src_offset.z / (float)src_iview->extent.depth,
|
|
},
|
|
};
|
|
|
|
vb_data[2] = (struct blit_vb_data) {
|
|
.pos = {
|
|
dest_offset.x,
|
|
dest_offset.y,
|
|
},
|
|
.tex_coord = {
|
|
(float)src_offset.x / (float)src_iview->extent.width,
|
|
(float)src_offset.y / (float)src_iview->extent.height,
|
|
(float)src_offset.z / (float)src_iview->extent.depth,
|
|
},
|
|
};
|
|
|
|
anv_state_clflush(vb_state);
|
|
|
|
struct anv_buffer vertex_buffer = {
|
|
.device = device,
|
|
.size = vb_size,
|
|
.bo = &device->dynamic_state_block_pool.bo,
|
|
.offset = vb_state.offset,
|
|
};
|
|
|
|
anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
|
|
(VkBuffer[]) {
|
|
anv_buffer_to_handle(&vertex_buffer),
|
|
anv_buffer_to_handle(&vertex_buffer)
|
|
},
|
|
(VkDeviceSize[]) {
|
|
0,
|
|
sizeof(struct anv_vue_header),
|
|
});
|
|
|
|
VkSampler sampler;
|
|
ANV_CALL(CreateSampler)(anv_device_to_handle(device),
|
|
&(VkSamplerCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
|
|
.magFilter = blit_filter,
|
|
.minFilter = blit_filter,
|
|
}, &cmd_buffer->pool->alloc, &sampler);
|
|
|
|
VkDescriptorSet set;
|
|
anv_AllocateDescriptorSets(anv_device_to_handle(device),
|
|
&(VkDescriptorSetAllocateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
|
|
.descriptorPool = dummy_desc_pool,
|
|
.descriptorSetCount = 1,
|
|
.pSetLayouts = &device->meta_state.blit.ds_layout
|
|
}, &set);
|
|
anv_UpdateDescriptorSets(anv_device_to_handle(device),
|
|
1, /* writeCount */
|
|
(VkWriteDescriptorSet[]) {
|
|
{
|
|
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
|
|
.dstSet = set,
|
|
.dstBinding = 0,
|
|
.dstArrayElement = 0,
|
|
.descriptorCount = 1,
|
|
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
.pImageInfo = (VkDescriptorImageInfo[]) {
|
|
{
|
|
.sampler = sampler,
|
|
.imageView = anv_image_view_to_handle(src_iview),
|
|
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
|
|
},
|
|
}
|
|
}
|
|
}, 0, NULL);
|
|
|
|
VkFramebuffer fb;
|
|
anv_CreateFramebuffer(anv_device_to_handle(device),
|
|
&(VkFramebufferCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
|
|
.attachmentCount = 1,
|
|
.pAttachments = (VkImageView[]) {
|
|
anv_image_view_to_handle(dest_iview),
|
|
},
|
|
.width = dest_iview->extent.width,
|
|
.height = dest_iview->extent.height,
|
|
.layers = 1
|
|
}, &cmd_buffer->pool->alloc, &fb);
|
|
|
|
ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
&(VkRenderPassBeginInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
|
|
.renderPass = device->meta_state.blit.render_pass,
|
|
.framebuffer = fb,
|
|
.renderArea = {
|
|
.offset = { dest_offset.x, dest_offset.y },
|
|
.extent = { dest_extent.width, dest_extent.height },
|
|
},
|
|
.clearValueCount = 0,
|
|
.pClearValues = NULL,
|
|
}, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
VkPipeline pipeline;
|
|
|
|
switch (src_image->type) {
|
|
case VK_IMAGE_TYPE_1D:
|
|
pipeline = device->meta_state.blit.pipeline_1d_src;
|
|
break;
|
|
case VK_IMAGE_TYPE_2D:
|
|
pipeline = device->meta_state.blit.pipeline_2d_src;
|
|
break;
|
|
case VK_IMAGE_TYPE_3D:
|
|
pipeline = device->meta_state.blit.pipeline_3d_src;
|
|
break;
|
|
default:
|
|
unreachable(!"bad VkImageType");
|
|
}
|
|
|
|
if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
|
|
anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
}
|
|
|
|
anv_CmdSetViewport(anv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
|
|
&(VkViewport) {
|
|
.x = 0.0f,
|
|
.y = 0.0f,
|
|
.width = dest_iview->extent.width,
|
|
.height = dest_iview->extent.height,
|
|
.minDepth = 0.0f,
|
|
.maxDepth = 1.0f,
|
|
});
|
|
|
|
anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS,
|
|
device->meta_state.blit.pipeline_layout, 0, 1,
|
|
&set, 0, NULL);
|
|
|
|
ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
|
|
|
|
ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
|
|
|
|
/* At the point where we emit the draw call, all data from the
|
|
* descriptor sets, etc. has been used. We are free to delete it.
|
|
*/
|
|
anv_descriptor_set_destroy(device, anv_descriptor_set_from_handle(set));
|
|
anv_DestroySampler(anv_device_to_handle(device), sampler,
|
|
&cmd_buffer->pool->alloc);
|
|
anv_DestroyFramebuffer(anv_device_to_handle(device), fb,
|
|
&cmd_buffer->pool->alloc);
|
|
}
|
|
|
|
static void
|
|
meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
|
|
const struct anv_meta_saved_state *saved_state)
|
|
{
|
|
anv_meta_restore(saved_state, cmd_buffer);
|
|
}
|
|
|
|
static VkFormat
|
|
vk_format_for_size(int bs)
|
|
{
|
|
/* Note: We intentionally use the 4-channel formats whenever we can.
|
|
* This is so that, when we do a RGB <-> RGBX copy, the two formats will
|
|
* line up even though one of them is 3/4 the size of the other.
|
|
*/
|
|
switch (bs) {
|
|
case 1: return VK_FORMAT_R8_UINT;
|
|
case 2: return VK_FORMAT_R8G8_UINT;
|
|
case 3: return VK_FORMAT_R8G8B8_UINT;
|
|
case 4: return VK_FORMAT_R8G8B8A8_UINT;
|
|
case 6: return VK_FORMAT_R16G16B16_UINT;
|
|
case 8: return VK_FORMAT_R16G16B16A16_UINT;
|
|
case 12: return VK_FORMAT_R32G32B32_UINT;
|
|
case 16: return VK_FORMAT_R32G32B32A32_UINT;
|
|
default:
|
|
unreachable("Invalid format block size");
|
|
}
|
|
}
|
|
|
|
static void
|
|
do_buffer_copy(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_bo *src, uint64_t src_offset,
|
|
struct anv_bo *dest, uint64_t dest_offset,
|
|
int width, int height, VkFormat copy_format)
|
|
{
|
|
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
|
|
|
|
VkImageCreateInfo image_info = {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
|
|
.imageType = VK_IMAGE_TYPE_2D,
|
|
.format = copy_format,
|
|
.extent = {
|
|
.width = width,
|
|
.height = height,
|
|
.depth = 1,
|
|
},
|
|
.mipLevels = 1,
|
|
.arrayLayers = 1,
|
|
.samples = 1,
|
|
.tiling = VK_IMAGE_TILING_LINEAR,
|
|
.usage = 0,
|
|
.flags = 0,
|
|
};
|
|
|
|
VkImage src_image;
|
|
image_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
anv_CreateImage(vk_device, &image_info,
|
|
&cmd_buffer->pool->alloc, &src_image);
|
|
|
|
VkImage dest_image;
|
|
image_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
|
|
anv_CreateImage(vk_device, &image_info,
|
|
&cmd_buffer->pool->alloc, &dest_image);
|
|
|
|
/* We could use a vk call to bind memory, but that would require
|
|
* creating a dummy memory object etc. so there's really no point.
|
|
*/
|
|
anv_image_from_handle(src_image)->bo = src;
|
|
anv_image_from_handle(src_image)->offset = src_offset;
|
|
anv_image_from_handle(dest_image)->bo = dest;
|
|
anv_image_from_handle(dest_image)->offset = dest_offset;
|
|
|
|
struct anv_image_view src_iview;
|
|
anv_image_view_init(&src_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = src_image,
|
|
.viewType = VK_IMAGE_VIEW_TYPE_2D,
|
|
.format = copy_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = 0,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = 0,
|
|
.layerCount = 1
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
struct anv_image_view dest_iview;
|
|
anv_image_view_init(&dest_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = dest_image,
|
|
.viewType = VK_IMAGE_VIEW_TYPE_2D,
|
|
.format = copy_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = 0,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = 0,
|
|
.layerCount = 1,
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
meta_emit_blit(cmd_buffer,
|
|
anv_image_from_handle(src_image),
|
|
&src_iview,
|
|
(VkOffset3D) { 0, 0, 0 },
|
|
(VkExtent3D) { width, height, 1 },
|
|
anv_image_from_handle(dest_image),
|
|
&dest_iview,
|
|
(VkOffset3D) { 0, 0, 0 },
|
|
(VkExtent3D) { width, height, 1 },
|
|
VK_FILTER_NEAREST);
|
|
|
|
anv_DestroyImage(vk_device, src_image, &cmd_buffer->pool->alloc);
|
|
anv_DestroyImage(vk_device, dest_image, &cmd_buffer->pool->alloc);
|
|
}
|
|
|
|
void anv_CmdCopyBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
VkBuffer srcBuffer,
|
|
VkBuffer destBuffer,
|
|
uint32_t regionCount,
|
|
const VkBufferCopy* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_buffer, src_buffer, srcBuffer);
|
|
ANV_FROM_HANDLE(anv_buffer, dest_buffer, destBuffer);
|
|
|
|
struct anv_meta_saved_state saved_state;
|
|
|
|
meta_prepare_blit(cmd_buffer, &saved_state);
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
uint64_t src_offset = src_buffer->offset + pRegions[r].srcOffset;
|
|
uint64_t dest_offset = dest_buffer->offset + pRegions[r].dstOffset;
|
|
uint64_t copy_size = pRegions[r].size;
|
|
|
|
/* First, we compute the biggest format that can be used with the
|
|
* given offsets and size.
|
|
*/
|
|
int bs = 16;
|
|
|
|
int fs = ffs(src_offset) - 1;
|
|
if (fs != -1)
|
|
bs = MIN2(bs, 1 << fs);
|
|
assert(src_offset % bs == 0);
|
|
|
|
fs = ffs(dest_offset) - 1;
|
|
if (fs != -1)
|
|
bs = MIN2(bs, 1 << fs);
|
|
assert(dest_offset % bs == 0);
|
|
|
|
fs = ffs(pRegions[r].size) - 1;
|
|
if (fs != -1)
|
|
bs = MIN2(bs, 1 << fs);
|
|
assert(pRegions[r].size % bs == 0);
|
|
|
|
VkFormat copy_format = vk_format_for_size(bs);
|
|
|
|
/* This is maximum possible width/height our HW can handle */
|
|
uint64_t max_surface_dim = 1 << 14;
|
|
|
|
/* First, we make a bunch of max-sized copies */
|
|
uint64_t max_copy_size = max_surface_dim * max_surface_dim * bs;
|
|
while (copy_size >= max_copy_size) {
|
|
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
|
|
dest_buffer->bo, dest_offset,
|
|
max_surface_dim, max_surface_dim, copy_format);
|
|
copy_size -= max_copy_size;
|
|
src_offset += max_copy_size;
|
|
dest_offset += max_copy_size;
|
|
}
|
|
|
|
uint64_t height = copy_size / (max_surface_dim * bs);
|
|
assert(height < max_surface_dim);
|
|
if (height != 0) {
|
|
uint64_t rect_copy_size = height * max_surface_dim * bs;
|
|
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
|
|
dest_buffer->bo, dest_offset,
|
|
max_surface_dim, height, copy_format);
|
|
copy_size -= rect_copy_size;
|
|
src_offset += rect_copy_size;
|
|
dest_offset += rect_copy_size;
|
|
}
|
|
|
|
if (copy_size != 0) {
|
|
do_buffer_copy(cmd_buffer, src_buffer->bo, src_offset,
|
|
dest_buffer->bo, dest_offset,
|
|
copy_size / bs, 1, copy_format);
|
|
}
|
|
}
|
|
|
|
meta_finish_blit(cmd_buffer, &saved_state);
|
|
}
|
|
|
|
void anv_CmdUpdateBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
VkBuffer dstBuffer,
|
|
VkDeviceSize dstOffset,
|
|
VkDeviceSize dataSize,
|
|
const uint32_t* pData)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_buffer, dst_buffer, dstBuffer);
|
|
struct anv_meta_saved_state saved_state;
|
|
|
|
meta_prepare_blit(cmd_buffer, &saved_state);
|
|
|
|
/* We can't quite grab a full block because the state stream needs a
|
|
* little data at the top to build its linked list.
|
|
*/
|
|
const uint32_t max_update_size =
|
|
cmd_buffer->device->dynamic_state_block_pool.block_size - 64;
|
|
|
|
assert(max_update_size < (1 << 14) * 4);
|
|
|
|
while (dataSize) {
|
|
const uint32_t copy_size = MIN2(dataSize, max_update_size);
|
|
|
|
struct anv_state tmp_data =
|
|
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, copy_size, 64);
|
|
|
|
memcpy(tmp_data.map, pData, copy_size);
|
|
|
|
VkFormat format;
|
|
int bs;
|
|
if ((copy_size & 15) == 0 && (dstOffset & 15) == 0) {
|
|
format = VK_FORMAT_R32G32B32A32_UINT;
|
|
bs = 16;
|
|
} else if ((copy_size & 7) == 0 && (dstOffset & 7) == 0) {
|
|
format = VK_FORMAT_R32G32_UINT;
|
|
bs = 8;
|
|
} else {
|
|
assert((copy_size & 3) == 0 && (dstOffset & 3) == 0);
|
|
format = VK_FORMAT_R32_UINT;
|
|
bs = 4;
|
|
}
|
|
|
|
do_buffer_copy(cmd_buffer,
|
|
&cmd_buffer->device->dynamic_state_block_pool.bo,
|
|
tmp_data.offset,
|
|
dst_buffer->bo, dst_buffer->offset + dstOffset,
|
|
copy_size / bs, 1, format);
|
|
|
|
dataSize -= copy_size;
|
|
dstOffset += copy_size;
|
|
pData = (void *)pData + copy_size;
|
|
}
|
|
}
|
|
|
|
static VkFormat
|
|
choose_iview_format(struct anv_image *image, VkImageAspectFlagBits aspect)
|
|
{
|
|
assert(__builtin_popcount(aspect) == 1);
|
|
|
|
struct isl_surf *surf =
|
|
&anv_image_get_surface_for_aspect_mask(image, aspect)->isl;
|
|
|
|
/* vkCmdCopyImage behaves like memcpy. Therefore we choose identical UINT
|
|
* formats for the source and destination image views.
|
|
*
|
|
* From the Vulkan spec (2015-12-30):
|
|
*
|
|
* vkCmdCopyImage performs image copies in a similar manner to a host
|
|
* memcpy. It does not perform general-purpose conversions such as
|
|
* scaling, resizing, blending, color-space conversion, or format
|
|
* conversions. Rather, it simply copies raw image data. vkCmdCopyImage
|
|
* can copy between images with different formats, provided the formats
|
|
* are compatible as defined below.
|
|
*
|
|
* [The spec later defines compatibility as having the same number of
|
|
* bytes per block].
|
|
*/
|
|
return vk_format_for_size(isl_format_layouts[surf->format].bs);
|
|
}
|
|
|
|
static VkFormat
|
|
choose_buffer_format(VkFormat format, VkImageAspectFlagBits aspect)
|
|
{
|
|
assert(__builtin_popcount(aspect) == 1);
|
|
|
|
/* vkCmdCopy* commands behave like memcpy. Therefore we choose
|
|
* compatable UINT formats for the source and destination image views.
|
|
*
|
|
* For the buffer, we go back to the original image format and get a
|
|
* the format as if it were linear. This way, for RGB formats, we get
|
|
* an RGB format here even if the tiled image is RGBA. XXX: This doesn't
|
|
* work if the buffer is the destination.
|
|
*/
|
|
enum isl_format linear_format = anv_get_isl_format(format, aspect,
|
|
VK_IMAGE_TILING_LINEAR,
|
|
NULL);
|
|
|
|
return vk_format_for_size(isl_format_layouts[linear_format].bs);
|
|
}
|
|
|
|
void anv_CmdCopyImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage srcImage,
|
|
VkImageLayout srcImageLayout,
|
|
VkImage destImage,
|
|
VkImageLayout destImageLayout,
|
|
uint32_t regionCount,
|
|
const VkImageCopy* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
|
|
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
|
|
struct anv_meta_saved_state saved_state;
|
|
|
|
/* From the Vulkan 1.0 spec:
|
|
*
|
|
* vkCmdCopyImage can be used to copy image data between multisample
|
|
* images, but both images must have the same number of samples.
|
|
*/
|
|
assert(src_image->samples == dest_image->samples);
|
|
|
|
meta_prepare_blit(cmd_buffer, &saved_state);
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
assert(pRegions[r].srcSubresource.aspectMask ==
|
|
pRegions[r].dstSubresource.aspectMask);
|
|
|
|
VkImageAspectFlags aspect = pRegions[r].srcSubresource.aspectMask;
|
|
|
|
VkFormat src_format = choose_iview_format(src_image, aspect);
|
|
VkFormat dst_format = choose_iview_format(dest_image, aspect);
|
|
|
|
struct anv_image_view src_iview;
|
|
anv_image_view_init(&src_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = srcImage,
|
|
.viewType = anv_meta_get_view_type(src_image),
|
|
.format = src_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = pRegions[r].srcSubresource.mipLevel,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
|
|
.layerCount = pRegions[r].dstSubresource.layerCount,
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
const VkOffset3D dest_offset = {
|
|
.x = pRegions[r].dstOffset.x,
|
|
.y = pRegions[r].dstOffset.y,
|
|
.z = 0,
|
|
};
|
|
|
|
unsigned num_slices;
|
|
if (src_image->type == VK_IMAGE_TYPE_3D) {
|
|
assert(pRegions[r].srcSubresource.layerCount == 1 &&
|
|
pRegions[r].dstSubresource.layerCount == 1);
|
|
num_slices = pRegions[r].extent.depth;
|
|
} else {
|
|
assert(pRegions[r].srcSubresource.layerCount ==
|
|
pRegions[r].dstSubresource.layerCount);
|
|
assert(pRegions[r].extent.depth == 1);
|
|
num_slices = pRegions[r].dstSubresource.layerCount;
|
|
}
|
|
|
|
const uint32_t dest_base_array_slice =
|
|
anv_meta_get_iview_layer(dest_image, &pRegions[r].dstSubresource,
|
|
&pRegions[r].dstOffset);
|
|
|
|
for (unsigned slice = 0; slice < num_slices; slice++) {
|
|
VkOffset3D src_offset = pRegions[r].srcOffset;
|
|
src_offset.z += slice;
|
|
|
|
struct anv_image_view dest_iview;
|
|
anv_image_view_init(&dest_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = destImage,
|
|
.viewType = anv_meta_get_view_type(dest_image),
|
|
.format = dst_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = pRegions[r].dstSubresource.mipLevel,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = dest_base_array_slice + slice,
|
|
.layerCount = 1
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
meta_emit_blit(cmd_buffer,
|
|
src_image, &src_iview,
|
|
src_offset,
|
|
pRegions[r].extent,
|
|
dest_image, &dest_iview,
|
|
dest_offset,
|
|
pRegions[r].extent,
|
|
VK_FILTER_NEAREST);
|
|
}
|
|
}
|
|
|
|
meta_finish_blit(cmd_buffer, &saved_state);
|
|
}
|
|
|
|
void anv_CmdBlitImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage srcImage,
|
|
VkImageLayout srcImageLayout,
|
|
VkImage destImage,
|
|
VkImageLayout destImageLayout,
|
|
uint32_t regionCount,
|
|
const VkImageBlit* pRegions,
|
|
VkFilter filter)
|
|
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
|
|
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
|
|
struct anv_meta_saved_state saved_state;
|
|
|
|
/* From the Vulkan 1.0 spec:
|
|
*
|
|
* vkCmdBlitImage must not be used for multisampled source or
|
|
* destination images. Use vkCmdResolveImage for this purpose.
|
|
*/
|
|
assert(src_image->samples == 1);
|
|
assert(dest_image->samples == 1);
|
|
|
|
anv_finishme("respect VkFilter");
|
|
|
|
meta_prepare_blit(cmd_buffer, &saved_state);
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
struct anv_image_view src_iview;
|
|
anv_image_view_init(&src_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = srcImage,
|
|
.viewType = anv_meta_get_view_type(src_image),
|
|
.format = src_image->vk_format,
|
|
.subresourceRange = {
|
|
.aspectMask = pRegions[r].srcSubresource.aspectMask,
|
|
.baseMipLevel = pRegions[r].srcSubresource.mipLevel,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = pRegions[r].srcSubresource.baseArrayLayer,
|
|
.layerCount = 1
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
const VkOffset3D dest_offset = {
|
|
.x = pRegions[r].dstOffsets[0].x,
|
|
.y = pRegions[r].dstOffsets[0].y,
|
|
.z = 0,
|
|
};
|
|
|
|
if (pRegions[r].dstOffsets[1].x < pRegions[r].dstOffsets[0].x ||
|
|
pRegions[r].dstOffsets[1].y < pRegions[r].dstOffsets[0].y ||
|
|
pRegions[r].srcOffsets[1].x < pRegions[r].srcOffsets[0].x ||
|
|
pRegions[r].srcOffsets[1].y < pRegions[r].srcOffsets[0].y)
|
|
anv_finishme("FINISHME: Allow flipping in blits");
|
|
|
|
const VkExtent3D dest_extent = {
|
|
.width = pRegions[r].dstOffsets[1].x - pRegions[r].dstOffsets[0].x,
|
|
.height = pRegions[r].dstOffsets[1].y - pRegions[r].dstOffsets[0].y,
|
|
};
|
|
|
|
const VkExtent3D src_extent = {
|
|
.width = pRegions[r].srcOffsets[1].x - pRegions[r].srcOffsets[0].x,
|
|
.height = pRegions[r].srcOffsets[1].y - pRegions[r].srcOffsets[0].y,
|
|
};
|
|
|
|
const uint32_t dest_array_slice =
|
|
anv_meta_get_iview_layer(dest_image, &pRegions[r].dstSubresource,
|
|
&pRegions[r].dstOffsets[0]);
|
|
|
|
if (pRegions[r].srcSubresource.layerCount > 1)
|
|
anv_finishme("FINISHME: copy multiple array layers");
|
|
|
|
if (pRegions[r].srcOffsets[0].z + 1 != pRegions[r].srcOffsets[1].z ||
|
|
pRegions[r].dstOffsets[0].z + 1 != pRegions[r].dstOffsets[1].z)
|
|
anv_finishme("FINISHME: copy multiple depth layers");
|
|
|
|
struct anv_image_view dest_iview;
|
|
anv_image_view_init(&dest_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = destImage,
|
|
.viewType = anv_meta_get_view_type(dest_image),
|
|
.format = dest_image->vk_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = pRegions[r].dstSubresource.mipLevel,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = dest_array_slice,
|
|
.layerCount = 1
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
meta_emit_blit(cmd_buffer,
|
|
src_image, &src_iview,
|
|
pRegions[r].srcOffsets[0], src_extent,
|
|
dest_image, &dest_iview,
|
|
dest_offset, dest_extent,
|
|
filter);
|
|
}
|
|
|
|
meta_finish_blit(cmd_buffer, &saved_state);
|
|
}
|
|
|
|
static struct anv_image *
|
|
make_image_for_buffer(VkDevice vk_device, VkBuffer vk_buffer, VkFormat format,
|
|
VkImageUsageFlags usage,
|
|
VkImageType image_type,
|
|
const VkAllocationCallbacks *alloc,
|
|
const VkBufferImageCopy *copy)
|
|
{
|
|
ANV_FROM_HANDLE(anv_buffer, buffer, vk_buffer);
|
|
|
|
VkExtent3D extent = copy->imageExtent;
|
|
if (copy->bufferRowLength)
|
|
extent.width = copy->bufferRowLength;
|
|
if (copy->bufferImageHeight)
|
|
extent.height = copy->bufferImageHeight;
|
|
extent.depth = 1;
|
|
extent = meta_region_extent_el(format, &extent);
|
|
|
|
VkImageAspectFlags aspect = copy->imageSubresource.aspectMask;
|
|
VkFormat buffer_format = choose_buffer_format(format, aspect);
|
|
|
|
VkImage vk_image;
|
|
VkResult result = anv_CreateImage(vk_device,
|
|
&(VkImageCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
|
|
.imageType = VK_IMAGE_TYPE_2D,
|
|
.format = buffer_format,
|
|
.extent = extent,
|
|
.mipLevels = 1,
|
|
.arrayLayers = 1,
|
|
.samples = 1,
|
|
.tiling = VK_IMAGE_TILING_LINEAR,
|
|
.usage = usage,
|
|
.flags = 0,
|
|
}, alloc, &vk_image);
|
|
assert(result == VK_SUCCESS);
|
|
|
|
ANV_FROM_HANDLE(anv_image, image, vk_image);
|
|
|
|
/* We could use a vk call to bind memory, but that would require
|
|
* creating a dummy memory object etc. so there's really no point.
|
|
*/
|
|
image->bo = buffer->bo;
|
|
image->offset = buffer->offset + copy->bufferOffset;
|
|
|
|
return image;
|
|
}
|
|
|
|
void anv_CmdCopyBufferToImage(
|
|
VkCommandBuffer commandBuffer,
|
|
VkBuffer srcBuffer,
|
|
VkImage destImage,
|
|
VkImageLayout destImageLayout,
|
|
uint32_t regionCount,
|
|
const VkBufferImageCopy* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, dest_image, destImage);
|
|
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
|
|
struct anv_meta_saved_state saved_state;
|
|
|
|
/* The Vulkan 1.0 spec says "dstImage must have a sample count equal to
|
|
* VK_SAMPLE_COUNT_1_BIT."
|
|
*/
|
|
assert(dest_image->samples == 1);
|
|
|
|
meta_prepare_blit(cmd_buffer, &saved_state);
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
|
|
|
|
VkFormat image_format = choose_iview_format(dest_image, aspect);
|
|
|
|
struct anv_image *src_image =
|
|
make_image_for_buffer(vk_device, srcBuffer, dest_image->vk_format,
|
|
VK_IMAGE_USAGE_SAMPLED_BIT,
|
|
dest_image->type, &cmd_buffer->pool->alloc,
|
|
&pRegions[r]);
|
|
|
|
const uint32_t dest_base_array_slice =
|
|
anv_meta_get_iview_layer(dest_image, &pRegions[r].imageSubresource,
|
|
&pRegions[r].imageOffset);
|
|
|
|
unsigned num_slices_3d = pRegions[r].imageExtent.depth;
|
|
unsigned num_slices_array = pRegions[r].imageSubresource.layerCount;
|
|
unsigned slice_3d = 0;
|
|
unsigned slice_array = 0;
|
|
while (slice_3d < num_slices_3d && slice_array < num_slices_array) {
|
|
struct anv_image_view src_iview;
|
|
anv_image_view_init(&src_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = anv_image_to_handle(src_image),
|
|
.viewType = VK_IMAGE_VIEW_TYPE_2D,
|
|
.format = src_image->vk_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = 0,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = 0,
|
|
.layerCount = 1,
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
uint32_t img_x = 0;
|
|
uint32_t img_y = 0;
|
|
uint32_t img_o = 0;
|
|
if (isl_format_is_compressed(dest_image->format->isl_format))
|
|
isl_surf_get_image_intratile_offset_el(&cmd_buffer->device->isl_dev,
|
|
&dest_image->color_surface.isl,
|
|
pRegions[r].imageSubresource.mipLevel,
|
|
pRegions[r].imageSubresource.baseArrayLayer + slice_array,
|
|
pRegions[r].imageOffset.z + slice_3d,
|
|
&img_o, &img_x, &img_y);
|
|
|
|
VkOffset3D dest_offset_el = meta_region_offset_el(dest_image, & pRegions[r].imageOffset);
|
|
dest_offset_el.x += img_x;
|
|
dest_offset_el.y += img_y;
|
|
dest_offset_el.z = 0;
|
|
|
|
struct anv_image_view dest_iview;
|
|
anv_image_view_init(&dest_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = anv_image_to_handle(dest_image),
|
|
.viewType = anv_meta_get_view_type(dest_image),
|
|
.format = image_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = pRegions[r].imageSubresource.mipLevel,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = dest_base_array_slice +
|
|
slice_array + slice_3d,
|
|
.layerCount = 1
|
|
},
|
|
},
|
|
cmd_buffer, img_o);
|
|
|
|
const VkExtent3D img_extent_el = meta_region_extent_el(dest_image->vk_format,
|
|
&pRegions[r].imageExtent);
|
|
|
|
meta_emit_blit(cmd_buffer,
|
|
src_image,
|
|
&src_iview,
|
|
(VkOffset3D){0, 0, 0},
|
|
img_extent_el,
|
|
dest_image,
|
|
&dest_iview,
|
|
dest_offset_el,
|
|
img_extent_el,
|
|
VK_FILTER_NEAREST);
|
|
|
|
/* Once we've done the blit, all of the actual information about
|
|
* the image is embedded in the command buffer so we can just
|
|
* increment the offset directly in the image effectively
|
|
* re-binding it to different backing memory.
|
|
*/
|
|
src_image->offset += src_image->extent.width *
|
|
src_image->extent.height *
|
|
src_image->format->isl_layout->bs;
|
|
|
|
if (dest_image->type == VK_IMAGE_TYPE_3D)
|
|
slice_3d++;
|
|
else
|
|
slice_array++;
|
|
}
|
|
|
|
anv_DestroyImage(vk_device, anv_image_to_handle(src_image),
|
|
&cmd_buffer->pool->alloc);
|
|
}
|
|
|
|
meta_finish_blit(cmd_buffer, &saved_state);
|
|
}
|
|
|
|
void anv_CmdCopyImageToBuffer(
|
|
VkCommandBuffer commandBuffer,
|
|
VkImage srcImage,
|
|
VkImageLayout srcImageLayout,
|
|
VkBuffer destBuffer,
|
|
uint32_t regionCount,
|
|
const VkBufferImageCopy* pRegions)
|
|
{
|
|
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
|
|
ANV_FROM_HANDLE(anv_image, src_image, srcImage);
|
|
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
|
|
struct anv_meta_saved_state saved_state;
|
|
|
|
|
|
/* The Vulkan 1.0 spec says "srcImage must have a sample count equal to
|
|
* VK_SAMPLE_COUNT_1_BIT."
|
|
*/
|
|
assert(src_image->samples == 1);
|
|
|
|
meta_prepare_blit(cmd_buffer, &saved_state);
|
|
|
|
for (unsigned r = 0; r < regionCount; r++) {
|
|
VkImageAspectFlags aspect = pRegions[r].imageSubresource.aspectMask;
|
|
|
|
VkFormat image_format = choose_iview_format(src_image, aspect);
|
|
|
|
struct anv_image_view src_iview;
|
|
anv_image_view_init(&src_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = srcImage,
|
|
.viewType = anv_meta_get_view_type(src_image),
|
|
.format = image_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = pRegions[r].imageSubresource.mipLevel,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = pRegions[r].imageSubresource.baseArrayLayer,
|
|
.layerCount = pRegions[r].imageSubresource.layerCount,
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
struct anv_image *dest_image =
|
|
make_image_for_buffer(vk_device, destBuffer, src_image->vk_format,
|
|
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
|
|
src_image->type, &cmd_buffer->pool->alloc,
|
|
&pRegions[r]);
|
|
|
|
unsigned num_slices;
|
|
if (src_image->type == VK_IMAGE_TYPE_3D) {
|
|
assert(pRegions[r].imageSubresource.layerCount == 1);
|
|
num_slices = pRegions[r].imageExtent.depth;
|
|
} else {
|
|
assert(pRegions[r].imageExtent.depth == 1);
|
|
num_slices = pRegions[r].imageSubresource.layerCount;
|
|
}
|
|
|
|
for (unsigned slice = 0; slice < num_slices; slice++) {
|
|
VkOffset3D src_offset = pRegions[r].imageOffset;
|
|
src_offset.z += slice;
|
|
|
|
struct anv_image_view dest_iview;
|
|
anv_image_view_init(&dest_iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = anv_image_to_handle(dest_image),
|
|
.viewType = VK_IMAGE_VIEW_TYPE_2D,
|
|
.format = dest_image->vk_format,
|
|
.subresourceRange = {
|
|
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
|
|
.baseMipLevel = 0,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = 0,
|
|
.layerCount = 1
|
|
},
|
|
},
|
|
cmd_buffer, 0);
|
|
|
|
meta_emit_blit(cmd_buffer,
|
|
anv_image_from_handle(srcImage),
|
|
&src_iview,
|
|
src_offset,
|
|
pRegions[r].imageExtent,
|
|
dest_image,
|
|
&dest_iview,
|
|
(VkOffset3D) { 0, 0, 0 },
|
|
pRegions[r].imageExtent,
|
|
VK_FILTER_NEAREST);
|
|
|
|
/* Once we've done the blit, all of the actual information about
|
|
* the image is embedded in the command buffer so we can just
|
|
* increment the offset directly in the image effectively
|
|
* re-binding it to different backing memory.
|
|
*/
|
|
dest_image->offset += dest_image->extent.width *
|
|
dest_image->extent.height *
|
|
src_image->format->isl_layout->bs;
|
|
}
|
|
|
|
anv_DestroyImage(vk_device, anv_image_to_handle(dest_image),
|
|
&cmd_buffer->pool->alloc);
|
|
}
|
|
|
|
meta_finish_blit(cmd_buffer, &saved_state);
|
|
}
|
|
|
|
void
|
|
anv_device_finish_meta_blit_state(struct anv_device *device)
|
|
{
|
|
anv_DestroyRenderPass(anv_device_to_handle(device),
|
|
device->meta_state.blit.render_pass,
|
|
&device->meta_state.alloc);
|
|
anv_DestroyPipeline(anv_device_to_handle(device),
|
|
device->meta_state.blit.pipeline_1d_src,
|
|
&device->meta_state.alloc);
|
|
anv_DestroyPipeline(anv_device_to_handle(device),
|
|
device->meta_state.blit.pipeline_2d_src,
|
|
&device->meta_state.alloc);
|
|
anv_DestroyPipeline(anv_device_to_handle(device),
|
|
device->meta_state.blit.pipeline_3d_src,
|
|
&device->meta_state.alloc);
|
|
anv_DestroyPipelineLayout(anv_device_to_handle(device),
|
|
device->meta_state.blit.pipeline_layout,
|
|
&device->meta_state.alloc);
|
|
anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
|
|
device->meta_state.blit.ds_layout,
|
|
&device->meta_state.alloc);
|
|
}
|
|
|
|
VkResult
|
|
anv_device_init_meta_blit_state(struct anv_device *device)
|
|
{
|
|
VkResult result;
|
|
|
|
result = anv_CreateRenderPass(anv_device_to_handle(device),
|
|
&(VkRenderPassCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
|
|
.attachmentCount = 1,
|
|
.pAttachments = &(VkAttachmentDescription) {
|
|
.format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
|
|
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
|
|
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
|
|
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
|
|
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
|
|
},
|
|
.subpassCount = 1,
|
|
.pSubpasses = &(VkSubpassDescription) {
|
|
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
|
|
.inputAttachmentCount = 0,
|
|
.colorAttachmentCount = 1,
|
|
.pColorAttachments = &(VkAttachmentReference) {
|
|
.attachment = 0,
|
|
.layout = VK_IMAGE_LAYOUT_GENERAL,
|
|
},
|
|
.pResolveAttachments = NULL,
|
|
.pDepthStencilAttachment = &(VkAttachmentReference) {
|
|
.attachment = VK_ATTACHMENT_UNUSED,
|
|
.layout = VK_IMAGE_LAYOUT_GENERAL,
|
|
},
|
|
.preserveAttachmentCount = 1,
|
|
.pPreserveAttachments = (uint32_t[]) { 0 },
|
|
},
|
|
.dependencyCount = 0,
|
|
}, &device->meta_state.alloc, &device->meta_state.blit.render_pass);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
/* We don't use a vertex shader for blitting, but instead build and pass
|
|
* the VUEs directly to the rasterization backend. However, we do need
|
|
* to provide GLSL source for the vertex shader so that the compiler
|
|
* does not dead-code our inputs.
|
|
*/
|
|
struct anv_shader_module vs = {
|
|
.nir = build_nir_vertex_shader(),
|
|
};
|
|
|
|
struct anv_shader_module fs_1d = {
|
|
.nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_1D),
|
|
};
|
|
|
|
struct anv_shader_module fs_2d = {
|
|
.nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_2D),
|
|
};
|
|
|
|
struct anv_shader_module fs_3d = {
|
|
.nir = build_nir_copy_fragment_shader(GLSL_SAMPLER_DIM_3D),
|
|
};
|
|
|
|
VkPipelineVertexInputStateCreateInfo vi_create_info = {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
|
|
.vertexBindingDescriptionCount = 2,
|
|
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
|
|
{
|
|
.binding = 0,
|
|
.stride = 0,
|
|
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
|
|
},
|
|
{
|
|
.binding = 1,
|
|
.stride = 5 * sizeof(float),
|
|
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
|
|
},
|
|
},
|
|
.vertexAttributeDescriptionCount = 3,
|
|
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
|
|
{
|
|
/* VUE Header */
|
|
.location = 0,
|
|
.binding = 0,
|
|
.format = VK_FORMAT_R32G32B32A32_UINT,
|
|
.offset = 0
|
|
},
|
|
{
|
|
/* Position */
|
|
.location = 1,
|
|
.binding = 1,
|
|
.format = VK_FORMAT_R32G32_SFLOAT,
|
|
.offset = 0
|
|
},
|
|
{
|
|
/* Texture Coordinate */
|
|
.location = 2,
|
|
.binding = 1,
|
|
.format = VK_FORMAT_R32G32B32_SFLOAT,
|
|
.offset = 8
|
|
}
|
|
}
|
|
};
|
|
|
|
VkDescriptorSetLayoutCreateInfo ds_layout_info = {
|
|
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
|
|
.bindingCount = 1,
|
|
.pBindings = (VkDescriptorSetLayoutBinding[]) {
|
|
{
|
|
.binding = 0,
|
|
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
|
|
.descriptorCount = 1,
|
|
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
.pImmutableSamplers = NULL
|
|
},
|
|
}
|
|
};
|
|
result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
|
|
&ds_layout_info,
|
|
&device->meta_state.alloc,
|
|
&device->meta_state.blit.ds_layout);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_render_pass;
|
|
|
|
result = anv_CreatePipelineLayout(anv_device_to_handle(device),
|
|
&(VkPipelineLayoutCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
|
|
.setLayoutCount = 1,
|
|
.pSetLayouts = &device->meta_state.blit.ds_layout,
|
|
},
|
|
&device->meta_state.alloc, &device->meta_state.blit.pipeline_layout);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_descriptor_set_layout;
|
|
|
|
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
|
|
{
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
.stage = VK_SHADER_STAGE_VERTEX_BIT,
|
|
.module = anv_shader_module_to_handle(&vs),
|
|
.pName = "main",
|
|
.pSpecializationInfo = NULL
|
|
}, {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
.module = VK_NULL_HANDLE, /* TEMPLATE VALUE! FILL ME IN! */
|
|
.pName = "main",
|
|
.pSpecializationInfo = NULL
|
|
},
|
|
};
|
|
|
|
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
|
|
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
|
|
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
|
|
.pStages = pipeline_shader_stages,
|
|
.pVertexInputState = &vi_create_info,
|
|
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
|
|
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
|
|
.primitiveRestartEnable = false,
|
|
},
|
|
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
|
|
.viewportCount = 1,
|
|
.scissorCount = 1,
|
|
},
|
|
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
|
|
.rasterizerDiscardEnable = false,
|
|
.polygonMode = VK_POLYGON_MODE_FILL,
|
|
.cullMode = VK_CULL_MODE_NONE,
|
|
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
|
|
},
|
|
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
|
|
.rasterizationSamples = 1,
|
|
.sampleShadingEnable = false,
|
|
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
|
|
},
|
|
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
|
|
.attachmentCount = 1,
|
|
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
|
|
{ .colorWriteMask =
|
|
VK_COLOR_COMPONENT_A_BIT |
|
|
VK_COLOR_COMPONENT_R_BIT |
|
|
VK_COLOR_COMPONENT_G_BIT |
|
|
VK_COLOR_COMPONENT_B_BIT },
|
|
}
|
|
},
|
|
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
|
|
.dynamicStateCount = 9,
|
|
.pDynamicStates = (VkDynamicState[]) {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR,
|
|
VK_DYNAMIC_STATE_LINE_WIDTH,
|
|
VK_DYNAMIC_STATE_DEPTH_BIAS,
|
|
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
|
|
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
|
|
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
|
|
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
|
|
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
|
|
},
|
|
},
|
|
.flags = 0,
|
|
.layout = device->meta_state.blit.pipeline_layout,
|
|
.renderPass = device->meta_state.blit.render_pass,
|
|
.subpass = 0,
|
|
};
|
|
|
|
const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
|
|
.color_attachment_count = -1,
|
|
.use_repclear = false,
|
|
.disable_viewport = true,
|
|
.disable_scissor = true,
|
|
.disable_vs = true,
|
|
.use_rectlist = true
|
|
};
|
|
|
|
pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_1d);
|
|
result = anv_graphics_pipeline_create(anv_device_to_handle(device),
|
|
VK_NULL_HANDLE,
|
|
&vk_pipeline_info, &anv_pipeline_info,
|
|
&device->meta_state.alloc, &device->meta_state.blit.pipeline_1d_src);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_pipeline_layout;
|
|
|
|
pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_2d);
|
|
result = anv_graphics_pipeline_create(anv_device_to_handle(device),
|
|
VK_NULL_HANDLE,
|
|
&vk_pipeline_info, &anv_pipeline_info,
|
|
&device->meta_state.alloc, &device->meta_state.blit.pipeline_2d_src);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_pipeline_1d;
|
|
|
|
pipeline_shader_stages[1].module = anv_shader_module_to_handle(&fs_3d);
|
|
result = anv_graphics_pipeline_create(anv_device_to_handle(device),
|
|
VK_NULL_HANDLE,
|
|
&vk_pipeline_info, &anv_pipeline_info,
|
|
&device->meta_state.alloc, &device->meta_state.blit.pipeline_3d_src);
|
|
if (result != VK_SUCCESS)
|
|
goto fail_pipeline_2d;
|
|
|
|
ralloc_free(vs.nir);
|
|
ralloc_free(fs_1d.nir);
|
|
ralloc_free(fs_2d.nir);
|
|
ralloc_free(fs_3d.nir);
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail_pipeline_2d:
|
|
anv_DestroyPipeline(anv_device_to_handle(device),
|
|
device->meta_state.blit.pipeline_2d_src,
|
|
&device->meta_state.alloc);
|
|
|
|
fail_pipeline_1d:
|
|
anv_DestroyPipeline(anv_device_to_handle(device),
|
|
device->meta_state.blit.pipeline_1d_src,
|
|
&device->meta_state.alloc);
|
|
|
|
fail_pipeline_layout:
|
|
anv_DestroyPipelineLayout(anv_device_to_handle(device),
|
|
device->meta_state.blit.pipeline_layout,
|
|
&device->meta_state.alloc);
|
|
fail_descriptor_set_layout:
|
|
anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
|
|
device->meta_state.blit.ds_layout,
|
|
&device->meta_state.alloc);
|
|
fail_render_pass:
|
|
anv_DestroyRenderPass(anv_device_to_handle(device),
|
|
device->meta_state.blit.render_pass,
|
|
&device->meta_state.alloc);
|
|
|
|
ralloc_free(vs.nir);
|
|
ralloc_free(fs_1d.nir);
|
|
ralloc_free(fs_2d.nir);
|
|
ralloc_free(fs_3d.nir);
|
|
fail:
|
|
return result;
|
|
}
|