Files
third_party_mesa3d/src/gallium/drivers/vc4/vc4_program.c
Vasily Khoruzhick 9367d2ca37 nir: allow specifying filter callback in lower_alu_to_scalar
Set of opcodes doesn't have enough flexibility in certain cases. E.g.
Utgard PP has vector conditional select operation, but condition is always
scalar. Lowering all the vector selects to scalar increases instruction
number, so we need a way to filter only those ops that can't be handled
in hardware.

Reviewed-by: Qiang Yu <yuq825@gmail.com>
Reviewed-by: Eric Anholt <eric@anholt.net>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
Signed-off-by: Vasily Khoruzhick <anarsoul@gmail.com>
2019-09-06 01:51:28 +00:00

2965 lines
104 KiB
C

/*
* Copyright (c) 2014 Scott Mansell
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "util/u_format.h"
#include "util/crc32.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "util/ralloc.h"
#include "util/hash_table.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_parse.h"
#include "compiler/nir/nir.h"
#include "compiler/nir/nir_builder.h"
#include "compiler/nir_types.h"
#include "nir/tgsi_to_nir.h"
#include "vc4_context.h"
#include "vc4_qpu.h"
#include "vc4_qir.h"
static struct qreg
ntq_get_src(struct vc4_compile *c, nir_src src, int i);
static void
ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
static int
type_size(const struct glsl_type *type, bool bindless)
{
return glsl_count_attribute_slots(type, false);
}
static void
resize_qreg_array(struct vc4_compile *c,
struct qreg **regs,
uint32_t *size,
uint32_t decl_size)
{
if (*size >= decl_size)
return;
uint32_t old_size = *size;
*size = MAX2(*size * 2, decl_size);
*regs = reralloc(c, *regs, struct qreg, *size);
if (!*regs) {
fprintf(stderr, "Malloc failure\n");
abort();
}
for (uint32_t i = old_size; i < *size; i++)
(*regs)[i] = c->undef;
}
static void
ntq_emit_thrsw(struct vc4_compile *c)
{
if (!c->fs_threaded)
return;
/* Always thread switch after each texture operation for now.
*
* We could do better by batching a bunch of texture fetches up and
* then doing one thread switch and collecting all their results
* afterward.
*/
qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
c->undef, c->undef));
c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
}
static struct qreg
indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
{
struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
/* Clamp to [0, array size). Note that MIN/MAX are signed. */
uint32_t range = nir_intrinsic_range(intr);
indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
qir_uniform_ui(c, range - 4));
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
indirect_offset,
qir_uniform(c, QUNIFORM_UBO0_ADDR,
nir_intrinsic_base(intr)));
c->num_texture_samples++;
ntq_emit_thrsw(c);
return qir_TEX_RESULT(c);
}
static struct qreg
vc4_ubo_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
{
int buffer_index = nir_src_as_uint(intr->src[0]);
assert(buffer_index == 1);
assert(c->stage == QSTAGE_FRAG);
struct qreg offset = ntq_get_src(c, intr->src[1], 0);
/* Clamp to [0, array size). Note that MIN/MAX are signed. */
offset = qir_MAX(c, offset, qir_uniform_ui(c, 0));
offset = qir_MIN_NOIMM(c, offset,
qir_uniform_ui(c, c->fs_key->ubo_1_size - 4));
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
offset,
qir_uniform(c, QUNIFORM_UBO1_ADDR, 0));
c->num_texture_samples++;
ntq_emit_thrsw(c);
return qir_TEX_RESULT(c);
}
nir_ssa_def *
vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
{
switch (swiz) {
default:
case PIPE_SWIZZLE_NONE:
fprintf(stderr, "warning: unknown swizzle\n");
/* FALLTHROUGH */
case PIPE_SWIZZLE_0:
return nir_imm_float(b, 0.0);
case PIPE_SWIZZLE_1:
return nir_imm_float(b, 1.0);
case PIPE_SWIZZLE_X:
case PIPE_SWIZZLE_Y:
case PIPE_SWIZZLE_Z:
case PIPE_SWIZZLE_W:
return srcs[swiz];
}
}
static struct qreg *
ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
{
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
def->num_components);
_mesa_hash_table_insert(c->def_ht, def, qregs);
return qregs;
}
/**
* This function is responsible for getting QIR results into the associated
* storage for a NIR instruction.
*
* If it's a NIR SSA def, then we just set the associated hash table entry to
* the new result.
*
* If it's a NIR reg, then we need to update the existing qreg assigned to the
* NIR destination with the incoming value. To do that without introducing
* new MOVs, we require that the incoming qreg either be a uniform, or be
* SSA-defined by the previous QIR instruction in the block and rewritable by
* this function. That lets us sneak ahead and insert the SF flag beforehand
* (knowing that the previous instruction doesn't depend on flags) and rewrite
* its destination to be the NIR reg's destination
*/
static void
ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
struct qreg result)
{
struct qinst *last_inst = NULL;
if (!list_empty(&c->cur_block->instructions))
last_inst = (struct qinst *)c->cur_block->instructions.prev;
assert(result.file == QFILE_UNIF ||
(result.file == QFILE_TEMP &&
last_inst && last_inst == c->defs[result.index]));
if (dest->is_ssa) {
assert(chan < dest->ssa.num_components);
struct qreg *qregs;
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, &dest->ssa);
if (entry)
qregs = entry->data;
else
qregs = ntq_init_ssa_def(c, &dest->ssa);
qregs[chan] = result;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
struct qreg *qregs = entry->data;
/* Insert a MOV if the source wasn't an SSA def in the
* previous instruction.
*/
if (result.file == QFILE_UNIF) {
result = qir_MOV(c, result);
last_inst = c->defs[result.index];
}
/* We know they're both temps, so just rewrite index. */
c->defs[last_inst->dst.index] = NULL;
last_inst->dst.index = qregs[chan].index;
/* If we're in control flow, then make this update of the reg
* conditional on the execution mask.
*/
if (c->execute.file != QFILE_NULL) {
last_inst->dst.index = qregs[chan].index;
/* Set the flags to the current exec mask. To insert
* the SF, we temporarily remove our SSA instruction.
*/
list_del(&last_inst->link);
qir_SF(c, c->execute);
list_addtail(&last_inst->link,
&c->cur_block->instructions);
last_inst->cond = QPU_COND_ZS;
last_inst->cond_is_exec_mask = true;
}
}
}
static struct qreg *
ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
{
if (dest->is_ssa) {
struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
for (int i = 0; i < dest->ssa.num_components; i++)
qregs[i] = c->undef;
return qregs;
} else {
nir_register *reg = dest->reg.reg;
assert(dest->reg.base_offset == 0);
assert(reg->num_array_elems == 0);
struct hash_entry *entry =
_mesa_hash_table_search(c->def_ht, reg);
return entry->data;
}
}
static struct qreg
ntq_get_src(struct vc4_compile *c, nir_src src, int i)
{
struct hash_entry *entry;
if (src.is_ssa) {
entry = _mesa_hash_table_search(c->def_ht, src.ssa);
assert(i < src.ssa->num_components);
} else {
nir_register *reg = src.reg.reg;
entry = _mesa_hash_table_search(c->def_ht, reg);
assert(reg->num_array_elems == 0);
assert(src.reg.base_offset == 0);
assert(i < reg->num_components);
}
struct qreg *qregs = entry->data;
return qregs[i];
}
static struct qreg
ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
unsigned src)
{
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
unsigned chan = ffs(instr->dest.write_mask) - 1;
struct qreg r = ntq_get_src(c, instr->src[src].src,
instr->src[src].swizzle[chan]);
assert(!instr->src[src].abs);
assert(!instr->src[src].negate);
return r;
};
static inline struct qreg
qir_SAT(struct vc4_compile *c, struct qreg val)
{
return qir_FMAX(c,
qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
qir_uniform_f(c, 0.0));
}
static struct qreg
ntq_rcp(struct vc4_compile *c, struct qreg x)
{
struct qreg r = qir_RCP(c, x);
/* Apply a Newton-Raphson step to improve the accuracy. */
r = qir_FMUL(c, r, qir_FSUB(c,
qir_uniform_f(c, 2.0),
qir_FMUL(c, x, r)));
return r;
}
static struct qreg
ntq_rsq(struct vc4_compile *c, struct qreg x)
{
struct qreg r = qir_RSQ(c, x);
/* Apply a Newton-Raphson step to improve the accuracy. */
r = qir_FMUL(c, r, qir_FSUB(c,
qir_uniform_f(c, 1.5),
qir_FMUL(c,
qir_uniform_f(c, 0.5),
qir_FMUL(c, x,
qir_FMUL(c, r, r)))));
return r;
}
static struct qreg
ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
{
struct qreg src0_hi = qir_SHR(c, src0,
qir_uniform_ui(c, 24));
struct qreg src1_hi = qir_SHR(c, src1,
qir_uniform_ui(c, 24));
struct qreg hilo = qir_MUL24(c, src0_hi, src1);
struct qreg lohi = qir_MUL24(c, src0, src1_hi);
struct qreg lolo = qir_MUL24(c, src0, src1);
return qir_ADD(c, lolo, qir_SHL(c,
qir_ADD(c, hilo, lohi),
qir_uniform_ui(c, 24)));
}
static struct qreg
ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
{
struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
qir_uniform_ui(c, 8)));
return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
}
/**
* Emits a lowered TXF_MS from an MSAA texture.
*
* The addressing math has been lowered in NIR, and now we just need to read
* it like a UBO.
*/
static void
ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
{
uint32_t tile_width = 32;
uint32_t tile_height = 32;
uint32_t tile_size = (tile_height * tile_width *
VC4_MAX_SAMPLES * sizeof(uint32_t));
unsigned unit = instr->texture_index;
uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
uint32_t w_tiles = w / tile_width;
uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
uint32_t h_tiles = h / tile_height;
uint32_t size = w_tiles * h_tiles * tile_size;
struct qreg addr;
assert(instr->num_srcs == 1);
assert(instr->src[0].src_type == nir_tex_src_coord);
addr = ntq_get_src(c, instr->src[0].src, 0);
/* Perform the clamping required by kernel validation. */
addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
ntq_emit_thrsw(c);
struct qreg tex = qir_TEX_RESULT(c);
c->num_texture_samples++;
enum pipe_format format = c->key->tex[unit].format;
if (util_format_is_depth_or_stencil(format)) {
struct qreg scaled = ntq_scale_depth_texture(c, tex);
for (int i = 0; i < 4; i++)
ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
} else {
for (int i = 0; i < 4; i++)
ntq_store_dest(c, &instr->dest, i,
qir_UNPACK_8_F(c, tex, i));
}
}
static void
ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
{
struct qreg s, t, r, lod, compare;
bool is_txb = false, is_txl = false;
unsigned unit = instr->texture_index;
if (instr->op == nir_texop_txf) {
ntq_emit_txf(c, instr);
return;
}
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_coord:
s = ntq_get_src(c, instr->src[i].src, 0);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
t = qir_uniform_f(c, 0.5);
else
t = ntq_get_src(c, instr->src[i].src, 1);
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
r = ntq_get_src(c, instr->src[i].src, 2);
break;
case nir_tex_src_bias:
lod = ntq_get_src(c, instr->src[i].src, 0);
is_txb = true;
break;
case nir_tex_src_lod:
lod = ntq_get_src(c, instr->src[i].src, 0);
is_txl = true;
break;
case nir_tex_src_comparator:
compare = ntq_get_src(c, instr->src[i].src, 0);
break;
default:
unreachable("unknown texture source");
}
}
if (c->stage != QSTAGE_FRAG && !is_txl) {
/* From the GLSL 1.20 spec:
*
* "If it is mip-mapped and running on the vertex shader,
* then the base texture is used."
*/
is_txl = true;
lod = qir_uniform_ui(c, 0);
}
if (c->key->tex[unit].force_first_level) {
lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
is_txl = true;
is_txb = false;
}
struct qreg texture_u[] = {
qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
qir_uniform(c, QUNIFORM_CONSTANT, 0),
qir_uniform(c, QUNIFORM_CONSTANT, 0),
};
uint32_t next_texture_u = 0;
/* There is no native support for GL texture rectangle coordinates, so
* we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
* 1]).
*/
if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
s = qir_FMUL(c, s,
qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
t = qir_FMUL(c, t,
qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
}
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
unit | (is_txl << 16));
}
struct qinst *tmu;
if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
tmu->src[qir_get_tex_uniform_src(tmu)] =
texture_u[next_texture_u++];
} else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
unit));
tmu->src[qir_get_tex_uniform_src(tmu)] =
texture_u[next_texture_u++];
}
if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
s = qir_SAT(c, s);
}
if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
t = qir_SAT(c, t);
}
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
tmu->src[qir_get_tex_uniform_src(tmu)] =
texture_u[next_texture_u++];
if (is_txl || is_txb) {
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
tmu->src[qir_get_tex_uniform_src(tmu)] =
texture_u[next_texture_u++];
}
tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
c->num_texture_samples++;
ntq_emit_thrsw(c);
struct qreg tex = qir_TEX_RESULT(c);
enum pipe_format format = c->key->tex[unit].format;
struct qreg *dest = ntq_get_dest(c, &instr->dest);
if (util_format_is_depth_or_stencil(format)) {
struct qreg normalized = ntq_scale_depth_texture(c, tex);
struct qreg depth_output;
struct qreg u0 = qir_uniform_f(c, 0.0f);
struct qreg u1 = qir_uniform_f(c, 1.0f);
if (c->key->tex[unit].compare_mode) {
/* From the GL_ARB_shadow spec:
*
* "Let Dt (D subscript t) be the depth texture
* value, in the range [0, 1]. Let R be the
* interpolated texture coordinate clamped to the
* range [0, 1]."
*/
compare = qir_SAT(c, compare);
switch (c->key->tex[unit].compare_func) {
case PIPE_FUNC_NEVER:
depth_output = qir_uniform_f(c, 0.0f);
break;
case PIPE_FUNC_ALWAYS:
depth_output = u1;
break;
case PIPE_FUNC_EQUAL:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
break;
case PIPE_FUNC_NOTEQUAL:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
break;
case PIPE_FUNC_GREATER:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
break;
case PIPE_FUNC_GEQUAL:
qir_SF(c, qir_FSUB(c, normalized, compare));
depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
break;
case PIPE_FUNC_LESS:
qir_SF(c, qir_FSUB(c, compare, normalized));
depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
break;
case PIPE_FUNC_LEQUAL:
qir_SF(c, qir_FSUB(c, normalized, compare));
depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
break;
}
} else {
depth_output = normalized;
}
for (int i = 0; i < 4; i++)
dest[i] = depth_output;
} else {
for (int i = 0; i < 4; i++)
dest[i] = qir_UNPACK_8_F(c, tex, i);
}
}
/**
* Computes x - floor(x), which is tricky because our FTOI truncates (rounds
* to zero).
*/
static struct qreg
ntq_ffract(struct vc4_compile *c, struct qreg src)
{
struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
struct qreg diff = qir_FSUB(c, src, trunc);
qir_SF(c, diff);
qir_FADD_dest(c, diff,
diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
return qir_MOV(c, diff);
}
/**
* Computes floor(x), which is tricky because our FTOI truncates (rounds to
* zero).
*/
static struct qreg
ntq_ffloor(struct vc4_compile *c, struct qreg src)
{
struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
/* This will be < 0 if we truncated and the truncation was of a value
* that was < 0 in the first place.
*/
qir_SF(c, qir_FSUB(c, src, result));
struct qinst *sub = qir_FSUB_dest(c, result,
result, qir_uniform_f(c, 1.0));
sub->cond = QPU_COND_NS;
return qir_MOV(c, result);
}
/**
* Computes ceil(x), which is tricky because our FTOI truncates (rounds to
* zero).
*/
static struct qreg
ntq_fceil(struct vc4_compile *c, struct qreg src)
{
struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
/* This will be < 0 if we truncated and the truncation was of a value
* that was > 0 in the first place.
*/
qir_SF(c, qir_FSUB(c, result, src));
qir_FADD_dest(c, result,
result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
return qir_MOV(c, result);
}
static struct qreg
ntq_shrink_sincos_input_range(struct vc4_compile *c, struct qreg x)
{
/* Since we're using a Taylor approximation, we want to have a small
* number of coefficients and take advantage of sin/cos repeating
* every 2pi. We keep our x as close to 0 as we can, since the series
* will be less accurate as |x| increases. (Also, be careful of
* shifting the input x value to be tricky with sin/cos relations,
* because getting accurate values for x==0 is very important for SDL
* rendering)
*/
struct qreg scaled_x =
qir_FMUL(c, x,
qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
/* Note: FTOI truncates toward 0. */
struct qreg x_frac = qir_FSUB(c, scaled_x,
qir_ITOF(c, qir_FTOI(c, scaled_x)));
/* Map [0.5, 1] to [-0.5, 0] */
qir_SF(c, qir_FSUB(c, x_frac, qir_uniform_f(c, 0.5)));
qir_FSUB_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NC;
/* Map [-1, -0.5] to [0, 0.5] */
qir_SF(c, qir_FADD(c, x_frac, qir_uniform_f(c, 0.5)));
qir_FADD_dest(c, x_frac, x_frac, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
return x_frac;
}
static struct qreg
ntq_fsin(struct vc4_compile *c, struct qreg src)
{
float coeff[] = {
2.0 * M_PI,
-pow(2.0 * M_PI, 3) / (3 * 2 * 1),
pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
};
struct qreg x = ntq_shrink_sincos_input_range(c, src);
struct qreg x2 = qir_FMUL(c, x, x);
struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
x = qir_FMUL(c, x, x2);
sum = qir_FADD(c,
sum,
qir_FMUL(c,
x,
qir_uniform_f(c, coeff[i])));
}
return sum;
}
static struct qreg
ntq_fcos(struct vc4_compile *c, struct qreg src)
{
float coeff[] = {
1.0f,
-pow(2.0 * M_PI, 2) / (2 * 1),
pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
-pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
};
struct qreg x_frac = ntq_shrink_sincos_input_range(c, src);
struct qreg sum = qir_uniform_f(c, coeff[0]);
struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
struct qreg x = x2; /* Current x^2, x^4, or x^6 */
for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
if (i != 1)
x = qir_FMUL(c, x, x2);
sum = qir_FADD(c, qir_FMUL(c,
x,
qir_uniform_f(c, coeff[i])),
sum);
}
return sum;
}
static struct qreg
ntq_fsign(struct vc4_compile *c, struct qreg src)
{
struct qreg t = qir_get_temp(c);
qir_SF(c, src);
qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
return qir_MOV(c, t);
}
static void
emit_vertex_input(struct vc4_compile *c, int attr)
{
enum pipe_format format = c->vs_key->attr_formats[attr];
uint32_t attr_size = util_format_get_blocksize(format);
c->vattr_sizes[attr] = align(attr_size, 4);
for (int i = 0; i < align(attr_size, 4) / 4; i++) {
c->inputs[attr * 4 + i] =
qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
c->num_inputs++;
}
}
static void
emit_fragcoord_input(struct vc4_compile *c, int attr)
{
c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
c->inputs[attr * 4 + 2] =
qir_FMUL(c,
qir_ITOF(c, qir_FRAG_Z(c)),
qir_uniform_f(c, 1.0 / 0xffffff));
c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
}
static struct qreg
emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
uint8_t swizzle)
{
uint32_t i = c->num_input_slots++;
struct qreg vary = {
QFILE_VARY,
i
};
if (c->num_input_slots >= c->input_slots_array_size) {
c->input_slots_array_size =
MAX2(4, c->input_slots_array_size * 2);
c->input_slots = reralloc(c, c->input_slots,
struct vc4_varying_slot,
c->input_slots_array_size);
}
c->input_slots[i].slot = slot;
c->input_slots[i].swizzle = swizzle;
return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
}
static void
emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
{
for (int i = 0; i < 4; i++) {
c->inputs[attr * 4 + i] =
emit_fragment_varying(c, slot, i);
c->num_inputs++;
}
}
static void
add_output(struct vc4_compile *c,
uint32_t decl_offset,
uint8_t slot,
uint8_t swizzle)
{
uint32_t old_array_size = c->outputs_array_size;
resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
decl_offset + 1);
if (old_array_size != c->outputs_array_size) {
c->output_slots = reralloc(c,
c->output_slots,
struct vc4_varying_slot,
c->outputs_array_size);
}
c->output_slots[decl_offset].slot = slot;
c->output_slots[decl_offset].swizzle = swizzle;
}
static bool
ntq_src_is_only_ssa_def_user(nir_src *src)
{
if (!src->is_ssa)
return false;
if (!list_empty(&src->ssa->if_uses))
return false;
return (src->ssa->uses.next == &src->use_link &&
src->ssa->uses.next->next == &src->ssa->uses);
}
/**
* In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
* bit set.
*
* However, as an optimization, it tries to find the instructions generating
* the sources to be packed and just emit the pack flag there, if possible.
*/
static void
ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
{
struct qreg result = qir_get_temp(c);
struct nir_alu_instr *vec4 = NULL;
/* If packing from a vec4 op (as expected), identify it so that we can
* peek back at what generated its sources.
*/
if (instr->src[0].src.is_ssa &&
instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
nir_op_vec4) {
vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
}
/* If the pack is replicating the same channel 4 times, use the 8888
* pack flag. This is common for blending using the alpha
* channel.
*/
if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
struct qreg rep = ntq_get_src(c,
instr->src[0].src,
instr->src[0].swizzle[0]);
ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
return;
}
for (int i = 0; i < 4; i++) {
int swiz = instr->src[0].swizzle[i];
struct qreg src;
if (vec4) {
src = ntq_get_src(c, vec4->src[swiz].src,
vec4->src[swiz].swizzle[0]);
} else {
src = ntq_get_src(c, instr->src[0].src, swiz);
}
if (vec4 &&
ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
src.file == QFILE_TEMP &&
c->defs[src.index] &&
qir_is_mul(c->defs[src.index]) &&
!c->defs[src.index]->dst.pack) {
struct qinst *rewrite = c->defs[src.index];
c->defs[src.index] = NULL;
rewrite->dst = result;
rewrite->dst.pack = QPU_PACK_MUL_8A + i;
continue;
}
qir_PACK_8_F(c, result, src, i);
}
ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
}
/** Handles sign-extended bitfield extracts for 16 bits. */
static struct qreg
ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
struct qreg bits)
{
assert(bits.file == QFILE_UNIF &&
c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
c->uniform_data[bits.index] == 16);
assert(offset.file == QFILE_UNIF &&
c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
int offset_bit = c->uniform_data[offset.index];
assert(offset_bit % 16 == 0);
return qir_UNPACK_16_I(c, base, offset_bit / 16);
}
/** Handles unsigned bitfield extracts for 8 bits. */
static struct qreg
ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
struct qreg bits)
{
assert(bits.file == QFILE_UNIF &&
c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
c->uniform_data[bits.index] == 8);
assert(offset.file == QFILE_UNIF &&
c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
int offset_bit = c->uniform_data[offset.index];
assert(offset_bit % 8 == 0);
return qir_UNPACK_8_I(c, base, offset_bit / 8);
}
/**
* If compare_instr is a valid comparison instruction, emits the
* compare_instr's comparison and returns the sel_instr's return value based
* on the compare_instr's result.
*/
static bool
ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
nir_alu_instr *compare_instr,
nir_alu_instr *sel_instr)
{
enum qpu_cond cond;
switch (compare_instr->op) {
case nir_op_feq32:
case nir_op_ieq32:
case nir_op_seq:
cond = QPU_COND_ZS;
break;
case nir_op_fne32:
case nir_op_ine32:
case nir_op_sne:
cond = QPU_COND_ZC;
break;
case nir_op_fge32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_sge:
cond = QPU_COND_NC;
break;
case nir_op_flt32:
case nir_op_ilt32:
case nir_op_slt:
cond = QPU_COND_NS;
break;
default:
return false;
}
struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
unsigned unsized_type =
nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
if (unsized_type == nir_type_float)
qir_SF(c, qir_FSUB(c, src0, src1));
else
qir_SF(c, qir_SUB(c, src0, src1));
switch (sel_instr->op) {
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt:
*dest = qir_SEL(c, cond,
qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
break;
case nir_op_b32csel:
*dest = qir_SEL(c, cond,
ntq_get_alu_src(c, sel_instr, 1),
ntq_get_alu_src(c, sel_instr, 2));
break;
default:
*dest = qir_SEL(c, cond,
qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
break;
}
/* Make the temporary for nir_store_dest(). */
*dest = qir_MOV(c, *dest);
return true;
}
/**
* Attempts to fold a comparison generating a boolean result into the
* condition code for selecting between two values, instead of comparing the
* boolean result against 0 to generate the condition code.
*/
static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
struct qreg *src)
{
if (!instr->src[0].src.is_ssa)
goto out;
if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
goto out;
nir_alu_instr *compare =
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
if (!compare)
goto out;
struct qreg dest;
if (ntq_emit_comparison(c, &dest, compare, instr))
return dest;
out:
qir_SF(c, src[0]);
return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
}
static struct qreg
ntq_fddx(struct vc4_compile *c, struct qreg src)
{
/* Make sure that we have a bare temp to use for MUL rotation, so it
* can be allocated to an accumulator.
*/
if (src.pack || src.file != QFILE_TEMP)
src = qir_MOV(c, src);
struct qreg from_left = qir_ROT_MUL(c, src, 1);
struct qreg from_right = qir_ROT_MUL(c, src, 15);
/* Distinguish left/right pixels of the quad. */
qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
qir_uniform_ui(c, 1)));
return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
qir_FSUB(c, from_right, src),
qir_FSUB(c, src, from_left)));
}
static struct qreg
ntq_fddy(struct vc4_compile *c, struct qreg src)
{
if (src.pack || src.file != QFILE_TEMP)
src = qir_MOV(c, src);
struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
struct qreg from_top = qir_ROT_MUL(c, src, 14);
/* Distinguish top/bottom pixels of the quad. */
qir_SF(c, qir_AND(c,
qir_reg(QFILE_QPU_ELEMENT, 0),
qir_uniform_ui(c, 2)));
return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
qir_FSUB(c, from_top, src),
qir_FSUB(c, src, from_bottom)));
}
static void
ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
{
/* This should always be lowered to ALU operations for VC4. */
assert(!instr->dest.saturate);
/* Vectors are special in that they have non-scalarized writemasks,
* and just take the first swizzle channel for each argument in order
* into each writemask channel.
*/
if (instr->op == nir_op_vec2 ||
instr->op == nir_op_vec3 ||
instr->op == nir_op_vec4) {
struct qreg srcs[4];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
srcs[i] = ntq_get_src(c, instr->src[i].src,
instr->src[i].swizzle[0]);
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
ntq_store_dest(c, &instr->dest.dest, i,
qir_MOV(c, srcs[i]));
return;
}
if (instr->op == nir_op_pack_unorm_4x8) {
ntq_emit_pack_unorm_4x8(c, instr);
return;
}
if (instr->op == nir_op_unpack_unorm_4x8) {
struct qreg src = ntq_get_src(c, instr->src[0].src,
instr->src[0].swizzle[0]);
for (int i = 0; i < 4; i++) {
if (instr->dest.write_mask & (1 << i))
ntq_store_dest(c, &instr->dest.dest, i,
qir_UNPACK_8_F(c, src, i));
}
return;
}
/* General case: We can just grab the one used channel per src. */
struct qreg src[nir_op_infos[instr->op].num_inputs];
for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
src[i] = ntq_get_alu_src(c, instr, i);
}
struct qreg result;
switch (instr->op) {
case nir_op_mov:
result = qir_MOV(c, src[0]);
break;
case nir_op_fmul:
result = qir_FMUL(c, src[0], src[1]);
break;
case nir_op_fadd:
result = qir_FADD(c, src[0], src[1]);
break;
case nir_op_fsub:
result = qir_FSUB(c, src[0], src[1]);
break;
case nir_op_fmin:
result = qir_FMIN(c, src[0], src[1]);
break;
case nir_op_fmax:
result = qir_FMAX(c, src[0], src[1]);
break;
case nir_op_f2i32:
case nir_op_f2u32:
result = qir_FTOI(c, src[0]);
break;
case nir_op_i2f32:
case nir_op_u2f32:
result = qir_ITOF(c, src[0]);
break;
case nir_op_b2f32:
result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
break;
case nir_op_b2i32:
result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
break;
case nir_op_i2b32:
case nir_op_f2b32:
qir_SF(c, src[0]);
result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
qir_uniform_ui(c, ~0),
qir_uniform_ui(c, 0)));
break;
case nir_op_iadd:
result = qir_ADD(c, src[0], src[1]);
break;
case nir_op_ushr:
result = qir_SHR(c, src[0], src[1]);
break;
case nir_op_isub:
result = qir_SUB(c, src[0], src[1]);
break;
case nir_op_ishr:
result = qir_ASR(c, src[0], src[1]);
break;
case nir_op_ishl:
result = qir_SHL(c, src[0], src[1]);
break;
case nir_op_imin:
result = qir_MIN(c, src[0], src[1]);
break;
case nir_op_imax:
result = qir_MAX(c, src[0], src[1]);
break;
case nir_op_iand:
result = qir_AND(c, src[0], src[1]);
break;
case nir_op_ior:
result = qir_OR(c, src[0], src[1]);
break;
case nir_op_ixor:
result = qir_XOR(c, src[0], src[1]);
break;
case nir_op_inot:
result = qir_NOT(c, src[0]);
break;
case nir_op_imul:
result = ntq_umul(c, src[0], src[1]);
break;
case nir_op_seq:
case nir_op_sne:
case nir_op_sge:
case nir_op_slt:
case nir_op_feq32:
case nir_op_fne32:
case nir_op_fge32:
case nir_op_flt32:
case nir_op_ieq32:
case nir_op_ine32:
case nir_op_ige32:
case nir_op_uge32:
case nir_op_ilt32:
if (!ntq_emit_comparison(c, &result, instr, instr)) {
fprintf(stderr, "Bad comparison instruction\n");
}
break;
case nir_op_b32csel:
result = ntq_emit_bcsel(c, instr, src);
break;
case nir_op_fcsel:
qir_SF(c, src[0]);
result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
break;
case nir_op_frcp:
result = ntq_rcp(c, src[0]);
break;
case nir_op_frsq:
result = ntq_rsq(c, src[0]);
break;
case nir_op_fexp2:
result = qir_EXP2(c, src[0]);
break;
case nir_op_flog2:
result = qir_LOG2(c, src[0]);
break;
case nir_op_ftrunc:
result = qir_ITOF(c, qir_FTOI(c, src[0]));
break;
case nir_op_fceil:
result = ntq_fceil(c, src[0]);
break;
case nir_op_ffract:
result = ntq_ffract(c, src[0]);
break;
case nir_op_ffloor:
result = ntq_ffloor(c, src[0]);
break;
case nir_op_fsin:
result = ntq_fsin(c, src[0]);
break;
case nir_op_fcos:
result = ntq_fcos(c, src[0]);
break;
case nir_op_fsign:
result = ntq_fsign(c, src[0]);
break;
case nir_op_fabs:
result = qir_FMAXABS(c, src[0], src[0]);
break;
case nir_op_iabs:
result = qir_MAX(c, src[0],
qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
break;
case nir_op_ibitfield_extract:
result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
break;
case nir_op_ubitfield_extract:
result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
break;
case nir_op_usadd_4x8:
result = qir_V8ADDS(c, src[0], src[1]);
break;
case nir_op_ussub_4x8:
result = qir_V8SUBS(c, src[0], src[1]);
break;
case nir_op_umin_4x8:
result = qir_V8MIN(c, src[0], src[1]);
break;
case nir_op_umax_4x8:
result = qir_V8MAX(c, src[0], src[1]);
break;
case nir_op_umul_unorm_4x8:
result = qir_V8MULD(c, src[0], src[1]);
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
result = ntq_fddx(c, src[0]);
break;
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
result = ntq_fddy(c, src[0]);
break;
default:
fprintf(stderr, "unknown NIR ALU inst: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
abort();
}
/* We have a scalar result, so the instruction should only have a
* single channel written to.
*/
assert(util_is_power_of_two_or_zero(instr->dest.write_mask));
ntq_store_dest(c, &instr->dest.dest,
ffs(instr->dest.write_mask) - 1, result);
}
static void
emit_frag_end(struct vc4_compile *c)
{
struct qreg color;
if (c->output_color_index != -1) {
color = c->outputs[c->output_color_index];
} else {
color = qir_uniform_ui(c, 0);
}
uint32_t discard_cond = QPU_COND_ALWAYS;
if (c->s->info.fs.uses_discard) {
qir_SF(c, c->discard);
discard_cond = QPU_COND_ZS;
}
if (c->fs_key->stencil_enabled) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
qir_uniform(c, QUNIFORM_STENCIL, 0));
if (c->fs_key->stencil_twoside) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
qir_uniform(c, QUNIFORM_STENCIL, 1));
}
if (c->fs_key->stencil_full_writemasks) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
qir_uniform(c, QUNIFORM_STENCIL, 2));
}
}
if (c->output_sample_mask_index != -1) {
qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
}
if (c->fs_key->depth_enabled) {
if (c->output_position_index != -1) {
qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
qir_FMUL(c,
c->outputs[c->output_position_index],
qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
} else {
qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
qir_FRAG_Z(c))->cond = discard_cond;
}
}
if (!c->msaa_per_sample_output) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
color)->cond = discard_cond;
} else {
for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
c->sample_colors[i])->cond = discard_cond;
}
}
}
static void
emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
{
struct qreg packed = qir_get_temp(c);
for (int i = 0; i < 2; i++) {
struct qreg scale =
qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
struct qreg packed_chan = packed;
packed_chan.pack = QPU_PACK_A_16A + i;
qir_FTOI_dest(c, packed_chan,
qir_FMUL(c,
qir_FMUL(c,
c->outputs[c->output_position_index + i],
scale),
rcp_w));
}
qir_VPM_WRITE(c, packed);
}
static void
emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
{
struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
c->outputs[c->output_position_index + 2],
zscale),
rcp_w),
zoffset));
}
static void
emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
{
qir_VPM_WRITE(c, rcp_w);
}
static void
emit_point_size_write(struct vc4_compile *c)
{
struct qreg point_size;
if (c->output_point_size_index != -1)
point_size = c->outputs[c->output_point_size_index];
else
point_size = qir_uniform_f(c, 1.0);
qir_VPM_WRITE(c, point_size);
}
/**
* Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
*
* The simulator insists that there be at least one vertex attribute, so
* vc4_draw.c will emit one if it wouldn't have otherwise. The simulator also
* insists that all vertex attributes loaded get read by the VS/CS, so we have
* to consume it here.
*/
static void
emit_stub_vpm_read(struct vc4_compile *c)
{
if (c->num_inputs)
return;
c->vattr_sizes[0] = 4;
(void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
c->num_inputs++;
}
static void
emit_vert_end(struct vc4_compile *c,
struct vc4_varying_slot *fs_inputs,
uint32_t num_fs_inputs)
{
struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
emit_stub_vpm_read(c);
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size)
emit_point_size_write(c);
for (int i = 0; i < num_fs_inputs; i++) {
struct vc4_varying_slot *input = &fs_inputs[i];
int j;
for (j = 0; j < c->num_outputs; j++) {
struct vc4_varying_slot *output =
&c->output_slots[j];
if (input->slot == output->slot &&
input->swizzle == output->swizzle) {
qir_VPM_WRITE(c, c->outputs[j]);
break;
}
}
/* Emit padding if we didn't find a declared VS output for
* this FS input.
*/
if (j == c->num_outputs)
qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
}
}
static void
emit_coord_end(struct vc4_compile *c)
{
struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
emit_stub_vpm_read(c);
for (int i = 0; i < 4; i++)
qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
emit_scaled_viewport_write(c, rcp_w);
emit_zs_write(c, rcp_w);
emit_rcp_wc_write(c, rcp_w);
if (c->vs_key->per_vertex_point_size)
emit_point_size_write(c);
}
static void
vc4_optimize_nir(struct nir_shader *s)
{
bool progress;
unsigned lower_flrp =
(s->options->lower_flrp16 ? 16 : 0) |
(s->options->lower_flrp32 ? 32 : 0) |
(s->options->lower_flrp64 ? 64 : 0);
do {
progress = false;
NIR_PASS_V(s, nir_lower_vars_to_ssa);
NIR_PASS(progress, s, nir_lower_alu_to_scalar, NULL, NULL);
NIR_PASS(progress, s, nir_lower_phis_to_scalar);
NIR_PASS(progress, s, nir_copy_prop);
NIR_PASS(progress, s, nir_opt_remove_phis);
NIR_PASS(progress, s, nir_opt_dce);
NIR_PASS(progress, s, nir_opt_dead_cf);
NIR_PASS(progress, s, nir_opt_cse);
NIR_PASS(progress, s, nir_opt_peephole_select, 8, true, true);
NIR_PASS(progress, s, nir_opt_algebraic);
NIR_PASS(progress, s, nir_opt_constant_folding);
if (lower_flrp != 0) {
bool lower_flrp_progress = false;
NIR_PASS(lower_flrp_progress, s, nir_lower_flrp,
lower_flrp,
false /* always_precise */,
s->options->lower_ffma);
if (lower_flrp_progress) {
NIR_PASS(progress, s, nir_opt_constant_folding);
progress = true;
}
/* Nothing should rematerialize any flrps, so we only
* need to do this lowering once.
*/
lower_flrp = 0;
}
NIR_PASS(progress, s, nir_opt_undef);
NIR_PASS(progress, s, nir_opt_loop_unroll,
nir_var_shader_in |
nir_var_shader_out |
nir_var_function_temp);
} while (progress);
}
static int
driver_location_compare(const void *in_a, const void *in_b)
{
const nir_variable *const *a = in_a;
const nir_variable *const *b = in_b;
return (*a)->data.driver_location - (*b)->data.driver_location;
}
static void
ntq_setup_inputs(struct vc4_compile *c)
{
unsigned num_entries = 0;
nir_foreach_variable(var, &c->s->inputs)
num_entries++;
nir_variable *vars[num_entries];
unsigned i = 0;
nir_foreach_variable(var, &c->s->inputs)
vars[i++] = var;
/* Sort the variables so that we emit the input setup in
* driver_location order. This is required for VPM reads, whose data
* is fetched into the VPM in driver_location (TGSI register index)
* order.
*/
qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
for (unsigned i = 0; i < num_entries; i++) {
nir_variable *var = vars[i];
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location;
assert(array_len == 1);
(void)array_len;
resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
(loc + 1) * 4);
if (c->stage == QSTAGE_FRAG) {
if (var->data.location == VARYING_SLOT_POS) {
emit_fragcoord_input(c, loc);
} else if (var->data.location == VARYING_SLOT_PNTC ||
(var->data.location >= VARYING_SLOT_VAR0 &&
(c->fs_key->point_sprite_mask &
(1 << (var->data.location -
VARYING_SLOT_VAR0))))) {
c->inputs[loc * 4 + 0] = c->point_x;
c->inputs[loc * 4 + 1] = c->point_y;
} else {
emit_fragment_input(c, loc, var->data.location);
}
} else {
emit_vertex_input(c, loc);
}
}
}
static void
ntq_setup_outputs(struct vc4_compile *c)
{
nir_foreach_variable(var, &c->s->outputs) {
unsigned array_len = MAX2(glsl_get_length(var->type), 1);
unsigned loc = var->data.driver_location * 4;
assert(array_len == 1);
(void)array_len;
for (int i = 0; i < 4; i++)
add_output(c, loc + i, var->data.location, i);
if (c->stage == QSTAGE_FRAG) {
switch (var->data.location) {
case FRAG_RESULT_COLOR:
case FRAG_RESULT_DATA0:
c->output_color_index = loc;
break;
case FRAG_RESULT_DEPTH:
c->output_position_index = loc;
break;
case FRAG_RESULT_SAMPLE_MASK:
c->output_sample_mask_index = loc;
break;
}
} else {
switch (var->data.location) {
case VARYING_SLOT_POS:
c->output_position_index = loc;
break;
case VARYING_SLOT_PSIZ:
c->output_point_size_index = loc;
break;
}
}
}
}
/**
* Sets up the mapping from nir_register to struct qreg *.
*
* Each nir_register gets a struct qreg per 32-bit component being stored.
*/
static void
ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_register, nir_reg, node, list) {
unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
array_len *
nir_reg->num_components);
_mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
for (int i = 0; i < array_len * nir_reg->num_components; i++)
qregs[i] = qir_get_temp(c);
}
}
static void
ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = qir_uniform_ui(c, instr->value[i].u32);
_mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
}
static void
ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
{
struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
/* QIR needs there to be *some* value, so pick 0 (same as for
* ntq_setup_registers().
*/
for (int i = 0; i < instr->def.num_components; i++)
qregs[i] = qir_uniform_ui(c, 0);
}
static void
ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
{
assert(nir_src_as_uint(instr->src[0]) == 0);
/* Reads of the per-sample color need to be done in
* order.
*/
int sample_index = (nir_intrinsic_base(instr) -
VC4_NIR_TLB_COLOR_READ_INPUT);
for (int i = 0; i <= sample_index; i++) {
if (c->color_reads[i].file == QFILE_NULL) {
c->color_reads[i] =
qir_TLB_COLOR_READ(c);
}
}
ntq_store_dest(c, &instr->dest, 0,
qir_MOV(c, c->color_reads[sample_index]));
}
static void
ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
{
assert(instr->num_components == 1);
assert(nir_src_is_const(instr->src[0]) &&
"vc4 doesn't support indirect inputs");
if (c->stage == QSTAGE_FRAG &&
nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
ntq_emit_color_read(c, instr);
return;
}
uint32_t offset = nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[0]);
int comp = nir_intrinsic_component(instr);
ntq_store_dest(c, &instr->dest, 0,
qir_MOV(c, c->inputs[offset * 4 + comp]));
}
static void
ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
{
unsigned offset;
switch (instr->intrinsic) {
case nir_intrinsic_load_uniform:
assert(instr->num_components == 1);
if (nir_src_is_const(instr->src[0])) {
offset = nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[0]);
assert(offset % 4 == 0);
/* We need dwords */
offset = offset / 4;
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_UNIFORM,
offset));
} else {
ntq_store_dest(c, &instr->dest, 0,
indirect_uniform_load(c, instr));
}
break;
case nir_intrinsic_load_ubo:
assert(instr->num_components == 1);
ntq_store_dest(c, &instr->dest, 0, vc4_ubo_load(c, instr));
break;
case nir_intrinsic_load_user_clip_plane:
for (int i = 0; i < instr->num_components; i++) {
ntq_store_dest(c, &instr->dest, i,
qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
nir_intrinsic_ucp_id(instr) *
4 + i));
}
break;
case nir_intrinsic_load_blend_const_color_r_float:
case nir_intrinsic_load_blend_const_color_g_float:
case nir_intrinsic_load_blend_const_color_b_float:
case nir_intrinsic_load_blend_const_color_a_float:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
(instr->intrinsic -
nir_intrinsic_load_blend_const_color_r_float),
0));
break;
case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
0));
break;
case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
0));
break;
case nir_intrinsic_load_alpha_ref_float:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_ALPHA_REF, 0));
break;
case nir_intrinsic_load_sample_mask_in:
ntq_store_dest(c, &instr->dest, 0,
qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
break;
case nir_intrinsic_load_front_face:
/* The register contains 0 (front) or 1 (back), and we need to
* turn it into a NIR bool where true means front.
*/
ntq_store_dest(c, &instr->dest, 0,
qir_ADD(c,
qir_uniform_ui(c, -1),
qir_reg(QFILE_FRAG_REV_FLAG, 0)));
break;
case nir_intrinsic_load_input:
ntq_emit_load_input(c, instr);
break;
case nir_intrinsic_store_output:
assert(nir_src_is_const(instr->src[1]) &&
"vc4 doesn't support indirect outputs");
offset = nir_intrinsic_base(instr) +
nir_src_as_uint(instr->src[1]);
/* MSAA color outputs are the only case where we have an
* output that's not lowered to being a store of a single 32
* bit value.
*/
if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
assert(offset == c->output_color_index);
for (int i = 0; i < 4; i++) {
c->sample_colors[i] =
qir_MOV(c, ntq_get_src(c, instr->src[0],
i));
}
} else {
offset = offset * 4 + nir_intrinsic_component(instr);
assert(instr->num_components == 1);
c->outputs[offset] =
qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
c->num_outputs = MAX2(c->num_outputs, offset + 1);
}
break;
case nir_intrinsic_discard:
if (c->execute.file != QFILE_NULL) {
qir_SF(c, c->execute);
qir_MOV_cond(c, QPU_COND_ZS, c->discard,
qir_uniform_ui(c, ~0));
} else {
qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
}
break;
case nir_intrinsic_discard_if: {
/* true (~0) if we're discarding */
struct qreg cond = ntq_get_src(c, instr->src[0], 0);
if (c->execute.file != QFILE_NULL) {
/* execute == 0 means the channel is active. Invert
* the condition so that we can use zero as "executing
* and discarding."
*/
qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
} else {
qir_OR_dest(c, c->discard, c->discard,
ntq_get_src(c, instr->src[0], 0));
}
break;
}
default:
fprintf(stderr, "Unknown intrinsic: ");
nir_print_instr(&instr->instr, stderr);
fprintf(stderr, "\n");
break;
}
}
/* Clears (activates) the execute flags for any channels whose jump target
* matches this block.
*/
static void
ntq_activate_execute_for_block(struct vc4_compile *c)
{
qir_SF(c, qir_SUB(c,
c->execute,
qir_uniform_ui(c, c->cur_block->index)));
qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
}
static void
ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
{
if (!c->vc4->screen->has_control_flow) {
fprintf(stderr,
"IF statement support requires updated kernel.\n");
return;
}
nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
bool empty_else_block =
(nir_else_block == nir_if_last_else_block(if_stmt) &&
exec_list_is_empty(&nir_else_block->instr_list));
struct qblock *then_block = qir_new_block(c);
struct qblock *after_block = qir_new_block(c);
struct qblock *else_block;
if (empty_else_block)
else_block = after_block;
else
else_block = qir_new_block(c);
bool was_top_level = false;
if (c->execute.file == QFILE_NULL) {
c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
was_top_level = true;
}
/* Set ZS for executing (execute == 0) and jumping (if->condition ==
* 0) channels, and then update execute flags for those to point to
* the ELSE block.
*/
qir_SF(c, qir_OR(c,
c->execute,
ntq_get_src(c, if_stmt->condition, 0)));
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
qir_uniform_ui(c, else_block->index));
/* Jump to ELSE if nothing is active for THEN, otherwise fall
* through.
*/
qir_SF(c, c->execute);
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
qir_link_blocks(c->cur_block, else_block);
qir_link_blocks(c->cur_block, then_block);
/* Process the THEN block. */
qir_set_emit_block(c, then_block);
ntq_emit_cf_list(c, &if_stmt->then_list);
if (!empty_else_block) {
/* Handle the end of the THEN block. First, all currently
* active channels update their execute flags to point to
* ENDIF
*/
qir_SF(c, c->execute);
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
qir_uniform_ui(c, after_block->index));
/* If everything points at ENDIF, then jump there immediately. */
qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
qir_link_blocks(c->cur_block, after_block);
qir_link_blocks(c->cur_block, else_block);
qir_set_emit_block(c, else_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &if_stmt->else_list);
}
qir_link_blocks(c->cur_block, after_block);
qir_set_emit_block(c, after_block);
if (was_top_level) {
c->execute = c->undef;
c->last_top_block = c->cur_block;
} else {
ntq_activate_execute_for_block(c);
}
}
static void
ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
{
struct qblock *jump_block;
switch (jump->type) {
case nir_jump_break:
jump_block = c->loop_break_block;
break;
case nir_jump_continue:
jump_block = c->loop_cont_block;
break;
default:
unreachable("Unsupported jump type\n");
}
qir_SF(c, c->execute);
qir_MOV_cond(c, QPU_COND_ZS, c->execute,
qir_uniform_ui(c, jump_block->index));
/* Jump to the destination block if everyone has taken the jump. */
qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
struct qblock *new_block = qir_new_block(c);
qir_link_blocks(c->cur_block, jump_block);
qir_link_blocks(c->cur_block, new_block);
qir_set_emit_block(c, new_block);
}
static void
ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
{
switch (instr->type) {
case nir_instr_type_alu:
ntq_emit_alu(c, nir_instr_as_alu(instr));
break;
case nir_instr_type_intrinsic:
ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_load_const:
ntq_emit_load_const(c, nir_instr_as_load_const(instr));
break;
case nir_instr_type_ssa_undef:
ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
break;
case nir_instr_type_tex:
ntq_emit_tex(c, nir_instr_as_tex(instr));
break;
case nir_instr_type_jump:
ntq_emit_jump(c, nir_instr_as_jump(instr));
break;
default:
fprintf(stderr, "Unknown NIR instr type: ");
nir_print_instr(instr, stderr);
fprintf(stderr, "\n");
abort();
}
}
static void
ntq_emit_block(struct vc4_compile *c, nir_block *block)
{
nir_foreach_instr(instr, block) {
ntq_emit_instr(c, instr);
}
}
static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
static void
ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
{
if (!c->vc4->screen->has_control_flow) {
fprintf(stderr,
"loop support requires updated kernel.\n");
ntq_emit_cf_list(c, &loop->body);
return;
}
bool was_top_level = false;
if (c->execute.file == QFILE_NULL) {
c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
was_top_level = true;
}
struct qblock *save_loop_cont_block = c->loop_cont_block;
struct qblock *save_loop_break_block = c->loop_break_block;
c->loop_cont_block = qir_new_block(c);
c->loop_break_block = qir_new_block(c);
qir_link_blocks(c->cur_block, c->loop_cont_block);
qir_set_emit_block(c, c->loop_cont_block);
ntq_activate_execute_for_block(c);
ntq_emit_cf_list(c, &loop->body);
/* If anything had explicitly continued, or is here at the end of the
* loop, then we need to loop again. SF updates are masked by the
* instruction's condition, so we can do the OR of the two conditions
* within SF.
*/
qir_SF(c, c->execute);
struct qinst *cont_check =
qir_SUB_dest(c,
c->undef,
c->execute,
qir_uniform_ui(c, c->loop_cont_block->index));
cont_check->cond = QPU_COND_ZC;
cont_check->sf = true;
qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
qir_link_blocks(c->cur_block, c->loop_cont_block);
qir_link_blocks(c->cur_block, c->loop_break_block);
qir_set_emit_block(c, c->loop_break_block);
if (was_top_level) {
c->execute = c->undef;
c->last_top_block = c->cur_block;
} else {
ntq_activate_execute_for_block(c);
}
c->loop_break_block = save_loop_break_block;
c->loop_cont_block = save_loop_cont_block;
}
static void
ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
{
fprintf(stderr, "FUNCTIONS not handled.\n");
abort();
}
static void
ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
{
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_block:
ntq_emit_block(c, nir_cf_node_as_block(node));
break;
case nir_cf_node_if:
ntq_emit_if(c, nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
ntq_emit_loop(c, nir_cf_node_as_loop(node));
break;
case nir_cf_node_function:
ntq_emit_function(c, nir_cf_node_as_function(node));
break;
default:
fprintf(stderr, "Unknown NIR node type\n");
abort();
}
}
}
static void
ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
{
ntq_setup_registers(c, &impl->registers);
ntq_emit_cf_list(c, &impl->body);
}
static void
nir_to_qir(struct vc4_compile *c)
{
if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
ntq_setup_inputs(c);
ntq_setup_outputs(c);
/* Find the main function and emit the body. */
nir_foreach_function(function, c->s) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
ntq_emit_impl(c, function->impl);
}
}
static const nir_shader_compiler_options nir_options = {
.lower_all_io_to_temps = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_fdiv = true,
.lower_ffma = true,
.lower_flrp32 = true,
.lower_fmod = true,
.lower_fpow = true,
.lower_fsat = true,
.lower_fsqrt = true,
.lower_ldexp = true,
.lower_negate = true,
.lower_rotate = true,
.max_unroll_iterations = 32,
};
const void *
vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
enum pipe_shader_ir ir,
enum pipe_shader_type shader)
{
return &nir_options;
}
static int
count_nir_instrs(nir_shader *nir)
{
int count = 0;
nir_foreach_function(function, nir) {
if (!function->impl)
continue;
nir_foreach_block(block, function->impl) {
nir_foreach_instr(instr, block)
count++;
}
}
return count;
}
static struct vc4_compile *
vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
struct vc4_key *key, bool fs_threaded)
{
struct vc4_compile *c = qir_compile_init();
c->vc4 = vc4;
c->stage = stage;
c->shader_state = &key->shader_state->base;
c->program_id = key->shader_state->program_id;
c->variant_id =
p_atomic_inc_return(&key->shader_state->compiled_variant_count);
c->fs_threaded = fs_threaded;
c->key = key;
switch (stage) {
case QSTAGE_FRAG:
c->fs_key = (struct vc4_fs_key *)key;
if (c->fs_key->is_points) {
c->point_x = emit_fragment_varying(c, ~0, 0);
c->point_y = emit_fragment_varying(c, ~0, 0);
} else if (c->fs_key->is_lines) {
c->line_x = emit_fragment_varying(c, ~0, 0);
}
break;
case QSTAGE_VERT:
c->vs_key = (struct vc4_vs_key *)key;
break;
case QSTAGE_COORD:
c->vs_key = (struct vc4_vs_key *)key;
break;
}
c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
if (stage == QSTAGE_FRAG) {
if (c->fs_key->alpha_test_func != COMPARE_FUNC_ALWAYS) {
NIR_PASS_V(c->s, nir_lower_alpha_test,
c->fs_key->alpha_test_func,
c->fs_key->sample_alpha_to_one &&
c->fs_key->msaa);
}
NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
}
struct nir_lower_tex_options tex_options = {
/* We would need to implement txs, but we don't want the
* int/float conversions
*/
.lower_rect = false,
.lower_txp = ~0,
/* Apply swizzles to all samplers. */
.swizzle_result = ~0,
};
/* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
* The format swizzling applies before sRGB decode, and
* ARB_texture_swizzle is the last thing before returning the sample.
*/
for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
enum pipe_format format = c->key->tex[i].format;
if (!format)
continue;
const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
for (int j = 0; j < 4; j++) {
uint8_t arb_swiz = c->key->tex[i].swizzle[j];
if (arb_swiz <= 3) {
tex_options.swizzles[i][j] =
format_swizzle[arb_swiz];
} else {
tex_options.swizzles[i][j] = arb_swiz;
}
}
if (util_format_is_srgb(format))
tex_options.lower_srgb |= (1 << i);
}
NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
if (c->fs_key && c->fs_key->light_twoside)
NIR_PASS_V(c->s, nir_lower_two_sided_color);
if (c->vs_key && c->vs_key->clamp_color)
NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
if (c->key->ucp_enables) {
if (stage == QSTAGE_FRAG) {
NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables);
} else {
NIR_PASS_V(c->s, nir_lower_clip_vs,
c->key->ucp_enables, false);
NIR_PASS_V(c->s, nir_lower_io_to_scalar,
nir_var_shader_out);
}
}
/* FS input scalarizing must happen after nir_lower_two_sided_color,
* which only handles a vec4 at a time. Similarly, VS output
* scalarizing must happen after nir_lower_clip_vs.
*/
if (c->stage == QSTAGE_FRAG)
NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
else
NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
NIR_PASS_V(c->s, vc4_nir_lower_io, c);
NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
NIR_PASS_V(c->s, nir_lower_idiv);
vc4_optimize_nir(c->s);
NIR_PASS_V(c->s, nir_lower_bool_to_int32);
NIR_PASS_V(c->s, nir_convert_from_ssa, true);
if (vc4_debug & VC4_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
count_nir_instrs(c->s));
}
if (vc4_debug & VC4_DEBUG_NIR) {
fprintf(stderr, "%s prog %d/%d NIR:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
nir_print_shader(c->s, stderr);
}
nir_to_qir(c);
switch (stage) {
case QSTAGE_FRAG:
/* FS threading requires that the thread execute
* QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
* (with no other THRSW afterwards, obviously). If we didn't
* fetch a texture at a top level block, this wouldn't be
* true.
*/
if (c->fs_threaded && !c->last_thrsw_at_top_level) {
c->failed = true;
return c;
}
emit_frag_end(c);
break;
case QSTAGE_VERT:
emit_vert_end(c,
c->vs_key->fs_inputs->input_slots,
c->vs_key->fs_inputs->num_inputs);
break;
case QSTAGE_COORD:
emit_coord_end(c);
break;
}
if (vc4_debug & VC4_DEBUG_QIR) {
fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
qir_dump(c);
fprintf(stderr, "\n");
}
qir_optimize(c);
qir_lower_uniforms(c);
qir_schedule_instructions(c);
qir_emit_uniform_stream_resets(c);
if (vc4_debug & VC4_DEBUG_QIR) {
fprintf(stderr, "%s prog %d/%d QIR:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
qir_dump(c);
fprintf(stderr, "\n");
}
qir_reorder_uniforms(c);
vc4_generate_code(vc4, c);
if (vc4_debug & VC4_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
c->qpu_inst_count);
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
c->num_uniforms);
}
ralloc_free(c->s);
return c;
}
static void *
vc4_shader_state_create(struct pipe_context *pctx,
const struct pipe_shader_state *cso)
{
struct vc4_context *vc4 = vc4_context(pctx);
struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
if (!so)
return NULL;
so->program_id = vc4->next_uncompiled_program_id++;
nir_shader *s;
if (cso->type == PIPE_SHADER_IR_NIR) {
/* The backend takes ownership of the NIR shader on state
* creation.
*/
s = cso->ir.nir;
} else {
assert(cso->type == PIPE_SHADER_IR_TGSI);
if (vc4_debug & VC4_DEBUG_TGSI) {
fprintf(stderr, "prog %d TGSI:\n",
so->program_id);
tgsi_dump(cso->tokens, 0);
fprintf(stderr, "\n");
}
s = tgsi_to_nir(cso->tokens, pctx->screen);
}
if (s->info.stage == MESA_SHADER_VERTEX)
NIR_PASS_V(s, nir_lower_point_size, 1.0f, 0.0f);
NIR_PASS_V(s, nir_lower_io, nir_var_all, type_size,
(nir_lower_io_options)0);
NIR_PASS_V(s, nir_lower_regs_to_ssa);
NIR_PASS_V(s, nir_normalize_cubemap_coords);
NIR_PASS_V(s, nir_lower_load_const_to_scalar);
vc4_optimize_nir(s);
NIR_PASS_V(s, nir_remove_dead_variables, nir_var_function_temp);
/* Garbage collect dead instructions */
nir_sweep(s);
so->base.type = PIPE_SHADER_IR_NIR;
so->base.ir.nir = s;
if (vc4_debug & VC4_DEBUG_NIR) {
fprintf(stderr, "%s prog %d NIR:\n",
gl_shader_stage_name(s->info.stage),
so->program_id);
nir_print_shader(s, stderr);
fprintf(stderr, "\n");
}
return so;
}
static void
copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
struct vc4_compile *c)
{
int count = c->num_uniforms;
struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
uinfo->count = count;
uinfo->data = ralloc_array(shader, uint32_t, count);
memcpy(uinfo->data, c->uniform_data,
count * sizeof(*uinfo->data));
uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
memcpy(uinfo->contents, c->uniform_contents,
count * sizeof(*uinfo->contents));
uinfo->num_texture_samples = c->num_texture_samples;
vc4_set_shader_uniform_dirty_flags(shader);
}
static void
vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
struct vc4_compiled_shader *shader)
{
struct vc4_fs_inputs inputs;
memset(&inputs, 0, sizeof(inputs));
inputs.input_slots = ralloc_array(shader,
struct vc4_varying_slot,
c->num_input_slots);
bool input_live[c->num_input_slots];
memset(input_live, 0, sizeof(input_live));
qir_for_each_inst_inorder(inst, c) {
for (int i = 0; i < qir_get_nsrc(inst); i++) {
if (inst->src[i].file == QFILE_VARY)
input_live[inst->src[i].index] = true;
}
}
for (int i = 0; i < c->num_input_slots; i++) {
struct vc4_varying_slot *slot = &c->input_slots[i];
if (!input_live[i])
continue;
/* Skip non-VS-output inputs. */
if (slot->slot == (uint8_t)~0)
continue;
if (slot->slot == VARYING_SLOT_COL0 ||
slot->slot == VARYING_SLOT_COL1 ||
slot->slot == VARYING_SLOT_BFC0 ||
slot->slot == VARYING_SLOT_BFC1) {
shader->color_inputs |= (1 << inputs.num_inputs);
}
inputs.input_slots[inputs.num_inputs] = *slot;
inputs.num_inputs++;
}
shader->num_inputs = inputs.num_inputs;
/* Add our set of inputs to the set of all inputs seen. This way, we
* can have a single pointer that identifies an FS inputs set,
* allowing VS to avoid recompiling when the FS is recompiled (or a
* new one is bound using separate shader objects) but the inputs
* don't change.
*/
struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
if (entry) {
shader->fs_inputs = entry->key;
ralloc_free(inputs.input_slots);
} else {
struct vc4_fs_inputs *alloc_inputs;
alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
memcpy(alloc_inputs, &inputs, sizeof(inputs));
ralloc_steal(alloc_inputs, inputs.input_slots);
_mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
shader->fs_inputs = alloc_inputs;
}
}
static struct vc4_compiled_shader *
vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
struct vc4_key *key)
{
struct hash_table *ht;
uint32_t key_size;
bool try_threading;
if (stage == QSTAGE_FRAG) {
ht = vc4->fs_cache;
key_size = sizeof(struct vc4_fs_key);
try_threading = vc4->screen->has_threaded_fs;
} else {
ht = vc4->vs_cache;
key_size = sizeof(struct vc4_vs_key);
try_threading = false;
}
struct vc4_compiled_shader *shader;
struct hash_entry *entry = _mesa_hash_table_search(ht, key);
if (entry)
return entry->data;
struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
/* If the FS failed to compile threaded, fall back to single threaded. */
if (try_threading && c->failed) {
qir_compile_destroy(c);
c = vc4_shader_ntq(vc4, stage, key, false);
}
shader = rzalloc(NULL, struct vc4_compiled_shader);
shader->program_id = vc4->next_compiled_program_id++;
if (stage == QSTAGE_FRAG) {
vc4_setup_compiled_fs_inputs(vc4, c, shader);
/* Note: the temporary clone in c->s has been freed. */
nir_shader *orig_shader = key->shader_state->base.ir.nir;
if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
shader->disable_early_z = true;
} else {
shader->num_inputs = c->num_inputs;
shader->vattr_offsets[0] = 0;
for (int i = 0; i < 8; i++) {
shader->vattr_offsets[i + 1] =
shader->vattr_offsets[i] + c->vattr_sizes[i];
if (c->vattr_sizes[i])
shader->vattrs_live |= (1 << i);
}
}
shader->failed = c->failed;
if (c->failed) {
shader->failed = true;
} else {
copy_uniform_state_to_shader(shader, c);
shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
c->qpu_inst_count *
sizeof(uint64_t));
}
shader->fs_threaded = c->fs_threaded;
if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
1 + shader->fs_threaded);
}
qir_compile_destroy(c);
struct vc4_key *dup_key;
dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
memcpy(dup_key, key, key_size);
_mesa_hash_table_insert(ht, dup_key, shader);
return shader;
}
static void
vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
struct vc4_texture_stateobj *texstate)
{
for (int i = 0; i < texstate->num_textures; i++) {
struct pipe_sampler_view *sampler = texstate->textures[i];
struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
struct pipe_sampler_state *sampler_state =
texstate->samplers[i];
if (!sampler)
continue;
key->tex[i].format = sampler->format;
key->tex[i].swizzle[0] = sampler->swizzle_r;
key->tex[i].swizzle[1] = sampler->swizzle_g;
key->tex[i].swizzle[2] = sampler->swizzle_b;
key->tex[i].swizzle[3] = sampler->swizzle_a;
if (sampler->texture->nr_samples > 1) {
key->tex[i].msaa_width = sampler->texture->width0;
key->tex[i].msaa_height = sampler->texture->height0;
} else if (sampler){
key->tex[i].compare_mode = sampler_state->compare_mode;
key->tex[i].compare_func = sampler_state->compare_func;
key->tex[i].wrap_s = sampler_state->wrap_s;
key->tex[i].wrap_t = sampler_state->wrap_t;
key->tex[i].force_first_level =
vc4_sampler->force_first_level;
}
}
key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
}
static void
vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
{
struct vc4_job *job = vc4->job;
struct vc4_fs_key local_key;
struct vc4_fs_key *key = &local_key;
if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
VC4_DIRTY_BLEND |
VC4_DIRTY_FRAMEBUFFER |
VC4_DIRTY_ZSA |
VC4_DIRTY_RASTERIZER |
VC4_DIRTY_SAMPLE_MASK |
VC4_DIRTY_FRAGTEX |
VC4_DIRTY_UNCOMPILED_FS |
VC4_DIRTY_UBO_1_SIZE))) {
return;
}
memset(key, 0, sizeof(*key));
vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
key->base.shader_state = vc4->prog.bind_fs;
key->is_points = (prim_mode == PIPE_PRIM_POINTS);
key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
prim_mode <= PIPE_PRIM_LINE_STRIP);
key->blend = vc4->blend->rt[0];
if (vc4->blend->logicop_enable) {
key->logicop_func = vc4->blend->logicop_func;
} else {
key->logicop_func = PIPE_LOGICOP_COPY;
}
if (job->msaa) {
key->msaa = vc4->rasterizer->base.multisample;
key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
key->sample_alpha_to_one = vc4->blend->alpha_to_one;
}
if (vc4->framebuffer.cbufs[0])
key->color_format = vc4->framebuffer.cbufs[0]->format;
key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
key->depth_enabled = (vc4->zsa->base.depth.enabled ||
key->stencil_enabled);
if (vc4->zsa->base.alpha.enabled)
key->alpha_test_func = vc4->zsa->base.alpha.func;
else
key->alpha_test_func = COMPARE_FUNC_ALWAYS;
if (key->is_points) {
key->point_sprite_mask =
vc4->rasterizer->base.sprite_coord_enable;
key->point_coord_upper_left =
(vc4->rasterizer->base.sprite_coord_mode ==
PIPE_SPRITE_COORD_UPPER_LEFT);
}
key->ubo_1_size = vc4->constbuf[PIPE_SHADER_FRAGMENT].cb[1].buffer_size;
key->light_twoside = vc4->rasterizer->base.light_twoside;
struct vc4_compiled_shader *old_fs = vc4->prog.fs;
vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
if (vc4->prog.fs == old_fs)
return;
vc4->dirty |= VC4_DIRTY_COMPILED_FS;
if (vc4->rasterizer->base.flatshade &&
(!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
}
if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
vc4->dirty |= VC4_DIRTY_FS_INPUTS;
}
static void
vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
{
struct vc4_vs_key local_key;
struct vc4_vs_key *key = &local_key;
if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
VC4_DIRTY_RASTERIZER |
VC4_DIRTY_VERTTEX |
VC4_DIRTY_VTXSTATE |
VC4_DIRTY_UNCOMPILED_VS |
VC4_DIRTY_FS_INPUTS))) {
return;
}
memset(key, 0, sizeof(*key));
vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
key->base.shader_state = vc4->prog.bind_vs;
key->fs_inputs = vc4->prog.fs->fs_inputs;
key->clamp_color = vc4->rasterizer->base.clamp_vertex_color;
for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
key->per_vertex_point_size =
(prim_mode == PIPE_PRIM_POINTS &&
vc4->rasterizer->base.point_size_per_vertex);
struct vc4_compiled_shader *vs =
vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
if (vs != vc4->prog.vs) {
vc4->prog.vs = vs;
vc4->dirty |= VC4_DIRTY_COMPILED_VS;
}
key->is_coord = true;
/* Coord shaders don't care what the FS inputs are. */
key->fs_inputs = NULL;
struct vc4_compiled_shader *cs =
vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
if (cs != vc4->prog.cs) {
vc4->prog.cs = cs;
vc4->dirty |= VC4_DIRTY_COMPILED_CS;
}
}
bool
vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
{
vc4_update_compiled_fs(vc4, prim_mode);
vc4_update_compiled_vs(vc4, prim_mode);
return !(vc4->prog.cs->failed ||
vc4->prog.vs->failed ||
vc4->prog.fs->failed);
}
static uint32_t
fs_cache_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
}
static uint32_t
vs_cache_hash(const void *key)
{
return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
}
static bool
fs_cache_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
}
static bool
vs_cache_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
}
static uint32_t
fs_inputs_hash(const void *key)
{
const struct vc4_fs_inputs *inputs = key;
return _mesa_hash_data(inputs->input_slots,
sizeof(*inputs->input_slots) *
inputs->num_inputs);
}
static bool
fs_inputs_compare(const void *key1, const void *key2)
{
const struct vc4_fs_inputs *inputs1 = key1;
const struct vc4_fs_inputs *inputs2 = key2;
return (inputs1->num_inputs == inputs2->num_inputs &&
memcmp(inputs1->input_slots,
inputs2->input_slots,
sizeof(*inputs1->input_slots) *
inputs1->num_inputs) == 0);
}
static void
delete_from_cache_if_matches(struct hash_table *ht,
struct vc4_compiled_shader **last_compile,
struct hash_entry *entry,
struct vc4_uncompiled_shader *so)
{
const struct vc4_key *key = entry->key;
if (key->shader_state == so) {
struct vc4_compiled_shader *shader = entry->data;
_mesa_hash_table_remove(ht, entry);
vc4_bo_unreference(&shader->bo);
if (shader == *last_compile)
*last_compile = NULL;
ralloc_free(shader);
}
}
static void
vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
struct vc4_uncompiled_shader *so = hwcso;
hash_table_foreach(vc4->fs_cache, entry) {
delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
entry, so);
}
hash_table_foreach(vc4->vs_cache, entry) {
delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
entry, so);
}
ralloc_free(so->base.ir.nir);
free(so);
}
static void
vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
vc4->prog.bind_fs = hwcso;
vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
}
static void
vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
{
struct vc4_context *vc4 = vc4_context(pctx);
vc4->prog.bind_vs = hwcso;
vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
}
void
vc4_program_init(struct pipe_context *pctx)
{
struct vc4_context *vc4 = vc4_context(pctx);
pctx->create_vs_state = vc4_shader_state_create;
pctx->delete_vs_state = vc4_shader_state_delete;
pctx->create_fs_state = vc4_shader_state_create;
pctx->delete_fs_state = vc4_shader_state_delete;
pctx->bind_fs_state = vc4_fp_state_bind;
pctx->bind_vs_state = vc4_vp_state_bind;
vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
fs_cache_compare);
vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
vs_cache_compare);
vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
fs_inputs_compare);
}
void
vc4_program_fini(struct pipe_context *pctx)
{
struct vc4_context *vc4 = vc4_context(pctx);
hash_table_foreach(vc4->fs_cache, entry) {
struct vc4_compiled_shader *shader = entry->data;
vc4_bo_unreference(&shader->bo);
ralloc_free(shader);
_mesa_hash_table_remove(vc4->fs_cache, entry);
}
hash_table_foreach(vc4->vs_cache, entry) {
struct vc4_compiled_shader *shader = entry->data;
vc4_bo_unreference(&shader->bo);
ralloc_free(shader);
_mesa_hash_table_remove(vc4->vs_cache, entry);
}
}