Files
third_party_mesa3d/src/intel/vulkan/anv_meta_blit2d.c
Lionel Landwerlin 91987c51e3 anv: meta_blit2d: adapt texel fetch pitch for fake w-tiled
We need to compute detiling coordinates using the physical size of W tiling
(128x32) rather than the logical size (64x64).

v2: Correct comment (Jason)

Fixes dEQP-VK.api.copy_and_blit.image_to_image_stencil

Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=97448
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Jason Ekstrand <jason@jlekstrand.net>
2016-08-24 11:29:23 -07:00

1545 lines
55 KiB
C

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "anv_meta.h"
#include "nir/nir_builder.h"
enum blit2d_src_type {
/* We can make a "normal" image view of this source and just texture
* from it like you would in any other shader.
*/
BLIT2D_SRC_TYPE_NORMAL,
/* The source is W-tiled and we need to detile manually in the shader.
* This will work on any platform but is needed for all W-tiled sources
* prior to Broadwell.
*/
BLIT2D_SRC_TYPE_W_DETILE,
BLIT2D_NUM_SRC_TYPES,
};
enum blit2d_dst_type {
/* We can bind this destination as a "normal" render target and render
* to it just like you would anywhere else.
*/
BLIT2D_DST_TYPE_NORMAL,
/* The destination is W-tiled and we need to do the tiling manually in
* the shader. This is required for all W-tiled destinations.
*
* Sky Lake adds a feature for providing explicit stencil values in the
* shader but mesa doesn't support that yet so neither do we.
*/
BLIT2D_DST_TYPE_W_TILE,
/* The destination has a 3-channel RGB format. Since we can't render to
* non-power-of-two textures, we have to bind it as a red texture and
* select the correct component for the given red pixel in the shader.
*/
BLIT2D_DST_TYPE_RGB,
BLIT2D_NUM_DST_TYPES,
};
static VkFormat
vk_format_for_size(int bs)
{
/* The choice of UNORM and UINT formats is very intentional here. Most of
* the time, we want to use a UINT format to avoid any rounding error in
* the blit. For stencil blits, R8_UINT is required by the hardware.
* (It's the only format allowed in conjunction with W-tiling.) Also we
* intentionally use the 4-channel formats whenever we can. This is so
* that, when we do a RGB <-> RGBX copy, the two formats will line up even
* though one of them is 3/4 the size of the other. The choice of UNORM
* vs. UINT is also very intentional because Haswell doesn't handle 8 or
* 16-bit RGB UINT formats at all so we have to use UNORM there.
* Fortunately, the only time we should ever use two different formats in
* the table below is for RGB -> RGBA blits and so we will never have any
* UNORM/UINT mismatch.
*/
switch (bs) {
case 1: return VK_FORMAT_R8_UINT;
case 2: return VK_FORMAT_R8G8_UINT;
case 3: return VK_FORMAT_R8G8B8_UNORM;
case 4: return VK_FORMAT_R8G8B8A8_UNORM;
case 6: return VK_FORMAT_R16G16B16_UNORM;
case 8: return VK_FORMAT_R16G16B16A16_UNORM;
case 12: return VK_FORMAT_R32G32B32_UINT;
case 16: return VK_FORMAT_R32G32B32A32_UINT;
default:
unreachable("Invalid format block size");
}
}
/* This function returns the format corresponding to a single component of the
* RGB format for the given size returned by vk_format_for_size().
*/
static VkFormat
vk_single_component_format_for_rgb_size(int bs)
{
switch (bs) {
case 3: return VK_FORMAT_R8_UNORM;
case 6: return VK_FORMAT_R16_UNORM;
case 12: return VK_FORMAT_R32_UINT;
default:
unreachable("Invalid format block size");
}
}
static void
create_iview(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *surf,
uint64_t offset,
VkImageUsageFlags usage,
uint32_t width,
uint32_t height,
VkFormat format,
VkImage *img,
struct anv_image_view *iview)
{
const VkImageCreateInfo image_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.imageType = VK_IMAGE_TYPE_2D,
/* W-tiled images must be stencil-formatted. */
.format = format,
.extent = {
.width = width,
.height = height,
.depth = 1,
},
.mipLevels = 1,
.arrayLayers = 1,
.samples = 1,
.tiling = surf->tiling == ISL_TILING_LINEAR ?
VK_IMAGE_TILING_LINEAR : VK_IMAGE_TILING_OPTIMAL,
.usage = usage,
};
/* Create the VkImage that is bound to the surface's memory. */
anv_image_create(anv_device_to_handle(cmd_buffer->device),
&(struct anv_image_create_info) {
.vk_info = &image_info,
.isl_tiling_flags = 1 << surf->tiling,
.stride = surf->pitch,
}, &cmd_buffer->pool->alloc, img);
/* We could use a vk call to bind memory, but that would require
* creating a dummy memory object etc. so there's really no point.
*/
anv_image_from_handle(*img)->bo = surf->bo;
anv_image_from_handle(*img)->offset = surf->base_offset + offset;
anv_image_view_init(iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = *img,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = image_info.format,
.subresourceRange = {
.aspectMask = anv_image_from_handle(*img)->aspects,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1
},
}, cmd_buffer, usage);
}
struct blit2d_src_temps {
VkImage image;
struct anv_image_view iview;
struct anv_buffer buffer;
struct anv_buffer_view bview;
VkDescriptorPool desc_pool;
VkDescriptorSet set;
};
static void
blit2d_bind_src(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *src,
enum blit2d_src_type src_type,
struct anv_meta_blit2d_rect *rect,
struct blit2d_src_temps *tmp)
{
struct anv_device *device = cmd_buffer->device;
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
if (src_type == BLIT2D_SRC_TYPE_NORMAL) {
uint32_t offset = 0;
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
src->tiling, src->bs, src->pitch,
rect->src_x, rect->src_y,
&offset, &rect->src_x, &rect->src_y);
VkImageUsageFlags usage = VK_IMAGE_USAGE_SAMPLED_BIT;
/* W-tiled images must be stencil-formatted. Outside of meta,
* a stencil image has this usage bit set. Adding it here
* ensures the ISL surface is created correctly.
*/
if (src->tiling == ISL_TILING_W)
usage |= VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
create_iview(cmd_buffer, src, offset, usage,
rect->src_x + rect->width, rect->src_y + rect->height,
src->tiling == ISL_TILING_W ?
VK_FORMAT_S8_UINT : vk_format_for_size(src->bs),
&tmp->image, &tmp->iview);
anv_CreateDescriptorPool(vk_device,
&(const VkDescriptorPoolCreateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = NULL,
.flags = 0,
.maxSets = 1,
.poolSizeCount = 1,
.pPoolSizes = (VkDescriptorPoolSize[]) {
{
.type = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1
},
}
}, &cmd_buffer->pool->alloc, &tmp->desc_pool);
anv_AllocateDescriptorSets(vk_device,
&(VkDescriptorSetAllocateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = tmp->desc_pool,
.descriptorSetCount = 1,
.pSetLayouts = &device->meta_state.blit2d.img_ds_layout
}, &tmp->set);
anv_UpdateDescriptorSets(vk_device,
1, /* writeCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = tmp->set,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.pImageInfo = (VkDescriptorImageInfo[]) {
{
.sampler = NULL,
.imageView = anv_image_view_to_handle(&tmp->iview),
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
},
}
}
}, 0, NULL);
anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS,
device->meta_state.blit2d.img_p_layout, 0, 1,
&tmp->set, 0, NULL);
} else {
assert(src_type == BLIT2D_SRC_TYPE_W_DETILE);
assert(src->tiling == ISL_TILING_W);
assert(src->bs == 1);
uint32_t tile_offset = 0;
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
ISL_TILING_W, 1, src->pitch,
rect->src_x, rect->src_y,
&tile_offset,
&rect->src_x, &rect->src_y);
tmp->buffer = (struct anv_buffer) {
.device = device,
.size = align_u32(rect->src_y + rect->height, 64) * src->pitch,
.usage = VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT,
.bo = src->bo,
.offset = src->base_offset + tile_offset,
};
anv_buffer_view_init(&tmp->bview, device,
&(VkBufferViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO,
.buffer = anv_buffer_to_handle(&tmp->buffer),
.format = VK_FORMAT_R8_UINT,
.offset = 0,
.range = VK_WHOLE_SIZE,
}, cmd_buffer);
anv_CreateDescriptorPool(vk_device,
&(const VkDescriptorPoolCreateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = NULL,
.flags = 0,
.maxSets = 1,
.poolSizeCount = 1,
.pPoolSizes = (VkDescriptorPoolSize[]) {
{
.type = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
.descriptorCount = 1
},
}
}, &cmd_buffer->pool->alloc, &tmp->desc_pool);
anv_AllocateDescriptorSets(vk_device,
&(VkDescriptorSetAllocateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = tmp->desc_pool,
.descriptorSetCount = 1,
.pSetLayouts = &device->meta_state.blit2d.buf_ds_layout
}, &tmp->set);
anv_UpdateDescriptorSets(vk_device,
1, /* writeCount */
(VkWriteDescriptorSet[]) {
{
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstSet = tmp->set,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
.pTexelBufferView = (VkBufferView[]) {
anv_buffer_view_to_handle(&tmp->bview),
},
}
}, 0, NULL);
anv_CmdBindDescriptorSets(anv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS,
device->meta_state.blit2d.buf_p_layout, 0, 1,
&tmp->set, 0, NULL);
}
}
static void
blit2d_unbind_src(struct anv_cmd_buffer *cmd_buffer,
enum blit2d_src_type src_type,
struct blit2d_src_temps *tmp)
{
anv_DestroyDescriptorPool(anv_device_to_handle(cmd_buffer->device),
tmp->desc_pool, &cmd_buffer->pool->alloc);
if (src_type == BLIT2D_SRC_TYPE_NORMAL) {
anv_DestroyImage(anv_device_to_handle(cmd_buffer->device),
tmp->image, &cmd_buffer->pool->alloc);
}
}
struct blit2d_dst_temps {
VkImage image;
struct anv_image_view iview;
VkFramebuffer fb;
};
static void
blit2d_bind_dst(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *dst,
uint64_t offset,
uint32_t width,
uint32_t height,
VkFormat format,
struct blit2d_dst_temps *tmp)
{
create_iview(cmd_buffer, dst, offset, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
width, height, format, &tmp->image, &tmp->iview);
anv_CreateFramebuffer(anv_device_to_handle(cmd_buffer->device),
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkImageView[]) {
anv_image_view_to_handle(&tmp->iview),
},
.width = width,
.height = height,
.layers = 1
}, &cmd_buffer->pool->alloc, &tmp->fb);
}
static void
blit2d_unbind_dst(struct anv_cmd_buffer *cmd_buffer,
struct blit2d_dst_temps *tmp)
{
VkDevice vk_device = anv_device_to_handle(cmd_buffer->device);
anv_DestroyFramebuffer(vk_device, tmp->fb, &cmd_buffer->pool->alloc);
anv_DestroyImage(vk_device, tmp->image, &cmd_buffer->pool->alloc);
}
void
anv_meta_end_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_saved_state *save)
{
anv_meta_restore(save, cmd_buffer);
}
void
anv_meta_begin_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_saved_state *save)
{
anv_meta_save(save, cmd_buffer, 0);
}
static void
bind_pipeline(struct anv_cmd_buffer *cmd_buffer,
enum blit2d_src_type src_type,
enum blit2d_dst_type dst_type)
{
VkPipeline pipeline =
cmd_buffer->device->meta_state.blit2d.pipelines[src_type][dst_type];
if (cmd_buffer->state.pipeline != anv_pipeline_from_handle(pipeline)) {
anv_CmdBindPipeline(anv_cmd_buffer_to_handle(cmd_buffer),
VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
}
}
static void
anv_meta_blit2d_normal_dst(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *src,
enum blit2d_src_type src_type,
struct anv_meta_blit2d_surf *dst,
unsigned num_rects,
struct anv_meta_blit2d_rect *rects)
{
struct anv_device *device = cmd_buffer->device;
for (unsigned r = 0; r < num_rects; ++r) {
struct blit2d_src_temps src_temps;
blit2d_bind_src(cmd_buffer, src, src_type, &rects[r], &src_temps);
uint32_t offset = 0;
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
dst->tiling, dst->bs, dst->pitch,
rects[r].dst_x, rects[r].dst_y,
&offset,
&rects[r].dst_x, &rects[r].dst_y);
struct blit2d_dst_temps dst_temps;
blit2d_bind_dst(cmd_buffer, dst, offset, rects[r].dst_x + rects[r].width,
rects[r].dst_y + rects[r].height,
vk_format_for_size(dst->bs), &dst_temps);
struct blit_vb_data {
float pos[2];
float tex_coord[3];
} *vb_data;
unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
struct anv_state vb_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
memset(vb_state.map, 0, sizeof(struct anv_vue_header));
vb_data = vb_state.map + sizeof(struct anv_vue_header);
vb_data[0] = (struct blit_vb_data) {
.pos = {
rects[r].dst_x + rects[r].width,
rects[r].dst_y + rects[r].height,
},
.tex_coord = {
rects[r].src_x + rects[r].width,
rects[r].src_y + rects[r].height,
src->pitch,
},
};
vb_data[1] = (struct blit_vb_data) {
.pos = {
rects[r].dst_x,
rects[r].dst_y + rects[r].height,
},
.tex_coord = {
rects[r].src_x,
rects[r].src_y + rects[r].height,
src->pitch,
},
};
vb_data[2] = (struct blit_vb_data) {
.pos = {
rects[r].dst_x,
rects[r].dst_y,
},
.tex_coord = {
rects[r].src_x,
rects[r].src_y,
src->pitch,
},
};
if (!device->info.has_llc)
anv_state_clflush(vb_state);
struct anv_buffer vertex_buffer = {
.device = device,
.size = vb_size,
.bo = &device->dynamic_state_block_pool.bo,
.offset = vb_state.offset,
};
anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
(VkBuffer[]) {
anv_buffer_to_handle(&vertex_buffer),
anv_buffer_to_handle(&vertex_buffer)
},
(VkDeviceSize[]) {
0,
sizeof(struct anv_vue_header),
});
ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.blit2d.render_pass,
.framebuffer = dst_temps.fb,
.renderArea = {
.offset = { rects[r].dst_x, rects[r].dst_y, },
.extent = { rects[r].width, rects[r].height },
},
.clearValueCount = 0,
.pClearValues = NULL,
}, VK_SUBPASS_CONTENTS_INLINE);
bind_pipeline(cmd_buffer, src_type, BLIT2D_DST_TYPE_NORMAL);
ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
/* At the point where we emit the draw call, all data from the
* descriptor sets, etc. has been used. We are free to delete it.
*/
blit2d_unbind_src(cmd_buffer, src_type, &src_temps);
blit2d_unbind_dst(cmd_buffer, &dst_temps);
}
}
static void
anv_meta_blit2d_w_tiled_dst(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *src,
enum blit2d_src_type src_type,
struct anv_meta_blit2d_surf *dst,
unsigned num_rects,
struct anv_meta_blit2d_rect *rects)
{
struct anv_device *device = cmd_buffer->device;
for (unsigned r = 0; r < num_rects; ++r) {
struct blit2d_src_temps src_temps;
blit2d_bind_src(cmd_buffer, src, src_type, &rects[r], &src_temps);
assert(dst->bs == 1);
uint32_t offset;
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
ISL_TILING_W, 1, dst->pitch,
rects[r].dst_x, rects[r].dst_y,
&offset,
&rects[r].dst_x, &rects[r].dst_y);
/* The original coordinates were in terms of an actual W-tiled offset
* but we are binding this image as Y-tiled. We need to adjust our
* rectangle accordingly.
*/
uint32_t xmin_Y, xmax_Y, ymin_Y, ymax_Y;
xmin_Y = (rects[r].dst_x / 8) * 16;
xmax_Y = DIV_ROUND_UP(rects[r].dst_x + rects[r].width, 8) * 16;
ymin_Y = (rects[r].dst_y / 4) * 2;
ymax_Y = DIV_ROUND_UP(rects[r].dst_y + rects[r].height, 4) * 2;
struct anv_meta_blit2d_surf dst_Y = {
.bo = dst->bo,
.tiling = ISL_TILING_Y0,
.base_offset = dst->base_offset,
.bs = 1,
.pitch = dst->pitch,
};
struct blit2d_dst_temps dst_temps;
blit2d_bind_dst(cmd_buffer, &dst_Y, offset, xmax_Y, ymax_Y,
VK_FORMAT_R8_UINT, &dst_temps);
struct blit_vb_header {
struct anv_vue_header vue;
int32_t tex_offset[2];
uint32_t tex_pitch;
uint32_t bounds[4];
} *vb_header;
struct blit_vb_data {
float pos[2];
} *vb_data;
unsigned vb_size = sizeof(*vb_header) + 3 * sizeof(*vb_data);
struct anv_state vb_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
vb_header = vb_state.map;
*vb_header = (struct blit_vb_header) {
.tex_offset = {
rects[r].src_x - rects[r].dst_x,
rects[r].src_y - rects[r].dst_y,
},
.tex_pitch = src->pitch,
.bounds = {
rects[r].dst_x,
rects[r].dst_y,
rects[r].dst_x + rects[r].width,
rects[r].dst_y + rects[r].height,
},
};
vb_data = (void *)(vb_header + 1);
vb_data[0] = (struct blit_vb_data) {
.pos = {
xmax_Y,
ymax_Y,
},
};
vb_data[1] = (struct blit_vb_data) {
.pos = {
xmin_Y,
ymax_Y,
},
};
vb_data[2] = (struct blit_vb_data) {
.pos = {
xmin_Y,
ymin_Y,
},
};
if (!device->info.has_llc)
anv_state_clflush(vb_state);
struct anv_buffer vertex_buffer = {
.device = device,
.size = vb_size,
.bo = &device->dynamic_state_block_pool.bo,
.offset = vb_state.offset,
};
anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
(VkBuffer[]) {
anv_buffer_to_handle(&vertex_buffer),
anv_buffer_to_handle(&vertex_buffer)
},
(VkDeviceSize[]) {
0,
(void *)vb_data - vb_state.map,
});
ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.blit2d.render_pass,
.framebuffer = dst_temps.fb,
.renderArea = {
.offset = { xmin_Y, ymin_Y, },
.extent = { xmax_Y - xmin_Y, ymax_Y - ymin_Y },
},
.clearValueCount = 0,
.pClearValues = NULL,
}, VK_SUBPASS_CONTENTS_INLINE);
bind_pipeline(cmd_buffer, src_type, BLIT2D_DST_TYPE_W_TILE);
ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
/* At the point where we emit the draw call, all data from the
* descriptor sets, etc. has been used. We are free to delete it.
*/
blit2d_unbind_src(cmd_buffer, src_type, &src_temps);
blit2d_unbind_dst(cmd_buffer, &dst_temps);
}
}
static void
anv_meta_blit2d_rgb_dst(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *src,
enum blit2d_src_type src_type,
struct anv_meta_blit2d_surf *dst,
unsigned num_rects,
struct anv_meta_blit2d_rect *rects)
{
struct anv_device *device = cmd_buffer->device;
for (unsigned r = 0; r < num_rects; ++r) {
struct blit2d_src_temps src_temps;
blit2d_bind_src(cmd_buffer, src, src_type, &rects[r], &src_temps);
assert(dst->bs % 3 == 0);
assert(dst->tiling == ISL_TILING_LINEAR);
uint32_t offset;
isl_tiling_get_intratile_offset_el(&cmd_buffer->device->isl_dev,
dst->tiling, 1, dst->pitch,
rects[r].dst_x, rects[r].dst_y,
&offset,
&rects[r].dst_x, &rects[r].dst_y);
/* A red surface three times as wide as the actual RGB destination */
struct anv_meta_blit2d_surf dst_R = {
.bo = dst->bo,
.tiling = dst->tiling,
.base_offset = dst->base_offset,
.bs = dst->bs / 3,
.pitch = dst->pitch,
};
struct blit2d_dst_temps dst_temps;
blit2d_bind_dst(cmd_buffer, &dst_R, offset,
(rects[r].dst_x + rects[r].width) * 3,
rects[r].dst_y + rects[r].height,
vk_single_component_format_for_rgb_size(dst->bs),
&dst_temps);
struct blit_vb_data {
float pos[2];
float tex_coord[3];
} *vb_data;
unsigned vb_size = sizeof(struct anv_vue_header) + 3 * sizeof(*vb_data);
struct anv_state vb_state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, vb_size, 16);
memset(vb_state.map, 0, sizeof(struct anv_vue_header));
vb_data = vb_state.map + sizeof(struct anv_vue_header);
vb_data[0] = (struct blit_vb_data) {
.pos = {
(rects[r].dst_x + rects[r].width) * 3,
rects[r].dst_y + rects[r].height,
},
.tex_coord = {
rects[r].src_x + rects[r].width,
rects[r].src_y + rects[r].height,
src->pitch,
},
};
vb_data[1] = (struct blit_vb_data) {
.pos = {
rects[r].dst_x * 3,
rects[r].dst_y + rects[r].height,
},
.tex_coord = {
rects[r].src_x,
rects[r].src_y + rects[r].height,
src->pitch,
},
};
vb_data[2] = (struct blit_vb_data) {
.pos = {
rects[r].dst_x * 3,
rects[r].dst_y,
},
.tex_coord = {
rects[r].src_x,
rects[r].src_y,
src->pitch,
},
};
if (!device->info.has_llc)
anv_state_clflush(vb_state);
struct anv_buffer vertex_buffer = {
.device = device,
.size = vb_size,
.bo = &device->dynamic_state_block_pool.bo,
.offset = vb_state.offset,
};
anv_CmdBindVertexBuffers(anv_cmd_buffer_to_handle(cmd_buffer), 0, 2,
(VkBuffer[]) {
anv_buffer_to_handle(&vertex_buffer),
anv_buffer_to_handle(&vertex_buffer)
},
(VkDeviceSize[]) {
0,
sizeof(struct anv_vue_header),
});
ANV_CALL(CmdBeginRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer),
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.blit2d.render_pass,
.framebuffer = dst_temps.fb,
.renderArea = {
.offset = { rects[r].dst_x, rects[r].dst_y, },
.extent = { rects[r].width, rects[r].height },
},
.clearValueCount = 0,
.pClearValues = NULL,
}, VK_SUBPASS_CONTENTS_INLINE);
bind_pipeline(cmd_buffer, src_type, BLIT2D_DST_TYPE_RGB);
ANV_CALL(CmdDraw)(anv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0);
ANV_CALL(CmdEndRenderPass)(anv_cmd_buffer_to_handle(cmd_buffer));
/* At the point where we emit the draw call, all data from the
* descriptor sets, etc. has been used. We are free to delete it.
*/
blit2d_unbind_src(cmd_buffer, src_type, &src_temps);
blit2d_unbind_dst(cmd_buffer, &dst_temps);
}
}
void
anv_meta_blit2d(struct anv_cmd_buffer *cmd_buffer,
struct anv_meta_blit2d_surf *src,
struct anv_meta_blit2d_surf *dst,
unsigned num_rects,
struct anv_meta_blit2d_rect *rects)
{
enum blit2d_src_type src_type;
if (src->tiling == ISL_TILING_W && cmd_buffer->device->info.gen < 8) {
src_type = BLIT2D_SRC_TYPE_W_DETILE;
} else {
src_type = BLIT2D_SRC_TYPE_NORMAL;
}
if (dst->tiling == ISL_TILING_W) {
anv_meta_blit2d_w_tiled_dst(cmd_buffer, src, src_type, dst,
num_rects, rects);
return;
} else if (dst->bs % 3 == 0) {
anv_meta_blit2d_rgb_dst(cmd_buffer, src, src_type, dst,
num_rects, rects);
return;
} else {
assert(util_is_power_of_two(dst->bs));
anv_meta_blit2d_normal_dst(cmd_buffer, src, src_type, dst,
num_rects, rects);
}
}
static nir_shader *
build_nir_vertex_shader(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit_vs");
nir_variable *pos_in = nir_variable_create(b.shader, nir_var_shader_in,
vec4, "a_pos");
pos_in->data.location = VERT_ATTRIB_GENERIC0;
nir_variable *pos_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "gl_Position");
pos_out->data.location = VARYING_SLOT_POS;
nir_copy_var(&b, pos_out, pos_in);
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
vec4, "a_tex_pos");
tex_pos_in->data.location = VERT_ATTRIB_GENERIC1;
nir_variable *tex_pos_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "v_tex_pos");
tex_pos_out->data.location = VARYING_SLOT_VAR0;
tex_pos_out->data.interpolation = INTERP_MODE_SMOOTH;
nir_copy_var(&b, tex_pos_out, tex_pos_in);
nir_variable *other_in = nir_variable_create(b.shader, nir_var_shader_in,
vec4, "a_other");
other_in->data.location = VERT_ATTRIB_GENERIC2;
nir_variable *other_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "v_other");
other_out->data.location = VARYING_SLOT_VAR1;
other_out->data.interpolation = INTERP_MODE_FLAT;
nir_copy_var(&b, other_out, other_in);
return b.shader;
}
typedef nir_ssa_def* (*texel_fetch_build_func)(struct nir_builder *,
struct anv_device *,
nir_ssa_def *, nir_ssa_def *);
static nir_ssa_def *
nir_copy_bits(struct nir_builder *b, nir_ssa_def *dst, unsigned dst_offset,
nir_ssa_def *src, unsigned src_offset, unsigned num_bits)
{
unsigned src_mask = (~1u >> (32 - num_bits)) << src_offset;
nir_ssa_def *masked = nir_iand(b, src, nir_imm_int(b, src_mask));
nir_ssa_def *shifted;
if (dst_offset > src_offset) {
shifted = nir_ishl(b, masked, nir_imm_int(b, dst_offset - src_offset));
} else if (dst_offset < src_offset) {
shifted = nir_ushr(b, masked, nir_imm_int(b, src_offset - dst_offset));
} else {
assert(dst_offset == src_offset);
shifted = masked;
}
return nir_ior(b, dst, shifted);
}
static nir_ssa_def *
build_nir_w_tiled_fetch(struct nir_builder *b, struct anv_device *device,
nir_ssa_def *tex_pos, nir_ssa_def *tex_pitch)
{
nir_ssa_def *x = nir_channel(b, tex_pos, 0);
nir_ssa_def *y = nir_channel(b, tex_pos, 1);
/* First, compute the block-aligned offset */
nir_ssa_def *x_major = nir_ushr(b, x, nir_imm_int(b, 6));
nir_ssa_def *y_major = nir_ushr(b, y, nir_imm_int(b, 6));
/* W tiles have physical size of 128x32 and logical size of 64x64, hence
* the multiplication by 32 (instead of 64). */
nir_ssa_def *offset =
nir_iadd(b, nir_imul(b, y_major,
nir_imul(b, tex_pitch, nir_imm_int(b, 32))),
nir_imul(b, x_major, nir_imm_int(b, 4096)));
/* Compute the bottom 12 bits of the offset */
offset = nir_copy_bits(b, offset, 0, x, 0, 1);
offset = nir_copy_bits(b, offset, 1, y, 0, 1);
offset = nir_copy_bits(b, offset, 2, x, 1, 1);
offset = nir_copy_bits(b, offset, 3, y, 1, 1);
offset = nir_copy_bits(b, offset, 4, x, 2, 1);
offset = nir_copy_bits(b, offset, 5, y, 2, 4);
offset = nir_copy_bits(b, offset, 9, x, 3, 3);
if (device->isl_dev.has_bit6_swizzling) {
offset = nir_ixor(b, offset,
nir_ushr(b, nir_iand(b, offset, nir_imm_int(b, 0x0200)),
nir_imm_int(b, 3)));
}
const struct glsl_type *sampler_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_BUF, false, false, GLSL_TYPE_FLOAT);
nir_variable *sampler = nir_variable_create(b->shader, nir_var_uniform,
sampler_type, "s_tex");
sampler->data.descriptor_set = 0;
sampler->data.binding = 0;
nir_tex_instr *tex = nir_tex_instr_create(b->shader, 1);
tex->sampler_dim = GLSL_SAMPLER_DIM_BUF;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(offset);
tex->dest_type = nir_type_float; /* TODO */
tex->is_array = false;
tex->coord_components = 1;
tex->texture = nir_deref_var_create(tex, sampler);
tex->sampler = NULL;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static nir_ssa_def *
build_nir_texel_fetch(struct nir_builder *b, struct anv_device *device,
nir_ssa_def *tex_pos, nir_ssa_def *tex_pitch)
{
const struct glsl_type *sampler_type =
glsl_sampler_type(GLSL_SAMPLER_DIM_2D, false, false, GLSL_TYPE_FLOAT);
nir_variable *sampler = nir_variable_create(b->shader, nir_var_uniform,
sampler_type, "s_tex");
sampler->data.descriptor_set = 0;
sampler->data.binding = 0;
nir_tex_instr *tex = nir_tex_instr_create(b->shader, 2);
tex->sampler_dim = GLSL_SAMPLER_DIM_2D;
tex->op = nir_texop_txf;
tex->src[0].src_type = nir_tex_src_coord;
tex->src[0].src = nir_src_for_ssa(tex_pos);
tex->src[1].src_type = nir_tex_src_lod;
tex->src[1].src = nir_src_for_ssa(nir_imm_int(b, 0));
tex->dest_type = nir_type_float; /* TODO */
tex->is_array = false;
tex->coord_components = 2;
tex->texture = nir_deref_var_create(tex, sampler);
tex->sampler = NULL;
nir_ssa_dest_init(&tex->instr, &tex->dest, 4, 32, "tex");
nir_builder_instr_insert(b, &tex->instr);
return &tex->dest.ssa;
}
static const VkPipelineVertexInputStateCreateInfo normal_vi_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 2,
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
{
.binding = 0,
.stride = 0,
.inputRate = VK_VERTEX_INPUT_RATE_INSTANCE
},
{
.binding = 1,
.stride = 5 * sizeof(float),
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
},
},
.vertexAttributeDescriptionCount = 3,
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
{
/* VUE Header */
.location = 0,
.binding = 0,
.format = VK_FORMAT_R32G32B32A32_UINT,
.offset = 0
},
{
/* Position */
.location = 1,
.binding = 1,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = 0
},
{
/* Texture Coordinate */
.location = 2,
.binding = 1,
.format = VK_FORMAT_R32G32B32_SFLOAT,
.offset = 8
},
},
};
static nir_shader *
build_nir_copy_fragment_shader(struct anv_device *device,
texel_fetch_build_func txf_func)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *vec3 = glsl_vector_type(GLSL_TYPE_FLOAT, 3);
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_fs");
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
vec3, "v_tex_pos");
tex_pos_in->data.location = VARYING_SLOT_VAR0;
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "f_color");
color_out->data.location = FRAG_RESULT_DATA0;
nir_ssa_def *pos_int = nir_f2i(&b, nir_load_var(&b, tex_pos_in));
unsigned swiz[4] = { 0, 1 };
nir_ssa_def *tex_pos = nir_swizzle(&b, pos_int, swiz, 2, false);
nir_ssa_def *tex_pitch = nir_channel(&b, pos_int, 2);
nir_ssa_def *color = txf_func(&b, device, tex_pos, tex_pitch);
nir_store_var(&b, color_out, color, 0xf);
return b.shader;
}
/* RGB copies have the same interface as normal copies */
#define rgb_vi_create_info normal_vi_create_info
static nir_shader *
build_nir_rgb_fragment_shader(struct anv_device *device,
texel_fetch_build_func txf_func)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *vec3 = glsl_vector_type(GLSL_TYPE_FLOAT, 3);
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_fs");
nir_variable *tex_pos_in = nir_variable_create(b.shader, nir_var_shader_in,
vec3, "v_tex_pos");
tex_pos_in->data.location = VARYING_SLOT_VAR0;
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "f_color");
color_out->data.location = FRAG_RESULT_DATA0;
/* We need gl_FragCoord so we know our position */
nir_variable *frag_coord_in = nir_variable_create(b.shader,
nir_var_shader_in,
vec4, "gl_FragCoord");
frag_coord_in->data.location = VARYING_SLOT_POS;
frag_coord_in->data.origin_upper_left = true;
nir_ssa_def *pos_int = nir_f2i(&b, nir_load_var(&b, tex_pos_in));
unsigned swiz[4] = { 0, 1 };
nir_ssa_def *tex_pos = nir_swizzle(&b, pos_int, swiz, 2, false);
nir_ssa_def *tex_pitch = nir_channel(&b, pos_int, 2);
nir_ssa_def *color = txf_func(&b, device, tex_pos, tex_pitch);
/* We figure out which component we are by the x component of FragCoord */
nir_ssa_def *frag_coord_int = nir_f2i(&b, nir_load_var(&b, frag_coord_in));
nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, frag_coord_int, 0),
nir_imm_int(&b, 3));
/* Select the given channel from the texelFetch result */
nir_ssa_def *color_channel =
nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 0)),
nir_channel(&b, color, 0),
nir_bcsel(&b, nir_ieq(&b, comp, nir_imm_int(&b, 1)),
nir_channel(&b, color, 1),
nir_channel(&b, color, 2)));
nir_ssa_def *u = nir_ssa_undef(&b, 1, 32);
nir_store_var(&b, color_out, nir_vec4(&b, color_channel, u, u, u), 0x1);
return b.shader;
}
static const VkPipelineVertexInputStateCreateInfo w_tiled_vi_create_info = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 2,
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
{
.binding = 0,
.stride = 0,
.inputRate = VK_VERTEX_INPUT_RATE_INSTANCE
},
{
.binding = 1,
.stride = 2 * sizeof(float),
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
},
},
.vertexAttributeDescriptionCount = 4,
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
{
/* VUE Header */
.location = 0,
.binding = 0,
.format = VK_FORMAT_R32G32B32A32_UINT,
.offset = 0
},
{
/* Position */
.location = 1,
.binding = 1,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = 0
},
{
/* Texture Offset */
.location = 2,
.binding = 0,
.format = VK_FORMAT_R32G32B32_UINT,
.offset = 16
},
{
/* Destination bounds */
.location = 3,
.binding = 0,
.format = VK_FORMAT_R32G32B32A32_UINT,
.offset = 28
},
},
};
static nir_shader *
build_nir_w_tiled_fragment_shader(struct anv_device *device,
texel_fetch_build_func txf_func)
{
const struct glsl_type *vec4 = glsl_vec4_type();
const struct glsl_type *ivec3 = glsl_vector_type(GLSL_TYPE_INT, 3);
const struct glsl_type *uvec4 = glsl_vector_type(GLSL_TYPE_UINT, 4);
nir_builder b;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info.name = ralloc_strdup(b.shader, "meta_blit2d_fs");
/* We need gl_FragCoord so we know our Y-tiled position */
nir_variable *frag_coord_in = nir_variable_create(b.shader,
nir_var_shader_in,
vec4, "gl_FragCoord");
frag_coord_in->data.location = VARYING_SLOT_POS;
frag_coord_in->data.origin_upper_left = true;
/* In location 0 we have an ivec3 that has the offset from dest to
* source in the first two components and the stride in the third.
*/
nir_variable *tex_off_in = nir_variable_create(b.shader, nir_var_shader_in,
ivec3, "v_tex_off");
tex_off_in->data.location = VARYING_SLOT_VAR0;
tex_off_in->data.interpolation = INTERP_MODE_FLAT;
/* In location 1 we have a uvec4 that gives us the bounds of the
* destination. We need to discard if we get outside this boundary.
*/
nir_variable *bounds_in = nir_variable_create(b.shader, nir_var_shader_in,
uvec4, "v_bounds");
bounds_in->data.location = VARYING_SLOT_VAR1;
bounds_in->data.interpolation = INTERP_MODE_FLAT;
nir_variable *color_out = nir_variable_create(b.shader, nir_var_shader_out,
vec4, "f_color");
color_out->data.location = FRAG_RESULT_DATA0;
nir_ssa_def *frag_coord_int = nir_f2i(&b, nir_load_var(&b, frag_coord_in));
nir_ssa_def *x_Y = nir_channel(&b, frag_coord_int, 0);
nir_ssa_def *y_Y = nir_channel(&b, frag_coord_int, 1);
/* Compute the W-tiled position from the Y-tiled position */
nir_ssa_def *x_W = nir_iand(&b, x_Y, nir_imm_int(&b, 0xffffff80));
x_W = nir_ushr(&b, x_W, nir_imm_int(&b, 1));
x_W = nir_copy_bits(&b, x_W, 0, x_Y, 0, 1);
x_W = nir_copy_bits(&b, x_W, 1, x_Y, 2, 1);
x_W = nir_copy_bits(&b, x_W, 2, y_Y, 0, 1);
x_W = nir_copy_bits(&b, x_W, 3, x_Y, 4, 3);
nir_ssa_def *y_W = nir_iand(&b, y_Y, nir_imm_int(&b, 0xffffffe0));
y_W = nir_ishl(&b, y_W, nir_imm_int(&b, 1));
y_W = nir_copy_bits(&b, y_W, 0, x_Y, 1, 1);
y_W = nir_copy_bits(&b, y_W, 1, x_Y, 3, 1);
y_W = nir_copy_bits(&b, y_W, 2, y_Y, 1, 4);
/* Figure out if we are out-of-bounds and discard */
nir_ssa_def *bounds = nir_load_var(&b, bounds_in);
nir_ssa_def *oob =
nir_ior(&b, nir_ult(&b, x_W, nir_channel(&b, bounds, 0)),
nir_ior(&b, nir_ult(&b, y_W, nir_channel(&b, bounds, 1)),
nir_ior(&b, nir_uge(&b, x_W, nir_channel(&b, bounds, 2)),
nir_uge(&b, y_W, nir_channel(&b, bounds, 3)))));
nir_intrinsic_instr *discard =
nir_intrinsic_instr_create(b.shader, nir_intrinsic_discard_if);
discard->src[0] = nir_src_for_ssa(oob);
nir_builder_instr_insert(&b, &discard->instr);
nir_ssa_def *tex_off = nir_channels(&b, nir_load_var(&b, tex_off_in), 0x3);
nir_ssa_def *tex_pos = nir_iadd(&b, nir_vec2(&b, x_W, y_W), tex_off);
nir_ssa_def *tex_pitch = nir_channel(&b, nir_load_var(&b, tex_off_in), 2);
nir_ssa_def *color = txf_func(&b, device, tex_pos, tex_pitch);
nir_store_var(&b, color_out, color, 0xf);
return b.shader;
}
void
anv_device_finish_meta_blit2d_state(struct anv_device *device)
{
if (device->meta_state.blit2d.render_pass) {
anv_DestroyRenderPass(anv_device_to_handle(device),
device->meta_state.blit2d.render_pass,
&device->meta_state.alloc);
}
if (device->meta_state.blit2d.img_p_layout) {
anv_DestroyPipelineLayout(anv_device_to_handle(device),
device->meta_state.blit2d.img_p_layout,
&device->meta_state.alloc);
}
if (device->meta_state.blit2d.img_ds_layout) {
anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
device->meta_state.blit2d.img_ds_layout,
&device->meta_state.alloc);
}
if (device->meta_state.blit2d.buf_p_layout) {
anv_DestroyPipelineLayout(anv_device_to_handle(device),
device->meta_state.blit2d.buf_p_layout,
&device->meta_state.alloc);
}
if (device->meta_state.blit2d.buf_ds_layout) {
anv_DestroyDescriptorSetLayout(anv_device_to_handle(device),
device->meta_state.blit2d.buf_ds_layout,
&device->meta_state.alloc);
}
for (unsigned src = 0; src < BLIT2D_NUM_SRC_TYPES; src++) {
for (unsigned dst = 0; dst < BLIT2D_NUM_DST_TYPES; dst++) {
if (device->meta_state.blit2d.pipelines[src][dst]) {
anv_DestroyPipeline(anv_device_to_handle(device),
device->meta_state.blit2d.pipelines[src][dst],
&device->meta_state.alloc);
}
}
}
}
static VkResult
blit2d_init_pipeline(struct anv_device *device,
enum blit2d_src_type src_type,
enum blit2d_dst_type dst_type)
{
VkResult result;
texel_fetch_build_func src_func;
switch (src_type) {
case BLIT2D_SRC_TYPE_NORMAL:
src_func = build_nir_texel_fetch;
break;
case BLIT2D_SRC_TYPE_W_DETILE:
src_func = build_nir_w_tiled_fetch;
break;
default:
unreachable("Invalid blit2d source type");
}
const VkPipelineVertexInputStateCreateInfo *vi_create_info;
struct anv_shader_module fs = { .nir = NULL };
switch (dst_type) {
case BLIT2D_DST_TYPE_NORMAL:
fs.nir = build_nir_copy_fragment_shader(device, src_func);
vi_create_info = &normal_vi_create_info;
break;
case BLIT2D_DST_TYPE_W_TILE:
fs.nir = build_nir_w_tiled_fragment_shader(device, src_func);
vi_create_info = &w_tiled_vi_create_info;
break;
case BLIT2D_DST_TYPE_RGB:
/* RGB destinations and W-detiling don't mix */
if (src_type != BLIT2D_SRC_TYPE_NORMAL)
return VK_SUCCESS;
fs.nir = build_nir_rgb_fragment_shader(device, src_func);
vi_create_info = &rgb_vi_create_info;
break;
default:
return VK_SUCCESS;
}
/* We don't use a vertex shader for blitting, but instead build and pass
* the VUEs directly to the rasterization backend. However, we do need
* to provide GLSL source for the vertex shader so that the compiler
* does not dead-code our inputs.
*/
struct anv_shader_module vs = {
.nir = build_nir_vertex_shader(),
};
VkPipelineShaderStageCreateInfo pipeline_shader_stages[] = {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = anv_shader_module_to_handle(&vs),
.pName = "main",
.pSpecializationInfo = NULL
}, {
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = anv_shader_module_to_handle(&fs),
.pName = "main",
.pSpecializationInfo = NULL
},
};
const VkGraphicsPipelineCreateInfo vk_pipeline_info = {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = ARRAY_SIZE(pipeline_shader_stages),
.pStages = pipeline_shader_stages,
.pVertexInputState = vi_create_info,
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = (VkSampleMask[]) { UINT32_MAX },
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
{ .colorWriteMask =
VK_COLOR_COMPONENT_A_BIT |
VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT },
}
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 9,
.pDynamicStates = (VkDynamicState[]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR,
VK_DYNAMIC_STATE_LINE_WIDTH,
VK_DYNAMIC_STATE_DEPTH_BIAS,
VK_DYNAMIC_STATE_BLEND_CONSTANTS,
VK_DYNAMIC_STATE_DEPTH_BOUNDS,
VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
VK_DYNAMIC_STATE_STENCIL_WRITE_MASK,
VK_DYNAMIC_STATE_STENCIL_REFERENCE,
},
},
.flags = 0,
.layout = device->meta_state.blit2d.img_p_layout,
.renderPass = device->meta_state.blit2d.render_pass,
.subpass = 0,
};
const struct anv_graphics_pipeline_create_info anv_pipeline_info = {
.color_attachment_count = -1,
.use_repclear = false,
.disable_vs = true,
.use_rectlist = true
};
result = anv_graphics_pipeline_create(anv_device_to_handle(device),
VK_NULL_HANDLE,
&vk_pipeline_info, &anv_pipeline_info,
&device->meta_state.alloc,
&device->meta_state.blit2d.pipelines[src_type][dst_type]);
ralloc_free(vs.nir);
ralloc_free(fs.nir);
return result;
}
VkResult
anv_device_init_meta_blit2d_state(struct anv_device *device)
{
VkResult result;
zero(device->meta_state.blit2d);
result = anv_CreateRenderPass(anv_device_to_handle(device),
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &(VkAttachmentDescription) {
.format = VK_FORMAT_UNDEFINED, /* Our shaders don't care */
.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = VK_IMAGE_LAYOUT_GENERAL,
.finalLayout = VK_IMAGE_LAYOUT_GENERAL,
},
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 1,
.pColorAttachments = &(VkAttachmentReference) {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = VK_ATTACHMENT_UNUSED,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
.preserveAttachmentCount = 1,
.pPreserveAttachments = (uint32_t[]) { 0 },
},
.dependencyCount = 0,
}, &device->meta_state.alloc, &device->meta_state.blit2d.render_pass);
if (result != VK_SUCCESS)
goto fail;
result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
&(VkDescriptorSetLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL
},
}
}, &device->meta_state.alloc, &device->meta_state.blit2d.img_ds_layout);
if (result != VK_SUCCESS)
goto fail;
result = anv_CreatePipelineLayout(anv_device_to_handle(device),
&(VkPipelineLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.blit2d.img_ds_layout,
},
&device->meta_state.alloc, &device->meta_state.blit2d.img_p_layout);
if (result != VK_SUCCESS)
goto fail;
result = anv_CreateDescriptorSetLayout(anv_device_to_handle(device),
&(VkDescriptorSetLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.bindingCount = 1,
.pBindings = (VkDescriptorSetLayoutBinding[]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL
},
}
}, &device->meta_state.alloc, &device->meta_state.blit2d.buf_ds_layout);
if (result != VK_SUCCESS)
goto fail;
result = anv_CreatePipelineLayout(anv_device_to_handle(device),
&(VkPipelineLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 1,
.pSetLayouts = &device->meta_state.blit2d.buf_ds_layout,
},
&device->meta_state.alloc, &device->meta_state.blit2d.buf_p_layout);
if (result != VK_SUCCESS)
goto fail;
for (unsigned src = 0; src < BLIT2D_NUM_SRC_TYPES; src++) {
for (unsigned dst = 0; dst < BLIT2D_NUM_DST_TYPES; dst++) {
result = blit2d_init_pipeline(device, src, dst);
if (result != VK_SUCCESS)
goto fail;
}
}
return VK_SUCCESS;
fail:
anv_device_finish_meta_blit2d_state(device);
return result;
}