Files
third_party_mesa3d/src/mesa/drivers/dri/i965/brw_bufmgr.c
Kenneth Graunke 7c3b8ed878 i965/drm: Delete NULL check in brw_bo_unmap().
I accidentally moved the bo->bufmgr dereference above the NULL check
when cleaning up this code.

While passing NULL to free() is a common pattern...passing NULL to
unmap seems pretty bad.  You really ought to know whether you have
a buffer or not.  We don't want to paper over bugs like that.  So,
just drop the NULL check altogether.

CID: 1405006

Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
2017-04-16 22:58:23 -07:00

1370 lines
36 KiB
C

/**************************************************************************
*
* Copyright © 2007 Red Hat Inc.
* Copyright © 2007-2012 Intel Corporation
* Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*
**************************************************************************/
/*
* Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
* Keith Whitwell <keithw-at-tungstengraphics-dot-com>
* Eric Anholt <eric@anholt.net>
* Dave Airlie <airlied@linux.ie>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <xf86drm.h>
#include <util/u_atomic.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdbool.h>
#include "errno.h"
#ifndef ETIME
#define ETIME ETIMEDOUT
#endif
#include "common/gen_debug.h"
#include "common/gen_device_info.h"
#include "libdrm_macros.h"
#include "main/macros.h"
#include "util/macros.h"
#include "util/hash_table.h"
#include "util/list.h"
#include "brw_bufmgr.h"
#include "brw_context.h"
#include "string.h"
#include "i915_drm.h"
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#else
#define VG(x)
#endif
#define memclear(s) memset(&s, 0, sizeof(s))
#define FILE_DEBUG_FLAG DEBUG_BUFMGR
static inline int
atomic_add_unless(int *v, int add, int unless)
{
int c, old;
c = p_atomic_read(v);
while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
c = old;
return c == unless;
}
struct bo_cache_bucket {
struct list_head head;
uint64_t size;
};
struct brw_bufmgr {
int fd;
pthread_mutex_t lock;
/** Array of lists of cached gem objects of power-of-two sizes */
struct bo_cache_bucket cache_bucket[14 * 4];
int num_buckets;
time_t time;
struct hash_table *name_table;
struct hash_table *handle_table;
bool has_llc:1;
bool bo_reuse:1;
};
static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
uint32_t stride);
static void bo_free(struct brw_bo *bo);
static uint32_t
key_hash_uint(const void *key)
{
return _mesa_hash_data(key, 4);
}
static bool
key_uint_equal(const void *a, const void *b)
{
return *((unsigned *) a) == *((unsigned *) b);
}
static struct brw_bo *
hash_find_bo(struct hash_table *ht, unsigned int key)
{
struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
return entry ? (struct brw_bo *) entry->data : NULL;
}
static uint64_t
bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling)
{
if (tiling == I915_TILING_NONE)
return size;
/* 965+ just need multiples of page size for tiling */
return ALIGN(size, 4096);
}
/*
* Round a given pitch up to the minimum required for X tiling on a
* given chip. We use 512 as the minimum to allow for a later tiling
* change.
*/
static uint32_t
bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling)
{
unsigned long tile_width;
/* If untiled, then just align it so that we can do rendering
* to it with the 3D engine.
*/
if (tiling == I915_TILING_NONE)
return ALIGN(pitch, 64);
if (tiling == I915_TILING_X)
tile_width = 512;
else
tile_width = 128;
/* 965 is flexible */
return ALIGN(pitch, tile_width);
}
static struct bo_cache_bucket *
bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size)
{
int i;
for (i = 0; i < bufmgr->num_buckets; i++) {
struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
if (bucket->size >= size) {
return bucket;
}
}
return NULL;
}
inline void
brw_bo_reference(struct brw_bo *bo)
{
p_atomic_inc(&bo->refcount);
}
int
brw_bo_busy(struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
struct drm_i915_gem_busy busy;
int ret;
memclear(busy);
busy.handle = bo->gem_handle;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
if (ret == 0) {
bo->idle = !busy.busy;
return busy.busy;
}
return false;
}
int
brw_bo_madvise(struct brw_bo *bo, int state)
{
struct drm_i915_gem_madvise madv;
memclear(madv);
madv.handle = bo->gem_handle;
madv.madv = state;
madv.retained = 1;
drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
return madv.retained;
}
/* drop the oldest entries that have been purged by the kernel */
static void
brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr,
struct bo_cache_bucket *bucket)
{
list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
if (brw_bo_madvise(bo, I915_MADV_DONTNEED))
break;
list_del(&bo->head);
bo_free(bo);
}
}
static struct brw_bo *
bo_alloc_internal(struct brw_bufmgr *bufmgr,
const char *name,
uint64_t size,
unsigned flags,
uint32_t tiling_mode,
uint32_t stride, uint64_t alignment)
{
struct brw_bo *bo;
unsigned int page_size = getpagesize();
int ret;
struct bo_cache_bucket *bucket;
bool alloc_from_cache;
uint64_t bo_size;
bool for_render = false;
if (flags & BO_ALLOC_FOR_RENDER)
for_render = true;
/* Round the allocated size up to a power of two number of pages. */
bucket = bucket_for_size(bufmgr, size);
/* If we don't have caching at this size, don't actually round the
* allocation up.
*/
if (bucket == NULL) {
bo_size = size;
if (bo_size < page_size)
bo_size = page_size;
} else {
bo_size = bucket->size;
}
pthread_mutex_lock(&bufmgr->lock);
/* Get a buffer out of the cache if available */
retry:
alloc_from_cache = false;
if (bucket != NULL && !list_empty(&bucket->head)) {
if (for_render) {
/* Allocate new render-target BOs from the tail (MRU)
* of the list, as it will likely be hot in the GPU
* cache and in the aperture for us.
*/
bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head);
list_del(&bo->head);
alloc_from_cache = true;
bo->align = alignment;
} else {
assert(alignment == 0);
/* For non-render-target BOs (where we're probably
* going to map it first thing in order to fill it
* with data), check if the last BO in the cache is
* unbusy, and only reuse in that case. Otherwise,
* allocating a new buffer is probably faster than
* waiting for the GPU to finish.
*/
bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head);
if (!brw_bo_busy(bo)) {
alloc_from_cache = true;
list_del(&bo->head);
}
}
if (alloc_from_cache) {
if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) {
bo_free(bo);
brw_bo_cache_purge_bucket(bufmgr, bucket);
goto retry;
}
if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
bo_free(bo);
goto retry;
}
}
}
if (!alloc_from_cache) {
struct drm_i915_gem_create create;
bo = calloc(1, sizeof(*bo));
if (!bo)
goto err;
bo->size = bo_size;
memclear(create);
create.size = bo_size;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
if (ret != 0) {
free(bo);
goto err;
}
bo->gem_handle = create.handle;
_mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
bo->bufmgr = bufmgr;
bo->align = alignment;
bo->tiling_mode = I915_TILING_NONE;
bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
bo->stride = 0;
if (bo_set_tiling_internal(bo, tiling_mode, stride))
goto err_free;
}
bo->name = name;
p_atomic_set(&bo->refcount, 1);
bo->reusable = true;
pthread_mutex_unlock(&bufmgr->lock);
DBG("bo_create: buf %d (%s) %ldb\n", bo->gem_handle, bo->name, size);
return bo;
err_free:
bo_free(bo);
err:
pthread_mutex_unlock(&bufmgr->lock);
return NULL;
}
struct brw_bo *
brw_bo_alloc(struct brw_bufmgr *bufmgr,
const char *name, uint64_t size, uint64_t alignment)
{
return bo_alloc_internal(bufmgr, name, size, 0, I915_TILING_NONE, 0, 0);
}
struct brw_bo *
brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name,
int x, int y, int cpp, uint32_t tiling,
uint32_t *pitch, unsigned flags)
{
uint64_t size;
uint32_t stride;
unsigned long aligned_y, height_alignment;
/* If we're tiled, our allocations are in 8 or 32-row blocks,
* so failure to align our height means that we won't allocate
* enough pages.
*
* If we're untiled, we still have to align to 2 rows high
* because the data port accesses 2x2 blocks even if the
* bottom row isn't to be rendered, so failure to align means
* we could walk off the end of the GTT and fault. This is
* documented on 965, and may be the case on older chipsets
* too so we try to be careful.
*/
aligned_y = y;
height_alignment = 2;
if (tiling == I915_TILING_X)
height_alignment = 8;
else if (tiling == I915_TILING_Y)
height_alignment = 32;
aligned_y = ALIGN(y, height_alignment);
stride = x * cpp;
stride = bo_tile_pitch(bufmgr, stride, tiling);
size = stride * aligned_y;
size = bo_tile_size(bufmgr, size, tiling);
*pitch = stride;
if (tiling == I915_TILING_NONE)
stride = 0;
return bo_alloc_internal(bufmgr, name, size, flags, tiling, stride, 0);
}
/**
* Returns a brw_bo wrapping the given buffer object handle.
*
* This can be used when one application needs to pass a buffer object
* to another.
*/
struct brw_bo *
brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr,
const char *name, unsigned int handle)
{
struct brw_bo *bo;
int ret;
struct drm_gem_open open_arg;
struct drm_i915_gem_get_tiling get_tiling;
/* At the moment most applications only have a few named bo.
* For instance, in a DRI client only the render buffers passed
* between X and the client are named. And since X returns the
* alternating names for the front/back buffer a linear search
* provides a sufficiently fast match.
*/
pthread_mutex_lock(&bufmgr->lock);
bo = hash_find_bo(bufmgr->name_table, handle);
if (bo) {
brw_bo_reference(bo);
goto out;
}
memclear(open_arg);
open_arg.name = handle;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
if (ret != 0) {
DBG("Couldn't reference %s handle 0x%08x: %s\n",
name, handle, strerror(errno));
bo = NULL;
goto out;
}
/* Now see if someone has used a prime handle to get this
* object from the kernel before by looking through the list
* again for a matching gem_handle
*/
bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
if (bo) {
brw_bo_reference(bo);
goto out;
}
bo = calloc(1, sizeof(*bo));
if (!bo)
goto out;
p_atomic_set(&bo->refcount, 1);
bo->size = open_arg.size;
bo->offset64 = 0;
bo->virtual = NULL;
bo->bufmgr = bufmgr;
bo->gem_handle = open_arg.handle;
bo->name = name;
bo->global_name = handle;
bo->reusable = false;
_mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
_mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
memclear(get_tiling);
get_tiling.handle = bo->gem_handle;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
if (ret != 0)
goto err_unref;
bo->tiling_mode = get_tiling.tiling_mode;
bo->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
out:
pthread_mutex_unlock(&bufmgr->lock);
return bo;
err_unref:
bo_free(bo);
pthread_mutex_unlock(&bufmgr->lock);
return NULL;
}
static void
bo_free(struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
struct drm_gem_close close;
struct hash_entry *entry;
int ret;
if (bo->mem_virtual) {
VG(VALGRIND_FREELIKE_BLOCK(bo->mem_virtual, 0));
drm_munmap(bo->mem_virtual, bo->size);
}
if (bo->wc_virtual) {
VG(VALGRIND_FREELIKE_BLOCK(bo->wc_virtual, 0));
drm_munmap(bo->wc_virtual, bo->size);
}
if (bo->gtt_virtual) {
drm_munmap(bo->gtt_virtual, bo->size);
}
if (bo->global_name) {
entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
_mesa_hash_table_remove(bufmgr->name_table, entry);
}
entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
_mesa_hash_table_remove(bufmgr->handle_table, entry);
/* Close this object */
memclear(close);
close.handle = bo->gem_handle;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
if (ret != 0) {
DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
bo->gem_handle, bo->name, strerror(errno));
}
free(bo);
}
static void
bo_mark_mmaps_incoherent(struct brw_bo *bo)
{
#if HAVE_VALGRIND
if (bo->mem_virtual)
VALGRIND_MAKE_MEM_NOACCESS(bo->mem_virtual, bo->size);
if (bo->wc_virtual)
VALGRIND_MAKE_MEM_NOACCESS(bo->wc_virtual, bo->size);
if (bo->gtt_virtual)
VALGRIND_MAKE_MEM_NOACCESS(bo->gtt_virtual, bo->size);
#endif
}
/** Frees all cached buffers significantly older than @time. */
static void
cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time)
{
int i;
if (bufmgr->time == time)
return;
for (i = 0; i < bufmgr->num_buckets; i++) {
struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
if (time - bo->free_time <= 1)
break;
list_del(&bo->head);
bo_free(bo);
}
}
bufmgr->time = time;
}
static void
bo_unreference_final(struct brw_bo *bo, time_t time)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
struct bo_cache_bucket *bucket;
DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
/* Clear any left-over mappings */
if (bo->map_count) {
DBG("bo freed with non-zero map-count %d\n", bo->map_count);
bo->map_count = 0;
bo_mark_mmaps_incoherent(bo);
}
bucket = bucket_for_size(bufmgr, bo->size);
/* Put the buffer into our internal cache for reuse if we can. */
if (bufmgr->bo_reuse && bo->reusable && bucket != NULL &&
brw_bo_madvise(bo, I915_MADV_DONTNEED)) {
bo->free_time = time;
bo->name = NULL;
list_addtail(&bo->head, &bucket->head);
} else {
bo_free(bo);
}
}
void
brw_bo_unreference(struct brw_bo *bo)
{
if (bo == NULL)
return;
assert(p_atomic_read(&bo->refcount) > 0);
if (atomic_add_unless(&bo->refcount, -1, 1)) {
struct brw_bufmgr *bufmgr = bo->bufmgr;
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
pthread_mutex_lock(&bufmgr->lock);
if (p_atomic_dec_zero(&bo->refcount)) {
bo_unreference_final(bo, time.tv_sec);
cleanup_bo_cache(bufmgr, time.tv_sec);
}
pthread_mutex_unlock(&bufmgr->lock);
}
}
static void
set_domain(struct brw_context *brw, const char *action,
struct brw_bo *bo, uint32_t read_domains, uint32_t write_domain)
{
struct drm_i915_gem_set_domain sd = {
.handle = bo->gem_handle,
.read_domains = read_domains,
.write_domain = write_domain,
};
double elapsed = unlikely(brw && brw->perf_debug) ? -get_time() : 0.0;
if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) {
DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s.\n",
__FILE__, __LINE__, bo->gem_handle, read_domains, write_domain,
strerror(errno));
}
if (unlikely(brw && brw->perf_debug)) {
elapsed += get_time();
if (elapsed > 1e-5) /* 0.01ms */
perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n",
action, bo->name, elapsed * 1000);
}
}
int
brw_bo_map(struct brw_context *brw, struct brw_bo *bo, int write_enable)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
int ret;
pthread_mutex_lock(&bufmgr->lock);
if (!bo->mem_virtual) {
struct drm_i915_gem_mmap mmap_arg;
DBG("bo_map: %d (%s), map_count=%d\n",
bo->gem_handle, bo->name, bo->map_count);
memclear(mmap_arg);
mmap_arg.handle = bo->gem_handle;
mmap_arg.size = bo->size;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
if (ret != 0) {
ret = -errno;
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
pthread_mutex_unlock(&bufmgr->lock);
return ret;
}
bo->map_count++;
VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
bo->mem_virtual = (void *) (uintptr_t) mmap_arg.addr_ptr;
}
DBG("bo_map: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->mem_virtual);
bo->virtual = bo->mem_virtual;
set_domain(brw, "CPU mapping", bo, I915_GEM_DOMAIN_CPU,
write_enable ? I915_GEM_DOMAIN_CPU : 0);
bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo->mem_virtual, bo->size));
pthread_mutex_unlock(&bufmgr->lock);
return 0;
}
static int
map_gtt(struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
int ret;
/* Get a mapping of the buffer if we haven't before. */
if (bo->gtt_virtual == NULL) {
struct drm_i915_gem_mmap_gtt mmap_arg;
DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
bo->gem_handle, bo->name, bo->map_count);
memclear(mmap_arg);
mmap_arg.handle = bo->gem_handle;
/* Get the fake offset back... */
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
if (ret != 0) {
ret = -errno;
DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
return ret;
}
/* and mmap it */
bo->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
MAP_SHARED, bufmgr->fd, mmap_arg.offset);
if (bo->gtt_virtual == MAP_FAILED) {
bo->gtt_virtual = NULL;
ret = -errno;
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
return ret;
}
}
bo->map_count++;
bo->virtual = bo->gtt_virtual;
DBG("bo_map_gtt: %d (%s) -> %p\n", bo->gem_handle, bo->name,
bo->gtt_virtual);
return 0;
}
int
brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
int ret;
pthread_mutex_lock(&bufmgr->lock);
ret = map_gtt(bo);
if (ret) {
pthread_mutex_unlock(&bufmgr->lock);
return ret;
}
/* Now move it to the GTT domain so that the GPU and CPU
* caches are flushed and the GPU isn't actively using the
* buffer.
*
* The pagefault handler does this domain change for us when
* it has unbound the BO from the GTT, but it's up to us to
* tell it when we're about to use things if we had done
* rendering and it still happens to be bound to the GTT.
*/
set_domain(brw, "GTT mapping", bo,
I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo->gtt_virtual, bo->size));
pthread_mutex_unlock(&bufmgr->lock);
return 0;
}
/**
* Performs a mapping of the buffer object like the normal GTT
* mapping, but avoids waiting for the GPU to be done reading from or
* rendering to the buffer.
*
* This is used in the implementation of GL_ARB_map_buffer_range: The
* user asks to create a buffer, then does a mapping, fills some
* space, runs a drawing command, then asks to map it again without
* synchronizing because it guarantees that it won't write over the
* data that the GPU is busy using (or, more specifically, that if it
* does write over the data, it acknowledges that rendering is
* undefined).
*/
int
brw_bo_map_unsynchronized(struct brw_context *brw, struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
int ret;
/* If the CPU cache isn't coherent with the GTT, then use a
* regular synchronized mapping. The problem is that we don't
* track where the buffer was last used on the CPU side in
* terms of brw_bo_map vs brw_bo_map_gtt, so
* we would potentially corrupt the buffer even when the user
* does reasonable things.
*/
if (!bufmgr->has_llc)
return brw_bo_map_gtt(brw, bo);
pthread_mutex_lock(&bufmgr->lock);
ret = map_gtt(bo);
if (ret == 0) {
bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo->gtt_virtual, bo->size));
}
pthread_mutex_unlock(&bufmgr->lock);
return ret;
}
int
brw_bo_unmap(struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
int ret = 0;
pthread_mutex_lock(&bufmgr->lock);
if (bo->map_count <= 0) {
DBG("attempted to unmap an unmapped bo\n");
pthread_mutex_unlock(&bufmgr->lock);
/* Preserve the old behaviour of just treating this as a
* no-op rather than reporting the error.
*/
return 0;
}
if (--bo->map_count == 0) {
bo_mark_mmaps_incoherent(bo);
bo->virtual = NULL;
}
pthread_mutex_unlock(&bufmgr->lock);
return ret;
}
int
brw_bo_subdata(struct brw_bo *bo, uint64_t offset,
uint64_t size, const void *data)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
struct drm_i915_gem_pwrite pwrite;
int ret;
memclear(pwrite);
pwrite.handle = bo->gem_handle;
pwrite.offset = offset;
pwrite.size = size;
pwrite.data_ptr = (uint64_t) (uintptr_t) data;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite);
if (ret != 0) {
ret = -errno;
DBG("%s:%d: Error writing data to buffer %d: "
"(%"PRIu64" %"PRIu64") %s .\n",
__FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
}
return ret;
}
int
brw_bo_get_subdata(struct brw_bo *bo, uint64_t offset,
uint64_t size, void *data)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
struct drm_i915_gem_pread pread;
int ret;
memclear(pread);
pread.handle = bo->gem_handle;
pread.offset = offset;
pread.size = size;
pread.data_ptr = (uint64_t) (uintptr_t) data;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PREAD, &pread);
if (ret != 0) {
ret = -errno;
DBG("%s:%d: Error reading data from buffer %d: "
"(%"PRIu64" %"PRIu64") %s .\n",
__FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
}
return ret;
}
/** Waits for all GPU rendering with the object to have completed. */
void
brw_bo_wait_rendering(struct brw_context *brw, struct brw_bo *bo)
{
set_domain(brw, "waiting for",
bo, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
}
/**
* Waits on a BO for the given amount of time.
*
* @bo: buffer object to wait for
* @timeout_ns: amount of time to wait in nanoseconds.
* If value is less than 0, an infinite wait will occur.
*
* Returns 0 if the wait was successful ie. the last batch referencing the
* object has completed within the allotted time. Otherwise some negative return
* value describes the error. Of particular interest is -ETIME when the wait has
* failed to yield the desired result.
*
* Similar to brw_bo_wait_rendering except a timeout parameter allows
* the operation to give up after a certain amount of time. Another subtle
* difference is the internal locking semantics are different (this variant does
* not hold the lock for the duration of the wait). This makes the wait subject
* to a larger userspace race window.
*
* The implementation shall wait until the object is no longer actively
* referenced within a batch buffer at the time of the call. The wait will
* not guarantee that the buffer is re-issued via another thread, or an flinked
* handle. Userspace must make sure this race does not occur if such precision
* is important.
*
* Note that some kernels have broken the inifite wait for negative values
* promise, upgrade to latest stable kernels if this is the case.
*/
int
brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
struct drm_i915_gem_wait wait;
int ret;
memclear(wait);
wait.bo_handle = bo->gem_handle;
wait.timeout_ns = timeout_ns;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
if (ret == -1)
return -errno;
return ret;
}
void
brw_bufmgr_destroy(struct brw_bufmgr *bufmgr)
{
pthread_mutex_destroy(&bufmgr->lock);
/* Free any cached buffer objects we were going to reuse */
for (int i = 0; i < bufmgr->num_buckets; i++) {
struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
list_del(&bo->head);
bo_free(bo);
}
}
_mesa_hash_table_destroy(bufmgr->name_table, NULL);
_mesa_hash_table_destroy(bufmgr->handle_table, NULL);
free(bufmgr);
}
static int
bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
uint32_t stride)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
struct drm_i915_gem_set_tiling set_tiling;
int ret;
if (bo->global_name == 0 &&
tiling_mode == bo->tiling_mode && stride == bo->stride)
return 0;
memset(&set_tiling, 0, sizeof(set_tiling));
do {
/* set_tiling is slightly broken and overwrites the
* input on the error path, so we have to open code
* rmIoctl.
*/
set_tiling.handle = bo->gem_handle;
set_tiling.tiling_mode = tiling_mode;
set_tiling.stride = stride;
ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
if (ret == -1)
return -errno;
bo->tiling_mode = set_tiling.tiling_mode;
bo->swizzle_mode = set_tiling.swizzle_mode;
bo->stride = set_tiling.stride;
return 0;
}
int
brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode,
uint32_t *swizzle_mode)
{
*tiling_mode = bo->tiling_mode;
*swizzle_mode = bo->swizzle_mode;
return 0;
}
struct brw_bo *
brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd,
int size)
{
int ret;
uint32_t handle;
struct brw_bo *bo;
struct drm_i915_gem_get_tiling get_tiling;
pthread_mutex_lock(&bufmgr->lock);
ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
if (ret) {
DBG("create_from_prime: failed to obtain handle from fd: %s\n",
strerror(errno));
pthread_mutex_unlock(&bufmgr->lock);
return NULL;
}
/*
* See if the kernel has already returned this buffer to us. Just as
* for named buffers, we must not create two bo's pointing at the same
* kernel object
*/
bo = hash_find_bo(bufmgr->handle_table, handle);
if (bo) {
brw_bo_reference(bo);
goto out;
}
bo = calloc(1, sizeof(*bo));
if (!bo)
goto out;
p_atomic_set(&bo->refcount, 1);
/* Determine size of bo. The fd-to-handle ioctl really should
* return the size, but it doesn't. If we have kernel 3.12 or
* later, we can lseek on the prime fd to get the size. Older
* kernels will just fail, in which case we fall back to the
* provided (estimated or guess size). */
ret = lseek(prime_fd, 0, SEEK_END);
if (ret != -1)
bo->size = ret;
else
bo->size = size;
bo->bufmgr = bufmgr;
bo->gem_handle = handle;
_mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
bo->name = "prime";
bo->reusable = false;
memclear(get_tiling);
get_tiling.handle = bo->gem_handle;
if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
goto err;
bo->tiling_mode = get_tiling.tiling_mode;
bo->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
out:
pthread_mutex_unlock(&bufmgr->lock);
return bo;
err:
bo_free(bo);
pthread_mutex_unlock(&bufmgr->lock);
return NULL;
}
int
brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
DRM_CLOEXEC, prime_fd) != 0)
return -errno;
bo->reusable = false;
return 0;
}
int
brw_bo_flink(struct brw_bo *bo, uint32_t *name)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
if (!bo->global_name) {
struct drm_gem_flink flink;
memclear(flink);
flink.handle = bo->gem_handle;
if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
return -errno;
pthread_mutex_lock(&bufmgr->lock);
if (!bo->global_name) {
bo->global_name = flink.name;
bo->reusable = false;
_mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
}
pthread_mutex_unlock(&bufmgr->lock);
}
*name = bo->global_name;
return 0;
}
/**
* Enables unlimited caching of buffer objects for reuse.
*
* This is potentially very memory expensive, as the cache at each bucket
* size is only bounded by how many buffers of that size we've managed to have
* in flight at once.
*/
void
brw_bufmgr_enable_reuse(struct brw_bufmgr *bufmgr)
{
bufmgr->bo_reuse = true;
}
static void
add_bucket(struct brw_bufmgr *bufmgr, int size)
{
unsigned int i = bufmgr->num_buckets;
assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
list_inithead(&bufmgr->cache_bucket[i].head);
bufmgr->cache_bucket[i].size = size;
bufmgr->num_buckets++;
}
static void
init_cache_buckets(struct brw_bufmgr *bufmgr)
{
uint64_t size, cache_max_size = 64 * 1024 * 1024;
/* OK, so power of two buckets was too wasteful of memory.
* Give 3 other sizes between each power of two, to hopefully
* cover things accurately enough. (The alternative is
* probably to just go for exact matching of sizes, and assume
* that for things like composited window resize the tiled
* width/height alignment and rounding of sizes to pages will
* get us useful cache hit rates anyway)
*/
add_bucket(bufmgr, 4096);
add_bucket(bufmgr, 4096 * 2);
add_bucket(bufmgr, 4096 * 3);
/* Initialize the linked lists for BO reuse cache. */
for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
add_bucket(bufmgr, size);
add_bucket(bufmgr, size + size * 1 / 4);
add_bucket(bufmgr, size + size * 2 / 4);
add_bucket(bufmgr, size + size * 3 / 4);
}
}
uint32_t
brw_create_hw_context(struct brw_bufmgr *bufmgr)
{
struct drm_i915_gem_context_create create;
int ret;
memclear(create);
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
if (ret != 0) {
DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
return 0;
}
return create.ctx_id;
}
void
brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id)
{
struct drm_i915_gem_context_destroy d = {.ctx_id = ctx_id };
if (ctx_id != 0 &&
drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
strerror(errno));
}
}
int
brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
{
struct drm_i915_reg_read reg_read;
int ret;
memclear(reg_read);
reg_read.offset = offset;
ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
*result = reg_read.val;
return ret;
}
void *
brw_bo_map__gtt(struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
if (bo->gtt_virtual)
return bo->gtt_virtual;
pthread_mutex_lock(&bufmgr->lock);
if (bo->gtt_virtual == NULL) {
struct drm_i915_gem_mmap_gtt mmap_arg;
void *ptr;
DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
bo->gem_handle, bo->name, bo->map_count);
memclear(mmap_arg);
mmap_arg.handle = bo->gem_handle;
/* Get the fake offset back... */
ptr = MAP_FAILED;
if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg) == 0) {
/* and mmap it */
ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
MAP_SHARED, bufmgr->fd, mmap_arg.offset);
}
if (ptr == MAP_FAILED) {
--bo->map_count;
ptr = NULL;
}
bo->gtt_virtual = ptr;
}
pthread_mutex_unlock(&bufmgr->lock);
return bo->gtt_virtual;
}
void *
brw_bo_map__cpu(struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
if (bo->mem_virtual)
return bo->mem_virtual;
pthread_mutex_lock(&bufmgr->lock);
if (!bo->mem_virtual) {
struct drm_i915_gem_mmap mmap_arg;
DBG("bo_map: %d (%s), map_count=%d\n",
bo->gem_handle, bo->name, bo->map_count);
memclear(mmap_arg);
mmap_arg.handle = bo->gem_handle;
mmap_arg.size = bo->size;
if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg)) {
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
} else {
bo->map_count++;
VG(VALGRIND_MALLOCLIKE_BLOCK
(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
bo->mem_virtual = (void *) (uintptr_t) mmap_arg.addr_ptr;
}
}
pthread_mutex_unlock(&bufmgr->lock);
return bo->mem_virtual;
}
void *
brw_bo_map__wc(struct brw_bo *bo)
{
struct brw_bufmgr *bufmgr = bo->bufmgr;
if (bo->wc_virtual)
return bo->wc_virtual;
pthread_mutex_lock(&bufmgr->lock);
if (!bo->wc_virtual) {
struct drm_i915_gem_mmap mmap_arg;
DBG("bo_map: %d (%s), map_count=%d\n",
bo->gem_handle, bo->name, bo->map_count);
memclear(mmap_arg);
mmap_arg.handle = bo->gem_handle;
mmap_arg.size = bo->size;
mmap_arg.flags = I915_MMAP_WC;
if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg)) {
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
} else {
bo->map_count++;
VG(VALGRIND_MALLOCLIKE_BLOCK
(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
bo->wc_virtual = (void *) (uintptr_t) mmap_arg.addr_ptr;
}
}
pthread_mutex_unlock(&bufmgr->lock);
return bo->wc_virtual;
}
/**
* Initializes the GEM buffer manager, which uses the kernel to allocate, map,
* and manage map buffer objections.
*
* \param fd File descriptor of the opened DRM device.
*/
struct brw_bufmgr *
brw_bufmgr_init(struct gen_device_info *devinfo, int fd, int batch_size)
{
struct brw_bufmgr *bufmgr;
bufmgr = calloc(1, sizeof(*bufmgr));
if (bufmgr == NULL)
return NULL;
/* Handles to buffer objects belong to the device fd and are not
* reference counted by the kernel. If the same fd is used by
* multiple parties (threads sharing the same screen bufmgr, or
* even worse the same device fd passed to multiple libraries)
* ownership of those handles is shared by those independent parties.
*
* Don't do this! Ensure that each library/bufmgr has its own device
* fd so that its namespace does not clash with another.
*/
bufmgr->fd = fd;
if (pthread_mutex_init(&bufmgr->lock, NULL) != 0) {
free(bufmgr);
return NULL;
}
bufmgr->has_llc = devinfo->has_llc;
init_cache_buckets(bufmgr);
bufmgr->name_table =
_mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
bufmgr->handle_table =
_mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
return bufmgr;
}