
We need to compute detiling coordinates using the physical size of W tiling (128x32) rather than the logical size (64x64). v2: Correct comment (Jason) Fixes dEQP-VK.api.copy_and_blit.image_to_image_stencil Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=97448 Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com> Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
1545 lines
55 KiB
C
1545 lines
55 KiB
C
/*
|
|
* Copyright © 2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "anv_meta.h"
|
|
#include "nir/nir_builder.h"
|
|
|
|
enum blit2d_src_type {
|
|
/* We can make a "normal" image view of this source and just texture
|
|
* from it like you would in any other shader.
|
|
*/
|
|
BLIT2D_SRC_TYPE_NORMAL,
|
|
|
|
/* The source is W-tiled and we need to detile manually in the shader.
|
|
* This will work on any platform but is needed for all W-tiled sources
|
|
* prior to Broadwell.
|
|
*/
|
|
BLIT2D_SRC_TYPE_W_DETILE,
|
|
|
|
BLIT2D_NUM_SRC_TYPES,
|
|
};
|
|
|
|
enum blit2d_dst_type {
|
|
/* We can bind this destination as a "normal" render target and render
|
|
* to it just like you would anywhere else.
|
|
*/
|
|
BLIT2D_DST_TYPE_NORMAL,
|
|
|
|
/* The destination is W-tiled and we need to do the tiling manually in
|
|
* the shader. This is required for all W-tiled destinations.
|
|
*
|
|
* Sky Lake adds a feature for providing explicit stencil values in the
|
|
* shader but mesa doesn't support that yet so neither do we.
|
|
*/
|
|
BLIT2D_DST_TYPE_W_TILE,
|
|
|
|
/* The destination has a 3-channel RGB format. Since we can't render to
|
|
* non-power-of-two textures, we have to bind it as a red texture and
|
|
* select the correct component for the given red pixel in the shader.
|
|
*/
|
|
BLIT2D_DST_TYPE_RGB,
|
|
|
|
BLIT2D_NUM_DST_TYPES,
|
|
};
|
|
|
|
static VkFormat
|
|
vk_format_for_size(int bs)
|
|
{
|
|
/* The choice of UNORM and UINT formats is very intentional here. Most of
|
|
* the time, we want to use a UINT format to avoid any rounding error in
|
|
* the blit. For stencil blits, R8_UINT is required by the hardware.
|
|
* (It's the only format allowed in conjunction with W-tiling.) Also we
|
|
* intentionally use the 4-channel formats whenever we can. This is so
|
|
* that, when we do a RGB <-> RGBX copy, the two formats will line up even
|
|
* though one of them is 3/4 the size of the other. The choice of UNORM
|
|
* vs. UINT is also very intentional because Haswell doesn't handle 8 or
|
|
* 16-bit RGB UINT formats at all so we have to use UNORM there.
|
|
* Fortunately, the only time we should ever use two different formats in
|
|
* the table below is for RGB -> RGBA blits and so we will never have any
|
|
* UNORM/UINT mismatch.
|
|
*/
|
|
switch (bs) {
|
|
case 1: return VK_FORMAT_R8_UINT;
|
|
case 2: return VK_FORMAT_R8G8_UINT;
|
|
case 3: return VK_FORMAT_R8G8B8_UNORM;
|
|
case 4: return VK_FORMAT_R8G8B8A8_UNORM;
|
|
case 6: return VK_FORMAT_R16G16B16_UNORM;
|
|
case 8: return VK_FORMAT_R16G16B16A16_UNORM;
|
|
case 12: return VK_FORMAT_R32G32B32_UINT;
|
|
case 16: return VK_FORMAT_R32G32B32A32_UINT;
|
|
default:
|
|
unreachable("Invalid format block size");
|
|
}
|
|
}
|
|
|
|
/* This function returns the format corresponding to a single component of the
|
|
* RGB format for the given size returned by vk_format_for_size().
|
|
*/
|
|
static VkFormat
|
|
vk_single_component_format_for_rgb_size(int bs)
|
|
{
|
|
switch (bs) {
|
|
case 3: return VK_FORMAT_R8_UNORM;
|
|
case 6: return VK_FORMAT_R16_UNORM;
|
|
case 12: return VK_FORMAT_R32_UINT;
|
|
default:
|
|
unreachable("Invalid format block size");
|
|
}
|
|
}
|
|
|
|
static void
|
|
create_iview(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_blit2d_surf *surf,
|
|
uint64_t offset,
|
|
VkImageUsageFlags usage,
|
|
uint32_t width,
|
|
uint32_t height,
|
|
VkFormat format,
|
|
VkImage *img,
|
|
struct anv_image_view *iview)
|
|
{
|
|
const VkImageCreateInfo image_info = {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
|
|
.imageType = VK_IMAGE_TYPE_2D,
|
|
/* W-tiled images must be stencil-formatted. */
|
|
.format = format,
|
|
.extent = {
|
|
.width = width,
|
|
.height = height,
|
|
.depth = 1,
|
|
},
|
|
.mipLevels = 1,
|
|
.arrayLayers = 1,
|
|
.samples = 1,
|
|
.tiling = surf->tiling == ISL_TILING_LINEAR ?
|
|
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL,
|
|
.usage = usage,
|
|
};
|
|
|
|
/* Create the VkImage that is bound to the surface's memory. */
|
|
anv_image_create(anv_device_to_handle(cmd_buffer->device),
|
|
&(struct anv_image_create_info) {
|
|
.vk_info = &image_info,
|
|
.isl_tiling_flags = 1 << surf->tiling,
|
|
.stride = surf->pitch,
|
|
}, &cmd_buffer->pool->alloc, img);
|
|
|
|
/* We could use a vk call to bind memory, but that would require
|
|
* creating a dummy memory object etc. so there's really no point.
|
|
*/
|
|
anv_image_from_handle(*img)->bo = surf->bo;
|
|
anv_image_from_handle(*img)->offset = surf->base_offset + offset;
|
|
|
|
anv_image_view_init(iview, cmd_buffer->device,
|
|
&(VkImageViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
|
|
.image = *img,
|
|
.viewType = VK_IMAGE_VIEW_TYPE_2D,
|
|
.format = image_info.format,
|
|
.subresourceRange = {
|
|
.aspectMask = anv_image_from_handle(*img)->aspects,
|
|
.baseMipLevel = 0,
|
|
.levelCount = 1,
|
|
.baseArrayLayer = 0,
|
|
.layerCount = 1
|
|
},
|
|
}, cmd_buffer, usage);
|
|
}
|
|
|
|
struct blit2d_src_temps {
|
|
VkImage image;
|
|
struct anv_image_view iview;
|
|
|
|
struct anv_buffer buffer;
|
|
struct anv_buffer_view bview;
|
|
|
|
VkDescriptorPool desc_pool;
|
|
VkDescriptorSet set;
|
|
};
|
|
|
|
static void
|
|
blit2d_bind_src(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_blit2d_surf *src,
|
|
enum blit2d_src_type src_type,
|
|
struct anv_meta_blit2d_rect *rect,
|
|
struct blit2d_src_temps *tmp)
|
|
{
|
|
struct anv_device *device = cmd_buffer->device;
|
|
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
|
|
|
|
if (src_type == BLIT2D_SRC_TYPE_NORMAL) {
|
|
uint32_t offset = 0;
|
|
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
|
|
src->tiling, src->bs, src->pitch,
|
|
rect->src_x, rect->src_y,
|
|
&offset, &rect->src_x, &rect->src_y);
|
|
|
|
VkImageUsageFlags usage = VK_IMAGE_USAGE_SAMPLED_BIT;
|
|
|
|
/* W-tiled images must be stencil-formatted. Outside of meta,
|
|
* a stencil image has this usage bit set. Adding it here
|
|
* ensures the ISL surface is created correctly.
|
|
*/
|
|
if (src->tiling == ISL_TILING_W)
|
|
usage |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
|
|
|
|
create_iview(cmd_buffer, src, offset, usage,
|
|
rect->src_x + rect->width, rect->src_y + rect->height,
|
|
src->tiling == ISL_TILING_W ?
|
|
VK_FORMAT_S8_UINT : vk_format_for_size(src->bs),
|
|
&tmp->image, &tmp->iview);
|
|
|
|
anv_CreateDescriptorPool(vk_device,
|
|
&(const VkDescriptorPoolCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
|
|
.pNext = NULL,
|
|
.flags = 0,
|
|
.maxSets = 1,
|
|
.poolSizeCount = 1,
|
|
.pPoolSizes = (VkDescriptorPoolSize[]) {
|
|
{
|
|
.type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
|
|
.descriptorCount = 1
|
|
},
|
|
}
|
|
}, &cmd_buffer->pool->alloc, &tmp->desc_pool);
|
|
|
|
anv_AllocateDescriptorSets(vk_device,
|
|
&(VkDescriptorSetAllocateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
|
|
.descriptorPool = tmp->desc_pool,
|
|
.descriptorSetCount = 1,
|
|
.pSetLayouts = &device->meta_state.blit2d.img_ds_layout
|
|
}, &tmp->set);
|
|
|
|
anv_UpdateDescriptorSets(vk_device,
|
|
1, /* writeCount */
|
|
(VkWriteDescriptorSet[]) {
|
|
{
|
|
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
|
|
.dstSet = tmp->set,
|
|
.dstBinding = 0,
|
|
.dstArrayElement = 0,
|
|
.descriptorCount = 1,
|
|
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
|
|
.pImageInfo = (VkDescriptorImageInfo[]) {
|
|
{
|
|
.sampler = NULL,
|
|
.imageView = anv_image_view_to_handle(&tmp->iview),
|
|
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
|
|
},
|
|
}
|
|
}
|
|
}, 0, NULL);
|
|
|
|
anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS,
|
|
device->meta_state.blit2d.img_p_layout, 0, 1,
|
|
&tmp->set, 0, NULL);
|
|
} else {
|
|
assert(src_type == BLIT2D_SRC_TYPE_W_DETILE);
|
|
assert(src->tiling == ISL_TILING_W);
|
|
assert(src->bs == 1);
|
|
|
|
uint32_t tile_offset = 0;
|
|
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
|
|
ISL_TILING_W, 1, src->pitch,
|
|
rect->src_x, rect->src_y,
|
|
&tile_offset,
|
|
&rect->src_x, &rect->src_y);
|
|
|
|
tmp->buffer = (struct anv_buffer) {
|
|
.device = device,
|
|
.size = align_u32(rect->src_y + rect->height, 64) * src->pitch,
|
|
.usage = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
|
|
.bo = src->bo,
|
|
.offset = src->base_offset + tile_offset,
|
|
};
|
|
|
|
anv_buffer_view_init(&tmp->bview, device,
|
|
&(VkBufferViewCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
|
|
.buffer = anv_buffer_to_handle(&tmp->buffer),
|
|
.format = VK_FORMAT_R8_UINT,
|
|
.offset = 0,
|
|
.range = VK_WHOLE_SIZE,
|
|
}, cmd_buffer);
|
|
|
|
anv_CreateDescriptorPool(vk_device,
|
|
&(const VkDescriptorPoolCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
|
|
.pNext = NULL,
|
|
.flags = 0,
|
|
.maxSets = 1,
|
|
.poolSizeCount = 1,
|
|
.pPoolSizes = (VkDescriptorPoolSize[]) {
|
|
{
|
|
.type = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
|
|
.descriptorCount = 1
|
|
},
|
|
}
|
|
}, &cmd_buffer->pool->alloc, &tmp->desc_pool);
|
|
|
|
anv_AllocateDescriptorSets(vk_device,
|
|
&(VkDescriptorSetAllocateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
|
|
.descriptorPool = tmp->desc_pool,
|
|
.descriptorSetCount = 1,
|
|
.pSetLayouts = &device->meta_state.blit2d.buf_ds_layout
|
|
}, &tmp->set);
|
|
|
|
anv_UpdateDescriptorSets(vk_device,
|
|
1, /* writeCount */
|
|
(VkWriteDescriptorSet[]) {
|
|
{
|
|
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
|
|
.dstSet = tmp->set,
|
|
.dstBinding = 0,
|
|
.dstArrayElement = 0,
|
|
.descriptorCount = 1,
|
|
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
|
|
.pTexelBufferView = (VkBufferView[]) {
|
|
anv_buffer_view_to_handle(&tmp->bview),
|
|
},
|
|
}
|
|
}, 0, NULL);
|
|
|
|
anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS,
|
|
device->meta_state.blit2d.buf_p_layout, 0, 1,
|
|
&tmp->set, 0, NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
blit2d_unbind_src(struct anv_cmd_buffer *cmd_buffer,
|
|
enum blit2d_src_type src_type,
|
|
struct blit2d_src_temps *tmp)
|
|
{
|
|
anv_DestroyDescriptorPool(anv_device_to_handle(cmd_buffer->device),
|
|
tmp->desc_pool, &cmd_buffer->pool->alloc);
|
|
if (src_type == BLIT2D_SRC_TYPE_NORMAL) {
|
|
anv_DestroyImage(anv_device_to_handle(cmd_buffer->device),
|
|
tmp->image, &cmd_buffer->pool->alloc);
|
|
}
|
|
}
|
|
|
|
struct blit2d_dst_temps {
|
|
VkImage image;
|
|
struct anv_image_view iview;
|
|
VkFramebuffer fb;
|
|
};
|
|
|
|
static void
|
|
blit2d_bind_dst(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_blit2d_surf *dst,
|
|
uint64_t offset,
|
|
uint32_t width,
|
|
uint32_t height,
|
|
VkFormat format,
|
|
struct blit2d_dst_temps *tmp)
|
|
{
|
|
create_iview(cmd_buffer, dst, offset, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
|
|
width, height, format, &tmp->image, &tmp->iview);
|
|
|
|
anv_CreateFramebuffer(anv_device_to_handle(cmd_buffer->device),
|
|
&(VkFramebufferCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
|
|
.attachmentCount = 1,
|
|
.pAttachments = (VkImageView[]) {
|
|
anv_image_view_to_handle(&tmp->iview),
|
|
},
|
|
.width = width,
|
|
.height = height,
|
|
.layers = 1
|
|
}, &cmd_buffer->pool->alloc, &tmp->fb);
|
|
}
|
|
|
|
static void
|
|
blit2d_unbind_dst(struct anv_cmd_buffer *cmd_buffer,
|
|
struct blit2d_dst_temps *tmp)
|
|
{
|
|
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
|
|
anv_DestroyFramebuffer(vk_device, tmp->fb, &cmd_buffer->pool->alloc);
|
|
anv_DestroyImage(vk_device, tmp->image, &cmd_buffer->pool->alloc);
|
|
}
|
|
|
|
void
|
|
anv_meta_end_blit2d(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_saved_state *save)
|
|
{
|
|
anv_meta_restore(save, cmd_buffer);
|
|
}
|
|
|
|
void
|
|
anv_meta_begin_blit2d(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_saved_state *save)
|
|
{
|
|
anv_meta_save(save, cmd_buffer, 0);
|
|
}
|
|
|
|
static void
|
|
bind_pipeline(struct anv_cmd_buffer *cmd_buffer,
|
|
enum blit2d_src_type src_type,
|
|
enum blit2d_dst_type dst_type)
|
|
{
|
|
VkPipeline pipeline =
|
|
cmd_buffer->device->meta_state.blit2d.pipelines[src_type][dst_type];
|
|
|
|
if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
|
|
anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
|
|
}
|
|
}
|
|
|
|
static void
|
|
anv_meta_blit2d_normal_dst(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_blit2d_surf *src,
|
|
enum blit2d_src_type src_type,
|
|
struct anv_meta_blit2d_surf *dst,
|
|
unsigned num_rects,
|
|
struct anv_meta_blit2d_rect *rects)
|
|
{
|
|
struct anv_device *device = cmd_buffer->device;
|
|
|
|
for (unsigned r = 0; r < num_rects; ++r) {
|
|
struct blit2d_src_temps src_temps;
|
|
blit2d_bind_src(cmd_buffer, src, src_type, &rects[r], &src_temps);
|
|
|
|
uint32_t offset = 0;
|
|
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
|
|
dst->tiling, dst->bs, dst->pitch,
|
|
rects[r].dst_x, rects[r].dst_y,
|
|
&offset,
|
|
&rects[r].dst_x, &rects[r].dst_y);
|
|
|
|
struct blit2d_dst_temps dst_temps;
|
|
blit2d_bind_dst(cmd_buffer, dst, offset, rects[r].dst_x + rects[r].width,
|
|
rects[r].dst_y + rects[r].height,
|
|
vk_format_for_size(dst->bs), &dst_temps);
|
|
|
|
struct blit_vb_data {
|
|
float pos[2];
|
|
float tex_coord[3];
|
|
} *vb_data;
|
|
|
|
unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
|
|
|
|
struct anv_state vb_state =
|
|
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
|
|
memset(vb_state.map, 0, sizeof(struct anv_vue_header));
|
|
vb_data = vb_state.map + sizeof(struct anv_vue_header);
|
|
|
|
vb_data[0] = (struct blit_vb_data) {
|
|
.pos = {
|
|
rects[r].dst_x + rects[r].width,
|
|
rects[r].dst_y + rects[r].height,
|
|
},
|
|
.tex_coord = {
|
|
rects[r].src_x + rects[r].width,
|
|
rects[r].src_y + rects[r].height,
|
|
src->pitch,
|
|
},
|
|
};
|
|
|
|
vb_data[1] = (struct blit_vb_data) {
|
|
.pos = {
|
|
rects[r].dst_x,
|
|
rects[r].dst_y + rects[r].height,
|
|
},
|
|
.tex_coord = {
|
|
rects[r].src_x,
|
|
rects[r].src_y + rects[r].height,
|
|
src->pitch,
|
|
},
|
|
};
|
|
|
|
vb_data[2] = (struct blit_vb_data) {
|
|
.pos = {
|
|
rects[r].dst_x,
|
|
rects[r].dst_y,
|
|
},
|
|
.tex_coord = {
|
|
rects[r].src_x,
|
|
rects[r].src_y,
|
|
src->pitch,
|
|
},
|
|
};
|
|
|
|
if (!device->info.has_llc)
|
|
anv_state_clflush(vb_state);
|
|
|
|
struct anv_buffer vertex_buffer = {
|
|
.device = device,
|
|
.size = vb_size,
|
|
.bo = &device->dynamic_state_block_pool.bo,
|
|
.offset = vb_state.offset,
|
|
};
|
|
|
|
anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
|
|
(VkBuffer[]) {
|
|
anv_buffer_to_handle(&vertex_buffer),
|
|
anv_buffer_to_handle(&vertex_buffer)
|
|
},
|
|
(VkDeviceSize[]) {
|
|
0,
|
|
sizeof(struct anv_vue_header),
|
|
});
|
|
|
|
ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
&(VkRenderPassBeginInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
|
|
.renderPass = device->meta_state.blit2d.render_pass,
|
|
.framebuffer = dst_temps.fb,
|
|
.renderArea = {
|
|
.offset = { rects[r].dst_x, rects[r].dst_y, },
|
|
.extent = { rects[r].width, rects[r].height },
|
|
},
|
|
.clearValueCount = 0,
|
|
.pClearValues = NULL,
|
|
}, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
bind_pipeline(cmd_buffer, src_type, BLIT2D_DST_TYPE_NORMAL);
|
|
|
|
ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
|
|
|
|
ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
|
|
|
|
/* At the point where we emit the draw call, all data from the
|
|
* descriptor sets, etc. has been used. We are free to delete it.
|
|
*/
|
|
blit2d_unbind_src(cmd_buffer, src_type, &src_temps);
|
|
blit2d_unbind_dst(cmd_buffer, &dst_temps);
|
|
}
|
|
}
|
|
|
|
static void
|
|
anv_meta_blit2d_w_tiled_dst(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_blit2d_surf *src,
|
|
enum blit2d_src_type src_type,
|
|
struct anv_meta_blit2d_surf *dst,
|
|
unsigned num_rects,
|
|
struct anv_meta_blit2d_rect *rects)
|
|
{
|
|
struct anv_device *device = cmd_buffer->device;
|
|
|
|
for (unsigned r = 0; r < num_rects; ++r) {
|
|
struct blit2d_src_temps src_temps;
|
|
blit2d_bind_src(cmd_buffer, src, src_type, &rects[r], &src_temps);
|
|
|
|
assert(dst->bs == 1);
|
|
uint32_t offset;
|
|
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
|
|
ISL_TILING_W, 1, dst->pitch,
|
|
rects[r].dst_x, rects[r].dst_y,
|
|
&offset,
|
|
&rects[r].dst_x, &rects[r].dst_y);
|
|
|
|
/* The original coordinates were in terms of an actual W-tiled offset
|
|
* but we are binding this image as Y-tiled. We need to adjust our
|
|
* rectangle accordingly.
|
|
*/
|
|
uint32_t xmin_Y, xmax_Y, ymin_Y, ymax_Y;
|
|
xmin_Y = (rects[r].dst_x / 8) * 16;
|
|
xmax_Y = DIV_ROUND_UP(rects[r].dst_x + rects[r].width, 8) * 16;
|
|
ymin_Y = (rects[r].dst_y / 4) * 2;
|
|
ymax_Y = DIV_ROUND_UP(rects[r].dst_y + rects[r].height, 4) * 2;
|
|
|
|
struct anv_meta_blit2d_surf dst_Y = {
|
|
.bo = dst->bo,
|
|
.tiling = ISL_TILING_Y0,
|
|
.base_offset = dst->base_offset,
|
|
.bs = 1,
|
|
.pitch = dst->pitch,
|
|
};
|
|
|
|
struct blit2d_dst_temps dst_temps;
|
|
blit2d_bind_dst(cmd_buffer, &dst_Y, offset, xmax_Y, ymax_Y,
|
|
VK_FORMAT_R8_UINT, &dst_temps);
|
|
|
|
struct blit_vb_header {
|
|
struct anv_vue_header vue;
|
|
int32_t tex_offset[2];
|
|
uint32_t tex_pitch;
|
|
uint32_t bounds[4];
|
|
} *vb_header;
|
|
|
|
struct blit_vb_data {
|
|
float pos[2];
|
|
} *vb_data;
|
|
|
|
unsigned vb_size = sizeof(*vb_header) + 3 * sizeof(*vb_data);
|
|
|
|
struct anv_state vb_state =
|
|
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
|
|
vb_header = vb_state.map;
|
|
|
|
*vb_header = (struct blit_vb_header) {
|
|
.tex_offset = {
|
|
rects[r].src_x - rects[r].dst_x,
|
|
rects[r].src_y - rects[r].dst_y,
|
|
},
|
|
.tex_pitch = src->pitch,
|
|
.bounds = {
|
|
rects[r].dst_x,
|
|
rects[r].dst_y,
|
|
rects[r].dst_x + rects[r].width,
|
|
rects[r].dst_y + rects[r].height,
|
|
},
|
|
};
|
|
|
|
vb_data = (void *)(vb_header + 1);
|
|
|
|
vb_data[0] = (struct blit_vb_data) {
|
|
.pos = {
|
|
xmax_Y,
|
|
ymax_Y,
|
|
},
|
|
};
|
|
|
|
vb_data[1] = (struct blit_vb_data) {
|
|
.pos = {
|
|
xmin_Y,
|
|
ymax_Y,
|
|
},
|
|
};
|
|
|
|
vb_data[2] = (struct blit_vb_data) {
|
|
.pos = {
|
|
xmin_Y,
|
|
ymin_Y,
|
|
},
|
|
};
|
|
|
|
if (!device->info.has_llc)
|
|
anv_state_clflush(vb_state);
|
|
|
|
struct anv_buffer vertex_buffer = {
|
|
.device = device,
|
|
.size = vb_size,
|
|
.bo = &device->dynamic_state_block_pool.bo,
|
|
.offset = vb_state.offset,
|
|
};
|
|
|
|
anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
|
|
(VkBuffer[]) {
|
|
anv_buffer_to_handle(&vertex_buffer),
|
|
anv_buffer_to_handle(&vertex_buffer)
|
|
},
|
|
(VkDeviceSize[]) {
|
|
0,
|
|
(void *)vb_data - vb_state.map,
|
|
});
|
|
|
|
ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
&(VkRenderPassBeginInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
|
|
.renderPass = device->meta_state.blit2d.render_pass,
|
|
.framebuffer = dst_temps.fb,
|
|
.renderArea = {
|
|
.offset = { xmin_Y, ymin_Y, },
|
|
.extent = { xmax_Y - xmin_Y, ymax_Y - ymin_Y },
|
|
},
|
|
.clearValueCount = 0,
|
|
.pClearValues = NULL,
|
|
}, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
bind_pipeline(cmd_buffer, src_type, BLIT2D_DST_TYPE_W_TILE);
|
|
|
|
ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
|
|
|
|
ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
|
|
|
|
/* At the point where we emit the draw call, all data from the
|
|
* descriptor sets, etc. has been used. We are free to delete it.
|
|
*/
|
|
blit2d_unbind_src(cmd_buffer, src_type, &src_temps);
|
|
blit2d_unbind_dst(cmd_buffer, &dst_temps);
|
|
}
|
|
}
|
|
|
|
static void
|
|
anv_meta_blit2d_rgb_dst(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_blit2d_surf *src,
|
|
enum blit2d_src_type src_type,
|
|
struct anv_meta_blit2d_surf *dst,
|
|
unsigned num_rects,
|
|
struct anv_meta_blit2d_rect *rects)
|
|
{
|
|
struct anv_device *device = cmd_buffer->device;
|
|
|
|
for (unsigned r = 0; r < num_rects; ++r) {
|
|
struct blit2d_src_temps src_temps;
|
|
blit2d_bind_src(cmd_buffer, src, src_type, &rects[r], &src_temps);
|
|
|
|
assert(dst->bs % 3 == 0);
|
|
assert(dst->tiling == ISL_TILING_LINEAR);
|
|
|
|
uint32_t offset;
|
|
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
|
|
dst->tiling, 1, dst->pitch,
|
|
rects[r].dst_x, rects[r].dst_y,
|
|
&offset,
|
|
&rects[r].dst_x, &rects[r].dst_y);
|
|
|
|
/* A red surface three times as wide as the actual RGB destination */
|
|
struct anv_meta_blit2d_surf dst_R = {
|
|
.bo = dst->bo,
|
|
.tiling = dst->tiling,
|
|
.base_offset = dst->base_offset,
|
|
.bs = dst->bs / 3,
|
|
.pitch = dst->pitch,
|
|
};
|
|
|
|
struct blit2d_dst_temps dst_temps;
|
|
blit2d_bind_dst(cmd_buffer, &dst_R, offset,
|
|
(rects[r].dst_x + rects[r].width) * 3,
|
|
rects[r].dst_y + rects[r].height,
|
|
vk_single_component_format_for_rgb_size(dst->bs),
|
|
&dst_temps);
|
|
|
|
struct blit_vb_data {
|
|
float pos[2];
|
|
float tex_coord[3];
|
|
} *vb_data;
|
|
|
|
unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
|
|
|
|
struct anv_state vb_state =
|
|
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
|
|
memset(vb_state.map, 0, sizeof(struct anv_vue_header));
|
|
vb_data = vb_state.map + sizeof(struct anv_vue_header);
|
|
|
|
vb_data[0] = (struct blit_vb_data) {
|
|
.pos = {
|
|
(rects[r].dst_x + rects[r].width) * 3,
|
|
rects[r].dst_y + rects[r].height,
|
|
},
|
|
.tex_coord = {
|
|
rects[r].src_x + rects[r].width,
|
|
rects[r].src_y + rects[r].height,
|
|
src->pitch,
|
|
},
|
|
};
|
|
|
|
vb_data[1] = (struct blit_vb_data) {
|
|
.pos = {
|
|
rects[r].dst_x * 3,
|
|
rects[r].dst_y + rects[r].height,
|
|
},
|
|
.tex_coord = {
|
|
rects[r].src_x,
|
|
rects[r].src_y + rects[r].height,
|
|
src->pitch,
|
|
},
|
|
};
|
|
|
|
vb_data[2] = (struct blit_vb_data) {
|
|
.pos = {
|
|
rects[r].dst_x * 3,
|
|
rects[r].dst_y,
|
|
},
|
|
.tex_coord = {
|
|
rects[r].src_x,
|
|
rects[r].src_y,
|
|
src->pitch,
|
|
},
|
|
};
|
|
|
|
if (!device->info.has_llc)
|
|
anv_state_clflush(vb_state);
|
|
|
|
struct anv_buffer vertex_buffer = {
|
|
.device = device,
|
|
.size = vb_size,
|
|
.bo = &device->dynamic_state_block_pool.bo,
|
|
.offset = vb_state.offset,
|
|
};
|
|
|
|
anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
|
|
(VkBuffer[]) {
|
|
anv_buffer_to_handle(&vertex_buffer),
|
|
anv_buffer_to_handle(&vertex_buffer)
|
|
},
|
|
(VkDeviceSize[]) {
|
|
0,
|
|
sizeof(struct anv_vue_header),
|
|
});
|
|
|
|
ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
|
|
&(VkRenderPassBeginInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
|
|
.renderPass = device->meta_state.blit2d.render_pass,
|
|
.framebuffer = dst_temps.fb,
|
|
.renderArea = {
|
|
.offset = { rects[r].dst_x, rects[r].dst_y, },
|
|
.extent = { rects[r].width, rects[r].height },
|
|
},
|
|
.clearValueCount = 0,
|
|
.pClearValues = NULL,
|
|
}, VK_SUBPASS_CONTENTS_INLINE);
|
|
|
|
bind_pipeline(cmd_buffer, src_type, BLIT2D_DST_TYPE_RGB);
|
|
|
|
ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
|
|
|
|
ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
|
|
|
|
/* At the point where we emit the draw call, all data from the
|
|
* descriptor sets, etc. has been used. We are free to delete it.
|
|
*/
|
|
blit2d_unbind_src(cmd_buffer, src_type, &src_temps);
|
|
blit2d_unbind_dst(cmd_buffer, &dst_temps);
|
|
}
|
|
}
|
|
|
|
void
|
|
anv_meta_blit2d(struct anv_cmd_buffer *cmd_buffer,
|
|
struct anv_meta_blit2d_surf *src,
|
|
struct anv_meta_blit2d_surf *dst,
|
|
unsigned num_rects,
|
|
struct anv_meta_blit2d_rect *rects)
|
|
{
|
|
enum blit2d_src_type src_type;
|
|
if (src->tiling == ISL_TILING_W && cmd_buffer->device->info.gen < 8) {
|
|
src_type = BLIT2D_SRC_TYPE_W_DETILE;
|
|
} else {
|
|
src_type = BLIT2D_SRC_TYPE_NORMAL;
|
|
}
|
|
|
|
if (dst->tiling == ISL_TILING_W) {
|
|
anv_meta_blit2d_w_tiled_dst(cmd_buffer, src, src_type, dst,
|
|
num_rects, rects);
|
|
return;
|
|
} else if (dst->bs % 3 == 0) {
|
|
anv_meta_blit2d_rgb_dst(cmd_buffer, src, src_type, dst,
|
|
num_rects, rects);
|
|
return;
|
|
} else {
|
|
assert(util_is_power_of_two(dst->bs));
|
|
anv_meta_blit2d_normal_dst(cmd_buffer, src, src_type, dst,
|
|
num_rects, rects);
|
|
}
|
|
}
|
|
|
|
static nir_shader *
|
|
build_nir_vertex_shader(void)
|
|
{
|
|
const struct glsl_type *vec4 = glsl_vec4_type();
|
|
nir_builder b;
|
|
|
|
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
|
|
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs");
|
|
|
|
nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
vec4, "a_pos");
|
|
pos_in->data.location = VERT_ATTRIB_GENERIC0;
|
|
nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "gl_Position");
|
|
pos_out->data.location = VARYING_SLOT_POS;
|
|
nir_copy_var(&b, pos_out, pos_in);
|
|
|
|
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
vec4, "a_tex_pos");
|
|
tex_pos_in->data.location = VERT_ATTRIB_GENERIC1;
|
|
nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "v_tex_pos");
|
|
tex_pos_out->data.location = VARYING_SLOT_VAR0;
|
|
tex_pos_out->data.interpolation = INTERP_MODE_SMOOTH;
|
|
nir_copy_var(&b, tex_pos_out, tex_pos_in);
|
|
|
|
nir_variable *other_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
vec4, "a_other");
|
|
other_in->data.location = VERT_ATTRIB_GENERIC2;
|
|
nir_variable *other_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "v_other");
|
|
other_out->data.location = VARYING_SLOT_VAR1;
|
|
other_out->data.interpolation = INTERP_MODE_FLAT;
|
|
nir_copy_var(&b, other_out, other_in);
|
|
|
|
return b.shader;
|
|
}
|
|
|
|
typedef nir_ssa_def* (*texel_fetch_build_func)(struct nir_builder *,
|
|
struct anv_device *,
|
|
nir_ssa_def *, nir_ssa_def *);
|
|
|
|
static nir_ssa_def *
|
|
nir_copy_bits(struct nir_builder *b, nir_ssa_def *dst, unsigned dst_offset,
|
|
nir_ssa_def *src, unsigned src_offset, unsigned num_bits)
|
|
{
|
|
unsigned src_mask = (~1u >> (32 - num_bits)) << src_offset;
|
|
nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
|
|
|
|
nir_ssa_def *shifted;
|
|
if (dst_offset > src_offset) {
|
|
shifted = nir_ishl(b, masked, nir_imm_int(b, dst_offset - src_offset));
|
|
} else if (dst_offset < src_offset) {
|
|
shifted = nir_ushr(b, masked, nir_imm_int(b, src_offset - dst_offset));
|
|
} else {
|
|
assert(dst_offset == src_offset);
|
|
shifted = masked;
|
|
}
|
|
|
|
return nir_ior(b, dst, shifted);
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
build_nir_w_tiled_fetch(struct nir_builder *b, struct anv_device *device,
|
|
nir_ssa_def *tex_pos, nir_ssa_def *tex_pitch)
|
|
{
|
|
nir_ssa_def *x = nir_channel(b, tex_pos, 0);
|
|
nir_ssa_def *y = nir_channel(b, tex_pos, 1);
|
|
|
|
/* First, compute the block-aligned offset */
|
|
nir_ssa_def *x_major = nir_ushr(b, x, nir_imm_int(b, 6));
|
|
nir_ssa_def *y_major = nir_ushr(b, y, nir_imm_int(b, 6));
|
|
/* W tiles have physical size of 128x32 and logical size of 64x64, hence
|
|
* the multiplication by 32 (instead of 64). */
|
|
nir_ssa_def *offset =
|
|
nir_iadd(b, nir_imul(b, y_major,
|
|
nir_imul(b, tex_pitch, nir_imm_int(b, 32))),
|
|
nir_imul(b, x_major, nir_imm_int(b, 4096)));
|
|
|
|
/* Compute the bottom 12 bits of the offset */
|
|
offset = nir_copy_bits(b, offset, 0, x, 0, 1);
|
|
offset = nir_copy_bits(b, offset, 1, y, 0, 1);
|
|
offset = nir_copy_bits(b, offset, 2, x, 1, 1);
|
|
offset = nir_copy_bits(b, offset, 3, y, 1, 1);
|
|
offset = nir_copy_bits(b, offset, 4, x, 2, 1);
|
|
offset = nir_copy_bits(b, offset, 5, y, 2, 4);
|
|
offset = nir_copy_bits(b, offset, 9, x, 3, 3);
|
|
|
|
if (device->isl_dev.has_bit6_swizzling) {
|
|
offset = nir_ixor(b, offset,
|
|
nir_ushr(b, nir_iand(b, offset, nir_imm_int(b, 0x0200)),
|
|
nir_imm_int(b, 3)));
|
|
}
|
|
|
|
const struct glsl_type *sampler_type =
|
|
glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_FLOAT);
|
|
nir_variable *sampler = nir_variable_create(b->shader, nir_var_uniform,
|
|
sampler_type, "s_tex");
|
|
sampler->data.descriptor_set = 0;
|
|
sampler->data.binding = 0;
|
|
|
|
nir_tex_instr *tex = nir_tex_instr_create(b->shader, 1);
|
|
tex->sampler_dim = GLSL_SAMPLER_DIM_BUF;
|
|
tex->op = nir_texop_txf;
|
|
tex->src[0].src_type = nir_tex_src_coord;
|
|
tex->src[0].src = nir_src_for_ssa(offset);
|
|
tex->dest_type = nir_type_float; /* TODO */
|
|
tex->is_array = false;
|
|
tex->coord_components = 1;
|
|
tex->texture = nir_deref_var_create(tex, sampler);
|
|
tex->sampler = NULL;
|
|
|
|
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
|
|
nir_builder_instr_insert(b, &tex->instr);
|
|
|
|
return &tex->dest.ssa;
|
|
}
|
|
|
|
static nir_ssa_def *
|
|
build_nir_texel_fetch(struct nir_builder *b, struct anv_device *device,
|
|
nir_ssa_def *tex_pos, nir_ssa_def *tex_pitch)
|
|
{
|
|
const struct glsl_type *sampler_type =
|
|
glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false, GLSL_TYPE_FLOAT);
|
|
nir_variable *sampler = nir_variable_create(b->shader, nir_var_uniform,
|
|
sampler_type, "s_tex");
|
|
sampler->data.descriptor_set = 0;
|
|
sampler->data.binding = 0;
|
|
|
|
nir_tex_instr *tex = nir_tex_instr_create(b->shader, 2);
|
|
tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
|
|
tex->op = nir_texop_txf;
|
|
tex->src[0].src_type = nir_tex_src_coord;
|
|
tex->src[0].src = nir_src_for_ssa(tex_pos);
|
|
tex->src[1].src_type = nir_tex_src_lod;
|
|
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
|
|
tex->dest_type = nir_type_float; /* TODO */
|
|
tex->is_array = false;
|
|
tex->coord_components = 2;
|
|
tex->texture = nir_deref_var_create(tex, sampler);
|
|
tex->sampler = NULL;
|
|
|
|
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
|
|
nir_builder_instr_insert(b, &tex->instr);
|
|
|
|
return &tex->dest.ssa;
|
|
}
|
|
|
|
static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
|
|
.vertexBindingDescriptionCount = 2,
|
|
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
|
|
{
|
|
.binding = 0,
|
|
.stride = 0,
|
|
.inputRate = VK_VERTEX_INPUT_RATE_INSTANCE
|
|
},
|
|
{
|
|
.binding = 1,
|
|
.stride = 5 * sizeof(float),
|
|
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
|
|
},
|
|
},
|
|
.vertexAttributeDescriptionCount = 3,
|
|
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
|
|
{
|
|
/* VUE Header */
|
|
.location = 0,
|
|
.binding = 0,
|
|
.format = VK_FORMAT_R32G32B32A32_UINT,
|
|
.offset = 0
|
|
},
|
|
{
|
|
/* Position */
|
|
.location = 1,
|
|
.binding = 1,
|
|
.format = VK_FORMAT_R32G32_SFLOAT,
|
|
.offset = 0
|
|
},
|
|
{
|
|
/* Texture Coordinate */
|
|
.location = 2,
|
|
.binding = 1,
|
|
.format = VK_FORMAT_R32G32B32_SFLOAT,
|
|
.offset = 8
|
|
},
|
|
},
|
|
};
|
|
|
|
static nir_shader *
|
|
build_nir_copy_fragment_shader(struct anv_device *device,
|
|
texel_fetch_build_func txf_func)
|
|
{
|
|
const struct glsl_type *vec4 = glsl_vec4_type();
|
|
const struct glsl_type *vec3 = glsl_vector_type(GLSL_TYPE_FLOAT, 3);
|
|
nir_builder b;
|
|
|
|
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
|
|
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_fs");
|
|
|
|
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
vec3, "v_tex_pos");
|
|
tex_pos_in->data.location = VARYING_SLOT_VAR0;
|
|
|
|
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "f_color");
|
|
color_out->data.location = FRAG_RESULT_DATA0;
|
|
|
|
nir_ssa_def *pos_int = nir_f2i(&b, nir_load_var(&b, tex_pos_in));
|
|
unsigned swiz[4] = { 0, 1 };
|
|
nir_ssa_def *tex_pos = nir_swizzle(&b, pos_int, swiz, 2, false);
|
|
nir_ssa_def *tex_pitch = nir_channel(&b, pos_int, 2);
|
|
|
|
nir_ssa_def *color = txf_func(&b, device, tex_pos, tex_pitch);
|
|
nir_store_var(&b, color_out, color, 0xf);
|
|
|
|
return b.shader;
|
|
}
|
|
|
|
/* RGB copies have the same interface as normal copies */
|
|
#define rgb_vi_create_info normal_vi_create_info
|
|
|
|
static nir_shader *
|
|
build_nir_rgb_fragment_shader(struct anv_device *device,
|
|
texel_fetch_build_func txf_func)
|
|
{
|
|
const struct glsl_type *vec4 = glsl_vec4_type();
|
|
const struct glsl_type *vec3 = glsl_vector_type(GLSL_TYPE_FLOAT, 3);
|
|
nir_builder b;
|
|
|
|
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
|
|
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_fs");
|
|
|
|
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
vec3, "v_tex_pos");
|
|
tex_pos_in->data.location = VARYING_SLOT_VAR0;
|
|
|
|
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "f_color");
|
|
color_out->data.location = FRAG_RESULT_DATA0;
|
|
|
|
/* We need gl_FragCoord so we know our position */
|
|
nir_variable *frag_coord_in = nir_variable_create(b.shader,
|
|
nir_var_shader_in,
|
|
vec4, "gl_FragCoord");
|
|
frag_coord_in->data.location = VARYING_SLOT_POS;
|
|
frag_coord_in->data.origin_upper_left = true;
|
|
|
|
nir_ssa_def *pos_int = nir_f2i(&b, nir_load_var(&b, tex_pos_in));
|
|
unsigned swiz[4] = { 0, 1 };
|
|
nir_ssa_def *tex_pos = nir_swizzle(&b, pos_int, swiz, 2, false);
|
|
nir_ssa_def *tex_pitch = nir_channel(&b, pos_int, 2);
|
|
|
|
nir_ssa_def *color = txf_func(&b, device, tex_pos, tex_pitch);
|
|
|
|
/* We figure out which component we are by the x component of FragCoord */
|
|
nir_ssa_def *frag_coord_int = nir_f2i(&b, nir_load_var(&b, frag_coord_in));
|
|
nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, frag_coord_int, 0),
|
|
nir_imm_int(&b, 3));
|
|
|
|
/* Select the given channel from the texelFetch result */
|
|
nir_ssa_def *color_channel =
|
|
nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
|
|
nir_channel(&b, color, 0),
|
|
nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
|
|
nir_channel(&b, color, 1),
|
|
nir_channel(&b, color, 2)));
|
|
|
|
nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
|
|
nir_store_var(&b, color_out, nir_vec4(&b, color_channel, u, u, u), 0x1);
|
|
|
|
return b.shader;
|
|
}
|
|
|
|
static const VkPipelineVertexInputStateCreateInfo w_tiled_vi_create_info = {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
|
|
.vertexBindingDescriptionCount = 2,
|
|
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
|
|
{
|
|
.binding = 0,
|
|
.stride = 0,
|
|
.inputRate = VK_VERTEX_INPUT_RATE_INSTANCE
|
|
},
|
|
{
|
|
.binding = 1,
|
|
.stride = 2 * sizeof(float),
|
|
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
|
|
},
|
|
},
|
|
.vertexAttributeDescriptionCount = 4,
|
|
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
|
|
{
|
|
/* VUE Header */
|
|
.location = 0,
|
|
.binding = 0,
|
|
.format = VK_FORMAT_R32G32B32A32_UINT,
|
|
.offset = 0
|
|
},
|
|
{
|
|
/* Position */
|
|
.location = 1,
|
|
.binding = 1,
|
|
.format = VK_FORMAT_R32G32_SFLOAT,
|
|
.offset = 0
|
|
},
|
|
{
|
|
/* Texture Offset */
|
|
.location = 2,
|
|
.binding = 0,
|
|
.format = VK_FORMAT_R32G32B32_UINT,
|
|
.offset = 16
|
|
},
|
|
{
|
|
/* Destination bounds */
|
|
.location = 3,
|
|
.binding = 0,
|
|
.format = VK_FORMAT_R32G32B32A32_UINT,
|
|
.offset = 28
|
|
},
|
|
},
|
|
};
|
|
|
|
static nir_shader *
|
|
build_nir_w_tiled_fragment_shader(struct anv_device *device,
|
|
texel_fetch_build_func txf_func)
|
|
{
|
|
const struct glsl_type *vec4 = glsl_vec4_type();
|
|
const struct glsl_type *ivec3 = glsl_vector_type(GLSL_TYPE_INT, 3);
|
|
const struct glsl_type *uvec4 = glsl_vector_type(GLSL_TYPE_UINT, 4);
|
|
nir_builder b;
|
|
|
|
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
|
|
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_fs");
|
|
|
|
/* We need gl_FragCoord so we know our Y-tiled position */
|
|
nir_variable *frag_coord_in = nir_variable_create(b.shader,
|
|
nir_var_shader_in,
|
|
vec4, "gl_FragCoord");
|
|
frag_coord_in->data.location = VARYING_SLOT_POS;
|
|
frag_coord_in->data.origin_upper_left = true;
|
|
|
|
/* In location 0 we have an ivec3 that has the offset from dest to
|
|
* source in the first two components and the stride in the third.
|
|
*/
|
|
nir_variable *tex_off_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
ivec3, "v_tex_off");
|
|
tex_off_in->data.location = VARYING_SLOT_VAR0;
|
|
tex_off_in->data.interpolation = INTERP_MODE_FLAT;
|
|
|
|
/* In location 1 we have a uvec4 that gives us the bounds of the
|
|
* destination. We need to discard if we get outside this boundary.
|
|
*/
|
|
nir_variable *bounds_in = nir_variable_create(b.shader, nir_var_shader_in,
|
|
uvec4, "v_bounds");
|
|
bounds_in->data.location = VARYING_SLOT_VAR1;
|
|
bounds_in->data.interpolation = INTERP_MODE_FLAT;
|
|
|
|
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
|
|
vec4, "f_color");
|
|
color_out->data.location = FRAG_RESULT_DATA0;
|
|
|
|
nir_ssa_def *frag_coord_int = nir_f2i(&b, nir_load_var(&b, frag_coord_in));
|
|
nir_ssa_def *x_Y = nir_channel(&b, frag_coord_int, 0);
|
|
nir_ssa_def *y_Y = nir_channel(&b, frag_coord_int, 1);
|
|
|
|
/* Compute the W-tiled position from the Y-tiled position */
|
|
nir_ssa_def *x_W = nir_iand(&b, x_Y, nir_imm_int(&b, 0xffffff80));
|
|
x_W = nir_ushr(&b, x_W, nir_imm_int(&b, 1));
|
|
x_W = nir_copy_bits(&b, x_W, 0, x_Y, 0, 1);
|
|
x_W = nir_copy_bits(&b, x_W, 1, x_Y, 2, 1);
|
|
x_W = nir_copy_bits(&b, x_W, 2, y_Y, 0, 1);
|
|
x_W = nir_copy_bits(&b, x_W, 3, x_Y, 4, 3);
|
|
|
|
nir_ssa_def *y_W = nir_iand(&b, y_Y, nir_imm_int(&b, 0xffffffe0));
|
|
y_W = nir_ishl(&b, y_W, nir_imm_int(&b, 1));
|
|
y_W = nir_copy_bits(&b, y_W, 0, x_Y, 1, 1);
|
|
y_W = nir_copy_bits(&b, y_W, 1, x_Y, 3, 1);
|
|
y_W = nir_copy_bits(&b, y_W, 2, y_Y, 1, 4);
|
|
|
|
/* Figure out if we are out-of-bounds and discard */
|
|
nir_ssa_def *bounds = nir_load_var(&b, bounds_in);
|
|
nir_ssa_def *oob =
|
|
nir_ior(&b, nir_ult(&b, x_W, nir_channel(&b, bounds, 0)),
|
|
nir_ior(&b, nir_ult(&b, y_W, nir_channel(&b, bounds, 1)),
|
|
nir_ior(&b, nir_uge(&b, x_W, nir_channel(&b, bounds, 2)),
|
|
nir_uge(&b, y_W, nir_channel(&b, bounds, 3)))));
|
|
|
|
nir_intrinsic_instr *discard =
|
|
nir_intrinsic_instr_create(b.shader, nir_intrinsic_discard_if);
|
|
discard->src[0] = nir_src_for_ssa(oob);
|
|
nir_builder_instr_insert(&b, &discard->instr);
|
|
|
|
nir_ssa_def *tex_off = nir_channels(&b, nir_load_var(&b, tex_off_in), 0x3);
|
|
nir_ssa_def *tex_pos = nir_iadd(&b, nir_vec2(&b, x_W, y_W), tex_off);
|
|
nir_ssa_def *tex_pitch = nir_channel(&b, nir_load_var(&b, tex_off_in), 2);
|
|
|
|
nir_ssa_def *color = txf_func(&b, device, tex_pos, tex_pitch);
|
|
nir_store_var(&b, color_out, color, 0xf);
|
|
|
|
return b.shader;
|
|
}
|
|
|
|
void
|
|
anv_device_finish_meta_blit2d_state(struct anv_device *device)
|
|
{
|
|
if (device->meta_state.blit2d.render_pass) {
|
|
anv_DestroyRenderPass(anv_device_to_handle(device),
|
|
device->meta_state.blit2d.render_pass,
|
|
&device->meta_state.alloc);
|
|
}
|
|
|
|
if (device->meta_state.blit2d.img_p_layout) {
|
|
anv_DestroyPipelineLayout(anv_device_to_handle(device),
|
|
device->meta_state.blit2d.img_p_layout,
|
|
&device->meta_state.alloc);
|
|
}
|
|
|
|
if (device->meta_state.blit2d.img_ds_layout) {
|
|
anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
|
|
device->meta_state.blit2d.img_ds_layout,
|
|
&device->meta_state.alloc);
|
|
}
|
|
|
|
if (device->meta_state.blit2d.buf_p_layout) {
|
|
anv_DestroyPipelineLayout(anv_device_to_handle(device),
|
|
device->meta_state.blit2d.buf_p_layout,
|
|
&device->meta_state.alloc);
|
|
}
|
|
|
|
if (device->meta_state.blit2d.buf_ds_layout) {
|
|
anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
|
|
device->meta_state.blit2d.buf_ds_layout,
|
|
&device->meta_state.alloc);
|
|
}
|
|
|
|
for (unsigned src = 0; src < BLIT2D_NUM_SRC_TYPES; src++) {
|
|
for (unsigned dst = 0; dst < BLIT2D_NUM_DST_TYPES; dst++) {
|
|
if (device->meta_state.blit2d.pipelines[src][dst]) {
|
|
anv_DestroyPipeline(anv_device_to_handle(device),
|
|
device->meta_state.blit2d.pipelines[src][dst],
|
|
&device->meta_state.alloc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static VkResult
|
|
blit2d_init_pipeline(struct anv_device *device,
|
|
enum blit2d_src_type src_type,
|
|
enum blit2d_dst_type dst_type)
|
|
{
|
|
VkResult result;
|
|
|
|
texel_fetch_build_func src_func;
|
|
switch (src_type) {
|
|
case BLIT2D_SRC_TYPE_NORMAL:
|
|
src_func = build_nir_texel_fetch;
|
|
break;
|
|
case BLIT2D_SRC_TYPE_W_DETILE:
|
|
src_func = build_nir_w_tiled_fetch;
|
|
break;
|
|
default:
|
|
unreachable("Invalid blit2d source type");
|
|
}
|
|
|
|
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
|
|
struct anv_shader_module fs = { .nir = NULL };
|
|
switch (dst_type) {
|
|
case BLIT2D_DST_TYPE_NORMAL:
|
|
fs.nir = build_nir_copy_fragment_shader(device, src_func);
|
|
vi_create_info = &normal_vi_create_info;
|
|
break;
|
|
case BLIT2D_DST_TYPE_W_TILE:
|
|
fs.nir = build_nir_w_tiled_fragment_shader(device, src_func);
|
|
vi_create_info = &w_tiled_vi_create_info;
|
|
break;
|
|
case BLIT2D_DST_TYPE_RGB:
|
|
/* RGB destinations and W-detiling don't mix */
|
|
if (src_type != BLIT2D_SRC_TYPE_NORMAL)
|
|
return VK_SUCCESS;
|
|
|
|
fs.nir = build_nir_rgb_fragment_shader(device, src_func);
|
|
vi_create_info = &rgb_vi_create_info;
|
|
break;
|
|
default:
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
/* We don't use a vertex shader for blitting, but instead build and pass
|
|
* the VUEs directly to the rasterization backend. However, we do need
|
|
* to provide GLSL source for the vertex shader so that the compiler
|
|
* does not dead-code our inputs.
|
|
*/
|
|
struct anv_shader_module vs = {
|
|
.nir = build_nir_vertex_shader(),
|
|
};
|
|
|
|
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
|
|
{
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
.stage = VK_SHADER_STAGE_VERTEX_BIT,
|
|
.module = anv_shader_module_to_handle(&vs),
|
|
.pName = "main",
|
|
.pSpecializationInfo = NULL
|
|
}, {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
|
|
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
.module = anv_shader_module_to_handle(&fs),
|
|
.pName = "main",
|
|
.pSpecializationInfo = NULL
|
|
},
|
|
};
|
|
|
|
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
|
|
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
|
|
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
|
|
.pStages = pipeline_shader_stages,
|
|
.pVertexInputState = vi_create_info,
|
|
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
|
|
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
|
|
.primitiveRestartEnable = false,
|
|
},
|
|
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
|
|
.viewportCount = 1,
|
|
.scissorCount = 1,
|
|
},
|
|
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
|
|
.rasterizerDiscardEnable = false,
|
|
.polygonMode = VK_POLYGON_MODE_FILL,
|
|
.cullMode = VK_CULL_MODE_NONE,
|
|
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
|
|
},
|
|
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
|
|
.rasterizationSamples = 1,
|
|
.sampleShadingEnable = false,
|
|
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
|
|
},
|
|
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
|
|
.attachmentCount = 1,
|
|
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
|
|
{ .colorWriteMask =
|
|
VK_COLOR_COMPONENT_A_BIT |
|
|
VK_COLOR_COMPONENT_R_BIT |
|
|
VK_COLOR_COMPONENT_G_BIT |
|
|
VK_COLOR_COMPONENT_B_BIT },
|
|
}
|
|
},
|
|
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
|
|
.dynamicStateCount = 9,
|
|
.pDynamicStates = (VkDynamicState[]) {
|
|
VK_DYNAMIC_STATE_VIEWPORT,
|
|
VK_DYNAMIC_STATE_SCISSOR,
|
|
VK_DYNAMIC_STATE_LINE_WIDTH,
|
|
VK_DYNAMIC_STATE_DEPTH_BIAS,
|
|
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
|
|
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
|
|
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
|
|
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
|
|
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
|
|
},
|
|
},
|
|
.flags = 0,
|
|
.layout = device->meta_state.blit2d.img_p_layout,
|
|
.renderPass = device->meta_state.blit2d.render_pass,
|
|
.subpass = 0,
|
|
};
|
|
|
|
const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
|
|
.color_attachment_count = -1,
|
|
.use_repclear = false,
|
|
.disable_vs = true,
|
|
.use_rectlist = true
|
|
};
|
|
|
|
result = anv_graphics_pipeline_create(anv_device_to_handle(device),
|
|
VK_NULL_HANDLE,
|
|
&vk_pipeline_info, &anv_pipeline_info,
|
|
&device->meta_state.alloc,
|
|
&device->meta_state.blit2d.pipelines[src_type][dst_type]);
|
|
|
|
ralloc_free(vs.nir);
|
|
ralloc_free(fs.nir);
|
|
|
|
return result;
|
|
}
|
|
|
|
VkResult
|
|
anv_device_init_meta_blit2d_state(struct anv_device *device)
|
|
{
|
|
VkResult result;
|
|
|
|
zero(device->meta_state.blit2d);
|
|
|
|
result = anv_CreateRenderPass(anv_device_to_handle(device),
|
|
&(VkRenderPassCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
|
|
.attachmentCount = 1,
|
|
.pAttachments = &(VkAttachmentDescription) {
|
|
.format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
|
|
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
|
|
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
|
|
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
|
|
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
|
|
},
|
|
.subpassCount = 1,
|
|
.pSubpasses = &(VkSubpassDescription) {
|
|
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
|
|
.inputAttachmentCount = 0,
|
|
.colorAttachmentCount = 1,
|
|
.pColorAttachments = &(VkAttachmentReference) {
|
|
.attachment = 0,
|
|
.layout = VK_IMAGE_LAYOUT_GENERAL,
|
|
},
|
|
.pResolveAttachments = NULL,
|
|
.pDepthStencilAttachment = &(VkAttachmentReference) {
|
|
.attachment = VK_ATTACHMENT_UNUSED,
|
|
.layout = VK_IMAGE_LAYOUT_GENERAL,
|
|
},
|
|
.preserveAttachmentCount = 1,
|
|
.pPreserveAttachments = (uint32_t[]) { 0 },
|
|
},
|
|
.dependencyCount = 0,
|
|
}, &device->meta_state.alloc, &device->meta_state.blit2d.render_pass);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
|
|
&(VkDescriptorSetLayoutCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
|
|
.bindingCount = 1,
|
|
.pBindings = (VkDescriptorSetLayoutBinding[]) {
|
|
{
|
|
.binding = 0,
|
|
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
|
|
.descriptorCount = 1,
|
|
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
.pImmutableSamplers = NULL
|
|
},
|
|
}
|
|
}, &device->meta_state.alloc, &device->meta_state.blit2d.img_ds_layout);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
result = anv_CreatePipelineLayout(anv_device_to_handle(device),
|
|
&(VkPipelineLayoutCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
|
|
.setLayoutCount = 1,
|
|
.pSetLayouts = &device->meta_state.blit2d.img_ds_layout,
|
|
},
|
|
&device->meta_state.alloc, &device->meta_state.blit2d.img_p_layout);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
|
|
&(VkDescriptorSetLayoutCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
|
|
.bindingCount = 1,
|
|
.pBindings = (VkDescriptorSetLayoutBinding[]) {
|
|
{
|
|
.binding = 0,
|
|
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
|
|
.descriptorCount = 1,
|
|
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
|
|
.pImmutableSamplers = NULL
|
|
},
|
|
}
|
|
}, &device->meta_state.alloc, &device->meta_state.blit2d.buf_ds_layout);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
result = anv_CreatePipelineLayout(anv_device_to_handle(device),
|
|
&(VkPipelineLayoutCreateInfo) {
|
|
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
|
|
.setLayoutCount = 1,
|
|
.pSetLayouts = &device->meta_state.blit2d.buf_ds_layout,
|
|
},
|
|
&device->meta_state.alloc, &device->meta_state.blit2d.buf_p_layout);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
|
|
for (unsigned src = 0; src < BLIT2D_NUM_SRC_TYPES; src++) {
|
|
for (unsigned dst = 0; dst < BLIT2D_NUM_DST_TYPES; dst++) {
|
|
result = blit2d_init_pipeline(device, src, dst);
|
|
if (result != VK_SUCCESS)
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
|
|
fail:
|
|
anv_device_finish_meta_blit2d_state(device);
|
|
return result;
|
|
}
|