Files
third_party_mesa3d/src/compiler/glsl/ir.h
Dave Airlie 8c628ab13e glsl: make max array trackers ints and use -1 as base. (v2)
This fixes a bug that breaks cull distances. The problem
is the max array accessors can't tell the difference between
an never accessed unsized array and an accessed at location 0
unsized array. This leads to converting an undeclared unused
gl_ClipDistance inside or outside gl_PerVertex to a size 1
array. However we need to the number of active clip distances
to work out the starting point for the cull distances, and
this offset by one when it's not being used isn't possible
to distinguish from the case were only the first element is
accessed. I tried to use ->used for this, but that doesn't
work when gl_ClipDistance is part of an interface block.

So this changes things so that max_array_access is an int
and initialised to -1. This also allows unsized arrays to
proceed further than that could before, but we really shouldn't
mind as they will get eliminated if nothing uses them later.

For initialised uniforms we no longer change their array
size at runtime, if these are unused they will get eliminated
eventually.

v2: use ralloc_array (Ilia)

Reviewed-by: Ilia Mirkin <imirkin@alum.mit.edu>
Signed-off-by: Dave Airlie <airlied@redhat.com>
2016-05-24 11:27:29 +10:00

2643 lines
72 KiB
C++

/* -*- c++ -*- */
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#pragma once
#ifndef IR_H
#define IR_H
#include <stdio.h>
#include <stdlib.h>
#include "util/ralloc.h"
#include "compiler/glsl_types.h"
#include "list.h"
#include "ir_visitor.h"
#include "ir_hierarchical_visitor.h"
#include "main/mtypes.h"
#ifdef __cplusplus
/**
* \defgroup IR Intermediate representation nodes
*
* @{
*/
/**
* Class tags
*
* Each concrete class derived from \c ir_instruction has a value in this
* enumerant. The value for the type is stored in \c ir_instruction::ir_type
* by the constructor. While using type tags is not very C++, it is extremely
* convenient. For example, during debugging you can simply inspect
* \c ir_instruction::ir_type to find out the actual type of the object.
*
* In addition, it is possible to use a switch-statement based on \c
* \c ir_instruction::ir_type to select different behavior for different object
* types. For functions that have only slight differences for several object
* types, this allows writing very straightforward, readable code.
*/
enum ir_node_type {
ir_type_dereference_array,
ir_type_dereference_record,
ir_type_dereference_variable,
ir_type_constant,
ir_type_expression,
ir_type_swizzle,
ir_type_texture,
ir_type_variable,
ir_type_assignment,
ir_type_call,
ir_type_function,
ir_type_function_signature,
ir_type_if,
ir_type_loop,
ir_type_loop_jump,
ir_type_return,
ir_type_discard,
ir_type_emit_vertex,
ir_type_end_primitive,
ir_type_barrier,
ir_type_max, /**< maximum ir_type enum number, for validation */
ir_type_unset = ir_type_max
};
/**
* Base class of all IR instructions
*/
class ir_instruction : public exec_node {
public:
enum ir_node_type ir_type;
/**
* GCC 4.7+ and clang warn when deleting an ir_instruction unless
* there's a virtual destructor present. Because we almost
* universally use ralloc for our memory management of
* ir_instructions, the destructor doesn't need to do any work.
*/
virtual ~ir_instruction()
{
}
/** ir_print_visitor helper for debugging. */
void print(void) const;
void fprint(FILE *f) const;
virtual void accept(ir_visitor *) = 0;
virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
virtual ir_instruction *clone(void *mem_ctx,
struct hash_table *ht) const = 0;
bool is_rvalue() const
{
return ir_type == ir_type_dereference_array ||
ir_type == ir_type_dereference_record ||
ir_type == ir_type_dereference_variable ||
ir_type == ir_type_constant ||
ir_type == ir_type_expression ||
ir_type == ir_type_swizzle ||
ir_type == ir_type_texture;
}
bool is_dereference() const
{
return ir_type == ir_type_dereference_array ||
ir_type == ir_type_dereference_record ||
ir_type == ir_type_dereference_variable;
}
bool is_jump() const
{
return ir_type == ir_type_loop_jump ||
ir_type == ir_type_return ||
ir_type == ir_type_discard;
}
/**
* \name IR instruction downcast functions
*
* These functions either cast the object to a derived class or return
* \c NULL if the object's type does not match the specified derived class.
* Additional downcast functions will be added as needed.
*/
/*@{*/
#define AS_BASE(TYPE) \
class ir_##TYPE *as_##TYPE() \
{ \
assume(this != NULL); \
return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
} \
const class ir_##TYPE *as_##TYPE() const \
{ \
assume(this != NULL); \
return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
}
AS_BASE(rvalue)
AS_BASE(dereference)
AS_BASE(jump)
#undef AS_BASE
#define AS_CHILD(TYPE) \
class ir_##TYPE * as_##TYPE() \
{ \
assume(this != NULL); \
return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
} \
const class ir_##TYPE * as_##TYPE() const \
{ \
assume(this != NULL); \
return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
}
AS_CHILD(variable)
AS_CHILD(function)
AS_CHILD(dereference_array)
AS_CHILD(dereference_variable)
AS_CHILD(dereference_record)
AS_CHILD(expression)
AS_CHILD(loop)
AS_CHILD(assignment)
AS_CHILD(call)
AS_CHILD(return)
AS_CHILD(if)
AS_CHILD(swizzle)
AS_CHILD(texture)
AS_CHILD(constant)
AS_CHILD(discard)
#undef AS_CHILD
/*@}*/
/**
* IR equality method: Return true if the referenced instruction would
* return the same value as this one.
*
* This intended to be used for CSE and algebraic optimizations, on rvalues
* in particular. No support for other instruction types (assignments,
* jumps, calls, etc.) is planned.
*/
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
protected:
ir_instruction(enum ir_node_type t)
: ir_type(t)
{
}
private:
ir_instruction()
{
assert(!"Should not get here.");
}
};
/**
* The base class for all "values"/expression trees.
*/
class ir_rvalue : public ir_instruction {
public:
const struct glsl_type *type;
virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
ir_rvalue *as_rvalue_to_saturate();
virtual bool is_lvalue() const
{
return false;
}
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return NULL;
}
/**
* If an r-value is a reference to a whole variable, get that variable
*
* \return
* Pointer to a variable that is completely dereferenced by the r-value. If
* the r-value is not a dereference or the dereference does not access the
* entire variable (i.e., it's just one array element, struct field), \c NULL
* is returned.
*/
virtual ir_variable *whole_variable_referenced()
{
return NULL;
}
/**
* Determine if an r-value has the value zero
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* zero (or \c false for booleans).
*
* \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
*/
virtual bool is_zero() const;
/**
* Determine if an r-value has the value one
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* one (or \c true for booleans).
*
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
*/
virtual bool is_one() const;
/**
* Determine if an r-value has the value negative one
*
* The base implementation of this function always returns \c false. The
* \c ir_constant class over-rides this function to return \c true \b only
* for vector and scalar types that have all elements set to the value
* negative one. For boolean types, the result is always \c false.
*
* \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
*/
virtual bool is_negative_one() const;
/**
* Determine if an r-value is an unsigned integer constant which can be
* stored in 16 bits.
*
* \sa ir_constant::is_uint16_constant.
*/
virtual bool is_uint16_constant() const { return false; }
/**
* Return a generic value of error_type.
*
* Allocation will be performed with 'mem_ctx' as ralloc owner.
*/
static ir_rvalue *error_value(void *mem_ctx);
protected:
ir_rvalue(enum ir_node_type t);
};
/**
* Variable storage classes
*/
enum ir_variable_mode {
ir_var_auto = 0, /**< Function local variables and globals. */
ir_var_uniform, /**< Variable declared as a uniform. */
ir_var_shader_storage, /**< Variable declared as an ssbo. */
ir_var_shader_shared, /**< Variable declared as shared. */
ir_var_shader_in,
ir_var_shader_out,
ir_var_function_in,
ir_var_function_out,
ir_var_function_inout,
ir_var_const_in, /**< "in" param that must be a constant expression */
ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
ir_var_temporary, /**< Temporary variable generated during compilation. */
ir_var_mode_count /**< Number of variable modes */
};
/**
* Enum keeping track of how a variable was declared. For error checking of
* the gl_PerVertex redeclaration rules.
*/
enum ir_var_declaration_type {
/**
* Normal declaration (for most variables, this means an explicit
* declaration. Exception: temporaries are always implicitly declared, but
* they still use ir_var_declared_normally).
*
* Note: an ir_variable that represents a named interface block uses
* ir_var_declared_normally.
*/
ir_var_declared_normally = 0,
/**
* Variable was explicitly declared (or re-declared) in an unnamed
* interface block.
*/
ir_var_declared_in_block,
/**
* Variable is an implicitly declared built-in that has not been explicitly
* re-declared by the shader.
*/
ir_var_declared_implicitly,
/**
* Variable is implicitly generated by the compiler and should not be
* visible via the API.
*/
ir_var_hidden,
};
/**
* \brief Layout qualifiers for gl_FragDepth.
*
* The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
* with a layout qualifier.
*/
enum ir_depth_layout {
ir_depth_layout_none, /**< No depth layout is specified. */
ir_depth_layout_any,
ir_depth_layout_greater,
ir_depth_layout_less,
ir_depth_layout_unchanged
};
/**
* \brief Convert depth layout qualifier to string.
*/
const char*
depth_layout_string(ir_depth_layout layout);
/**
* Description of built-in state associated with a uniform
*
* \sa ir_variable::state_slots
*/
struct ir_state_slot {
int tokens[5];
int swizzle;
};
/**
* Get the string value for an interpolation qualifier
*
* \return The string that would be used in a shader to specify \c
* mode will be returned.
*
* This function is used to generate error messages of the form "shader
* uses %s interpolation qualifier", so in the case where there is no
* interpolation qualifier, it returns "no".
*
* This function should only be used on a shader input or output variable.
*/
const char *interpolation_string(unsigned interpolation);
class ir_variable : public ir_instruction {
public:
ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Determine whether or not a variable is part of a uniform or
* shader storage block.
*/
inline bool is_in_buffer_block() const
{
return (this->data.mode == ir_var_uniform ||
this->data.mode == ir_var_shader_storage) &&
this->interface_type != NULL;
}
/**
* Determine whether or not a variable is part of a shader storage block.
*/
inline bool is_in_shader_storage_block() const
{
return this->data.mode == ir_var_shader_storage &&
this->interface_type != NULL;
}
/**
* Determine whether or not a variable is the declaration of an interface
* block
*
* For the first declaration below, there will be an \c ir_variable named
* "instance" whose type and whose instance_type will be the same
* \cglsl_type. For the second declaration, there will be an \c ir_variable
* named "f" whose type is float and whose instance_type is B2.
*
* "instance" is an interface instance variable, but "f" is not.
*
* uniform B1 {
* float f;
* } instance;
*
* uniform B2 {
* float f;
* };
*/
inline bool is_interface_instance() const
{
return this->type->without_array() == this->interface_type;
}
/**
* Set this->interface_type on a newly created variable.
*/
void init_interface_type(const struct glsl_type *type)
{
assert(this->interface_type == NULL);
this->interface_type = type;
if (this->is_interface_instance()) {
this->u.max_ifc_array_access =
ralloc_array(this, int, type->length);
for (unsigned i = 0; i < type->length; i++) {
this->u.max_ifc_array_access[i] = -1;
}
}
}
/**
* Change this->interface_type on a variable that previously had a
* different, but compatible, interface_type. This is used during linking
* to set the size of arrays in interface blocks.
*/
void change_interface_type(const struct glsl_type *type)
{
if (this->u.max_ifc_array_access != NULL) {
/* max_ifc_array_access has already been allocated, so make sure the
* new interface has the same number of fields as the old one.
*/
assert(this->interface_type->length == type->length);
}
this->interface_type = type;
}
/**
* Change this->interface_type on a variable that previously had a
* different, and incompatible, interface_type. This is used during
* compilation to handle redeclaration of the built-in gl_PerVertex
* interface block.
*/
void reinit_interface_type(const struct glsl_type *type)
{
if (this->u.max_ifc_array_access != NULL) {
#ifndef NDEBUG
/* Redeclaring gl_PerVertex is only allowed if none of the built-ins
* it defines have been accessed yet; so it's safe to throw away the
* old max_ifc_array_access pointer, since all of its values are
* zero.
*/
for (unsigned i = 0; i < this->interface_type->length; i++)
assert(this->u.max_ifc_array_access[i] == -1);
#endif
ralloc_free(this->u.max_ifc_array_access);
this->u.max_ifc_array_access = NULL;
}
this->interface_type = NULL;
init_interface_type(type);
}
const glsl_type *get_interface_type() const
{
return this->interface_type;
}
/**
* Get the max_ifc_array_access pointer
*
* A "set" function is not needed because the array is dynmically allocated
* as necessary.
*/
inline int *get_max_ifc_array_access()
{
assert(this->data._num_state_slots == 0);
return this->u.max_ifc_array_access;
}
inline unsigned get_num_state_slots() const
{
assert(!this->is_interface_instance()
|| this->data._num_state_slots == 0);
return this->data._num_state_slots;
}
inline void set_num_state_slots(unsigned n)
{
assert(!this->is_interface_instance()
|| n == 0);
this->data._num_state_slots = n;
}
inline ir_state_slot *get_state_slots()
{
return this->is_interface_instance() ? NULL : this->u.state_slots;
}
inline const ir_state_slot *get_state_slots() const
{
return this->is_interface_instance() ? NULL : this->u.state_slots;
}
inline ir_state_slot *allocate_state_slots(unsigned n)
{
assert(!this->is_interface_instance());
this->u.state_slots = ralloc_array(this, ir_state_slot, n);
this->data._num_state_slots = 0;
if (this->u.state_slots != NULL)
this->data._num_state_slots = n;
return this->u.state_slots;
}
inline bool is_name_ralloced() const
{
return this->name != ir_variable::tmp_name;
}
/**
* Enable emitting extension warnings for this variable
*/
void enable_extension_warning(const char *extension);
/**
* Get the extension warning string for this variable
*
* If warnings are not enabled, \c NULL is returned.
*/
const char *get_extension_warning() const;
/**
* Declared type of the variable
*/
const struct glsl_type *type;
/**
* Declared name of the variable
*/
const char *name;
struct ir_variable_data {
/**
* Is the variable read-only?
*
* This is set for variables declared as \c const, shader inputs,
* and uniforms.
*/
unsigned read_only:1;
unsigned centroid:1;
unsigned sample:1;
unsigned patch:1;
unsigned invariant:1;
unsigned precise:1;
/**
* Has this variable been used for reading or writing?
*
* Several GLSL semantic checks require knowledge of whether or not a
* variable has been used. For example, it is an error to redeclare a
* variable as invariant after it has been used.
*
* This is only maintained in the ast_to_hir.cpp path, not in
* Mesa's fixed function or ARB program paths.
*/
unsigned used:1;
/**
* Has this variable been statically assigned?
*
* This answers whether the variable was assigned in any path of
* the shader during ast_to_hir. This doesn't answer whether it is
* still written after dead code removal, nor is it maintained in
* non-ast_to_hir.cpp (GLSL parsing) paths.
*/
unsigned assigned:1;
/**
* When separate shader programs are enabled, only input/outputs between
* the stages of a multi-stage separate program can be safely removed
* from the shader interface. Other input/outputs must remains active.
*/
unsigned always_active_io:1;
/**
* Enum indicating how the variable was declared. See
* ir_var_declaration_type.
*
* This is used to detect certain kinds of illegal variable redeclarations.
*/
unsigned how_declared:2;
/**
* Storage class of the variable.
*
* \sa ir_variable_mode
*/
unsigned mode:4;
/**
* Interpolation mode for shader inputs / outputs
*
* \sa ir_variable_interpolation
*/
unsigned interpolation:2;
/**
* \name ARB_fragment_coord_conventions
* @{
*/
unsigned origin_upper_left:1;
unsigned pixel_center_integer:1;
/*@}*/
/**
* Was the location explicitly set in the shader?
*
* If the location is explicitly set in the shader, it \b cannot be changed
* by the linker or by the API (e.g., calls to \c glBindAttribLocation have
* no effect).
*/
unsigned explicit_location:1;
unsigned explicit_index:1;
/**
* Was an initial binding explicitly set in the shader?
*
* If so, constant_value contains an integer ir_constant representing the
* initial binding point.
*/
unsigned explicit_binding:1;
/**
* Was an initial component explicitly set in the shader?
*/
unsigned explicit_component:1;
/**
* Does this variable have an initializer?
*
* This is used by the linker to cross-validiate initializers of global
* variables.
*/
unsigned has_initializer:1;
/**
* Is this variable a generic output or input that has not yet been matched
* up to a variable in another stage of the pipeline?
*
* This is used by the linker as scratch storage while assigning locations
* to generic inputs and outputs.
*/
unsigned is_unmatched_generic_inout:1;
/**
* Is this varying used only by transform feedback?
*
* This is used by the linker to decide if its safe to pack the varying.
*/
unsigned is_xfb_only:1;
/**
* Was a transfor feedback buffer set in the shader?
*/
unsigned explicit_xfb_buffer:1;
/**
* Was a transfor feedback offset set in the shader?
*/
unsigned explicit_xfb_offset:1;
/**
* Was a transfor feedback stride set in the shader?
*/
unsigned explicit_xfb_stride:1;
/**
* If non-zero, then this variable may be packed along with other variables
* into a single varying slot, so this offset should be applied when
* accessing components. For example, an offset of 1 means that the x
* component of this variable is actually stored in component y of the
* location specified by \c location.
*/
unsigned location_frac:2;
/**
* Layout of the matrix. Uses glsl_matrix_layout values.
*/
unsigned matrix_layout:2;
/**
* Non-zero if this variable was created by lowering a named interface
* block.
*/
unsigned from_named_ifc_block:1;
/**
* Non-zero if the variable must be a shader input. This is useful for
* constraints on function parameters.
*/
unsigned must_be_shader_input:1;
/**
* Output index for dual source blending.
*
* \note
* The GLSL spec only allows the values 0 or 1 for the index in \b dual
* source blending.
*/
unsigned index:1;
/**
* Precision qualifier.
*
* In desktop GLSL we do not care about precision qualifiers at all, in
* fact, the spec says that precision qualifiers are ignored.
*
* To make things easy, we make it so that this field is always
* GLSL_PRECISION_NONE on desktop shaders. This way all the variables
* have the same precision value and the checks we add in the compiler
* for this field will never break a desktop shader compile.
*/
unsigned precision:2;
/**
* \brief Layout qualifier for gl_FragDepth.
*
* This is not equal to \c ir_depth_layout_none if and only if this
* variable is \c gl_FragDepth and a layout qualifier is specified.
*/
ir_depth_layout depth_layout:3;
/**
* ARB_shader_image_load_store qualifiers.
*/
unsigned image_read_only:1; /**< "readonly" qualifier. */
unsigned image_write_only:1; /**< "writeonly" qualifier. */
unsigned image_coherent:1;
unsigned image_volatile:1;
unsigned image_restrict:1;
/**
* ARB_shader_storage_buffer_object
*/
unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
/**
* Emit a warning if this variable is accessed.
*/
private:
uint8_t warn_extension_index;
public:
/** Image internal format if specified explicitly, otherwise GL_NONE. */
uint16_t image_format;
private:
/**
* Number of state slots used
*
* \note
* This could be stored in as few as 7-bits, if necessary. If it is made
* smaller, add an assertion to \c ir_variable::allocate_state_slots to
* be safe.
*/
uint16_t _num_state_slots;
public:
/**
* Initial binding point for a sampler, atomic, or UBO.
*
* For array types, this represents the binding point for the first element.
*/
int16_t binding;
/**
* Storage location of the base of this variable
*
* The precise meaning of this field depends on the nature of the variable.
*
* - Vertex shader input: one of the values from \c gl_vert_attrib.
* - Vertex shader output: one of the values from \c gl_varying_slot.
* - Geometry shader input: one of the values from \c gl_varying_slot.
* - Geometry shader output: one of the values from \c gl_varying_slot.
* - Fragment shader input: one of the values from \c gl_varying_slot.
* - Fragment shader output: one of the values from \c gl_frag_result.
* - Uniforms: Per-stage uniform slot number for default uniform block.
* - Uniforms: Index within the uniform block definition for UBO members.
* - Non-UBO Uniforms: explicit location until linking then reused to
* store uniform slot number.
* - Other: This field is not currently used.
*
* If the variable is a uniform, shader input, or shader output, and the
* slot has not been assigned, the value will be -1.
*/
int location;
/**
* for glsl->tgsi/mesa IR we need to store the index into the
* parameters for uniforms, initially the code overloaded location
* but this causes problems with indirect samplers and AoA.
* This is assigned in _mesa_generate_parameters_list_for_uniforms.
*/
int param_index;
/**
* Vertex stream output identifier.
*/
unsigned stream;
/**
* Atomic, transform feedback or block member offset.
*/
unsigned offset;
/**
* Highest element accessed with a constant expression array index
*
* Not used for non-array variables. -1 is never accessed.
*/
int max_array_access;
/**
* Transform feedback buffer.
*/
unsigned xfb_buffer;
/**
* Transform feedback stride.
*/
unsigned xfb_stride;
/**
* Allow (only) ir_variable direct access private members.
*/
friend class ir_variable;
} data;
/**
* Value assigned in the initializer of a variable declared "const"
*/
ir_constant *constant_value;
/**
* Constant expression assigned in the initializer of the variable
*
* \warning
* This field and \c ::constant_value are distinct. Even if the two fields
* refer to constants with the same value, they must point to separate
* objects.
*/
ir_constant *constant_initializer;
private:
static const char *const warn_extension_table[];
union {
/**
* For variables which satisfy the is_interface_instance() predicate,
* this points to an array of integers such that if the ith member of
* the interface block is an array, max_ifc_array_access[i] is the
* maximum array element of that member that has been accessed. If the
* ith member of the interface block is not an array,
* max_ifc_array_access[i] is unused.
*
* For variables whose type is not an interface block, this pointer is
* NULL.
*/
int *max_ifc_array_access;
/**
* Built-in state that backs this uniform
*
* Once set at variable creation, \c state_slots must remain invariant.
*
* If the variable is not a uniform, \c _num_state_slots will be zero
* and \c state_slots will be \c NULL.
*/
ir_state_slot *state_slots;
} u;
/**
* For variables that are in an interface block or are an instance of an
* interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
*
* \sa ir_variable::location
*/
const glsl_type *interface_type;
/**
* Name used for anonymous compiler temporaries
*/
static const char tmp_name[];
public:
/**
* Should the construct keep names for ir_var_temporary variables?
*
* When this global is false, names passed to the constructor for
* \c ir_var_temporary variables will be dropped. Instead, the variable will
* be named "compiler_temp". This name will be in static storage.
*
* \warning
* \b NEVER change the mode of an \c ir_var_temporary.
*
* \warning
* This variable is \b not thread-safe. It is global, \b not
* per-context. It begins life false. A context can, at some point, make
* it true. From that point on, it will be true forever. This should be
* okay since it will only be set true while debugging.
*/
static bool temporaries_allocate_names;
};
/**
* A function that returns whether a built-in function is available in the
* current shading language (based on version, ES or desktop, and extensions).
*/
typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
/*@{*/
/**
* The representation of a function instance; may be the full definition or
* simply a prototype.
*/
class ir_function_signature : public ir_instruction {
/* An ir_function_signature will be part of the list of signatures in
* an ir_function.
*/
public:
ir_function_signature(const glsl_type *return_type,
builtin_available_predicate builtin_avail = NULL);
virtual ir_function_signature *clone(void *mem_ctx,
struct hash_table *ht) const;
ir_function_signature *clone_prototype(void *mem_ctx,
struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Attempt to evaluate this function as a constant expression,
* given a list of the actual parameters and the variable context.
* Returns NULL for non-built-ins.
*/
ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
/**
* Get the name of the function for which this is a signature
*/
const char *function_name() const;
/**
* Get a handle to the function for which this is a signature
*
* There is no setter function, this function returns a \c const pointer,
* and \c ir_function_signature::_function is private for a reason. The
* only way to make a connection between a function and function signature
* is via \c ir_function::add_signature. This helps ensure that certain
* invariants (i.e., a function signature is in the list of signatures for
* its \c _function) are met.
*
* \sa ir_function::add_signature
*/
inline const class ir_function *function() const
{
return this->_function;
}
/**
* Check whether the qualifiers match between this signature's parameters
* and the supplied parameter list. If not, returns the name of the first
* parameter with mismatched qualifiers (for use in error messages).
*/
const char *qualifiers_match(exec_list *params);
/**
* Replace the current parameter list with the given one. This is useful
* if the current information came from a prototype, and either has invalid
* or missing parameter names.
*/
void replace_parameters(exec_list *new_params);
/**
* Function return type.
*
* \note This discards the optional precision qualifier.
*/
const struct glsl_type *return_type;
/**
* List of ir_variable of function parameters.
*
* This represents the storage. The paramaters passed in a particular
* call will be in ir_call::actual_paramaters.
*/
struct exec_list parameters;
/** Whether or not this function has a body (which may be empty). */
unsigned is_defined:1;
/** Whether or not this function signature is a built-in. */
bool is_builtin() const;
/**
* Whether or not this function is an intrinsic to be implemented
* by the driver.
*/
bool is_intrinsic;
/** Whether or not a built-in is available for this shader. */
bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
/** Body of instructions in the function. */
struct exec_list body;
private:
/**
* A function pointer to a predicate that answers whether a built-in
* function is available in the current shader. NULL if not a built-in.
*/
builtin_available_predicate builtin_avail;
/** Function of which this signature is one overload. */
class ir_function *_function;
/** Function signature of which this one is a prototype clone */
const ir_function_signature *origin;
friend class ir_function;
/**
* Helper function to run a list of instructions for constant
* expression evaluation.
*
* The hash table represents the values of the visible variables.
* There are no scoping issues because the table is indexed on
* ir_variable pointers, not variable names.
*
* Returns false if the expression is not constant, true otherwise,
* and the value in *result if result is non-NULL.
*/
bool constant_expression_evaluate_expression_list(const struct exec_list &body,
struct hash_table *variable_context,
ir_constant **result);
};
/**
* Header for tracking multiple overloaded functions with the same name.
* Contains a list of ir_function_signatures representing each of the
* actual functions.
*/
class ir_function : public ir_instruction {
public:
ir_function(const char *name);
virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
void add_signature(ir_function_signature *sig)
{
sig->_function = this;
this->signatures.push_tail(sig);
}
/**
* Find a signature that matches a set of actual parameters, taking implicit
* conversions into account. Also flags whether the match was exact.
*/
ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
const exec_list *actual_param,
bool allow_builtins,
bool *match_is_exact);
/**
* Find a signature that matches a set of actual parameters, taking implicit
* conversions into account.
*/
ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
const exec_list *actual_param,
bool allow_builtins);
/**
* Find a signature that exactly matches a set of actual parameters without
* any implicit type conversions.
*/
ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
const exec_list *actual_ps);
/**
* Name of the function.
*/
const char *name;
/** Whether or not this function has a signature that isn't a built-in. */
bool has_user_signature();
/**
* List of ir_function_signature for each overloaded function with this name.
*/
struct exec_list signatures;
/**
* is this function a subroutine type declaration
* e.g. subroutine void type1(float arg1);
*/
bool is_subroutine;
/**
* is this function associated to a subroutine type
* e.g. subroutine (type1, type2) function_name { function_body };
* would have num_subroutine_types 2,
* and pointers to the type1 and type2 types.
*/
int num_subroutine_types;
const struct glsl_type **subroutine_types;
int subroutine_index;
};
inline const char *ir_function_signature::function_name() const
{
return this->_function->name;
}
/*@}*/
/**
* IR instruction representing high-level if-statements
*/
class ir_if : public ir_instruction {
public:
ir_if(ir_rvalue *condition)
: ir_instruction(ir_type_if), condition(condition)
{
}
virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *condition;
/** List of ir_instruction for the body of the then branch */
exec_list then_instructions;
/** List of ir_instruction for the body of the else branch */
exec_list else_instructions;
};
/**
* IR instruction representing a high-level loop structure.
*/
class ir_loop : public ir_instruction {
public:
ir_loop();
virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/** List of ir_instruction that make up the body of the loop. */
exec_list body_instructions;
};
class ir_assignment : public ir_instruction {
public:
ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
/**
* Construct an assignment with an explicit write mask
*
* \note
* Since a write mask is supplied, the LHS must already be a bare
* \c ir_dereference. The cannot be any swizzles in the LHS.
*/
ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
unsigned write_mask);
virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Get a whole variable written by an assignment
*
* If the LHS of the assignment writes a whole variable, the variable is
* returned. Otherwise \c NULL is returned. Examples of whole-variable
* assignment are:
*
* - Assigning to a scalar
* - Assigning to all components of a vector
* - Whole array (or matrix) assignment
* - Whole structure assignment
*/
ir_variable *whole_variable_written();
/**
* Set the LHS of an assignment
*/
void set_lhs(ir_rvalue *lhs);
/**
* Left-hand side of the assignment.
*
* This should be treated as read only. If you need to set the LHS of an
* assignment, use \c ir_assignment::set_lhs.
*/
ir_dereference *lhs;
/**
* Value being assigned
*/
ir_rvalue *rhs;
/**
* Optional condition for the assignment.
*/
ir_rvalue *condition;
/**
* Component mask written
*
* For non-vector types in the LHS, this field will be zero. For vector
* types, a bit will be set for each component that is written. Note that
* for \c vec2 and \c vec3 types only the lower bits will ever be set.
*
* A partially-set write mask means that each enabled channel gets
* the value from a consecutive channel of the rhs. For example,
* to write just .xyw of gl_FrontColor with color:
*
* (assign (constant bool (1)) (xyw)
* (var_ref gl_FragColor)
* (swiz xyw (var_ref color)))
*/
unsigned write_mask:4;
};
/* Update ir_expression::get_num_operands() and operator_strs when
* updating this list.
*/
enum ir_expression_operation {
ir_unop_bit_not,
ir_unop_logic_not,
ir_unop_neg,
ir_unop_abs,
ir_unop_sign,
ir_unop_rcp,
ir_unop_rsq,
ir_unop_sqrt,
ir_unop_exp, /**< Log base e on gentype */
ir_unop_log, /**< Natural log on gentype */
ir_unop_exp2,
ir_unop_log2,
ir_unop_f2i, /**< Float-to-integer conversion. */
ir_unop_f2u, /**< Float-to-unsigned conversion. */
ir_unop_i2f, /**< Integer-to-float conversion. */
ir_unop_f2b, /**< Float-to-boolean conversion */
ir_unop_b2f, /**< Boolean-to-float conversion */
ir_unop_i2b, /**< int-to-boolean conversion */
ir_unop_b2i, /**< Boolean-to-int conversion */
ir_unop_u2f, /**< Unsigned-to-float conversion. */
ir_unop_i2u, /**< Integer-to-unsigned conversion. */
ir_unop_u2i, /**< Unsigned-to-integer conversion. */
ir_unop_d2f, /**< Double-to-float conversion. */
ir_unop_f2d, /**< Float-to-double conversion. */
ir_unop_d2i, /**< Double-to-integer conversion. */
ir_unop_i2d, /**< Integer-to-double conversion. */
ir_unop_d2u, /**< Double-to-unsigned conversion. */
ir_unop_u2d, /**< Unsigned-to-double conversion. */
ir_unop_d2b, /**< Double-to-boolean conversion. */
ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
/**
* \name Unary floating-point rounding operations.
*/
/*@{*/
ir_unop_trunc,
ir_unop_ceil,
ir_unop_floor,
ir_unop_fract,
ir_unop_round_even,
/*@}*/
/**
* \name Trigonometric operations.
*/
/*@{*/
ir_unop_sin,
ir_unop_cos,
/*@}*/
/**
* \name Partial derivatives.
*/
/*@{*/
ir_unop_dFdx,
ir_unop_dFdx_coarse,
ir_unop_dFdx_fine,
ir_unop_dFdy,
ir_unop_dFdy_coarse,
ir_unop_dFdy_fine,
/*@}*/
/**
* \name Floating point pack and unpack operations.
*/
/*@{*/
ir_unop_pack_snorm_2x16,
ir_unop_pack_snorm_4x8,
ir_unop_pack_unorm_2x16,
ir_unop_pack_unorm_4x8,
ir_unop_pack_half_2x16,
ir_unop_unpack_snorm_2x16,
ir_unop_unpack_snorm_4x8,
ir_unop_unpack_unorm_2x16,
ir_unop_unpack_unorm_4x8,
ir_unop_unpack_half_2x16,
/*@}*/
/**
* \name Bit operations, part of ARB_gpu_shader5.
*/
/*@{*/
ir_unop_bitfield_reverse,
ir_unop_bit_count,
ir_unop_find_msb,
ir_unop_find_lsb,
/*@}*/
ir_unop_saturate,
/**
* \name Double packing, part of ARB_gpu_shader_fp64.
*/
/*@{*/
ir_unop_pack_double_2x32,
ir_unop_unpack_double_2x32,
/*@}*/
ir_unop_frexp_sig,
ir_unop_frexp_exp,
ir_unop_noise,
ir_unop_subroutine_to_int,
/**
* Interpolate fs input at centroid
*
* operand0 is the fs input.
*/
ir_unop_interpolate_at_centroid,
/**
* Ask the driver for the total size of a buffer block.
*
* operand0 is the ir_constant buffer block index in the linked shader.
*/
ir_unop_get_buffer_size,
/**
* Calculate length of an unsized array inside a buffer block.
* This opcode is going to be replaced in a lowering pass inside
* the linker.
*
* operand0 is the unsized array's ir_value for the calculation
* of its length.
*/
ir_unop_ssbo_unsized_array_length,
/**
* A sentinel marking the last of the unary operations.
*/
ir_last_unop = ir_unop_ssbo_unsized_array_length,
ir_binop_add,
ir_binop_sub,
ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
ir_binop_div,
/**
* Returns the carry resulting from the addition of the two arguments.
*/
/*@{*/
ir_binop_carry,
/*@}*/
/**
* Returns the borrow resulting from the subtraction of the second argument
* from the first argument.
*/
/*@{*/
ir_binop_borrow,
/*@}*/
/**
* Takes one of two combinations of arguments:
*
* - mod(vecN, vecN)
* - mod(vecN, float)
*
* Does not take integer types.
*/
ir_binop_mod,
/**
* \name Binary comparison operators which return a boolean vector.
* The type of both operands must be equal.
*/
/*@{*/
ir_binop_less,
ir_binop_greater,
ir_binop_lequal,
ir_binop_gequal,
ir_binop_equal,
ir_binop_nequal,
/**
* Returns single boolean for whether all components of operands[0]
* equal the components of operands[1].
*/
ir_binop_all_equal,
/**
* Returns single boolean for whether any component of operands[0]
* is not equal to the corresponding component of operands[1].
*/
ir_binop_any_nequal,
/*@}*/
/**
* \name Bit-wise binary operations.
*/
/*@{*/
ir_binop_lshift,
ir_binop_rshift,
ir_binop_bit_and,
ir_binop_bit_xor,
ir_binop_bit_or,
/*@}*/
ir_binop_logic_and,
ir_binop_logic_xor,
ir_binop_logic_or,
ir_binop_dot,
ir_binop_min,
ir_binop_max,
ir_binop_pow,
/**
* Load a value the size of a given GLSL type from a uniform block.
*
* operand0 is the ir_constant uniform block index in the linked shader.
* operand1 is a byte offset within the uniform block.
*/
ir_binop_ubo_load,
/**
* \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
*/
/*@{*/
ir_binop_ldexp,
/*@}*/
/**
* Extract a scalar from a vector
*
* operand0 is the vector
* operand1 is the index of the field to read from operand0
*/
ir_binop_vector_extract,
/**
* Interpolate fs input at offset
*
* operand0 is the fs input
* operand1 is the offset from the pixel center
*/
ir_binop_interpolate_at_offset,
/**
* Interpolate fs input at sample position
*
* operand0 is the fs input
* operand1 is the sample ID
*/
ir_binop_interpolate_at_sample,
/**
* A sentinel marking the last of the binary operations.
*/
ir_last_binop = ir_binop_interpolate_at_sample,
/**
* \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
*/
/*@{*/
ir_triop_fma,
/*@}*/
ir_triop_lrp,
/**
* \name Conditional Select
*
* A vector conditional select instruction (like ?:, but operating per-
* component on vectors).
*
* \see lower_instructions_visitor::ldexp_to_arith
*/
/*@{*/
ir_triop_csel,
/*@}*/
ir_triop_bitfield_extract,
/**
* Generate a value with one field of a vector changed
*
* operand0 is the vector
* operand1 is the value to write into the vector result
* operand2 is the index in operand0 to be modified
*/
ir_triop_vector_insert,
/**
* A sentinel marking the last of the ternary operations.
*/
ir_last_triop = ir_triop_vector_insert,
ir_quadop_bitfield_insert,
ir_quadop_vector,
/**
* A sentinel marking the last of the ternary operations.
*/
ir_last_quadop = ir_quadop_vector,
/**
* A sentinel marking the last of all operations.
*/
ir_last_opcode = ir_quadop_vector
};
class ir_expression : public ir_rvalue {
public:
ir_expression(int op, const struct glsl_type *type,
ir_rvalue *op0, ir_rvalue *op1 = NULL,
ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
/**
* Constructor for unary operation expressions
*/
ir_expression(int op, ir_rvalue *);
/**
* Constructor for binary operation expressions
*/
ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
/**
* Constructor for ternary operation expressions
*/
ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
/**
* Attempt to constant-fold the expression
*
* The "variable_context" hash table links ir_variable * to ir_constant *
* that represent the variables' values. \c NULL represents an empty
* context.
*
* If the expression cannot be constant folded, this method will return
* \c NULL.
*/
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
/**
* Determine the number of operands used by an expression
*/
static unsigned int get_num_operands(ir_expression_operation);
/**
* Determine the number of operands used by an expression
*/
unsigned int get_num_operands() const
{
return (this->operation == ir_quadop_vector)
? this->type->vector_elements : get_num_operands(operation);
}
/**
* Return whether the expression operates on vectors horizontally.
*/
bool is_horizontal() const
{
return operation == ir_binop_all_equal ||
operation == ir_binop_any_nequal ||
operation == ir_binop_dot ||
operation == ir_binop_vector_extract ||
operation == ir_triop_vector_insert ||
operation == ir_binop_ubo_load ||
operation == ir_quadop_vector;
}
/**
* Return a string representing this expression's operator.
*/
const char *operator_string();
/**
* Return a string representing this expression's operator.
*/
static const char *operator_string(ir_expression_operation);
/**
* Do a reverse-lookup to translate the given string into an operator.
*/
static ir_expression_operation get_operator(const char *);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual ir_variable *variable_referenced() const;
ir_expression_operation operation;
ir_rvalue *operands[4];
};
/**
* HIR instruction representing a high-level function call, containing a list
* of parameters and returning a value in the supplied temporary.
*/
class ir_call : public ir_instruction {
public:
ir_call(ir_function_signature *callee,
ir_dereference_variable *return_deref,
exec_list *actual_parameters)
: ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
{
assert(callee->return_type != NULL);
actual_parameters->move_nodes_to(& this->actual_parameters);
this->use_builtin = callee->is_builtin();
}
ir_call(ir_function_signature *callee,
ir_dereference_variable *return_deref,
exec_list *actual_parameters,
ir_variable *var, ir_rvalue *array_idx)
: ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
{
assert(callee->return_type != NULL);
actual_parameters->move_nodes_to(& this->actual_parameters);
this->use_builtin = callee->is_builtin();
}
virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Get the name of the function being called.
*/
const char *callee_name() const
{
return callee->function_name();
}
/**
* Generates an inline version of the function before @ir,
* storing the return value in return_deref.
*/
void generate_inline(ir_instruction *ir);
/**
* Storage for the function's return value.
* This must be NULL if the return type is void.
*/
ir_dereference_variable *return_deref;
/**
* The specific function signature being called.
*/
ir_function_signature *callee;
/* List of ir_rvalue of paramaters passed in this call. */
exec_list actual_parameters;
/** Should this call only bind to a built-in function? */
bool use_builtin;
/*
* ARB_shader_subroutine support -
* the subroutine uniform variable and array index
* rvalue to be used in the lowering pass later.
*/
ir_variable *sub_var;
ir_rvalue *array_idx;
};
/**
* \name Jump-like IR instructions.
*
* These include \c break, \c continue, \c return, and \c discard.
*/
/*@{*/
class ir_jump : public ir_instruction {
protected:
ir_jump(enum ir_node_type t)
: ir_instruction(t)
{
}
};
class ir_return : public ir_jump {
public:
ir_return()
: ir_jump(ir_type_return), value(NULL)
{
}
ir_return(ir_rvalue *value)
: ir_jump(ir_type_return), value(value)
{
}
virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
ir_rvalue *get_value() const
{
return value;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *value;
};
/**
* Jump instructions used inside loops
*
* These include \c break and \c continue. The \c break within a loop is
* different from the \c break within a switch-statement.
*
* \sa ir_switch_jump
*/
class ir_loop_jump : public ir_jump {
public:
enum jump_mode {
jump_break,
jump_continue
};
ir_loop_jump(jump_mode mode)
: ir_jump(ir_type_loop_jump)
{
this->mode = mode;
}
virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
bool is_break() const
{
return mode == jump_break;
}
bool is_continue() const
{
return mode == jump_continue;
}
/** Mode selector for the jump instruction. */
enum jump_mode mode;
};
/**
* IR instruction representing discard statements.
*/
class ir_discard : public ir_jump {
public:
ir_discard()
: ir_jump(ir_type_discard)
{
this->condition = NULL;
}
ir_discard(ir_rvalue *cond)
: ir_jump(ir_type_discard)
{
this->condition = cond;
}
virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *condition;
};
/*@}*/
/**
* Texture sampling opcodes used in ir_texture
*/
enum ir_texture_opcode {
ir_tex, /**< Regular texture look-up */
ir_txb, /**< Texture look-up with LOD bias */
ir_txl, /**< Texture look-up with explicit LOD */
ir_txd, /**< Texture look-up with partial derivatvies */
ir_txf, /**< Texel fetch with explicit LOD */
ir_txf_ms, /**< Multisample texture fetch */
ir_txs, /**< Texture size */
ir_lod, /**< Texture lod query */
ir_tg4, /**< Texture gather */
ir_query_levels, /**< Texture levels query */
ir_texture_samples, /**< Texture samples query */
ir_samples_identical, /**< Query whether all samples are definitely identical. */
};
/**
* IR instruction to sample a texture
*
* The specific form of the IR instruction depends on the \c mode value
* selected from \c ir_texture_opcodes. In the printed IR, these will
* appear as:
*
* Texel offset (0 or an expression)
* | Projection divisor
* | | Shadow comparitor
* | | |
* v v v
* (tex <type> <sampler> <coordinate> 0 1 ( ))
* (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
* (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
* (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
* (txf <type> <sampler> <coordinate> 0 <lod>)
* (txf_ms
* <type> <sampler> <coordinate> <sample_index>)
* (txs <type> <sampler> <lod>)
* (lod <type> <sampler> <coordinate>)
* (tg4 <type> <sampler> <coordinate> <offset> <component>)
* (query_levels <type> <sampler>)
* (samples_identical <sampler> <coordinate>)
*/
class ir_texture : public ir_rvalue {
public:
ir_texture(enum ir_texture_opcode op)
: ir_rvalue(ir_type_texture),
op(op), sampler(NULL), coordinate(NULL), projector(NULL),
shadow_comparitor(NULL), offset(NULL)
{
memset(&lod_info, 0, sizeof(lod_info));
}
virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
/**
* Return a string representing the ir_texture_opcode.
*/
const char *opcode_string();
/** Set the sampler and type. */
void set_sampler(ir_dereference *sampler, const glsl_type *type);
/**
* Do a reverse-lookup to translate a string into an ir_texture_opcode.
*/
static ir_texture_opcode get_opcode(const char *);
enum ir_texture_opcode op;
/** Sampler to use for the texture access. */
ir_dereference *sampler;
/** Texture coordinate to sample */
ir_rvalue *coordinate;
/**
* Value used for projective divide.
*
* If there is no projective divide (the common case), this will be
* \c NULL. Optimization passes should check for this to point to a constant
* of 1.0 and replace that with \c NULL.
*/
ir_rvalue *projector;
/**
* Coordinate used for comparison on shadow look-ups.
*
* If there is no shadow comparison, this will be \c NULL. For the
* \c ir_txf opcode, this *must* be \c NULL.
*/
ir_rvalue *shadow_comparitor;
/** Texel offset. */
ir_rvalue *offset;
union {
ir_rvalue *lod; /**< Floating point LOD */
ir_rvalue *bias; /**< Floating point LOD bias */
ir_rvalue *sample_index; /**< MSAA sample index */
ir_rvalue *component; /**< Gather component selector */
struct {
ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
} grad;
} lod_info;
};
struct ir_swizzle_mask {
unsigned x:2;
unsigned y:2;
unsigned z:2;
unsigned w:2;
/**
* Number of components in the swizzle.
*/
unsigned num_components:3;
/**
* Does the swizzle contain duplicate components?
*
* L-value swizzles cannot contain duplicate components.
*/
unsigned has_duplicates:1;
};
class ir_swizzle : public ir_rvalue {
public:
ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
unsigned count);
ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
/**
* Construct an ir_swizzle from the textual representation. Can fail.
*/
static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
bool is_lvalue() const
{
return val->is_lvalue() && !mask.has_duplicates;
}
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const;
ir_rvalue *val;
ir_swizzle_mask mask;
private:
/**
* Initialize the mask component of a swizzle
*
* This is used by the \c ir_swizzle constructors.
*/
void init_mask(const unsigned *components, unsigned count);
};
class ir_dereference : public ir_rvalue {
public:
virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
bool is_lvalue() const;
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const = 0;
protected:
ir_dereference(enum ir_node_type t)
: ir_rvalue(t)
{
}
};
class ir_dereference_variable : public ir_dereference {
public:
ir_dereference_variable(ir_variable *var);
virtual ir_dereference_variable *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->var;
}
virtual ir_variable *whole_variable_referenced()
{
/* ir_dereference_variable objects always dereference the entire
* variable. However, if this dereference is dereferenced by anything
* else, the complete deferefernce chain is not a whole-variable
* dereference. This method should only be called on the top most
* ir_rvalue in a dereference chain.
*/
return this->var;
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
/**
* Object being dereferenced.
*/
ir_variable *var;
};
class ir_dereference_array : public ir_dereference {
public:
ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
virtual ir_dereference_array *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->array->variable_referenced();
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *array;
ir_rvalue *array_index;
private:
void set_array(ir_rvalue *value);
};
class ir_dereference_record : public ir_dereference {
public:
ir_dereference_record(ir_rvalue *value, const char *field);
ir_dereference_record(ir_variable *var, const char *field);
virtual ir_dereference_record *clone(void *mem_ctx,
struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
/**
* Get the variable that is ultimately referenced by an r-value
*/
virtual ir_variable *variable_referenced() const
{
return this->record->variable_referenced();
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
ir_rvalue *record;
const char *field;
};
/**
* Data stored in an ir_constant
*/
union ir_constant_data {
unsigned u[16];
int i[16];
float f[16];
bool b[16];
double d[16];
};
class ir_constant : public ir_rvalue {
public:
ir_constant(const struct glsl_type *type, const ir_constant_data *data);
ir_constant(bool b, unsigned vector_elements=1);
ir_constant(unsigned int u, unsigned vector_elements=1);
ir_constant(int i, unsigned vector_elements=1);
ir_constant(float f, unsigned vector_elements=1);
ir_constant(double d, unsigned vector_elements=1);
/**
* Construct an ir_constant from a list of ir_constant values
*/
ir_constant(const struct glsl_type *type, exec_list *values);
/**
* Construct an ir_constant from a scalar component of another ir_constant
*
* The new \c ir_constant inherits the type of the component from the
* source constant.
*
* \note
* In the case of a matrix constant, the new constant is a scalar, \b not
* a vector.
*/
ir_constant(const ir_constant *c, unsigned i);
/**
* Return a new ir_constant of the specified type containing all zeros.
*/
static ir_constant *zero(void *mem_ctx, const glsl_type *type);
virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
virtual bool equals(const ir_instruction *ir,
enum ir_node_type ignore = ir_type_unset) const;
/**
* Get a particular component of a constant as a specific type
*
* This is useful, for example, to get a value from an integer constant
* as a float or bool. This appears frequently when constructors are
* called with all constant parameters.
*/
/*@{*/
bool get_bool_component(unsigned i) const;
float get_float_component(unsigned i) const;
double get_double_component(unsigned i) const;
int get_int_component(unsigned i) const;
unsigned get_uint_component(unsigned i) const;
/*@}*/
ir_constant *get_array_element(unsigned i) const;
ir_constant *get_record_field(const char *name);
/**
* Copy the values on another constant at a given offset.
*
* The offset is ignored for array or struct copies, it's only for
* scalars or vectors into vectors or matrices.
*
* With identical types on both sides and zero offset it's clone()
* without creating a new object.
*/
void copy_offset(ir_constant *src, int offset);
/**
* Copy the values on another constant at a given offset and
* following an assign-like mask.
*
* The mask is ignored for scalars.
*
* Note that this function only handles what assign can handle,
* i.e. at most a vector as source and a column of a matrix as
* destination.
*/
void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
/**
* Determine whether a constant has the same value as another constant
*
* \sa ir_constant::is_zero, ir_constant::is_one,
* ir_constant::is_negative_one
*/
bool has_value(const ir_constant *) const;
/**
* Return true if this ir_constant represents the given value.
*
* For vectors, this checks that each component is the given value.
*/
virtual bool is_value(float f, int i) const;
virtual bool is_zero() const;
virtual bool is_one() const;
virtual bool is_negative_one() const;
/**
* Return true for constants that could be stored as 16-bit unsigned values.
*
* Note that this will return true even for signed integer ir_constants, as
* long as the value is non-negative and fits in 16-bits.
*/
virtual bool is_uint16_constant() const;
/**
* Value of the constant.
*
* The field used to back the values supplied by the constant is determined
* by the type associated with the \c ir_instruction. Constants may be
* scalars, vectors, or matrices.
*/
union ir_constant_data value;
/* Array elements */
ir_constant **array_elements;
/* Structure fields */
exec_list components;
private:
/**
* Parameterless constructor only used by the clone method
*/
ir_constant(void);
};
/**
* IR instruction to emit a vertex in a geometry shader.
*/
class ir_emit_vertex : public ir_instruction {
public:
ir_emit_vertex(ir_rvalue *stream)
: ir_instruction(ir_type_emit_vertex),
stream(stream)
{
assert(stream);
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
{
return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
int stream_id() const
{
return stream->as_constant()->value.i[0];
}
ir_rvalue *stream;
};
/**
* IR instruction to complete the current primitive and start a new one in a
* geometry shader.
*/
class ir_end_primitive : public ir_instruction {
public:
ir_end_primitive(ir_rvalue *stream)
: ir_instruction(ir_type_end_primitive),
stream(stream)
{
assert(stream);
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
{
return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
int stream_id() const
{
return stream->as_constant()->value.i[0];
}
ir_rvalue *stream;
};
/**
* IR instruction for tessellation control and compute shader barrier.
*/
class ir_barrier : public ir_instruction {
public:
ir_barrier()
: ir_instruction(ir_type_barrier)
{
}
virtual void accept(ir_visitor *v)
{
v->visit(this);
}
virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
{
return new(mem_ctx) ir_barrier();
}
virtual ir_visitor_status accept(ir_hierarchical_visitor *);
};
/*@}*/
/**
* Apply a visitor to each IR node in a list
*/
void
visit_exec_list(exec_list *list, ir_visitor *visitor);
/**
* Validate invariants on each IR node in a list
*/
void validate_ir_tree(exec_list *instructions);
struct _mesa_glsl_parse_state;
struct gl_shader_program;
/**
* Detect whether an unlinked shader contains static recursion
*
* If the list of instructions is determined to contain static recursion,
* \c _mesa_glsl_error will be called to emit error messages for each function
* that is in the recursion cycle.
*/
void
detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
exec_list *instructions);
/**
* Detect whether a linked shader contains static recursion
*
* If the list of instructions is determined to contain static recursion,
* \c link_error_printf will be called to emit error messages for each function
* that is in the recursion cycle. In addition,
* \c gl_shader_program::LinkStatus will be set to false.
*/
void
detect_recursion_linked(struct gl_shader_program *prog,
exec_list *instructions);
/**
* Make a clone of each IR instruction in a list
*
* \param in List of IR instructions that are to be cloned
* \param out List to hold the cloned instructions
*/
void
clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
extern void
_mesa_glsl_initialize_variables(exec_list *instructions,
struct _mesa_glsl_parse_state *state);
extern void
_mesa_glsl_initialize_derived_variables(gl_shader *shader);
extern void
_mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
extern void
_mesa_glsl_initialize_builtin_functions();
extern ir_function_signature *
_mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
const char *name, exec_list *actual_parameters);
extern ir_function *
_mesa_glsl_find_builtin_function_by_name(const char *name);
extern gl_shader *
_mesa_glsl_get_builtin_function_shader(void);
extern ir_function_signature *
_mesa_get_main_function_signature(gl_shader *sh);
extern void
_mesa_glsl_release_functions(void);
extern void
_mesa_glsl_release_builtin_functions(void);
extern void
reparent_ir(exec_list *list, void *mem_ctx);
struct glsl_symbol_table;
extern void
import_prototypes(const exec_list *source, exec_list *dest,
struct glsl_symbol_table *symbols, void *mem_ctx);
extern bool
ir_has_call(ir_instruction *ir);
extern void
do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
gl_shader_stage shader_stage);
extern char *
prototype_string(const glsl_type *return_type, const char *name,
exec_list *parameters);
const char *
mode_string(const ir_variable *var);
/**
* Built-in / reserved GL variables names start with "gl_"
*/
static inline bool
is_gl_identifier(const char *s)
{
return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
}
extern "C" {
#endif /* __cplusplus */
extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
struct _mesa_glsl_parse_state *state);
extern void
fprint_ir(FILE *f, const void *instruction);
extern const struct gl_builtin_uniform_desc *
_mesa_glsl_get_builtin_uniform_desc(const char *name);
#ifdef __cplusplus
} /* extern "C" */
#endif
unsigned
vertices_per_prim(GLenum prim);
#endif /* IR_H */