Files
third_party_mesa3d/src/intel/vulkan/anv_pipeline.c
Kristian Høgsberg Kristensen 87967a2c85 anv: Simplify pipeline cache control flow a bit
No functional change, but the control flow around searching the cache
and falling back to compiling is a bit simpler.
2016-03-05 13:50:07 -08:00

1318 lines
47 KiB
C

/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "util/mesa-sha1.h"
#include "anv_private.h"
#include "brw_nir.h"
#include "anv_nir.h"
#include "nir/spirv/nir_spirv.h"
/* Needed for SWIZZLE macros */
#include "program/prog_instruction.h"
// Shader functions
VkResult anv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = anv_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = anv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void anv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_shader_module, module, _module);
anv_free2(&device->alloc, pAllocator, module);
}
#define SPIR_V_MAGIC_NUMBER 0x07230203
/* Eventually, this will become part of anv_CreateShader. Unfortunately,
* we can't do that yet because we don't have the ability to copy nir.
*/
static nir_shader *
anv_shader_compile_to_nir(struct anv_device *device,
struct anv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info)
{
if (strcmp(entrypoint_name, "main") != 0) {
anv_finishme("Multiple shaders per module not really supported");
}
const struct brw_compiler *compiler =
device->instance->physicalDevice.compiler;
const nir_shader_compiler_options *nir_options =
compiler->glsl_compiler_options[stage].NirOptions;
nir_shader *nir;
nir_function *entry_point;
if (module->nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader */
nir = module->nir;
nir->options = nir_options;
nir_validate_shader(nir);
assert(exec_list_length(&nir->functions) == 1);
struct exec_node *node = exec_list_get_head(&nir->functions);
entry_point = exec_node_data(nir_function, node, node);
} else {
uint32_t *spirv = (uint32_t *) module->data;
assert(spirv[0] == SPIR_V_MAGIC_NUMBER);
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
const uint32_t *data =
spec_info->pData + spec_info->pMapEntries[i].offset;
assert((const void *)(data + 1) <=
spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
spec_entries[i].data = *data;
}
}
entry_point = spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, nir_options);
nir = entry_point->shader;
assert(nir->stage == stage);
nir_validate_shader(nir);
free(spec_entries);
nir_lower_returns(nir);
nir_validate_shader(nir);
nir_inline_functions(nir);
nir_validate_shader(nir);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
nir_remove_dead_variables(nir, nir_var_shader_in);
nir_remove_dead_variables(nir, nir_var_shader_out);
nir_remove_dead_variables(nir, nir_var_system_value);
nir_validate_shader(nir);
nir_lower_outputs_to_temporaries(entry_point->shader, entry_point);
nir_lower_system_values(nir);
nir_validate_shader(nir);
}
/* Vulkan uses the separate-shader linking model */
nir->info.separate_shader = true;
nir = brw_preprocess_nir(nir, compiler->scalar_stage[stage]);
nir_shader_gather_info(nir, entry_point->impl);
uint32_t indirect_mask = 0;
if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
indirect_mask |= (1 << nir_var_shader_in);
if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
indirect_mask |= 1 << nir_var_local;
nir_lower_indirect_derefs(nir, indirect_mask);
return nir;
}
void anv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
free(pipeline->bindings[s].surface_to_descriptor);
free(pipeline->bindings[s].sampler_to_descriptor);
}
anv_reloc_list_finish(&pipeline->batch_relocs,
pAllocator ? pAllocator : &device->alloc);
if (pipeline->blend_state.map)
anv_state_pool_free(&device->dynamic_state_pool, pipeline->blend_state);
anv_free2(&device->alloc, pAllocator, pipeline);
}
static const uint32_t vk_to_gen_primitive_type[] = {
[VK_PRIMITIVE_TOPOLOGY_POINT_LIST] = _3DPRIM_POINTLIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST] = _3DPRIM_LINELIST,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP] = _3DPRIM_LINESTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST] = _3DPRIM_TRILIST,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
[VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
[VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
/* [VK_PRIMITIVE_TOPOLOGY_PATCH_LIST] = _3DPRIM_PATCHLIST_1 */
};
static void
populate_sampler_prog_key(const struct brw_device_info *devinfo,
struct brw_sampler_prog_key_data *key)
{
/* XXX: Handle texture swizzle on HSW- */
for (int i = 0; i < MAX_SAMPLERS; i++) {
/* Assume color sampler, no swizzling. (Works for BDW+) */
key->swizzles[i] = SWIZZLE_XYZW;
}
}
static void
populate_vs_prog_key(const struct brw_device_info *devinfo,
struct brw_vs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* XXX: Handle vertex input work-arounds */
/* XXX: Handle sampler_prog_key */
}
static void
populate_gs_prog_key(const struct brw_device_info *devinfo,
struct brw_gs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static void
populate_wm_prog_key(const struct brw_device_info *devinfo,
const VkGraphicsPipelineCreateInfo *info,
const struct anv_graphics_pipeline_create_info *extra,
struct brw_wm_prog_key *key)
{
ANV_FROM_HANDLE(anv_render_pass, render_pass, info->renderPass);
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
/* TODO: Fill out key->input_slots_valid */
/* Vulkan doesn't specify a default */
key->high_quality_derivatives = false;
/* XXX Vulkan doesn't appear to specify */
key->clamp_fragment_color = false;
/* Vulkan always specifies upper-left coordinates */
key->drawable_height = 0;
key->render_to_fbo = false;
if (extra && extra->color_attachment_count >= 0) {
key->nr_color_regions = extra->color_attachment_count;
} else {
key->nr_color_regions =
render_pass->subpasses[info->subpass].color_count;
}
key->replicate_alpha = key->nr_color_regions > 1 &&
info->pMultisampleState &&
info->pMultisampleState->alphaToCoverageEnable;
if (info->pMultisampleState && info->pMultisampleState->rasterizationSamples > 1) {
/* We should probably pull this out of the shader, but it's fairly
* harmless to compute it and then let dead-code take care of it.
*/
key->persample_shading = info->pMultisampleState->sampleShadingEnable;
if (key->persample_shading)
key->persample_2x = info->pMultisampleState->rasterizationSamples == 2;
key->compute_pos_offset = info->pMultisampleState->sampleShadingEnable;
key->compute_sample_id = info->pMultisampleState->sampleShadingEnable;
}
}
static void
populate_cs_prog_key(const struct brw_device_info *devinfo,
struct brw_cs_prog_key *key)
{
memset(key, 0, sizeof(*key));
populate_sampler_prog_key(devinfo, &key->tex);
}
static nir_shader *
anv_pipeline_compile(struct anv_pipeline *pipeline,
struct anv_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
struct brw_stage_prog_data *prog_data)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
nir_shader *nir = anv_shader_compile_to_nir(pipeline->device,
module, entrypoint, stage,
spec_info);
if (nir == NULL)
return NULL;
anv_nir_lower_push_constants(nir, compiler->scalar_stage[stage]);
/* Figure out the number of parameters */
prog_data->nr_params = 0;
if (nir->num_uniforms > 0) {
/* If the shader uses any push constants at all, we'll just give
* them the maximum possible number
*/
prog_data->nr_params += MAX_PUSH_CONSTANTS_SIZE / sizeof(float);
}
if (pipeline->layout && pipeline->layout->stage[stage].has_dynamic_offsets)
prog_data->nr_params += MAX_DYNAMIC_BUFFERS * 2;
if (nir->info.num_images > 0)
prog_data->nr_params += nir->info.num_images * BRW_IMAGE_PARAM_SIZE;
if (prog_data->nr_params > 0) {
/* XXX: I think we're leaking this */
prog_data->param = (const union gl_constant_value **)
malloc(prog_data->nr_params * sizeof(union gl_constant_value *));
/* We now set the param values to be offsets into a
* anv_push_constant_data structure. Since the compiler doesn't
* actually dereference any of the gl_constant_value pointers in the
* params array, it doesn't really matter what we put here.
*/
struct anv_push_constants *null_data = NULL;
if (nir->num_uniforms > 0) {
/* Fill out the push constants section of the param array */
for (unsigned i = 0; i < MAX_PUSH_CONSTANTS_SIZE / sizeof(float); i++)
prog_data->param[i] = (const union gl_constant_value *)
&null_data->client_data[i * sizeof(float)];
}
}
/* Set up dynamic offsets */
anv_nir_apply_dynamic_offsets(pipeline, nir, prog_data);
/* Apply the actual pipeline layout to UBOs, SSBOs, and textures */
if (pipeline->layout)
anv_nir_apply_pipeline_layout(pipeline, nir, prog_data);
/* All binding table offsets provided by apply_pipeline_layout() are
* relative to the start of the bindint table (plus MAX_RTS for VS).
*/
unsigned bias;
switch (stage) {
case MESA_SHADER_FRAGMENT:
bias = MAX_RTS;
break;
case MESA_SHADER_COMPUTE:
bias = 1;
break;
default:
bias = 0;
break;
}
prog_data->binding_table.size_bytes = 0;
prog_data->binding_table.texture_start = bias;
prog_data->binding_table.ubo_start = bias;
prog_data->binding_table.ssbo_start = bias;
prog_data->binding_table.image_start = bias;
/* Finish the optimization and compilation process */
if (nir->stage == MESA_SHADER_COMPUTE)
brw_nir_lower_shared(nir);
/* nir_lower_io will only handle the push constants; we need to set this
* to the full number of possible uniforms.
*/
nir->num_uniforms = prog_data->nr_params * 4;
return nir;
}
static void
anv_pipeline_add_compiled_stage(struct anv_pipeline *pipeline,
gl_shader_stage stage,
const struct brw_stage_prog_data *prog_data)
{
struct brw_device_info *devinfo = &pipeline->device->info;
uint32_t max_threads[] = {
[MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
[MESA_SHADER_TESS_CTRL] = devinfo->max_hs_threads,
[MESA_SHADER_TESS_EVAL] = devinfo->max_ds_threads,
[MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
[MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
[MESA_SHADER_COMPUTE] = devinfo->max_cs_threads,
};
pipeline->prog_data[stage] = prog_data;
pipeline->active_stages |= mesa_to_vk_shader_stage(stage);
pipeline->scratch_start[stage] = pipeline->total_scratch;
pipeline->total_scratch =
align_u32(pipeline->total_scratch, 1024) +
prog_data->total_scratch * max_threads[stage];
}
static VkResult
anv_pipeline_compile_vs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
const struct brw_stage_prog_data *stage_prog_data;
struct brw_vs_prog_key key;
uint32_t kernel = NO_KERNEL;
unsigned char sha1[20];
populate_vs_prog_key(&pipeline->device->info, &key);
if (module->size > 0) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint, spec_info);
kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data);
}
if (kernel == NO_KERNEL) {
struct brw_vs_prog_data prog_data = { 0, };
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_VERTEX, spec_info,
&prog_data.base.base);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
void *mem_ctx = ralloc_context(NULL);
if (module->nir == NULL)
ralloc_steal(mem_ctx, nir);
prog_data.inputs_read = nir->info.inputs_read;
if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ))
pipeline->writes_point_size = true;
brw_compute_vue_map(&pipeline->device->info,
&prog_data.base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_vs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, false, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
stage_prog_data = &prog_data.base.base;
kernel = anv_pipeline_cache_upload_kernel(cache,
module->size > 0 ? sha1 : NULL,
shader_code, code_size,
&stage_prog_data,
sizeof(prog_data));
ralloc_free(mem_ctx);
}
const struct brw_vs_prog_data *vs_prog_data =
(const struct brw_vs_prog_data *) stage_prog_data;
if (vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8) {
pipeline->vs_simd8 = kernel;
pipeline->vs_vec4 = NO_KERNEL;
} else {
pipeline->vs_simd8 = NO_KERNEL;
pipeline->vs_vec4 = kernel;
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_VERTEX,
stage_prog_data);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_gs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
const struct brw_stage_prog_data *stage_prog_data;
struct brw_gs_prog_key key;
uint32_t kernel = NO_KERNEL;
unsigned char sha1[20];
populate_gs_prog_key(&pipeline->device->info, &key);
if (module->size > 0) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint, spec_info);
kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data);
}
if (kernel == NO_KERNEL) {
struct brw_gs_prog_data prog_data = { 0, };
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_GEOMETRY, spec_info,
&prog_data.base.base);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
void *mem_ctx = ralloc_context(NULL);
if (module->nir == NULL)
ralloc_steal(mem_ctx, nir);
if (nir->info.outputs_written & (1ull << VARYING_SLOT_PSIZ))
pipeline->writes_point_size = true;
brw_compute_vue_map(&pipeline->device->info,
&prog_data.base.vue_map,
nir->info.outputs_written,
nir->info.separate_shader);
unsigned code_size;
const unsigned *shader_code =
brw_compile_gs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, -1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
/* TODO: SIMD8 GS */
stage_prog_data = &prog_data.base.base;
kernel = anv_pipeline_cache_upload_kernel(cache,
module->size > 0 ? sha1 : NULL,
shader_code, code_size,
&stage_prog_data, sizeof(prog_data));
ralloc_free(mem_ctx);
}
pipeline->gs_kernel = kernel;
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_GEOMETRY,
stage_prog_data);
return VK_SUCCESS;
}
static VkResult
anv_pipeline_compile_fs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *info,
const struct anv_graphics_pipeline_create_info *extra,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
const struct brw_stage_prog_data *stage_prog_data;
struct brw_wm_prog_key key;
uint32_t kernel = NO_KERNEL;
unsigned char sha1[20];
populate_wm_prog_key(&pipeline->device->info, info, extra, &key);
if (pipeline->use_repclear)
key.nr_color_regions = 1;
if (module->size > 0) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint, spec_info);
kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data);
}
if (kernel == NO_KERNEL) {
struct brw_wm_prog_data prog_data = { 0, };
prog_data.binding_table.render_target_start = 0;
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_FRAGMENT, spec_info,
&prog_data.base);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
nir_function_impl *impl = nir_shader_get_entrypoint(nir)->impl;
nir_foreach_variable_safe(var, &nir->outputs) {
if (var->data.location < FRAG_RESULT_DATA0)
continue;
unsigned rt = var->data.location - FRAG_RESULT_DATA0;
if (rt >= key.nr_color_regions) {
var->data.mode = nir_var_local;
exec_node_remove(&var->node);
exec_list_push_tail(&impl->locals, &var->node);
}
}
void *mem_ctx = ralloc_context(NULL);
if (module->nir == NULL)
ralloc_steal(mem_ctx, nir);
unsigned code_size;
const unsigned *shader_code =
brw_compile_fs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
NULL, -1, -1, pipeline->use_repclear, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
stage_prog_data = &prog_data.base;
kernel = anv_pipeline_cache_upload_kernel(cache,
module->size > 0 ? sha1 : NULL,
shader_code, code_size,
&stage_prog_data, sizeof(prog_data));
ralloc_free(mem_ctx);
}
const struct brw_wm_prog_data *wm_prog_data =
(const struct brw_wm_prog_data *) stage_prog_data;
if (wm_prog_data->no_8)
pipeline->ps_simd8 = NO_KERNEL;
else
pipeline->ps_simd8 = kernel;
if (wm_prog_data->no_8 || wm_prog_data->prog_offset_16) {
pipeline->ps_simd16 = kernel + wm_prog_data->prog_offset_16;
} else {
pipeline->ps_simd16 = NO_KERNEL;
}
pipeline->ps_ksp2 = 0;
pipeline->ps_grf_start2 = 0;
if (pipeline->ps_simd8 != NO_KERNEL) {
pipeline->ps_ksp0 = pipeline->ps_simd8;
pipeline->ps_grf_start0 = wm_prog_data->base.dispatch_grf_start_reg;
if (pipeline->ps_simd16 != NO_KERNEL) {
pipeline->ps_ksp2 = pipeline->ps_simd16;
pipeline->ps_grf_start2 = wm_prog_data->dispatch_grf_start_reg_16;
}
} else if (pipeline->ps_simd16 != NO_KERNEL) {
pipeline->ps_ksp0 = pipeline->ps_simd16;
pipeline->ps_grf_start0 = wm_prog_data->dispatch_grf_start_reg_16;
}
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_FRAGMENT,
stage_prog_data);
return VK_SUCCESS;
}
VkResult
anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
struct anv_pipeline_cache *cache,
const VkComputePipelineCreateInfo *info,
struct anv_shader_module *module,
const char *entrypoint,
const VkSpecializationInfo *spec_info)
{
const struct brw_compiler *compiler =
pipeline->device->instance->physicalDevice.compiler;
const struct brw_stage_prog_data *stage_prog_data;
struct brw_cs_prog_key key;
uint32_t kernel = NO_KERNEL;
unsigned char sha1[20];
populate_cs_prog_key(&pipeline->device->info, &key);
if (module->size > 0) {
anv_hash_shader(sha1, &key, sizeof(key), module, entrypoint, spec_info);
kernel = anv_pipeline_cache_search(cache, sha1, &stage_prog_data);
}
if (module->size == 0 || kernel == NO_KERNEL) {
struct brw_cs_prog_data prog_data = { 0, };
prog_data.binding_table.work_groups_start = 0;
nir_shader *nir = anv_pipeline_compile(pipeline, module, entrypoint,
MESA_SHADER_COMPUTE, spec_info,
&prog_data.base);
if (nir == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
prog_data.base.total_shared = nir->num_shared;
void *mem_ctx = ralloc_context(NULL);
if (module->nir == NULL)
ralloc_steal(mem_ctx, nir);
unsigned code_size;
const unsigned *shader_code =
brw_compile_cs(compiler, NULL, mem_ctx, &key, &prog_data, nir,
-1, &code_size, NULL);
if (shader_code == NULL) {
ralloc_free(mem_ctx);
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
}
stage_prog_data = &prog_data.base;
kernel = anv_pipeline_cache_upload_kernel(cache,
module->size > 0 ? sha1 : NULL,
shader_code, code_size,
&stage_prog_data, sizeof(prog_data));
ralloc_free(mem_ctx);
}
pipeline->cs_simd = kernel;
anv_pipeline_add_compiled_stage(pipeline, MESA_SHADER_COMPUTE,
stage_prog_data);
return VK_SUCCESS;
}
static void
gen7_compute_urb_partition(struct anv_pipeline *pipeline)
{
const struct brw_device_info *devinfo = &pipeline->device->info;
bool vs_present = pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT;
unsigned vs_size = vs_present ?
get_vs_prog_data(pipeline)->base.urb_entry_size : 1;
unsigned vs_entry_size_bytes = vs_size * 64;
bool gs_present = pipeline->active_stages & VK_SHADER_STAGE_GEOMETRY_BIT;
unsigned gs_size = gs_present ?
get_gs_prog_data(pipeline)->base.urb_entry_size : 1;
unsigned gs_entry_size_bytes = gs_size * 64;
/* From p35 of the Ivy Bridge PRM (section 1.7.1: 3DSTATE_URB_GS):
*
* VS Number of URB Entries must be divisible by 8 if the VS URB Entry
* Allocation Size is less than 9 512-bit URB entries.
*
* Similar text exists for GS.
*/
unsigned vs_granularity = (vs_size < 9) ? 8 : 1;
unsigned gs_granularity = (gs_size < 9) ? 8 : 1;
/* URB allocations must be done in 8k chunks. */
unsigned chunk_size_bytes = 8192;
/* Determine the size of the URB in chunks. */
unsigned urb_chunks = devinfo->urb.size * 1024 / chunk_size_bytes;
/* Reserve space for push constants */
unsigned push_constant_kb;
if (pipeline->device->info.gen >= 8)
push_constant_kb = 32;
else if (pipeline->device->info.is_haswell)
push_constant_kb = pipeline->device->info.gt == 3 ? 32 : 16;
else
push_constant_kb = 16;
unsigned push_constant_bytes = push_constant_kb * 1024;
unsigned push_constant_chunks =
push_constant_bytes / chunk_size_bytes;
/* Initially, assign each stage the minimum amount of URB space it needs,
* and make a note of how much additional space it "wants" (the amount of
* additional space it could actually make use of).
*/
/* VS has a lower limit on the number of URB entries */
unsigned vs_chunks =
ALIGN(devinfo->urb.min_vs_entries * vs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes;
unsigned vs_wants =
ALIGN(devinfo->urb.max_vs_entries * vs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes - vs_chunks;
unsigned gs_chunks = 0;
unsigned gs_wants = 0;
if (gs_present) {
/* There are two constraints on the minimum amount of URB space we can
* allocate:
*
* (1) We need room for at least 2 URB entries, since we always operate
* the GS in DUAL_OBJECT mode.
*
* (2) We can't allocate less than nr_gs_entries_granularity.
*/
gs_chunks = ALIGN(MAX2(gs_granularity, 2) * gs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes;
gs_wants =
ALIGN(devinfo->urb.max_gs_entries * gs_entry_size_bytes,
chunk_size_bytes) / chunk_size_bytes - gs_chunks;
}
/* There should always be enough URB space to satisfy the minimum
* requirements of each stage.
*/
unsigned total_needs = push_constant_chunks + vs_chunks + gs_chunks;
assert(total_needs <= urb_chunks);
/* Mete out remaining space (if any) in proportion to "wants". */
unsigned total_wants = vs_wants + gs_wants;
unsigned remaining_space = urb_chunks - total_needs;
if (remaining_space > total_wants)
remaining_space = total_wants;
if (remaining_space > 0) {
unsigned vs_additional = (unsigned)
round(vs_wants * (((double) remaining_space) / total_wants));
vs_chunks += vs_additional;
remaining_space -= vs_additional;
gs_chunks += remaining_space;
}
/* Sanity check that we haven't over-allocated. */
assert(push_constant_chunks + vs_chunks + gs_chunks <= urb_chunks);
/* Finally, compute the number of entries that can fit in the space
* allocated to each stage.
*/
unsigned nr_vs_entries = vs_chunks * chunk_size_bytes / vs_entry_size_bytes;
unsigned nr_gs_entries = gs_chunks * chunk_size_bytes / gs_entry_size_bytes;
/* Since we rounded up when computing *_wants, this may be slightly more
* than the maximum allowed amount, so correct for that.
*/
nr_vs_entries = MIN2(nr_vs_entries, devinfo->urb.max_vs_entries);
nr_gs_entries = MIN2(nr_gs_entries, devinfo->urb.max_gs_entries);
/* Ensure that we program a multiple of the granularity. */
nr_vs_entries = ROUND_DOWN_TO(nr_vs_entries, vs_granularity);
nr_gs_entries = ROUND_DOWN_TO(nr_gs_entries, gs_granularity);
/* Finally, sanity check to make sure we have at least the minimum number
* of entries needed for each stage.
*/
assert(nr_vs_entries >= devinfo->urb.min_vs_entries);
if (gs_present)
assert(nr_gs_entries >= 2);
/* Lay out the URB in the following order:
* - push constants
* - VS
* - GS
*/
pipeline->urb.start[MESA_SHADER_VERTEX] = push_constant_chunks;
pipeline->urb.size[MESA_SHADER_VERTEX] = vs_size;
pipeline->urb.entries[MESA_SHADER_VERTEX] = nr_vs_entries;
pipeline->urb.start[MESA_SHADER_GEOMETRY] = push_constant_chunks + vs_chunks;
pipeline->urb.size[MESA_SHADER_GEOMETRY] = gs_size;
pipeline->urb.entries[MESA_SHADER_GEOMETRY] = nr_gs_entries;
pipeline->urb.start[MESA_SHADER_TESS_CTRL] = push_constant_chunks;
pipeline->urb.size[MESA_SHADER_TESS_CTRL] = 1;
pipeline->urb.entries[MESA_SHADER_TESS_CTRL] = 0;
pipeline->urb.start[MESA_SHADER_TESS_EVAL] = push_constant_chunks;
pipeline->urb.size[MESA_SHADER_TESS_EVAL] = 1;
pipeline->urb.entries[MESA_SHADER_TESS_EVAL] = 0;
const unsigned stages =
_mesa_bitcount(pipeline->active_stages & VK_SHADER_STAGE_ALL_GRAPHICS);
unsigned size_per_stage = stages ? (push_constant_kb / stages) : 0;
unsigned used_kb = 0;
/* Broadwell+ and Haswell gt3 require that the push constant sizes be in
* units of 2KB. Incidentally, these are the same platforms that have
* 32KB worth of push constant space.
*/
if (push_constant_kb == 32)
size_per_stage &= ~1u;
for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
pipeline->urb.push_size[i] =
(pipeline->active_stages & (1 << i)) ? size_per_stage : 0;
used_kb += pipeline->urb.push_size[i];
assert(used_kb <= push_constant_kb);
}
pipeline->urb.push_size[MESA_SHADER_FRAGMENT] =
push_constant_kb - used_kb;
}
static void
anv_pipeline_init_dynamic_state(struct anv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
anv_cmd_dirty_mask_t states = ANV_CMD_DIRTY_DYNAMIC_ALL;
ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct anv_dynamic_state *dynamic = &pipeline->dynamic_state;
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
if (states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
assert(pCreateInfo->pColorBlendState);
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* anv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* From the Vulkan spec (20 Oct 2015, git-aa308cb):
*
* pDepthStencilState [...] may only be NULL if renderPass and subpass
* specify a subpass that has no depth/stencil attachment.
*/
if (subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED) {
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
assert(pCreateInfo->pDepthStencilState);
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
}
pipeline->dynamic_state_mask = states;
}
static void
anv_pipeline_validate_create_info(const VkGraphicsPipelineCreateInfo *info)
{
struct anv_render_pass *renderpass = NULL;
struct anv_subpass *subpass = NULL;
/* Assert that all required members of VkGraphicsPipelineCreateInfo are
* present, as explained by the Vulkan (20 Oct 2015, git-aa308cb), Section
* 4.2 Graphics Pipeline.
*/
assert(info->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
renderpass = anv_render_pass_from_handle(info->renderPass);
assert(renderpass);
if (renderpass != &anv_meta_dummy_renderpass) {
assert(info->subpass < renderpass->subpass_count);
subpass = &renderpass->subpasses[info->subpass];
}
assert(info->stageCount >= 1);
assert(info->pVertexInputState);
assert(info->pInputAssemblyState);
assert(info->pViewportState);
assert(info->pRasterizationState);
if (subpass && subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED)
assert(info->pDepthStencilState);
if (subpass && subpass->color_count > 0)
assert(info->pColorBlendState);
for (uint32_t i = 0; i < info->stageCount; ++i) {
switch (info->pStages[i].stage) {
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
assert(info->pTessellationState);
break;
default:
break;
}
}
}
VkResult
anv_pipeline_init(struct anv_pipeline *pipeline,
struct anv_device *device,
struct anv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc)
{
VkResult result;
anv_validate {
anv_pipeline_validate_create_info(pCreateInfo);
}
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
if (result != VK_SUCCESS)
return result;
pipeline->batch.alloc = alloc;
pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
pipeline->batch.relocs = &pipeline->batch_relocs;
anv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
if (pCreateInfo->pTessellationState)
anv_finishme("VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO");
pipeline->use_repclear = extra && extra->use_repclear;
pipeline->writes_point_size = false;
/* When we free the pipeline, we detect stages based on the NULL status
* of various prog_data pointers. Make them NULL by default.
*/
memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
memset(pipeline->bindings, 0, sizeof(pipeline->bindings));
pipeline->vs_simd8 = NO_KERNEL;
pipeline->vs_vec4 = NO_KERNEL;
pipeline->gs_kernel = NO_KERNEL;
pipeline->ps_ksp0 = NO_KERNEL;
pipeline->active_stages = 0;
pipeline->total_scratch = 0;
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
struct anv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
pStages[stage] = &pCreateInfo->pStages[i];
modules[stage] = anv_shader_module_from_handle(pStages[stage]->module);
}
if (modules[MESA_SHADER_VERTEX]) {
anv_pipeline_compile_vs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_VERTEX],
pStages[MESA_SHADER_VERTEX]->pName,
pStages[MESA_SHADER_VERTEX]->pSpecializationInfo);
}
if (modules[MESA_SHADER_GEOMETRY]) {
anv_pipeline_compile_gs(pipeline, cache, pCreateInfo,
modules[MESA_SHADER_GEOMETRY],
pStages[MESA_SHADER_GEOMETRY]->pName,
pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo);
}
if (modules[MESA_SHADER_FRAGMENT]) {
anv_pipeline_compile_fs(pipeline, cache, pCreateInfo, extra,
modules[MESA_SHADER_FRAGMENT],
pStages[MESA_SHADER_FRAGMENT]->pName,
pStages[MESA_SHADER_FRAGMENT]->pSpecializationInfo);
}
if (!(pipeline->active_stages & VK_SHADER_STAGE_VERTEX_BIT)) {
/* Vertex is only optional if disable_vs is set */
assert(extra->disable_vs);
}
gen7_compute_urb_partition(pipeline);
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
uint64_t inputs_read;
if (extra && extra->disable_vs) {
/* If the VS is disabled, just assume the user knows what they're
* doing and apply the layout blindly. This can only come from
* meta, so this *should* be safe.
*/
inputs_read = ~0ull;
} else {
inputs_read = get_vs_prog_data(pipeline)->inputs_read;
}
pipeline->vb_used = 0;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
if (inputs_read & (1 << (VERT_ATTRIB_GENERIC0 + desc->location)))
pipeline->vb_used |= 1 << desc->binding;
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->binding_stride[desc->binding] = desc->stride;
/* Step rate is programmed per vertex element (attribute), not
* binding. Set up a map of which bindings step per instance, for
* reference by vertex element setup. */
switch (desc->inputRate) {
default:
case VK_VERTEX_INPUT_RATE_VERTEX:
pipeline->instancing_enable[desc->binding] = false;
break;
case VK_VERTEX_INPUT_RATE_INSTANCE:
pipeline->instancing_enable[desc->binding] = true;
break;
}
}
const VkPipelineInputAssemblyStateCreateInfo *ia_info =
pCreateInfo->pInputAssemblyState;
pipeline->primitive_restart = ia_info->primitiveRestartEnable;
pipeline->topology = vk_to_gen_primitive_type[ia_info->topology];
if (extra && extra->use_rectlist)
pipeline->topology = _3DPRIM_RECTLIST;
while (anv_block_pool_size(&device->scratch_block_pool) <
pipeline->total_scratch)
anv_block_pool_alloc(&device->scratch_block_pool);
return VK_SUCCESS;
}
VkResult
anv_graphics_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct anv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
if (cache == NULL)
cache = &device->default_pipeline_cache;
switch (device->info.gen) {
case 7:
if (device->info.is_haswell)
return gen75_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
else
return gen7_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
case 8:
return gen8_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
case 9:
return gen9_graphics_pipeline_create(_device, cache, pCreateInfo, extra, pAllocator, pPipeline);
default:
unreachable("unsupported gen\n");
}
}
VkResult anv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
result = anv_graphics_pipeline_create(_device,
pipelineCache,
&pCreateInfos[i],
NULL, pAllocator, &pPipelines[i]);
if (result != VK_SUCCESS) {
for (unsigned j = 0; j < i; j++) {
anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
}
return result;
}
}
return VK_SUCCESS;
}
static VkResult anv_compute_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkComputePipelineCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipeline)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
if (cache == NULL)
cache = &device->default_pipeline_cache;
switch (device->info.gen) {
case 7:
if (device->info.is_haswell)
return gen75_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
else
return gen7_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
case 8:
return gen8_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
case 9:
return gen9_compute_pipeline_create(_device, cache, pCreateInfo, pAllocator, pPipeline);
default:
unreachable("unsupported gen\n");
}
}
VkResult anv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
result = anv_compute_pipeline_create(_device, pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (result != VK_SUCCESS) {
for (unsigned j = 0; j < i; j++) {
anv_DestroyPipeline(_device, pPipelines[j], pAllocator);
}
return result;
}
}
return VK_SUCCESS;
}