
This patch renames all macros with "GEN_" prefix defined in common code. Signed-off-by: Anuj Phogat <anuj.phogat@gmail.com> Reviewed-by: Kenneth Graunke <kenneth@whitecape.org> Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9413>
276 lines
10 KiB
C
276 lines
10 KiB
C
/*
|
|
* Copyright (c) 2011 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
#include "util/macros.h"
|
|
#include "main/macros.h"
|
|
#include "compiler/shader_enums.h"
|
|
|
|
#include "intel_l3_config.h"
|
|
|
|
/**
|
|
* The following diagram shows how we partition the URB:
|
|
*
|
|
* 16kb or 32kb Rest of the URB space
|
|
* __________-__________ _________________-_________________
|
|
* / \ / \
|
|
* +-------------------------------------------------------------+
|
|
* | VS/HS/DS/GS/FS Push | VS/HS/DS/GS URB |
|
|
* | Constants | Entries |
|
|
* +-------------------------------------------------------------+
|
|
*
|
|
* Push constants must be stored at the beginning of the URB space,
|
|
* while URB entries can be stored anywhere. We choose to lay them
|
|
* out in pipeline order (VS -> HS -> DS -> GS).
|
|
*/
|
|
|
|
/**
|
|
* Decide how to partition the URB among the various stages.
|
|
*
|
|
* \param[in] push_constant_bytes - space allocate for push constants.
|
|
* \param[in] urb_size_bytes - total size of the URB (from L3 config).
|
|
* \param[in] tess_present - are tessellation shaders active?
|
|
* \param[in] gs_present - are geometry shaders active?
|
|
* \param[in] entry_size - the URB entry size (from the shader compiler)
|
|
* \param[out] entries - the number of URB entries for each stage
|
|
* \param[out] start - the starting offset for each stage
|
|
* \param[out] deref_block_size - deref block size for 3DSTATE_SF
|
|
* \param[out] constrained - true if we wanted more space than we had
|
|
*/
|
|
void
|
|
intel_get_urb_config(const struct gen_device_info *devinfo,
|
|
const struct intel_l3_config *l3_cfg,
|
|
bool tess_present, bool gs_present,
|
|
const unsigned entry_size[4],
|
|
unsigned entries[4], unsigned start[4],
|
|
enum intel_urb_deref_block_size *deref_block_size,
|
|
bool *constrained)
|
|
{
|
|
unsigned urb_size_kB = intel_get_l3_config_urb_size(devinfo, l3_cfg);
|
|
|
|
/* RCU_MODE register for Gen12+ in BSpec says:
|
|
*
|
|
* "HW reserves 4KB of URB space per bank for Compute Engine out of the
|
|
* total storage available in L3. SW must consider that 4KB of storage
|
|
* per bank will be reduced from what is programmed for the URB space
|
|
* in L3 for Render Engine executed workloads.
|
|
*
|
|
* Example: When URB space programmed is 64KB (per bank) for Render
|
|
* Engine, the actual URB space available for operation is only 60KB
|
|
* (per bank). Similarly when URB space programmed is 128KB (per bank)
|
|
* for render engine, the actual URB space available for operation is
|
|
* only 124KB (per bank). More detailed descripton available in "L3
|
|
* Cache" section of the B-Spec."
|
|
*/
|
|
if (devinfo->gen >= 12)
|
|
urb_size_kB -= 4 * devinfo->l3_banks;
|
|
|
|
const unsigned push_constant_kB =
|
|
(devinfo->gen >= 8 || (devinfo->is_haswell && devinfo->gt == 3)) ? 32 : 16;
|
|
|
|
const bool active[4] = { true, tess_present, tess_present, gs_present };
|
|
|
|
/* URB allocations must be done in 8k chunks. */
|
|
const unsigned chunk_size_kB = 8;
|
|
const unsigned chunk_size_bytes = chunk_size_kB * 1024;
|
|
|
|
const unsigned push_constant_chunks = push_constant_kB / chunk_size_kB;
|
|
const unsigned urb_chunks = urb_size_kB / chunk_size_kB;
|
|
|
|
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
|
|
*
|
|
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
|
|
* Allocation Size is less than 9 512-bit URB entries.
|
|
*
|
|
* Similar text exists for HS, DS and GS.
|
|
*/
|
|
unsigned granularity[4];
|
|
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
granularity[i] = (entry_size[i] < 9) ? 8 : 1;
|
|
}
|
|
|
|
unsigned min_entries[4] = {
|
|
/* VS has a lower limit on the number of URB entries.
|
|
*
|
|
* From the Broadwell PRM, 3DSTATE_URB_VS instruction:
|
|
* "When tessellation is enabled, the VS Number of URB Entries must be
|
|
* greater than or equal to 192."
|
|
*/
|
|
[MESA_SHADER_VERTEX] = tess_present && devinfo->gen == 8 ?
|
|
192 : devinfo->urb.min_entries[MESA_SHADER_VERTEX],
|
|
|
|
/* There are two constraints on the minimum amount of URB space we can
|
|
* allocate:
|
|
*
|
|
* (1) We need room for at least 2 URB entries, since we always operate
|
|
* the GS in DUAL_OBJECT mode.
|
|
*
|
|
* (2) We can't allocate less than nr_gs_entries_granularity.
|
|
*/
|
|
[MESA_SHADER_GEOMETRY] = gs_present ? 2 : 0,
|
|
|
|
[MESA_SHADER_TESS_CTRL] = tess_present ? 1 : 0,
|
|
|
|
[MESA_SHADER_TESS_EVAL] = tess_present ?
|
|
devinfo->urb.min_entries[MESA_SHADER_TESS_EVAL] : 0,
|
|
};
|
|
|
|
/* Min VS Entries isn't a multiple of 8 on Cherryview/Broxton; round up.
|
|
* Round them all up.
|
|
*/
|
|
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
min_entries[i] = ALIGN(min_entries[i], granularity[i]);
|
|
}
|
|
|
|
unsigned entry_size_bytes[4];
|
|
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
entry_size_bytes[i] = 64 * entry_size[i];
|
|
}
|
|
|
|
/* Initially, assign each stage the minimum amount of URB space it needs,
|
|
* and make a note of how much additional space it "wants" (the amount of
|
|
* additional space it could actually make use of).
|
|
*/
|
|
unsigned chunks[4];
|
|
unsigned wants[4];
|
|
unsigned total_needs = push_constant_chunks;
|
|
unsigned total_wants = 0;
|
|
|
|
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
if (active[i]) {
|
|
chunks[i] = DIV_ROUND_UP(min_entries[i] * entry_size_bytes[i],
|
|
chunk_size_bytes);
|
|
|
|
wants[i] =
|
|
DIV_ROUND_UP(devinfo->urb.max_entries[i] * entry_size_bytes[i],
|
|
chunk_size_bytes) - chunks[i];
|
|
} else {
|
|
chunks[i] = 0;
|
|
wants[i] = 0;
|
|
}
|
|
|
|
total_needs += chunks[i];
|
|
total_wants += wants[i];
|
|
}
|
|
|
|
assert(total_needs <= urb_chunks);
|
|
|
|
*constrained = total_needs + total_wants > urb_chunks;
|
|
|
|
/* Mete out remaining space (if any) in proportion to "wants". */
|
|
unsigned remaining_space = MIN2(urb_chunks - total_needs, total_wants);
|
|
|
|
if (remaining_space > 0) {
|
|
for (int i = MESA_SHADER_VERTEX;
|
|
total_wants > 0 && i <= MESA_SHADER_TESS_EVAL; i++) {
|
|
unsigned additional = (unsigned)
|
|
roundf(wants[i] * (((float) remaining_space) / total_wants));
|
|
chunks[i] += additional;
|
|
remaining_space -= additional;
|
|
total_wants -= wants[i];
|
|
}
|
|
|
|
chunks[MESA_SHADER_GEOMETRY] += remaining_space;
|
|
}
|
|
|
|
/* Sanity check that we haven't over-allocated. */
|
|
unsigned total_chunks = push_constant_chunks;
|
|
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
total_chunks += chunks[i];
|
|
}
|
|
assert(total_chunks <= urb_chunks);
|
|
|
|
/* Finally, compute the number of entries that can fit in the space
|
|
* allocated to each stage.
|
|
*/
|
|
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
entries[i] = chunks[i] * chunk_size_bytes / entry_size_bytes[i];
|
|
|
|
/* Since we rounded up when computing wants[], this may be slightly
|
|
* more than the maximum allowed amount, so correct for that.
|
|
*/
|
|
entries[i] = MIN2(entries[i], devinfo->urb.max_entries[i]);
|
|
|
|
/* Ensure that we program a multiple of the granularity. */
|
|
entries[i] = ROUND_DOWN_TO(entries[i], granularity[i]);
|
|
|
|
/* Finally, sanity check to make sure we have at least the minimum
|
|
* number of entries needed for each stage.
|
|
*/
|
|
assert(entries[i] >= min_entries[i]);
|
|
}
|
|
|
|
/* Lay out the URB in pipeline order: push constants, VS, HS, DS, GS. */
|
|
int next = push_constant_chunks;
|
|
for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
|
|
if (entries[i]) {
|
|
start[i] = next;
|
|
next += chunks[i];
|
|
} else {
|
|
/* Just put disabled stages at the beginning. */
|
|
start[i] = 0;
|
|
}
|
|
}
|
|
|
|
if (deref_block_size) {
|
|
if (devinfo->gen >= 12) {
|
|
/* From the Gen12 BSpec:
|
|
*
|
|
* "Deref Block size depends on the last enabled shader and number
|
|
* of handles programmed for that shader
|
|
*
|
|
* 1) For GS last shader enabled cases, the deref block is
|
|
* always set to a per poly(within hardware)
|
|
*
|
|
* If the last enabled shader is VS or DS.
|
|
*
|
|
* 1) If DS is last enabled shader then if the number of DS
|
|
* handles is less than 324, need to set per poly deref.
|
|
*
|
|
* 2) If VS is last enabled shader then if the number of VS
|
|
* handles is less than 192, need to set per poly deref"
|
|
*
|
|
* The default is 32 so we assume that's the right choice if we're
|
|
* not in one of the explicit cases listed above.
|
|
*/
|
|
if (gs_present) {
|
|
*deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY;
|
|
} else if (tess_present) {
|
|
if (entries[MESA_SHADER_TESS_EVAL] < 324)
|
|
*deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY;
|
|
else
|
|
*deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_32;
|
|
} else {
|
|
if (entries[MESA_SHADER_VERTEX] < 192)
|
|
*deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_PER_POLY;
|
|
else
|
|
*deref_block_size = INTEL_URB_DEREF_BLOCK_SIZE_32;
|
|
}
|
|
} else {
|
|
*deref_block_size = 0;
|
|
}
|
|
}
|
|
}
|