863 lines
28 KiB
C
863 lines
28 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#define _DEFAULT_SOURCE
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <values.h>
|
|
#include <assert.h>
|
|
#include <linux/futex.h>
|
|
#include <linux/memfd.h>
|
|
#include <sys/time.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/syscall.h>
|
|
|
|
#include "anv_private.h"
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
#define VG_NOACCESS_READ(__ptr) ({ \
|
|
VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
|
|
__typeof(*(__ptr)) __val = *(__ptr); \
|
|
VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
|
|
__val; \
|
|
})
|
|
#define VG_NOACCESS_WRITE(__ptr, __val) ({ \
|
|
VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
|
|
*(__ptr) = (__val); \
|
|
VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
|
|
})
|
|
#else
|
|
#define VG_NOACCESS_READ(__ptr) (*(__ptr))
|
|
#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
|
|
#endif
|
|
|
|
/* Design goals:
|
|
*
|
|
* - Lock free (except when resizing underlying bos)
|
|
*
|
|
* - Constant time allocation with typically only one atomic
|
|
*
|
|
* - Multiple allocation sizes without fragmentation
|
|
*
|
|
* - Can grow while keeping addresses and offset of contents stable
|
|
*
|
|
* - All allocations within one bo so we can point one of the
|
|
* STATE_BASE_ADDRESS pointers at it.
|
|
*
|
|
* The overall design is a two-level allocator: top level is a fixed size, big
|
|
* block (8k) allocator, which operates out of a bo. Allocation is done by
|
|
* either pulling a block from the free list or growing the used range of the
|
|
* bo. Growing the range may run out of space in the bo which we then need to
|
|
* grow. Growing the bo is tricky in a multi-threaded, lockless environment:
|
|
* we need to keep all pointers and contents in the old map valid. GEM bos in
|
|
* general can't grow, but we use a trick: we create a memfd and use ftruncate
|
|
* to grow it as necessary. We mmap the new size and then create a gem bo for
|
|
* it using the new gem userptr ioctl. Without heavy-handed locking around
|
|
* our allocation fast-path, there isn't really a way to munmap the old mmap,
|
|
* so we just keep it around until garbage collection time. While the block
|
|
* allocator is lockless for normal operations, we block other threads trying
|
|
* to allocate while we're growing the map. It sholdn't happen often, and
|
|
* growing is fast anyway.
|
|
*
|
|
* At the next level we can use various sub-allocators. The state pool is a
|
|
* pool of smaller, fixed size objects, which operates much like the block
|
|
* pool. It uses a free list for freeing objects, but when it runs out of
|
|
* space it just allocates a new block from the block pool. This allocator is
|
|
* intended for longer lived state objects such as SURFACE_STATE and most
|
|
* other persistent state objects in the API. We may need to track more info
|
|
* with these object and a pointer back to the CPU object (eg VkImage). In
|
|
* those cases we just allocate a slightly bigger object and put the extra
|
|
* state after the GPU state object.
|
|
*
|
|
* The state stream allocator works similar to how the i965 DRI driver streams
|
|
* all its state. Even with Vulkan, we need to emit transient state (whether
|
|
* surface state base or dynamic state base), and for that we can just get a
|
|
* block and fill it up. These cases are local to a command buffer and the
|
|
* sub-allocator need not be thread safe. The streaming allocator gets a new
|
|
* block when it runs out of space and chains them together so they can be
|
|
* easily freed.
|
|
*/
|
|
|
|
/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
|
|
* We use it to indicate the free list is empty. */
|
|
#define EMPTY 1
|
|
|
|
struct anv_mmap_cleanup {
|
|
void *map;
|
|
size_t size;
|
|
uint32_t gem_handle;
|
|
};
|
|
|
|
#define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
|
|
|
|
static inline long
|
|
sys_futex(void *addr1, int op, int val1,
|
|
struct timespec *timeout, void *addr2, int val3)
|
|
{
|
|
return syscall(SYS_futex, addr1, op, val1, timeout, addr2, val3);
|
|
}
|
|
|
|
static inline int
|
|
futex_wake(uint32_t *addr, int count)
|
|
{
|
|
return sys_futex(addr, FUTEX_WAKE, count, NULL, NULL, 0);
|
|
}
|
|
|
|
static inline int
|
|
futex_wait(uint32_t *addr, int32_t value)
|
|
{
|
|
return sys_futex(addr, FUTEX_WAIT, value, NULL, NULL, 0);
|
|
}
|
|
|
|
static inline int
|
|
memfd_create(const char *name, unsigned int flags)
|
|
{
|
|
return syscall(SYS_memfd_create, name, flags);
|
|
}
|
|
|
|
static inline uint32_t
|
|
ilog2_round_up(uint32_t value)
|
|
{
|
|
assert(value != 0);
|
|
return 32 - __builtin_clz(value - 1);
|
|
}
|
|
|
|
static inline uint32_t
|
|
round_to_power_of_two(uint32_t value)
|
|
{
|
|
return 1 << ilog2_round_up(value);
|
|
}
|
|
|
|
static bool
|
|
anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
|
|
{
|
|
union anv_free_list current, new, old;
|
|
|
|
current.u64 = list->u64;
|
|
while (current.offset != EMPTY) {
|
|
/* We have to add a memory barrier here so that the list head (and
|
|
* offset) gets read before we read the map pointer. This way we
|
|
* know that the map pointer is valid for the given offset at the
|
|
* point where we read it.
|
|
*/
|
|
__sync_synchronize();
|
|
|
|
int32_t *next_ptr = *map + current.offset;
|
|
new.offset = VG_NOACCESS_READ(next_ptr);
|
|
new.count = current.count + 1;
|
|
old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
|
|
if (old.u64 == current.u64) {
|
|
*offset = current.offset;
|
|
return true;
|
|
}
|
|
current = old;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
anv_free_list_push(union anv_free_list *list, void *map, int32_t offset)
|
|
{
|
|
union anv_free_list current, old, new;
|
|
int32_t *next_ptr = map + offset;
|
|
|
|
old = *list;
|
|
do {
|
|
current = old;
|
|
VG_NOACCESS_WRITE(next_ptr, current.offset);
|
|
new.offset = offset;
|
|
new.count = current.count + 1;
|
|
old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
|
|
} while (old.u64 != current.u64);
|
|
}
|
|
|
|
/* All pointers in the ptr_free_list are assumed to be page-aligned. This
|
|
* means that the bottom 12 bits should all be zero.
|
|
*/
|
|
#define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
|
|
#define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~0xfff))
|
|
#define PFL_PACK(ptr, count) ({ \
|
|
assert(((uintptr_t)(ptr) & 0xfff) == 0); \
|
|
(void *)((uintptr_t)(ptr) | (uintptr_t)((count) & 0xfff)); \
|
|
})
|
|
|
|
static bool
|
|
anv_ptr_free_list_pop(void **list, void **elem)
|
|
{
|
|
void *current = *list;
|
|
while (PFL_PTR(current) != NULL) {
|
|
void **next_ptr = PFL_PTR(current);
|
|
void *new_ptr = VG_NOACCESS_READ(next_ptr);
|
|
unsigned new_count = PFL_COUNT(current) + 1;
|
|
void *new = PFL_PACK(new_ptr, new_count);
|
|
void *old = __sync_val_compare_and_swap(list, current, new);
|
|
if (old == current) {
|
|
*elem = PFL_PTR(current);
|
|
return true;
|
|
}
|
|
current = old;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
anv_ptr_free_list_push(void **list, void *elem)
|
|
{
|
|
void *old, *current;
|
|
void **next_ptr = elem;
|
|
|
|
old = *list;
|
|
do {
|
|
current = old;
|
|
VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
|
|
unsigned new_count = PFL_COUNT(current) + 1;
|
|
void *new = PFL_PACK(elem, new_count);
|
|
old = __sync_val_compare_and_swap(list, current, new);
|
|
} while (old != current);
|
|
}
|
|
|
|
static uint32_t
|
|
anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state);
|
|
|
|
void
|
|
anv_block_pool_init(struct anv_block_pool *pool,
|
|
struct anv_device *device, uint32_t block_size)
|
|
{
|
|
assert(util_is_power_of_two(block_size));
|
|
|
|
pool->device = device;
|
|
pool->bo.gem_handle = 0;
|
|
pool->bo.offset = 0;
|
|
pool->bo.size = 0;
|
|
pool->block_size = block_size;
|
|
pool->free_list = ANV_FREE_LIST_EMPTY;
|
|
pool->back_free_list = ANV_FREE_LIST_EMPTY;
|
|
|
|
pool->fd = memfd_create("block pool", MFD_CLOEXEC);
|
|
if (pool->fd == -1)
|
|
return;
|
|
|
|
/* Just make it 2GB up-front. The Linux kernel won't actually back it
|
|
* with pages until we either map and fault on one of them or we use
|
|
* userptr and send a chunk of it off to the GPU.
|
|
*/
|
|
if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1)
|
|
return;
|
|
|
|
anv_vector_init(&pool->mmap_cleanups,
|
|
round_to_power_of_two(sizeof(struct anv_mmap_cleanup)), 128);
|
|
|
|
pool->state.next = 0;
|
|
pool->state.end = 0;
|
|
pool->back_state.next = 0;
|
|
pool->back_state.end = 0;
|
|
|
|
/* Immediately grow the pool so we'll have a backing bo. */
|
|
pool->state.end = anv_block_pool_grow(pool, &pool->state);
|
|
}
|
|
|
|
void
|
|
anv_block_pool_finish(struct anv_block_pool *pool)
|
|
{
|
|
struct anv_mmap_cleanup *cleanup;
|
|
|
|
anv_vector_foreach(cleanup, &pool->mmap_cleanups) {
|
|
if (cleanup->map)
|
|
munmap(cleanup->map, cleanup->size);
|
|
if (cleanup->gem_handle)
|
|
anv_gem_close(pool->device, cleanup->gem_handle);
|
|
}
|
|
|
|
anv_vector_finish(&pool->mmap_cleanups);
|
|
|
|
close(pool->fd);
|
|
}
|
|
|
|
#define PAGE_SIZE 4096
|
|
|
|
/** Grows and re-centers the block pool.
|
|
*
|
|
* We grow the block pool in one or both directions in such a way that the
|
|
* following conditions are met:
|
|
*
|
|
* 1) The size of the entire pool is always a power of two.
|
|
*
|
|
* 2) The pool only grows on both ends. Neither end can get
|
|
* shortened.
|
|
*
|
|
* 3) At the end of the allocation, we have about twice as much space
|
|
* allocated for each end as we have used. This way the pool doesn't
|
|
* grow too far in one direction or the other.
|
|
*
|
|
* 4) If the _alloc_back() has never been called, then the back portion of
|
|
* the pool retains a size of zero. (This makes it easier for users of
|
|
* the block pool that only want a one-sided pool.)
|
|
*
|
|
* 5) We have enough space allocated for at least one more block in
|
|
* whichever side `state` points to.
|
|
*
|
|
* 6) The center of the pool is always aligned to both the block_size of
|
|
* the pool and a 4K CPU page.
|
|
*/
|
|
static uint32_t
|
|
anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
|
|
{
|
|
size_t size;
|
|
void *map;
|
|
uint32_t gem_handle;
|
|
struct anv_mmap_cleanup *cleanup;
|
|
|
|
pthread_mutex_lock(&pool->device->mutex);
|
|
|
|
assert(state == &pool->state || state == &pool->back_state);
|
|
|
|
/* Gather a little usage information on the pool. Since we may have
|
|
* threadsd waiting in queue to get some storage while we resize, it's
|
|
* actually possible that total_used will be larger than old_size. In
|
|
* particular, block_pool_alloc() increments state->next prior to
|
|
* calling block_pool_grow, so this ensures that we get enough space for
|
|
* which ever side tries to grow the pool.
|
|
*
|
|
* We align to a page size because it makes it easier to do our
|
|
* calculations later in such a way that we state page-aigned.
|
|
*/
|
|
uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
|
|
uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
|
|
uint32_t total_used = front_used + back_used;
|
|
|
|
assert(state == &pool->state || back_used > 0);
|
|
|
|
size_t old_size = pool->bo.size;
|
|
|
|
if (old_size != 0 &&
|
|
back_used * 2 <= pool->center_bo_offset &&
|
|
front_used * 2 <= (old_size - pool->center_bo_offset)) {
|
|
/* If we're in this case then this isn't the firsta allocation and we
|
|
* already have enough space on both sides to hold double what we
|
|
* have allocated. There's nothing for us to do.
|
|
*/
|
|
goto done;
|
|
}
|
|
|
|
if (old_size == 0) {
|
|
/* This is the first allocation */
|
|
size = MAX2(32 * pool->block_size, PAGE_SIZE);
|
|
} else {
|
|
size = old_size * 2;
|
|
}
|
|
|
|
/* We can't have a block pool bigger than 1GB because we use signed
|
|
* 32-bit offsets in the free list and we don't want overflow. We
|
|
* should never need a block pool bigger than 1GB anyway.
|
|
*/
|
|
assert(size <= (1u << 31));
|
|
|
|
/* We compute a new center_bo_offset such that, when we double the size
|
|
* of the pool, we maintain the ratio of how much is used by each side.
|
|
* This way things should remain more-or-less balanced.
|
|
*/
|
|
uint32_t center_bo_offset;
|
|
if (back_used == 0) {
|
|
/* If we're in this case then we have never called alloc_back(). In
|
|
* this case, we want keep the offset at 0 to make things as simple
|
|
* as possible for users that don't care about back allocations.
|
|
*/
|
|
center_bo_offset = 0;
|
|
} else {
|
|
/* Try to "center" the allocation based on how much is currently in
|
|
* use on each side of the center line.
|
|
*/
|
|
center_bo_offset = ((uint64_t)size * back_used) / total_used;
|
|
|
|
/* Align down to a multiple of both the block size and page size */
|
|
uint32_t granularity = MAX2(pool->block_size, PAGE_SIZE);
|
|
assert(util_is_power_of_two(granularity));
|
|
center_bo_offset &= ~(granularity - 1);
|
|
|
|
assert(center_bo_offset >= back_used);
|
|
|
|
/* Make sure we don't shrink the back end of the pool */
|
|
if (center_bo_offset < pool->back_state.end)
|
|
center_bo_offset = pool->back_state.end;
|
|
|
|
/* Make sure that we don't shrink the front end of the pool */
|
|
if (size - center_bo_offset < pool->state.end)
|
|
center_bo_offset = size - pool->state.end;
|
|
}
|
|
|
|
assert(center_bo_offset % pool->block_size == 0);
|
|
assert(center_bo_offset % PAGE_SIZE == 0);
|
|
|
|
/* Assert that we only ever grow the pool */
|
|
assert(center_bo_offset >= pool->back_state.end);
|
|
assert(size - center_bo_offset >= pool->state.end);
|
|
|
|
cleanup = anv_vector_add(&pool->mmap_cleanups);
|
|
if (!cleanup)
|
|
goto fail;
|
|
*cleanup = ANV_MMAP_CLEANUP_INIT;
|
|
|
|
/* Just leak the old map until we destroy the pool. We can't munmap it
|
|
* without races or imposing locking on the block allocate fast path. On
|
|
* the whole the leaked maps adds up to less than the size of the
|
|
* current map. MAP_POPULATE seems like the right thing to do, but we
|
|
* should try to get some numbers.
|
|
*/
|
|
map = mmap(NULL, size, PROT_READ | PROT_WRITE,
|
|
MAP_SHARED | MAP_POPULATE, pool->fd,
|
|
BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
|
|
cleanup->map = map;
|
|
cleanup->size = size;
|
|
|
|
if (map == MAP_FAILED)
|
|
goto fail;
|
|
|
|
gem_handle = anv_gem_userptr(pool->device, map, size);
|
|
if (gem_handle == 0)
|
|
goto fail;
|
|
cleanup->gem_handle = gem_handle;
|
|
|
|
#if 0
|
|
/* Regular objects are created I915_CACHING_CACHED on LLC platforms and
|
|
* I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
|
|
* always created as I915_CACHING_CACHED, which on non-LLC means
|
|
* snooped. That can be useful but comes with a bit of overheard. Since
|
|
* we're eplicitly clflushing and don't want the overhead we need to turn
|
|
* it off. */
|
|
if (!pool->device->info.has_llc) {
|
|
anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
|
|
anv_gem_set_domain(pool->device, gem_handle,
|
|
I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
|
|
}
|
|
#endif
|
|
|
|
/* Now that we successfull allocated everything, we can write the new
|
|
* values back into pool. */
|
|
pool->map = map + center_bo_offset;
|
|
pool->center_bo_offset = center_bo_offset;
|
|
pool->bo.gem_handle = gem_handle;
|
|
pool->bo.size = size;
|
|
pool->bo.map = map;
|
|
pool->bo.index = 0;
|
|
|
|
done:
|
|
pthread_mutex_unlock(&pool->device->mutex);
|
|
|
|
/* Return the appropreate new size. This function never actually
|
|
* updates state->next. Instead, we let the caller do that because it
|
|
* needs to do so in order to maintain its concurrency model.
|
|
*/
|
|
if (state == &pool->state) {
|
|
return pool->bo.size - pool->center_bo_offset;
|
|
} else {
|
|
assert(pool->center_bo_offset > 0);
|
|
return pool->center_bo_offset;
|
|
}
|
|
|
|
fail:
|
|
pthread_mutex_unlock(&pool->device->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t
|
|
anv_block_pool_alloc_new(struct anv_block_pool *pool,
|
|
struct anv_block_state *pool_state)
|
|
{
|
|
struct anv_block_state state, old, new;
|
|
|
|
while (1) {
|
|
state.u64 = __sync_fetch_and_add(&pool_state->u64, pool->block_size);
|
|
if (state.next < state.end) {
|
|
assert(pool->map);
|
|
return state.next;
|
|
} else if (state.next == state.end) {
|
|
/* We allocated the first block outside the pool, we have to grow it.
|
|
* pool_state->next acts a mutex: threads who try to allocate now will
|
|
* get block indexes above the current limit and hit futex_wait
|
|
* below. */
|
|
new.next = state.next + pool->block_size;
|
|
new.end = anv_block_pool_grow(pool, pool_state);
|
|
assert(new.end >= new.next && new.end % pool->block_size == 0);
|
|
old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
|
|
if (old.next != state.next)
|
|
futex_wake(&pool_state->end, INT_MAX);
|
|
return state.next;
|
|
} else {
|
|
futex_wait(&pool_state->end, state.end);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t
|
|
anv_block_pool_alloc(struct anv_block_pool *pool)
|
|
{
|
|
int32_t offset;
|
|
|
|
/* Try free list first. */
|
|
if (anv_free_list_pop(&pool->free_list, &pool->map, &offset)) {
|
|
assert(offset >= 0);
|
|
assert(pool->map);
|
|
return offset;
|
|
}
|
|
|
|
return anv_block_pool_alloc_new(pool, &pool->state);
|
|
}
|
|
|
|
/* Allocates a block out of the back of the block pool.
|
|
*
|
|
* This will allocated a block earlier than the "start" of the block pool.
|
|
* The offsets returned from this function will be negative but will still
|
|
* be correct relative to the block pool's map pointer.
|
|
*
|
|
* If you ever use anv_block_pool_alloc_back, then you will have to do
|
|
* gymnastics with the block pool's BO when doing relocations.
|
|
*/
|
|
int32_t
|
|
anv_block_pool_alloc_back(struct anv_block_pool *pool)
|
|
{
|
|
int32_t offset;
|
|
|
|
/* Try free list first. */
|
|
if (anv_free_list_pop(&pool->back_free_list, &pool->map, &offset)) {
|
|
assert(offset < 0);
|
|
assert(pool->map);
|
|
return offset;
|
|
}
|
|
|
|
offset = anv_block_pool_alloc_new(pool, &pool->back_state);
|
|
|
|
/* The offset we get out of anv_block_pool_alloc_new() is actually the
|
|
* number of bytes downwards from the middle to the end of the block.
|
|
* We need to turn it into a (negative) offset from the middle to the
|
|
* start of the block.
|
|
*/
|
|
assert(offset >= 0);
|
|
return -(offset + pool->block_size);
|
|
}
|
|
|
|
void
|
|
anv_block_pool_free(struct anv_block_pool *pool, int32_t offset)
|
|
{
|
|
if (offset < 0) {
|
|
anv_free_list_push(&pool->back_free_list, pool->map, offset);
|
|
} else {
|
|
anv_free_list_push(&pool->free_list, pool->map, offset);
|
|
}
|
|
}
|
|
|
|
static void
|
|
anv_fixed_size_state_pool_init(struct anv_fixed_size_state_pool *pool,
|
|
size_t state_size)
|
|
{
|
|
/* At least a cache line and must divide the block size. */
|
|
assert(state_size >= 64 && util_is_power_of_two(state_size));
|
|
|
|
pool->state_size = state_size;
|
|
pool->free_list = ANV_FREE_LIST_EMPTY;
|
|
pool->block.next = 0;
|
|
pool->block.end = 0;
|
|
}
|
|
|
|
static uint32_t
|
|
anv_fixed_size_state_pool_alloc(struct anv_fixed_size_state_pool *pool,
|
|
struct anv_block_pool *block_pool)
|
|
{
|
|
int32_t offset;
|
|
struct anv_block_state block, old, new;
|
|
|
|
/* Try free list first. */
|
|
if (anv_free_list_pop(&pool->free_list, &block_pool->map, &offset)) {
|
|
assert(offset >= 0);
|
|
return offset;
|
|
}
|
|
|
|
/* If free list was empty (or somebody raced us and took the items) we
|
|
* allocate a new item from the end of the block */
|
|
restart:
|
|
block.u64 = __sync_fetch_and_add(&pool->block.u64, pool->state_size);
|
|
|
|
if (block.next < block.end) {
|
|
return block.next;
|
|
} else if (block.next == block.end) {
|
|
offset = anv_block_pool_alloc(block_pool);
|
|
new.next = offset + pool->state_size;
|
|
new.end = offset + block_pool->block_size;
|
|
old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
|
|
if (old.next != block.next)
|
|
futex_wake(&pool->block.end, INT_MAX);
|
|
return offset;
|
|
} else {
|
|
futex_wait(&pool->block.end, block.end);
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
static void
|
|
anv_fixed_size_state_pool_free(struct anv_fixed_size_state_pool *pool,
|
|
struct anv_block_pool *block_pool,
|
|
uint32_t offset)
|
|
{
|
|
anv_free_list_push(&pool->free_list, block_pool->map, offset);
|
|
}
|
|
|
|
void
|
|
anv_state_pool_init(struct anv_state_pool *pool,
|
|
struct anv_block_pool *block_pool)
|
|
{
|
|
pool->block_pool = block_pool;
|
|
for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
|
|
size_t size = 1 << (ANV_MIN_STATE_SIZE_LOG2 + i);
|
|
anv_fixed_size_state_pool_init(&pool->buckets[i], size);
|
|
}
|
|
VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
|
|
}
|
|
|
|
void
|
|
anv_state_pool_finish(struct anv_state_pool *pool)
|
|
{
|
|
VG(VALGRIND_DESTROY_MEMPOOL(pool));
|
|
}
|
|
|
|
struct anv_state
|
|
anv_state_pool_alloc(struct anv_state_pool *pool, size_t size, size_t align)
|
|
{
|
|
unsigned size_log2 = ilog2_round_up(size < align ? align : size);
|
|
assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
|
|
if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
|
|
size_log2 = ANV_MIN_STATE_SIZE_LOG2;
|
|
unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
|
|
|
|
struct anv_state state;
|
|
state.alloc_size = 1 << size_log2;
|
|
state.offset = anv_fixed_size_state_pool_alloc(&pool->buckets[bucket],
|
|
pool->block_pool);
|
|
state.map = pool->block_pool->map + state.offset;
|
|
VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
|
|
return state;
|
|
}
|
|
|
|
void
|
|
anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
|
|
{
|
|
assert(util_is_power_of_two(state.alloc_size));
|
|
unsigned size_log2 = ilog2_round_up(state.alloc_size);
|
|
assert(size_log2 >= ANV_MIN_STATE_SIZE_LOG2 &&
|
|
size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
|
|
unsigned bucket = size_log2 - ANV_MIN_STATE_SIZE_LOG2;
|
|
|
|
VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
|
|
anv_fixed_size_state_pool_free(&pool->buckets[bucket],
|
|
pool->block_pool, state.offset);
|
|
}
|
|
|
|
#define NULL_BLOCK 1
|
|
struct anv_state_stream_block {
|
|
/* The next block */
|
|
struct anv_state_stream_block *next;
|
|
|
|
/* The offset into the block pool at which this block starts */
|
|
uint32_t offset;
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
/* A pointer to the first user-allocated thing in this block. This is
|
|
* what valgrind sees as the start of the block.
|
|
*/
|
|
void *_vg_ptr;
|
|
#endif
|
|
};
|
|
|
|
/* The state stream allocator is a one-shot, single threaded allocator for
|
|
* variable sized blocks. We use it for allocating dynamic state.
|
|
*/
|
|
void
|
|
anv_state_stream_init(struct anv_state_stream *stream,
|
|
struct anv_block_pool *block_pool)
|
|
{
|
|
stream->block_pool = block_pool;
|
|
stream->block = NULL;
|
|
|
|
/* Ensure that next + whatever > end. This way the first call to
|
|
* state_stream_alloc fetches a new block.
|
|
*/
|
|
stream->next = 1;
|
|
stream->end = 0;
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
|
|
}
|
|
|
|
void
|
|
anv_state_stream_finish(struct anv_state_stream *stream)
|
|
{
|
|
VG(const uint32_t block_size = stream->block_pool->block_size);
|
|
|
|
struct anv_state_stream_block *next = stream->block;
|
|
while (next != NULL) {
|
|
VG(VALGRIND_MAKE_MEM_DEFINED(next, sizeof(*next)));
|
|
struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
|
|
VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
|
|
VG(VALGRIND_MAKE_MEM_UNDEFINED(next, block_size));
|
|
anv_block_pool_free(stream->block_pool, sb.offset);
|
|
next = sb.next;
|
|
}
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(stream));
|
|
}
|
|
|
|
struct anv_state
|
|
anv_state_stream_alloc(struct anv_state_stream *stream,
|
|
uint32_t size, uint32_t alignment)
|
|
{
|
|
struct anv_state_stream_block *sb = stream->block;
|
|
|
|
struct anv_state state;
|
|
|
|
state.offset = align_u32(stream->next, alignment);
|
|
if (state.offset + size > stream->end) {
|
|
uint32_t block = anv_block_pool_alloc(stream->block_pool);
|
|
sb = stream->block_pool->map + block;
|
|
|
|
VG(VALGRIND_MAKE_MEM_UNDEFINED(sb, sizeof(*sb)));
|
|
sb->next = stream->block;
|
|
sb->offset = block;
|
|
VG(sb->_vg_ptr = NULL);
|
|
VG(VALGRIND_MAKE_MEM_NOACCESS(sb, stream->block_pool->block_size));
|
|
|
|
stream->block = sb;
|
|
stream->start = block;
|
|
stream->next = block + sizeof(*sb);
|
|
stream->end = block + stream->block_pool->block_size;
|
|
|
|
state.offset = align_u32(stream->next, alignment);
|
|
assert(state.offset + size <= stream->end);
|
|
}
|
|
|
|
assert(state.offset > stream->start);
|
|
state.map = (void *)sb + (state.offset - stream->start);
|
|
state.alloc_size = size;
|
|
|
|
#ifdef HAVE_VALGRIND
|
|
void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
|
|
if (vg_ptr == NULL) {
|
|
vg_ptr = state.map;
|
|
VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
|
|
VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
|
|
} else {
|
|
void *state_end = state.map + state.alloc_size;
|
|
/* This only updates the mempool. The newly allocated chunk is still
|
|
* marked as NOACCESS. */
|
|
VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
|
|
/* Mark the newly allocated chunk as undefined */
|
|
VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
|
|
}
|
|
#endif
|
|
|
|
stream->next = state.offset + size;
|
|
|
|
return state;
|
|
}
|
|
|
|
struct bo_pool_bo_link {
|
|
struct bo_pool_bo_link *next;
|
|
struct anv_bo bo;
|
|
};
|
|
|
|
void
|
|
anv_bo_pool_init(struct anv_bo_pool *pool,
|
|
struct anv_device *device, uint32_t bo_size)
|
|
{
|
|
pool->device = device;
|
|
pool->bo_size = bo_size;
|
|
pool->free_list = NULL;
|
|
|
|
VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
|
|
}
|
|
|
|
void
|
|
anv_bo_pool_finish(struct anv_bo_pool *pool)
|
|
{
|
|
struct bo_pool_bo_link *link = PFL_PTR(pool->free_list);
|
|
while (link != NULL) {
|
|
struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
|
|
|
|
anv_gem_munmap(link_copy.bo.map, pool->bo_size);
|
|
anv_gem_close(pool->device, link_copy.bo.gem_handle);
|
|
link = link_copy.next;
|
|
}
|
|
|
|
VG(VALGRIND_DESTROY_MEMPOOL(pool));
|
|
}
|
|
|
|
VkResult
|
|
anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo)
|
|
{
|
|
VkResult result;
|
|
|
|
void *next_free_void;
|
|
if (anv_ptr_free_list_pop(&pool->free_list, &next_free_void)) {
|
|
struct bo_pool_bo_link *next_free = next_free_void;
|
|
*bo = VG_NOACCESS_READ(&next_free->bo);
|
|
assert(bo->map == next_free);
|
|
assert(bo->size == pool->bo_size);
|
|
|
|
VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
struct anv_bo new_bo;
|
|
|
|
result = anv_bo_init_new(&new_bo, pool->device, pool->bo_size);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
assert(new_bo.size == pool->bo_size);
|
|
|
|
new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pool->bo_size, 0);
|
|
if (new_bo.map == NULL) {
|
|
anv_gem_close(pool->device, new_bo.gem_handle);
|
|
return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
|
|
}
|
|
|
|
*bo = new_bo;
|
|
|
|
VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, pool->bo_size));
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void
|
|
anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo)
|
|
{
|
|
struct bo_pool_bo_link *link = bo->map;
|
|
link->bo = *bo;
|
|
|
|
VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
|
|
anv_ptr_free_list_push(&pool->free_list, link);
|
|
}
|