
No functional change, but the control flow around searching the cache and falling back to compiling is a bit simpler.
1318 lines
47 KiB
C
1318 lines
47 KiB
C
/*
|
|
* Copyright © 2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
|
|
#include "util/mesa-sha1.h"
|
|
#include "anv_private.h"
|
|
#include "brw_nir.h"
|
|
#include "anv_nir.h"
|
|
#include "nir/spirv/nir_spirv.h"
|
|
|
|
/* Needed for SWIZZLE macros */
|
|
#include "program/prog_instruction.h"
|
|
|
|
// Shader functions
|
|
|
|
VkResult anv_CreateShaderModule(
|
|
VkDevice _device,
|
|
const VkShaderModuleCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkShaderModule* pShaderModule)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
struct anv_shader_module *module;
|
|
|
|
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
|
|
assert(pCreateInfo->flags == 0);
|
|
|
|
module = anv_alloc2(&device->alloc, pAllocator,
|
|
sizeof(*module) + pCreateInfo->codeSize, 8,
|
|
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
|
|
if (module == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
module->nir = NULL;
|
|
module->size = pCreateInfo->codeSize;
|
|
memcpy(module->data, pCreateInfo->pCode, module->size);
|
|
|
|
_mesa_sha1_compute(module->data, module->size, module->sha1);
|
|
|
|
*pShaderModule = anv_shader_module_to_handle(module);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
void anv_DestroyShaderModule(
|
|
VkDevice _device,
|
|
VkShaderModule _module,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_shader_module, module, _module);
|
|
|
|
anv_free2(&device->alloc, pAllocator, module);
|
|
}
|
|
|
|
#define SPIR_V_MAGIC_NUMBER 0x07230203
|
|
|
|
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
|
|
* we can't do that yet because we don't have the ability to copy nir.
|
|
*/
|
|
static nir_shader *
|
|
anv_shader_compile_to_nir(struct anv_device *device,
|
|
struct anv_shader_module *module,
|
|
const char *entrypoint_name,
|
|
gl_shader_stage stage,
|
|
const VkSpecializationInfo *spec_info)
|
|
{
|
|
if (strcmp(entrypoint_name, "main") != 0) {
|
|
anv_finishme("Multiple shaders per module not really supported");
|
|
}
|
|
|
|
const struct brw_compiler *compiler =
|
|
device->instance->physicalDevice.compiler;
|
|
const nir_shader_compiler_options *nir_options =
|
|
compiler->glsl_compiler_options[stage].NirOptions;
|
|
|
|
nir_shader *nir;
|
|
nir_function *entry_point;
|
|
if (module->nir) {
|
|
/* Some things such as our meta clear/blit code will give us a NIR
|
|
* shader directly. In that case, we just ignore the SPIR-V entirely
|
|
* and just use the NIR shader */
|
|
nir = module->nir;
|
|
nir->options = nir_options;
|
|
nir_validate_shader(nir);
|
|
|
|
assert(exec_list_length(&nir->functions) == 1);
|
|
struct exec_node *node = exec_list_get_head(&nir->functions);
|
|
entry_point = exec_node_data(nir_function, node, node);
|
|
} else {
|
|
uint32_t *spirv = (uint32_t *) module->data;
|
|
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
|
|
assert(module->size % 4 == 0);
|
|
|
|
uint32_t num_spec_entries = 0;
|
|
struct nir_spirv_specialization *spec_entries = NULL;
|
|
if (spec_info && spec_info->mapEntryCount > 0) {
|
|
num_spec_entries = spec_info->mapEntryCount;
|
|
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
|
|
for (uint32_t i = 0; i < num_spec_entries; i++) {
|
|
const uint32_t *data =
|
|
spec_info->pData + spec_info->pMapEntries[i].offset;
|
|
assert((const void *)(data + 1) <=
|
|
spec_info->pData + spec_info->dataSize);
|
|
|
|
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
|
|
spec_entries[i].data = *data;
|
|
}
|
|
}
|
|
|
|
entry_point = spirv_to_nir(spirv, module->size / 4,
|
|
spec_entries, num_spec_entries,
|
|
stage, entrypoint_name, nir_options);
|
|
nir = entry_point->shader;
|
|
assert(nir->stage == stage);
|
|
nir_validate_shader(nir);
|
|
|
|
free(spec_entries);
|
|
|
|
nir_lower_returns(nir);
|
|
nir_validate_shader(nir);
|
|
|
|
nir_inline_functions(nir);
|
|
nir_validate_shader(nir);
|
|
|
|
/* Pick off the single entrypoint that we want */
|
|
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
|
|
if (func != entry_point)
|
|
exec_node_remove(&func->node);
|
|
}
|
|
assert(exec_list_length(&nir->functions) == 1);
|
|
entry_point->name = ralloc_strdup(entry_point, "main");
|
|
|
|
nir_remove_dead_variables(nir, nir_var_shader_in);
|
|
nir_remove_dead_variables(nir, nir_var_shader_out);
|
|
nir_remove_dead_variables(nir, nir_var_system_value);
|
|
nir_validate_shader(nir);
|
|
|
|
nir_lower_outputs_to_temporaries(entry_point->shader, entry_point);
|
|
|
|
nir_lower_system_values(nir);
|
|
nir_validate_shader(nir);
|
|
}
|
|
|
|
/* Vulkan uses the separate-shader linking model */
|
|
nir->info.separate_shader = true;
|
|
|
|
nir = brw_preprocess_nir(nir, compiler->scalar_stage[stage]);
|
|
|
|
nir_shader_gather_info(nir, entry_point->impl);
|
|
|
|
uint32_t indirect_mask = 0;
|
|
if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
|
|
indirect_mask |= (1 << nir_var_shader_in);
|
|
if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
|
|
indirect_mask |= 1 << nir_var_local;
|
|
|
|
nir_lower_indirect_derefs(nir, indirect_mask);
|
|
|
|
return nir;
|
|
}
|
|
|
|
void anv_DestroyPipeline(
|
|
VkDevice _device,
|
|
VkPipeline _pipeline,
|
|
const VkAllocationCallbacks* pAllocator)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
|
|
|
|
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
|
|
free(pipeline->bindings[s].surface_to_descriptor);
|
|
free(pipeline->bindings[s].sampler_to_descriptor);
|
|
}
|
|
|
|
anv_reloc_list_finish(&pipeline->batch_relocs,
|
|
pAllocator ? pAllocator : &device->alloc);
|
|
if (pipeline->blend_state.map)
|
|
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
|
|
anv_free2(&device->alloc, pAllocator, pipeline);
|
|
}
|
|
|
|
static const uint32_t vk_to_gen_primitive_type[] = {
|
|
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
|
|
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
|
|
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
|
|
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
|
|
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
|
|
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
|
|
/* [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST] = _3DPRIM_PATCHLIST_1 */
|
|
};
|
|
|
|
static void
|
|
populate_sampler_prog_key(const struct brw_device_info *devinfo,
|
|
struct brw_sampler_prog_key_data *key)
|
|
{
|
|
/* XXX: Handle texture swizzle on HSW- */
|
|
for (int i = 0; i < MAX_SAMPLERS; i++) {
|
|
/* Assume color sampler, no swizzling. (Works for BDW+) */
|
|
key->swizzles[i] = SWIZZLE_XYZW;
|
|
}
|
|
}
|
|
|
|
static void
|
|
populate_vs_prog_key(const struct brw_device_info *devinfo,
|
|
struct brw_vs_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
|
|
/* XXX: Handle vertex input work-arounds */
|
|
|
|
/* XXX: Handle sampler_prog_key */
|
|
}
|
|
|
|
static void
|
|
populate_gs_prog_key(const struct brw_device_info *devinfo,
|
|
struct brw_gs_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
}
|
|
|
|
static void
|
|
populate_wm_prog_key(const struct brw_device_info *devinfo,
|
|
const VkGraphicsPipelineCreateInfo *info,
|
|
const struct anv_graphics_pipeline_create_info *extra,
|
|
struct brw_wm_prog_key *key)
|
|
{
|
|
ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
|
|
/* TODO: Fill out key->input_slots_valid */
|
|
|
|
/* Vulkan doesn't specify a default */
|
|
key->high_quality_derivatives = false;
|
|
|
|
/* XXX Vulkan doesn't appear to specify */
|
|
key->clamp_fragment_color = false;
|
|
|
|
/* Vulkan always specifies upper-left coordinates */
|
|
key->drawable_height = 0;
|
|
key->render_to_fbo = false;
|
|
|
|
if (extra && extra->color_attachment_count >= 0) {
|
|
key->nr_color_regions = extra->color_attachment_count;
|
|
} else {
|
|
key->nr_color_regions =
|
|
render_pass->subpasses[info->subpass].color_count;
|
|
}
|
|
|
|
key->replicate_alpha = key->nr_color_regions > 1 &&
|
|
info->pMultisampleState &&
|
|
info->pMultisampleState->alphaToCoverageEnable;
|
|
|
|
if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
|
|
/* We should probably pull this out of the shader, but it's fairly
|
|
* harmless to compute it and then let dead-code take care of it.
|
|
*/
|
|
key->persample_shading = info->pMultisampleState->sampleShadingEnable;
|
|
if (key->persample_shading)
|
|
key->persample_2x = info->pMultisampleState->rasterizationSamples == 2;
|
|
|
|
key->compute_pos_offset = info->pMultisampleState->sampleShadingEnable;
|
|
key->compute_sample_id = info->pMultisampleState->sampleShadingEnable;
|
|
}
|
|
}
|
|
|
|
static void
|
|
populate_cs_prog_key(const struct brw_device_info *devinfo,
|
|
struct brw_cs_prog_key *key)
|
|
{
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
populate_sampler_prog_key(devinfo, &key->tex);
|
|
}
|
|
|
|
static nir_shader *
|
|
anv_pipeline_compile(struct anv_pipeline *pipeline,
|
|
struct anv_shader_module *module,
|
|
const char *entrypoint,
|
|
gl_shader_stage stage,
|
|
const VkSpecializationInfo *spec_info,
|
|
struct brw_stage_prog_data *prog_data)
|
|
{
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
|
|
nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
|
|
module, entrypoint, stage,
|
|
spec_info);
|
|
if (nir == NULL)
|
|
return NULL;
|
|
|
|
anv_nir_lower_push_constants(nir, compiler->scalar_stage[stage]);
|
|
|
|
/* Figure out the number of parameters */
|
|
prog_data->nr_params = 0;
|
|
|
|
if (nir->num_uniforms > 0) {
|
|
/* If the shader uses any push constants at all, we'll just give
|
|
* them the maximum possible number
|
|
*/
|
|
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
|
|
}
|
|
|
|
if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
|
|
prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
|
|
|
|
if (nir->info.num_images > 0)
|
|
prog_data->nr_params += nir->info.num_images * BRW_IMAGE_PARAM_SIZE;
|
|
|
|
if (prog_data->nr_params > 0) {
|
|
/* XXX: I think we're leaking this */
|
|
prog_data->param = (const union gl_constant_value **)
|
|
malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
|
|
|
|
/* We now set the param values to be offsets into a
|
|
* anv_push_constant_data structure. Since the compiler doesn't
|
|
* actually dereference any of the gl_constant_value pointers in the
|
|
* params array, it doesn't really matter what we put here.
|
|
*/
|
|
struct anv_push_constants *null_data = NULL;
|
|
if (nir->num_uniforms > 0) {
|
|
/* Fill out the push constants section of the param array */
|
|
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
|
|
prog_data->param[i] = (const union gl_constant_value *)
|
|
&null_data->client_data[i * sizeof(float)];
|
|
}
|
|
}
|
|
|
|
/* Set up dynamic offsets */
|
|
anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
|
|
|
|
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
|
|
if (pipeline->layout)
|
|
anv_nir_apply_pipeline_layout(pipeline, nir, prog_data);
|
|
|
|
/* All binding table offsets provided by apply_pipeline_layout() are
|
|
* relative to the start of the bindint table (plus MAX_RTS for VS).
|
|
*/
|
|
unsigned bias;
|
|
switch (stage) {
|
|
case MESA_SHADER_FRAGMENT:
|
|
bias = MAX_RTS;
|
|
break;
|
|
case MESA_SHADER_COMPUTE:
|
|
bias = 1;
|
|
break;
|
|
default:
|
|
bias = 0;
|
|
break;
|
|
}
|
|
prog_data->binding_table.size_bytes = 0;
|
|
prog_data->binding_table.texture_start = bias;
|
|
prog_data->binding_table.ubo_start = bias;
|
|
prog_data->binding_table.ssbo_start = bias;
|
|
prog_data->binding_table.image_start = bias;
|
|
|
|
/* Finish the optimization and compilation process */
|
|
if (nir->stage == MESA_SHADER_COMPUTE)
|
|
brw_nir_lower_shared(nir);
|
|
|
|
/* nir_lower_io will only handle the push constants; we need to set this
|
|
* to the full number of possible uniforms.
|
|
*/
|
|
nir->num_uniforms = prog_data->nr_params * 4;
|
|
|
|
return nir;
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
|
|
gl_shader_stage stage,
|
|
const struct brw_stage_prog_data *prog_data)
|
|
{
|
|
struct brw_device_info *devinfo = &pipeline->device->info;
|
|
uint32_t max_threads[] = {
|
|
[MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
|
|
[MESA_SHADER_TESS_CTRL] = devinfo->max_hs_threads,
|
|
[MESA_SHADER_TESS_EVAL] = devinfo->max_ds_threads,
|
|
[MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
|
|
[MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
|
|
[MESA_SHADER_COMPUTE] = devinfo->max_cs_threads,
|
|
};
|
|
|
|
pipeline->prog_data[stage] = prog_data;
|
|
pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
|
|
pipeline->scratch_start[stage] = pipeline->total_scratch;
|
|
pipeline->total_scratch =
|
|
align_u32(pipeline->total_scratch, 1024) +
|
|
prog_data->total_scratch * max_threads[stage];
|
|
}
|
|
|
|
static VkResult
|
|
anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_cache *cache,
|
|
const VkGraphicsPipelineCreateInfo *info,
|
|
struct anv_shader_module *module,
|
|
const char *entrypoint,
|
|
const VkSpecializationInfo *spec_info)
|
|
{
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
const struct brw_stage_prog_data *stage_prog_data;
|
|
struct brw_vs_prog_key key;
|
|
uint32_t kernel = NO_KERNEL;
|
|
unsigned char sha1[20];
|
|
|
|
populate_vs_prog_key(&pipeline->device->info, &key);
|
|
|
|
if (module->size > 0) {
|
|
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint, spec_info);
|
|
kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data);
|
|
}
|
|
|
|
if (kernel == NO_KERNEL) {
|
|
struct brw_vs_prog_data prog_data = { 0, };
|
|
|
|
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
|
|
MESA_SHADER_VERTEX, spec_info,
|
|
&prog_data.base.base);
|
|
if (nir == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
if (module->nir == NULL)
|
|
ralloc_steal(mem_ctx, nir);
|
|
|
|
prog_data.inputs_read = nir->info.inputs_read;
|
|
if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ))
|
|
pipeline->writes_point_size = true;
|
|
|
|
brw_compute_vue_map(&pipeline->device->info,
|
|
&prog_data.base.vue_map,
|
|
nir->info.outputs_written,
|
|
nir->info.separate_shader);
|
|
|
|
unsigned code_size;
|
|
const unsigned *shader_code =
|
|
brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
|
|
NULL, false, -1, &code_size, NULL);
|
|
if (shader_code == NULL) {
|
|
ralloc_free(mem_ctx);
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
stage_prog_data = &prog_data.base.base;
|
|
kernel = anv_pipeline_cache_upload_kernel(cache,
|
|
module->size > 0 ? sha1 : NULL,
|
|
shader_code, code_size,
|
|
&stage_prog_data,
|
|
sizeof(prog_data));
|
|
ralloc_free(mem_ctx);
|
|
}
|
|
|
|
const struct brw_vs_prog_data *vs_prog_data =
|
|
(const struct brw_vs_prog_data *) stage_prog_data;
|
|
|
|
if (vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
|
|
pipeline->vs_simd8 = kernel;
|
|
pipeline->vs_vec4 = NO_KERNEL;
|
|
} else {
|
|
pipeline->vs_simd8 = NO_KERNEL;
|
|
pipeline->vs_vec4 = kernel;
|
|
}
|
|
|
|
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX,
|
|
stage_prog_data);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_cache *cache,
|
|
const VkGraphicsPipelineCreateInfo *info,
|
|
struct anv_shader_module *module,
|
|
const char *entrypoint,
|
|
const VkSpecializationInfo *spec_info)
|
|
{
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
const struct brw_stage_prog_data *stage_prog_data;
|
|
struct brw_gs_prog_key key;
|
|
uint32_t kernel = NO_KERNEL;
|
|
unsigned char sha1[20];
|
|
|
|
populate_gs_prog_key(&pipeline->device->info, &key);
|
|
|
|
if (module->size > 0) {
|
|
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint, spec_info);
|
|
kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data);
|
|
}
|
|
|
|
if (kernel == NO_KERNEL) {
|
|
struct brw_gs_prog_data prog_data = { 0, };
|
|
|
|
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
|
|
MESA_SHADER_GEOMETRY, spec_info,
|
|
&prog_data.base.base);
|
|
if (nir == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
if (module->nir == NULL)
|
|
ralloc_steal(mem_ctx, nir);
|
|
|
|
if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ))
|
|
pipeline->writes_point_size = true;
|
|
|
|
brw_compute_vue_map(&pipeline->device->info,
|
|
&prog_data.base.vue_map,
|
|
nir->info.outputs_written,
|
|
nir->info.separate_shader);
|
|
|
|
unsigned code_size;
|
|
const unsigned *shader_code =
|
|
brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
|
|
NULL, -1, &code_size, NULL);
|
|
if (shader_code == NULL) {
|
|
ralloc_free(mem_ctx);
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
/* TODO: SIMD8 GS */
|
|
stage_prog_data = &prog_data.base.base;
|
|
kernel = anv_pipeline_cache_upload_kernel(cache,
|
|
module->size > 0 ? sha1 : NULL,
|
|
shader_code, code_size,
|
|
&stage_prog_data, sizeof(prog_data));
|
|
|
|
ralloc_free(mem_ctx);
|
|
}
|
|
|
|
pipeline->gs_kernel = kernel;
|
|
|
|
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY,
|
|
stage_prog_data);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult
|
|
anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_cache *cache,
|
|
const VkGraphicsPipelineCreateInfo *info,
|
|
const struct anv_graphics_pipeline_create_info *extra,
|
|
struct anv_shader_module *module,
|
|
const char *entrypoint,
|
|
const VkSpecializationInfo *spec_info)
|
|
{
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
const struct brw_stage_prog_data *stage_prog_data;
|
|
struct brw_wm_prog_key key;
|
|
uint32_t kernel = NO_KERNEL;
|
|
unsigned char sha1[20];
|
|
|
|
populate_wm_prog_key(&pipeline->device->info, info, extra, &key);
|
|
|
|
if (pipeline->use_repclear)
|
|
key.nr_color_regions = 1;
|
|
|
|
if (module->size > 0) {
|
|
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint, spec_info);
|
|
kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data);
|
|
}
|
|
|
|
if (kernel == NO_KERNEL) {
|
|
struct brw_wm_prog_data prog_data = { 0, };
|
|
|
|
prog_data.binding_table.render_target_start = 0;
|
|
|
|
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
|
|
MESA_SHADER_FRAGMENT, spec_info,
|
|
&prog_data.base);
|
|
if (nir == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
nir_function_impl *impl = nir_shader_get_entrypoint(nir)->impl;
|
|
nir_foreach_variable_safe(var, &nir->outputs) {
|
|
if (var->data.location < FRAG_RESULT_DATA0)
|
|
continue;
|
|
|
|
unsigned rt = var->data.location - FRAG_RESULT_DATA0;
|
|
if (rt >= key.nr_color_regions) {
|
|
var->data.mode = nir_var_local;
|
|
exec_node_remove(&var->node);
|
|
exec_list_push_tail(&impl->locals, &var->node);
|
|
}
|
|
}
|
|
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
if (module->nir == NULL)
|
|
ralloc_steal(mem_ctx, nir);
|
|
|
|
unsigned code_size;
|
|
const unsigned *shader_code =
|
|
brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
|
|
NULL, -1, -1, pipeline->use_repclear, &code_size, NULL);
|
|
if (shader_code == NULL) {
|
|
ralloc_free(mem_ctx);
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
stage_prog_data = &prog_data.base;
|
|
kernel = anv_pipeline_cache_upload_kernel(cache,
|
|
module->size > 0 ? sha1 : NULL,
|
|
shader_code, code_size,
|
|
&stage_prog_data, sizeof(prog_data));
|
|
|
|
ralloc_free(mem_ctx);
|
|
}
|
|
|
|
const struct brw_wm_prog_data *wm_prog_data =
|
|
(const struct brw_wm_prog_data *) stage_prog_data;
|
|
|
|
if (wm_prog_data->no_8)
|
|
pipeline->ps_simd8 = NO_KERNEL;
|
|
else
|
|
pipeline->ps_simd8 = kernel;
|
|
|
|
if (wm_prog_data->no_8 || wm_prog_data->prog_offset_16) {
|
|
pipeline->ps_simd16 = kernel + wm_prog_data->prog_offset_16;
|
|
} else {
|
|
pipeline->ps_simd16 = NO_KERNEL;
|
|
}
|
|
|
|
pipeline->ps_ksp2 = 0;
|
|
pipeline->ps_grf_start2 = 0;
|
|
if (pipeline->ps_simd8 != NO_KERNEL) {
|
|
pipeline->ps_ksp0 = pipeline->ps_simd8;
|
|
pipeline->ps_grf_start0 = wm_prog_data->base.dispatch_grf_start_reg;
|
|
if (pipeline->ps_simd16 != NO_KERNEL) {
|
|
pipeline->ps_ksp2 = pipeline->ps_simd16;
|
|
pipeline->ps_grf_start2 = wm_prog_data->dispatch_grf_start_reg_16;
|
|
}
|
|
} else if (pipeline->ps_simd16 != NO_KERNEL) {
|
|
pipeline->ps_ksp0 = pipeline->ps_simd16;
|
|
pipeline->ps_grf_start0 = wm_prog_data->dispatch_grf_start_reg_16;
|
|
}
|
|
|
|
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT,
|
|
stage_prog_data);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
|
|
struct anv_pipeline_cache *cache,
|
|
const VkComputePipelineCreateInfo *info,
|
|
struct anv_shader_module *module,
|
|
const char *entrypoint,
|
|
const VkSpecializationInfo *spec_info)
|
|
{
|
|
const struct brw_compiler *compiler =
|
|
pipeline->device->instance->physicalDevice.compiler;
|
|
const struct brw_stage_prog_data *stage_prog_data;
|
|
struct brw_cs_prog_key key;
|
|
uint32_t kernel = NO_KERNEL;
|
|
unsigned char sha1[20];
|
|
|
|
populate_cs_prog_key(&pipeline->device->info, &key);
|
|
|
|
if (module->size > 0) {
|
|
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint, spec_info);
|
|
kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data);
|
|
}
|
|
|
|
if (module->size == 0 || kernel == NO_KERNEL) {
|
|
struct brw_cs_prog_data prog_data = { 0, };
|
|
|
|
prog_data.binding_table.work_groups_start = 0;
|
|
|
|
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
|
|
MESA_SHADER_COMPUTE, spec_info,
|
|
&prog_data.base);
|
|
if (nir == NULL)
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
|
|
prog_data.base.total_shared = nir->num_shared;
|
|
|
|
void *mem_ctx = ralloc_context(NULL);
|
|
|
|
if (module->nir == NULL)
|
|
ralloc_steal(mem_ctx, nir);
|
|
|
|
unsigned code_size;
|
|
const unsigned *shader_code =
|
|
brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
|
|
-1, &code_size, NULL);
|
|
if (shader_code == NULL) {
|
|
ralloc_free(mem_ctx);
|
|
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
|
|
}
|
|
|
|
stage_prog_data = &prog_data.base;
|
|
kernel = anv_pipeline_cache_upload_kernel(cache,
|
|
module->size > 0 ? sha1 : NULL,
|
|
shader_code, code_size,
|
|
&stage_prog_data, sizeof(prog_data));
|
|
ralloc_free(mem_ctx);
|
|
}
|
|
|
|
pipeline->cs_simd = kernel;
|
|
|
|
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE,
|
|
stage_prog_data);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
gen7_compute_urb_partition(struct anv_pipeline *pipeline)
|
|
{
|
|
const struct brw_device_info *devinfo = &pipeline->device->info;
|
|
bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT;
|
|
unsigned vs_size = vs_present ?
|
|
get_vs_prog_data(pipeline)->base.urb_entry_size : 1;
|
|
unsigned vs_entry_size_bytes = vs_size * 64;
|
|
bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT;
|
|
unsigned gs_size = gs_present ?
|
|
get_gs_prog_data(pipeline)->base.urb_entry_size : 1;
|
|
unsigned gs_entry_size_bytes = gs_size * 64;
|
|
|
|
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
|
|
*
|
|
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
|
|
* Allocation Size is less than 9 512-bit URB entries.
|
|
*
|
|
* Similar text exists for GS.
|
|
*/
|
|
unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
|
|
unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
|
|
|
|
/* URB allocations must be done in 8k chunks. */
|
|
unsigned chunk_size_bytes = 8192;
|
|
|
|
/* Determine the size of the URB in chunks. */
|
|
unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;
|
|
|
|
/* Reserve space for push constants */
|
|
unsigned push_constant_kb;
|
|
if (pipeline->device->info.gen >= 8)
|
|
push_constant_kb = 32;
|
|
else if (pipeline->device->info.is_haswell)
|
|
push_constant_kb = pipeline->device->info.gt == 3 ? 32 : 16;
|
|
else
|
|
push_constant_kb = 16;
|
|
|
|
unsigned push_constant_bytes = push_constant_kb * 1024;
|
|
unsigned push_constant_chunks =
|
|
push_constant_bytes / chunk_size_bytes;
|
|
|
|
/* Initially, assign each stage the minimum amount of URB space it needs,
|
|
* and make a note of how much additional space it "wants" (the amount of
|
|
* additional space it could actually make use of).
|
|
*/
|
|
|
|
/* VS has a lower limit on the number of URB entries */
|
|
unsigned vs_chunks =
|
|
ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
|
|
chunk_size_bytes) / chunk_size_bytes;
|
|
unsigned vs_wants =
|
|
ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
|
|
chunk_size_bytes) / chunk_size_bytes - vs_chunks;
|
|
|
|
unsigned gs_chunks = 0;
|
|
unsigned gs_wants = 0;
|
|
if (gs_present) {
|
|
/* There are two constraints on the minimum amount of URB space we can
|
|
* allocate:
|
|
*
|
|
* (1) We need room for at least 2 URB entries, since we always operate
|
|
* the GS in DUAL_OBJECT mode.
|
|
*
|
|
* (2) We can't allocate less than nr_gs_entries_granularity.
|
|
*/
|
|
gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
|
|
chunk_size_bytes) / chunk_size_bytes;
|
|
gs_wants =
|
|
ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
|
|
chunk_size_bytes) / chunk_size_bytes - gs_chunks;
|
|
}
|
|
|
|
/* There should always be enough URB space to satisfy the minimum
|
|
* requirements of each stage.
|
|
*/
|
|
unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
|
|
assert(total_needs <= urb_chunks);
|
|
|
|
/* Mete out remaining space (if any) in proportion to "wants". */
|
|
unsigned total_wants = vs_wants + gs_wants;
|
|
unsigned remaining_space = urb_chunks - total_needs;
|
|
if (remaining_space > total_wants)
|
|
remaining_space = total_wants;
|
|
if (remaining_space > 0) {
|
|
unsigned vs_additional = (unsigned)
|
|
round(vs_wants * (((double) remaining_space) / total_wants));
|
|
vs_chunks += vs_additional;
|
|
remaining_space -= vs_additional;
|
|
gs_chunks += remaining_space;
|
|
}
|
|
|
|
/* Sanity check that we haven't over-allocated. */
|
|
assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
|
|
|
|
/* Finally, compute the number of entries that can fit in the space
|
|
* allocated to each stage.
|
|
*/
|
|
unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
|
|
unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
|
|
|
|
/* Since we rounded up when computing *_wants, this may be slightly more
|
|
* than the maximum allowed amount, so correct for that.
|
|
*/
|
|
nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
|
|
nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
|
|
|
|
/* Ensure that we program a multiple of the granularity. */
|
|
nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
|
|
nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
|
|
|
|
/* Finally, sanity check to make sure we have at least the minimum number
|
|
* of entries needed for each stage.
|
|
*/
|
|
assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
|
|
if (gs_present)
|
|
assert(nr_gs_entries >= 2);
|
|
|
|
/* Lay out the URB in the following order:
|
|
* - push constants
|
|
* - VS
|
|
* - GS
|
|
*/
|
|
pipeline->urb.start[MESA_SHADER_VERTEX] = push_constant_chunks;
|
|
pipeline->urb.size[MESA_SHADER_VERTEX] = vs_size;
|
|
pipeline->urb.entries[MESA_SHADER_VERTEX] = nr_vs_entries;
|
|
|
|
pipeline->urb.start[MESA_SHADER_GEOMETRY] = push_constant_chunks + vs_chunks;
|
|
pipeline->urb.size[MESA_SHADER_GEOMETRY] = gs_size;
|
|
pipeline->urb.entries[MESA_SHADER_GEOMETRY] = nr_gs_entries;
|
|
|
|
pipeline->urb.start[MESA_SHADER_TESS_CTRL] = push_constant_chunks;
|
|
pipeline->urb.size[MESA_SHADER_TESS_CTRL] = 1;
|
|
pipeline->urb.entries[MESA_SHADER_TESS_CTRL] = 0;
|
|
|
|
pipeline->urb.start[MESA_SHADER_TESS_EVAL] = push_constant_chunks;
|
|
pipeline->urb.size[MESA_SHADER_TESS_EVAL] = 1;
|
|
pipeline->urb.entries[MESA_SHADER_TESS_EVAL] = 0;
|
|
|
|
const unsigned stages =
|
|
_mesa_bitcount(pipeline->active_stages & VK_SHADER_STAGE_ALL_GRAPHICS);
|
|
unsigned size_per_stage = stages ? (push_constant_kb / stages) : 0;
|
|
unsigned used_kb = 0;
|
|
|
|
/* Broadwell+ and Haswell gt3 require that the push constant sizes be in
|
|
* units of 2KB. Incidentally, these are the same platforms that have
|
|
* 32KB worth of push constant space.
|
|
*/
|
|
if (push_constant_kb == 32)
|
|
size_per_stage &= ~1u;
|
|
|
|
for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
|
|
pipeline->urb.push_size[i] =
|
|
(pipeline->active_stages & (1 << i)) ? size_per_stage : 0;
|
|
used_kb += pipeline->urb.push_size[i];
|
|
assert(used_kb <= push_constant_kb);
|
|
}
|
|
|
|
pipeline->urb.push_size[MESA_SHADER_FRAGMENT] =
|
|
push_constant_kb - used_kb;
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo)
|
|
{
|
|
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
|
|
ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
|
|
struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
|
|
|
|
pipeline->dynamic_state = default_dynamic_state;
|
|
|
|
if (pCreateInfo->pDynamicState) {
|
|
/* Remove all of the states that are marked as dynamic */
|
|
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
|
|
for (uint32_t s = 0; s < count; s++)
|
|
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
|
|
}
|
|
|
|
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
|
|
|
|
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
|
|
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
|
|
typed_memcpy(dynamic->viewport.viewports,
|
|
pCreateInfo->pViewportState->pViewports,
|
|
pCreateInfo->pViewportState->viewportCount);
|
|
}
|
|
|
|
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
|
|
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
|
|
typed_memcpy(dynamic->scissor.scissors,
|
|
pCreateInfo->pViewportState->pScissors,
|
|
pCreateInfo->pViewportState->scissorCount);
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
|
|
assert(pCreateInfo->pRasterizationState);
|
|
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
|
|
assert(pCreateInfo->pRasterizationState);
|
|
dynamic->depth_bias.bias =
|
|
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
|
|
dynamic->depth_bias.clamp =
|
|
pCreateInfo->pRasterizationState->depthBiasClamp;
|
|
dynamic->depth_bias.slope =
|
|
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
|
|
assert(pCreateInfo->pColorBlendState);
|
|
typed_memcpy(dynamic->blend_constants,
|
|
pCreateInfo->pColorBlendState->blendConstants, 4);
|
|
}
|
|
|
|
/* If there is no depthstencil attachment, then don't read
|
|
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
|
|
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
|
|
* no need to override the depthstencil defaults in
|
|
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
|
|
*
|
|
* From the Vulkan spec (20 Oct 2015, git-aa308cb):
|
|
*
|
|
* pDepthStencilState [...] may only be NULL if renderPass and subpass
|
|
* specify a subpass that has no depth/stencil attachment.
|
|
*/
|
|
if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
|
|
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
|
|
assert(pCreateInfo->pDepthStencilState);
|
|
dynamic->depth_bounds.min =
|
|
pCreateInfo->pDepthStencilState->minDepthBounds;
|
|
dynamic->depth_bounds.max =
|
|
pCreateInfo->pDepthStencilState->maxDepthBounds;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
|
|
assert(pCreateInfo->pDepthStencilState);
|
|
dynamic->stencil_compare_mask.front =
|
|
pCreateInfo->pDepthStencilState->front.compareMask;
|
|
dynamic->stencil_compare_mask.back =
|
|
pCreateInfo->pDepthStencilState->back.compareMask;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
|
|
assert(pCreateInfo->pDepthStencilState);
|
|
dynamic->stencil_write_mask.front =
|
|
pCreateInfo->pDepthStencilState->front.writeMask;
|
|
dynamic->stencil_write_mask.back =
|
|
pCreateInfo->pDepthStencilState->back.writeMask;
|
|
}
|
|
|
|
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
|
|
assert(pCreateInfo->pDepthStencilState);
|
|
dynamic->stencil_reference.front =
|
|
pCreateInfo->pDepthStencilState->front.reference;
|
|
dynamic->stencil_reference.back =
|
|
pCreateInfo->pDepthStencilState->back.reference;
|
|
}
|
|
}
|
|
|
|
pipeline->dynamic_state_mask = states;
|
|
}
|
|
|
|
static void
|
|
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
|
|
{
|
|
struct anv_render_pass *renderpass = NULL;
|
|
struct anv_subpass *subpass = NULL;
|
|
|
|
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
|
|
* present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
|
|
* 4.2 Graphics Pipeline.
|
|
*/
|
|
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
|
|
|
|
renderpass = anv_render_pass_from_handle(info->renderPass);
|
|
assert(renderpass);
|
|
|
|
if (renderpass != &anv_meta_dummy_renderpass) {
|
|
assert(info->subpass < renderpass->subpass_count);
|
|
subpass = &renderpass->subpasses[info->subpass];
|
|
}
|
|
|
|
assert(info->stageCount >= 1);
|
|
assert(info->pVertexInputState);
|
|
assert(info->pInputAssemblyState);
|
|
assert(info->pViewportState);
|
|
assert(info->pRasterizationState);
|
|
|
|
if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
|
|
assert(info->pDepthStencilState);
|
|
|
|
if (subpass && subpass->color_count > 0)
|
|
assert(info->pColorBlendState);
|
|
|
|
for (uint32_t i = 0; i < info->stageCount; ++i) {
|
|
switch (info->pStages[i].stage) {
|
|
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
|
|
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
|
|
assert(info->pTessellationState);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
VkResult
|
|
anv_pipeline_init(struct anv_pipeline *pipeline,
|
|
struct anv_device *device,
|
|
struct anv_pipeline_cache *cache,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo,
|
|
const struct anv_graphics_pipeline_create_info *extra,
|
|
const VkAllocationCallbacks *alloc)
|
|
{
|
|
VkResult result;
|
|
|
|
anv_validate {
|
|
anv_pipeline_validate_create_info(pCreateInfo);
|
|
}
|
|
|
|
if (alloc == NULL)
|
|
alloc = &device->alloc;
|
|
|
|
pipeline->device = device;
|
|
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
|
|
|
|
result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
|
|
if (result != VK_SUCCESS)
|
|
return result;
|
|
|
|
pipeline->batch.alloc = alloc;
|
|
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
|
|
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
|
|
pipeline->batch.relocs = &pipeline->batch_relocs;
|
|
|
|
anv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
|
|
|
|
if (pCreateInfo->pTessellationState)
|
|
anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO");
|
|
|
|
pipeline->use_repclear = extra && extra->use_repclear;
|
|
pipeline->writes_point_size = false;
|
|
|
|
/* When we free the pipeline, we detect stages based on the NULL status
|
|
* of various prog_data pointers. Make them NULL by default.
|
|
*/
|
|
memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
|
|
memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
|
|
memset(pipeline->bindings, 0, sizeof(pipeline->bindings));
|
|
|
|
pipeline->vs_simd8 = NO_KERNEL;
|
|
pipeline->vs_vec4 = NO_KERNEL;
|
|
pipeline->gs_kernel = NO_KERNEL;
|
|
pipeline->ps_ksp0 = NO_KERNEL;
|
|
|
|
pipeline->active_stages = 0;
|
|
pipeline->total_scratch = 0;
|
|
|
|
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
|
|
struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
|
|
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
|
|
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
|
|
pStages[stage] = &pCreateInfo->pStages[i];
|
|
modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
|
|
}
|
|
|
|
if (modules[MESA_SHADER_VERTEX]) {
|
|
anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
|
|
modules[MESA_SHADER_VERTEX],
|
|
pStages[MESA_SHADER_VERTEX]->pName,
|
|
pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
|
|
}
|
|
|
|
if (modules[MESA_SHADER_GEOMETRY]) {
|
|
anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
|
|
modules[MESA_SHADER_GEOMETRY],
|
|
pStages[MESA_SHADER_GEOMETRY]->pName,
|
|
pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
|
|
}
|
|
|
|
if (modules[MESA_SHADER_FRAGMENT]) {
|
|
anv_pipeline_compile_fs(pipeline, cache, pCreateInfo, extra,
|
|
modules[MESA_SHADER_FRAGMENT],
|
|
pStages[MESA_SHADER_FRAGMENT]->pName,
|
|
pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
|
|
}
|
|
|
|
if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
|
|
/* Vertex is only optional if disable_vs is set */
|
|
assert(extra->disable_vs);
|
|
}
|
|
|
|
gen7_compute_urb_partition(pipeline);
|
|
|
|
const VkPipelineVertexInputStateCreateInfo *vi_info =
|
|
pCreateInfo->pVertexInputState;
|
|
|
|
uint64_t inputs_read;
|
|
if (extra && extra->disable_vs) {
|
|
/* If the VS is disabled, just assume the user knows what they're
|
|
* doing and apply the layout blindly. This can only come from
|
|
* meta, so this *should* be safe.
|
|
*/
|
|
inputs_read = ~0ull;
|
|
} else {
|
|
inputs_read = get_vs_prog_data(pipeline)->inputs_read;
|
|
}
|
|
|
|
pipeline->vb_used = 0;
|
|
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
|
|
const VkVertexInputAttributeDescription *desc =
|
|
&vi_info->pVertexAttributeDescriptions[i];
|
|
|
|
if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
|
|
pipeline->vb_used |= 1 << desc->binding;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
|
|
const VkVertexInputBindingDescription *desc =
|
|
&vi_info->pVertexBindingDescriptions[i];
|
|
|
|
pipeline->binding_stride[desc->binding] = desc->stride;
|
|
|
|
/* Step rate is programmed per vertex element (attribute), not
|
|
* binding. Set up a map of which bindings step per instance, for
|
|
* reference by vertex element setup. */
|
|
switch (desc->inputRate) {
|
|
default:
|
|
case VK_VERTEX_INPUT_RATE_VERTEX:
|
|
pipeline->instancing_enable[desc->binding] = false;
|
|
break;
|
|
case VK_VERTEX_INPUT_RATE_INSTANCE:
|
|
pipeline->instancing_enable[desc->binding] = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
|
|
pCreateInfo->pInputAssemblyState;
|
|
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
|
|
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
|
|
|
|
if (extra && extra->use_rectlist)
|
|
pipeline->topology = _3DPRIM_RECTLIST;
|
|
|
|
while (anv_block_pool_size(&device->scratch_block_pool) <
|
|
pipeline->total_scratch)
|
|
anv_block_pool_alloc(&device->scratch_block_pool);
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
VkResult
|
|
anv_graphics_pipeline_create(
|
|
VkDevice _device,
|
|
VkPipelineCache _cache,
|
|
const VkGraphicsPipelineCreateInfo *pCreateInfo,
|
|
const struct anv_graphics_pipeline_create_info *extra,
|
|
const VkAllocationCallbacks *pAllocator,
|
|
VkPipeline *pPipeline)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
|
|
|
|
if (cache == NULL)
|
|
cache = &device->default_pipeline_cache;
|
|
|
|
switch (device->info.gen) {
|
|
case 7:
|
|
if (device->info.is_haswell)
|
|
return gen75_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
|
|
else
|
|
return gen7_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
|
|
case 8:
|
|
return gen8_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
|
|
case 9:
|
|
return gen9_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
|
|
default:
|
|
unreachable("unsupported gen\n");
|
|
}
|
|
}
|
|
|
|
VkResult anv_CreateGraphicsPipelines(
|
|
VkDevice _device,
|
|
VkPipelineCache pipelineCache,
|
|
uint32_t count,
|
|
const VkGraphicsPipelineCreateInfo* pCreateInfos,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipelines)
|
|
{
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
unsigned i = 0;
|
|
for (; i < count; i++) {
|
|
result = anv_graphics_pipeline_create(_device,
|
|
pipelineCache,
|
|
&pCreateInfos[i],
|
|
NULL, pAllocator, &pPipelines[i]);
|
|
if (result != VK_SUCCESS) {
|
|
for (unsigned j = 0; j < i; j++) {
|
|
anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|
|
|
|
static VkResult anv_compute_pipeline_create(
|
|
VkDevice _device,
|
|
VkPipelineCache _cache,
|
|
const VkComputePipelineCreateInfo* pCreateInfo,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipeline)
|
|
{
|
|
ANV_FROM_HANDLE(anv_device, device, _device);
|
|
ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
|
|
|
|
if (cache == NULL)
|
|
cache = &device->default_pipeline_cache;
|
|
|
|
switch (device->info.gen) {
|
|
case 7:
|
|
if (device->info.is_haswell)
|
|
return gen75_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
|
|
else
|
|
return gen7_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
|
|
case 8:
|
|
return gen8_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
|
|
case 9:
|
|
return gen9_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
|
|
default:
|
|
unreachable("unsupported gen\n");
|
|
}
|
|
}
|
|
|
|
VkResult anv_CreateComputePipelines(
|
|
VkDevice _device,
|
|
VkPipelineCache pipelineCache,
|
|
uint32_t count,
|
|
const VkComputePipelineCreateInfo* pCreateInfos,
|
|
const VkAllocationCallbacks* pAllocator,
|
|
VkPipeline* pPipelines)
|
|
{
|
|
VkResult result = VK_SUCCESS;
|
|
|
|
unsigned i = 0;
|
|
for (; i < count; i++) {
|
|
result = anv_compute_pipeline_create(_device, pipelineCache,
|
|
&pCreateInfos[i],
|
|
pAllocator, &pPipelines[i]);
|
|
if (result != VK_SUCCESS) {
|
|
for (unsigned j = 0; j < i; j++) {
|
|
anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
}
|
|
|
|
return VK_SUCCESS;
|
|
}
|